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ABSTRACT. In this paper, we derive a T T̄ deformed soft graviton theorem in

the context of celestial holography. As a concrete example, it illustrates that

a two-dimensional irrelevant deformation can be applied to a four-dimensional

theory at the level of amplitudes. We argue that the T T̄ deformation has a close

relation to the loop-correction from the amplitude side which could provide an

alternative way to construct an ultraviolet complete quantum theory of gravity.

1 Introduction

Newton’s constant has a negative mass dimension; therefore, General Relativity is not

renormalizable in the usual sense, which ’t Hooft conclusively confirms and Veltman in

the early seventies [1]. As an effective theory, General Relativity can properly describe

gravitational interaction at the low energy scale in the Wilson scheme. Then the search

for a consistent ultraviolet (UV) completion for General Relativity has been a tremen-

dous physical problem for more than half a century, see, e.g., [2] for a comprehensive

introduction.

In general, conformal field theory (CFT) is central to describing the fixed points of the

renormalization group flow. A common way of flowing away from fixed points to probe

the dynamics at higher energy scales is to consider irrelevant deformations of the theory.

In particular, it was recently discovered that the composite operator T T̄ could lead to

a tractable and even solvable irrelevant deformation in two-dimensional (2D) spacetime

[3, 4]. The deformed theories in the deep UV are expected to be UV complete. One

crucial piece of evidence is that the T T̄ deformed massless free scalar field theory relates

to the Nambu-Goto action in static gauge. The associated non-local property of T T̄ -
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deformed theories have already been discovered while studying the effective theory of

long relativistic strings [5, 6]. Furthermore, the relation between the T T̄ -deformation

theories and string theory have been intensively investigated in [7–12].

Thanks to celestial holography, any quantum scattering amplitude of massless parti-

cles in four-dimensional (4D) asymptotically Minkowskian spacetime can be rewritten

as a correlation function on the celestial sphere at null infinity [13–15], namely, celestial

CFTs. We argue that a 2D T T̄ deformation of celestial CFTs can be applied to a 4D

gravitational theory, which could shed light on the construction of a UV complete theory

for General Relativity. We demonstrate our proposal by deriving a T T̄ deformation soft

graviton theorem in the context of celestial CFTs. Soft theorems and asymptotic sym-

metries are mathematically equivalent in many theories with massless particles, revealing

the symmetry origin of universal factorization properties of scattering amplitudes in the

soft limit [16–37]. In particular, the subleading soft graviton theorem [38] implies that

the tree-level S-matrix for quantum gravity in four-dimensional Minkowski space has

Virasoro symmetry [19]. Moreover, a 2D stress tensor was constructed from the sub-

leading soft graviton theorem [39]. It provokes the writing of scattering amplitudes in a

basis [13,14] manifesting the conformal symmetries. Then 4D tree-level scattering ampli-

tudes are mapped to 2D correlators of CFTs on the celestial sphere [15], see also [40–42]

for recent reviews and references therein. This connection allows one to deform a 4D

theory with a 2D operator.

We start from the 2D charge defined by the stress tensor induced by the subleading

soft graviton theorem [39]. By introducing a soft graviton propagator, we can obtain the

shadow of the subleading soft factor from the 2D charge. Then the subleading soft fac-

tor can be recovered by an inverse shadow transformation. The 2D stress tensor can be

deformed by the T T̄ operator in the standard way, which is given in a perturbative expan-

sion of the deformation parameter λ. Accordingly, the deformed 2D charge leads to the

shadow of the deformed soft factor. We perform the inverse shadow transformation and

give the explicit form of the soft factor up to λ2 order. The deformed soft theorem should

be considered a universal factorization property of UV-complete quantum gravity. If con-

firmed by the ordinary amplitude calculation in momentum space, it provides remarkable

evidence for the ongoing celestial holography program [40–43].

2 Soft theorem in asymptotic flat spacetime

The undeformed theory lives on the asymptotic flat spacetime (AFS) background with

retarded Bondi coordinates pu, r, z, z̄q. The AFS metric can be expanded near future null
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infinity I` (r Ñ 8)

ds2 “ ´ R̊

2
du2 ´ 2dudr ` 2r2γzz̄dzdz̄

` 2M

r
du2 ` rCzzdz

2 ` rCz̄z̄dz̄
2

` DzCzzdudz ` Dz̄Cz̄z̄dudz̄ ` ¨ ¨ ¨ ,

(1)

where the retarded time u “ t ´ r is the coordinate of the null vector on I`. Dz and

R̊ are the covariant derivatives and Ricci scalar of the transverse metric γzz̄ respectively.

We choose γzz̄ “ 2
p1`zz̄q2

for celestial sphere. Correspondingly, R̊ “ 2. The asymptotic

shear CAB and the Bondi mass aspect M are independent of r. The Bondi news tensor is

defined as follows

NAB “ BuCAB, A, B “ z or z̄. (2)

One can use κhµν pκ “
?
32πGNq to denote the perturbative part of AFS metric, which

can be expanded as outgoing graviton modes

hout
µν pxq “

ÿ

α“˘

ż
d3q

p2πq3
1

2ω

”
ε̄αµνa

out
α p~qqeiq¨x ` εαµνa

out
α p~qq:

e´iq¨x
ı
, (3)

where we have adopted natural units 8πGN “ 1, q “ pω, ~qq is the 4-momentum of

graviton. The polarization tensor ε˘
µν can be factorized as 2 polarization vectors ε˘

µν “
ε˘
µ ε

˘
ν . The momenta and the polarization vectors can be parametrized as

qµpω, z, z̄q “ ω

ˆ
1,

z ` z̄

1 ` zz̄
,

´ipz ´ z̄q
1 ` zz̄

,
1 ´ zz̄

1 ` zz̄

˙
,

ε`
µ pqq “ 1?

2
p´z̄, 1,´i,´z̄q, ε´

µ pqq “ ε̄`
µ pqq.

(4)

The canonical quantification gives

”
aoutα p~qq, aoutβ p~q1q:

ı
“ 2ωqδαβp2πq3δp3qp~q ´ ~q1q. (5)

Comparing (3) with (1), one obtains the mode expansion for the shear and news tensors

as

Cz̄z̄ “ ´ iε̂z̄z̄

4π2

ż 8

0

dω
”
aout´ pqqe´iωu ´ aout` pqq:

eiωu
ı
,

Nz̄z̄ “ ´ ε̂z̄z̄

4π2

ż 8

0

ωdω
”
aout´ pqqe´iωu ` aout` pqq:

eiωu
ı
,

ε̂z̄z̄ “ 2

p1 ` zz̄q2 “ γzz̄,

3



where we used the stationary-phase approximation [28]. Hence, the n-th moment of the

news tensor can be written in the mode expansion as

N
pnq
z̄z̄ “

ż 8

´8

duunNz̄z̄

“ p´iqn
2

lim
ωÑ0

Bn
ω

ż 8

´8

du
`
eiωu ` p´1qne´iωu

˘
Nz̄z̄

“ ´p´iqnε̂`
z̄z̄

4π
lim
ωÑ0

Bn
ω

!
ω

”
aout´ pqq ` p´1qnaout` pqq:

ı)
(6)

In the Heisenberg picture, the n-point tree level scattering problem in AFS can be

regarded as that the asymptotic states |iny “ |q1, s1; ¨ ¨ ¨ ; qm, smy defined on I´ and

|outy “ |qm`1, sm`1; ¨ ¨ ¨ ; qn, sny defined on I` are fixed and S-matrix depends on the

time evolution. We use qk, sk to denote the 4-momentum and helicity of k-th mass-

less hard particle with finite energy ωk. The expression of qk, ε
˘
µ pqkq can be similarly

parametrized as (4). The n-point amplitude of massless hard particles is defined as fol-

lows

An “ xout|S |iny “ xO1 ¨ ¨ ¨Ony, (7)

where Ok is annihilation or creation operator of k-th hard particle [44],

Okpωk, zk, z̄kq “ aoutk pqkqθpωkq ` a
in:
k p´qkqθp´ωkq.

By introducing the following Mellin transform,

O∆k,skpzk, z̄kq “
ż 8

0

dωkω
∆k´1
k Okpωk, zk, z̄kq, (8)

one can connect the operators between 2D and 4D. Therefore, the 4D amplitude is equiva-

lent to the 2D correlation function by implementing Mellin transform for all hard particles

xXny “
nź

k“1

ˆż 8

0

dωkω
∆k´1
k

˙
δp4q

˜
nÿ

k“1

ǫkqk

¸
An, (9)

where Xn “ śn

k“1O∆k ,skpzk, z̄kq, and ǫk “ 1,´1 for particles in |outy and |iny state

respectively. See more details of Mellin transform in [15].

In terms of the soft theorem, an amplitude containing n hard particles and a soft

graviton with energy ω Ñ 0 can be expanded by the power of soft energy ω

A˘
n`1pqq

ˇ̌
ωÑ0

“ lim
ωÑ0

xout; q,˘2|S |iny

“ lim
ωÑ0

xout| aout˘ pqqS |iny “
8ÿ

n“0

Spnq˘ωn´1An,
(10)
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Since the n-th news tensor can be expressed by the generator of n-th order soft factor (6),

one can read off the results of the insertion of the n-th moment into the amplitude as

xout|N zpnq
z̄ S |iny “ ´p´iqnn!

4π
Spnq´ xout|S |iny . (11)

The soft factors are universal for the first three orders [38]. In particular, the subleading

soft graviton factors can be written in the position space as [39]

S
p1q`
p~z,~zkq “

nÿ

k“1

pz̄ ´ z̄kq2
z ´ zk

„
2ˆ̄hk

z̄ ´ z̄k
´ Γz̄k

z̄k z̄k
ˆ̄hk ´ Bz̄k ´ skΩz̄k


,

S
p1q´
p~z,~zkq “

nÿ

k“1

pz ´ zkq2
z̄ ´ z̄k

„
2ĥk

z ´ zk
´ Γzk

zkzk
ĥk ´ Bzk ` skΩzk


,

ĥk “ 1

2
psk ´ ωkBωk

q, ˆ̄hk “ 1

2
p´sk ´ ωkBωk

q (12)

where ~z “ pz, z̄q and ~zk “ pzk, z̄kq are the locations of the soft graviton and the hard

particles respectively, Γz
zz is the Levi-Civita connection of the celestial sphere metric γzz̄

and Ωz “ Γz
zz

2
is the spin connection.

3 From 4D superrotation charge to 2D Virasoro charge

In 4D AFS, the gravitational scattering has Bondi-Metzner-Sachs (BMS) invariance [17],

which reveals the symmetry origin of the soft graviton theorem. The BMS symmetry

consists of supertranslations and superrotations related to the leading [18] and subleading

[19, 21] soft graviton theorem, respectively. The superrotation charge includes two parts,

namely the soft part and the hard part [19, 21, 40, 41],

Q “ QS ` QH , (13)

which are given by

QH “ ´2i

ż

I`

γzz̄d
2zdu

`
Y zT p4q

uz ` uDzY
zT p4q

uu

˘
,

QS “ i

ż

S2

d2zY zD3
zN

zp1q
z̄ “ i

ż
d2zY zB3

zN
zp1q
z̄ ,

(14)

for the holomorphic case, where T
p4q
µν is the 4D total stress tensor [28], Y A is the super-

rotation parameter. The Ward identity of the superrotation charge yields the insertion of

soft charge QS as [19]

xout|QSS |iny “
nÿ

k“1

´
Y zkpBzk ´ skΩzkq ` DzkY

zk ĥk

¯
ˆ xout|S |iny . (15)
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Applying Mellin transform for hard particles in (15) yield

xQYXny “
nÿ

k“1

”
Y zkpBzk ´ skΩzkq ` DzkY

zkhk

ı
xXny. (16)

where phk, h̄kq “ p∆k`sk
2

, ∆k´sk
2

q are the conformal weights of k-th hard particle on the

celestial sphere. The subscript Y in the charge indicates that it corresponds to a 2D

charge operator. Remarkably, eq.(16) recovers the Ward identity of 2D Virasoro charge

constructed in [39] from 2D stress tensor,

QY “ 1

2πi

¿

C

dzTzzY
z, (17)

where the integral contour C separates the locations of all hard particles ~zk and soft parti-

cles ~z. The insertion of the 2D stress tensor in (17) into the correlator yields [39]

xTzzXny “
nÿ

k“1

„
hk

pz ´ zkq2 ` Γzk
zkzk

z ´ zk
hk ` 1

z ´ zk
pBzk ´ skΩzkq


xXny, (18)

which is precisely the conformal Ward Identity of stress tensor on celestial sphere [45].

While the OPEs of the stress tensor are derived by inserting 2 components of the stress

tensor into the amplitude and implementing Mellin transform [46],

TzzTz1z1 „ 2Tz1z1

pz ´ z1q2 ` Bz1Tz1z1

z ´ z1
` regular,

TzzTz̄1z̄1 „ regular,

(19)

which indicates that the central charge of the corresponding CFT on the celestial sphere

is vanishing and the stress tensor is traceless.

Following the above procedures, one can easily recover the correspondence between

the 4D and 2D charges for the anti-holomorphic part.

4 From 2D Virasoro charge to subleading soft graviton

theorem

Superrotations reveal the symmetry origin of the subleading soft graviton theorem [19,21,

47]. Hence, the 2D Virasoro charge is related to the subleading soft graviton theorem in

the context of celestial holography [40–43]. It is shown that soft theorems can be directly

derived in the 2D conformal basis [48–50]. Here, we propose a direct way to reveal the

subleading conformally soft graviton theorem [48–50] from 2D Virasoro charge. The

2D stress tensor with dimension ∆ “ 2 is the shadow transformation of the subleading

soft-graviton operator [51] with dimension ∆ “ 0 [48–50]. One can refer to the shadow
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transformation in Appendix A and also in [14, 52–54]. Thanks to this shadow relation,

one can verify that the 2D Virasoro charge associated with a particular choice [28] of

the superrotation parameter Y z “ 1
w´z

is the shadow of the subleading soft-graviton

operator. Further, one can apply the same choice for superrotation charge to recover

the subleading soft graviton theorem [19, 28]. We would refer to the particular choice

Y z [28] as a soft graviton propagator. In such a way, the 2D Virasoro charge reveals the

symmetry origin of the conformally soft graviton theorem [48–50] in the 2D context. It

can be justified by inserting the Mellin transform of the 2D charge associated with the

soft graviton propagator into a 4D amplitude,

xout|QY S |iny “ rSp1q´
p~wq xout|S |iny , (20)

where

rSp1q´
p~wq “

nÿ

k“1

„
ĥk

pw ´ zkq2 ` Γzk
zkzk

ĥk

w ´ zk
` Bzk ´ skΩzk

w ´ zk


,

rSp1q`
p~wq “

nÿ

k“1

„ ˆ̄hk

pw̄ ´ z̄kq2 ` Γ
z̄k
z̄k z̄k

ˆ̄hk

w̄ ´ z̄k
` Bz̄k ` skΩz̄k

w̄ ´ z̄k


.

(21)

The factor rSp1q´
p~w,~zkq is related to soft factor S

p1q´
p~z,~zkq in (12) by the shadow transformation as

rSp1q´
p~wq “ 3!

4π

ż
d2z

1

pw ´ zq4S
p1q´
p~zq ,

S
p1q´
p~zq “ 1

2π

ż
d2w

pz ´ wq2
pz̄ ´ w̄q2

rSp1q´
p~wq .

(22)

5 2D charges from TT̄ deformed stress tensor

The T T̄ flow effect on action is

BSrλs

Bλ “ ´
ż a

γrλsd2xO
rλs

TT
, O

rλs

TT
“ 1

2
pTAB

rλs T
rλs
AB ´ T 2

rλsq, (23)

where λ is the coupling constant of T T̄ deformation and T denotes the trace of stress

tensor. The superscript r0s denotes quantities before T T̄ deformation, while rλs denotes

the deformed quantities. The flow equation can be exactly solved with variational princi-

ple [55]

T̂
rλs
AB “ T

rλs
AB ´ γ

rλs
ABT

rλs “ T̂
r0s
AB ´ T̂

r0s
AC T̂

r0s
BDγ

CD
r0s λ,

γ
rλs
AB “ γ

r0s
AB ´ 2T̂

r0s
ABλ ` T̂

r0s
AC T̂

r0s
BDγ

CD
r0s λ

2,

T rλs “
T r0s ´ 2O

r0s

TT
λ

1 ` T r0sλ ´ O
r0s

TT
λ2

.

(24)
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One can check that the deformed stress tensor is conserved, namely γAB
rλs D

rλs
A T

rλs
BC “ 0,

where D
rλs
A is the covariant derivative with respect to the deformed metric γ

rλs
AB. On the

celestial sphere, the perturbative terms of components of the deformed stress tensor are

T rλs
zz “ T r0s

zz

”
1 ` 4

8ÿ

n“1

pOr0s

TT
λ2qn

ı
,

T
rλs
z̄z̄ “ T

r0s
z̄z̄

”
1 ` 4

8ÿ

n“1

pOr0s

TT
λ2qn

ı
,

T
rλs
zz̄ “ ´γ

r0s
zz̄

”
3 ` 4

8ÿ

n“1

pOr0s

TT
λ2qn

ı
O

r0s

TT
λ.

(25)

For the deformed stress tensor, the corresponding 2D charge is

Qrλs “ 1

2πi

¿

C

dxAT
rλs
ABY

B “ Q
rλs
Y ` Q

rλs

Ȳ
, (26)

where

Q
rλs
Y “ 1

2πi

¿

C

dzT rλs
zz Y z ` 1

2πi

¿

C

dz̄T
rλs
zz̄ Y z,

Q
rλs

Ȳ
“ 1

2πi

¿

C

dz̄T
rλs
z̄z̄ Y z̄ ` 1

2πi

¿

C

dzT
rλs
zz̄ Y z̄.

(27)

Inserting the deformed stress tensor (25), we obtain the minus helicity charge (27) in

series expansion of λ as

Q
rλs
Y “

¿
dz

2πi
Y zT r0s

zz ´ 3λ

¿
dz̄

2πi
Y zγzz̄r0sT r0s

zz T
r0s
z̄z̄

´ 4

8ÿ

s“1

λ2s`1

¿
dz̄

2πi
Y zpT r0s

zz qs`1pT r0s
z̄z̄ qs`1pγzz̄

r0sq2s`1

` 4

8ÿ

s“1

λ2s

¿
dz

2πi
Y zpT r0s

zz qs`1pT r0s
z̄z̄ qspγzz̄

r0sq2s. (28)

To close this section, two remarks about the deformed charges are as follows. Firstly,

since the deformed stress tensor has three independent components, one cannot directly

apply the connection [39] between the 2D traceless stress tensor and the subleading soft

graviton theorem to our case. Alternatively, we construct the deformed charge by con-

tracting the deformed stress tensor with the superrotation (conformal killing) vectors.

Secondly, since the contour integration associated with the λ odd order terms in (28) is

irrelevant to minus helicity soft graviton propagator Y z, the integration contour can not

attach the soft graviton propagator to any hard particles. It corresponds to disconnected

correlators, namely a soft graviton propagator plus the correlation function of hard parti-

cles.

8



6 TT̄ deformed soft theorem

The deformed charges play essential roles in obtaining the deformed soft graviton theo-

rem. In particular, one can insert the charge (28) into the amplitudes to get the shadow of

a deformed subleading minus helicity soft graviton theorem. In the Heisenberg picture,

the asymptotic states xout| and |iny are the same as the ones in un-deformed theory, the

information of deformation is hidden in S-matrix,

Arλs
n “ xout|Srλs |iny . (29)

As discussed previously, after the insertion of Q
rλs
Y into the amplitudes, together with

Y z “ 1
w´z

, the shadow of the soft factor will be obtained by shrinking the integral contour

away from locations of hard particles zk,

rSrλsp1q´
p~w,~zkq xout|Srλs |iny “ xout|Qrλs

Y Srλs |iny (30)

which is equivalent to the insertion of T
rλs
ww and subtracting all extra δ functions because

the integral contour does not pass through the poles of the delta function. The shadow of

the deformed soft factor is given by

rSp1q´
rλsp~w,~zkq “ rSp1q´

p~w,~zkq ` 4

8ÿ

s“1

λ2spγzz̄
r0sq2s

”
rSp1q´

p~w,~zkq

ıs`1 ”
rSp1q`

p~w,~zkq

ıs
, (31)

where rSp1q˘
p~w,~zkq is the shadow of undeformed subleading soft factor (21). The T T̄ deforma-

tion doesn’t change the helicity of Tzz and Tz̄z̄, and they follow the same shadow formula

(22). The explicit formula of the soft factor is

S
p1q´
rλs p~z, ~zkq “ S

p1q´
p~z,~zkq ` 2

π

8ÿ

s“1

λ2s

ż
d2w

pz ´ wq2
pz̄ ´ w̄q2

ˆ pγzz̄
r0sq2s

”
rSp1q´

p~w,~zkq

ıs`1 ”
rSp1q`

p~w,~zkq

ıs

, (32)

where S
p1q´
p~z,~zkq is the undeformed subleading soft factor (12). The leading order of λ expan-

sion restores the undeformed soft factor. The explicit forms at λ2 order and the strategy

of computing surface integral on the celestial sphere in the complex stereographic coordi-

nates are presented in Appendix B. Finally, the soft factor can be translated into momen-

tum space with the relation between the celestial sphere coordinates and null momenta

and polarization vectors in (4). Similarly, the plus helicity soft graviton theorem can be

obtained from the antiholomorphic charge QȲ defined in (27).

7 Scheme for deriving TT̄ deformed amplitudes

In this paper, we propose to employ 2D T T̄ deformation to explore the UV property of

4D scattering amplitudes in the context of celestial holography. As the first example, we

9



illustrate the proposal by deriving a T T̄ deformed subleading soft graviton theorem. Be-

cause the connection of 4D amplitudes and 2D correlators is implemented by the Mellin

transform, which is a sum of all energies that mixes the infrared and ultraviolet regimes,

one can not directly perform the Mellin transform to a soft theorem. At the same time,

the soft theorem has its clear symmetry origin and can be recast as the Ward identity of

asymptotic symmetry. Then the soft theorem in celestial holography can be regarded as

the correspondence of two Ward identities in 2D and 4D, respectively.

The final goal of our proposal is to find the T T̄ deformed full amplitude and to study

its UV property. Our derivation of T T̄ deformed soft theorem can already fix the de-

formed full amplitudes for some particular theories whose amplitudes are determined by

their soft theorems [56,57], because the deformed soft factor only consists of undeformed

soft factors. For a generic theory, one should first study the deformed correlators and per-

form the inverse Mellin transformation to obtain the deformed amplitude. Since irrelevant

deformation flows to higher energy scales, the T T̄ deformation should have certain re-

lations to the loop correction from the amplitude side. Presumably, we will show some

overlapping sectors between the T T̄ deformed correlators and loop corrections in 4D am-

plitudes with proper assumptions. In particular, the first-order deformed CFT correlators

can be expressed by the undeformed CFT correlators as [58]

xXnyp1q
rλs|div “ 2λ

ÿ

i‰j

ˆ
log

ǫ2

|Zij|2
˙

BZ̄j
BZi

xXnyr0s, (33)

where ǫ is a regularization parameter from the point-splitting, and Zij “ Zi ´ Zj . Here

the CFT coordinates pZ, Z̄q are the same as pz, z̄q defined in previous sections if we use

the natural unit, namely, setting the dimensionful constant to 1, see more discussion in

Appendix C. On the 4D gravity side, the one-loop-order form of infrared singularities

[59–61] in gravity amplitude is following

A1-loop
n |leading div “ 1

Λ
σnA

tree
n , (34)

where

σn “ ´cΓ

n´1ÿ

i“0

nÿ

j“i`1

ppi ` pjq2 log
ˆ

µ2

´ppi ` pjq2
˙
, (35)

Λ is the dimensional regularization parameter, µ2 is the usual dimensional regularization

scale, and pi is the momentum of the i-th particle.

To manifest the connection of T T̄ deformation and loop correction, we perform Mellin

transforms on the amplitude relation (34), which yields

xXnyleading-div

p1q “ ´GN

πǫ

nÿ

i,j“1

log

ˆ |Zij|2
Λ2

ij

˙
p2BZi

BZ̄j
´ TiTjqxXnyr0s, (36)

10



where xXnyr0s is related to the tree level amplitude in the form of Mellin transform and

the action of the operator Tk is

TkO∆k ,skp~zkq “ ´iO∆k`1,skp~zkq. (37)

In the course of the Mellin transform, we have applied the recently discovered connection

between the conformal Carrollian field theory and celestial CFT [62, 63]. The details of

the transform are given in Appendix C. If one identifies the Newton constant GN and the

deformation parameter λ as

λ “ ´2GN

π2ǫ
, (38)

the 2D correlator relation (33) is part of the Mellin transform of the amplitude relation

(34). In principle, one should not expect that the T T̄ deformation is completely equivalent

to the loop correction in the context of celestial holography. Because the T T̄ deforma-

tion determines a UV complete theory while the gravity theory with loop corrections is

not. Nevertheless, those computations are indicating that the T T̄ deformation and the

loop correction are on the same footing to approach the high energy scale effect. We

leave their concrete relation for future investigation. And another natural question is how

one can make a soft theorem compatible with the Mellin transform and study the loop-

corrected soft theorem [64, 65] (see also [66–68] for the corrected stress tensor from the

soft theorem) in the context of the 2D T T̄ deformation. Furthermore, it is interesting

to study the deformed charge algebra based on our current construction of the deformed

charges.
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A Shadow transformation

A.1 Definition

The shadow of a d-dimensional scalar operator O∆ with conformal dimension ∆ is de-

fined as [14, 52–54]

rOp~xq “ Γp∆q
π

d
2Γp∆ ´ d

2
q

ż
dd~x1 O∆p~x1q

|~x ´ ~x1|2pd´∆q
. (39)

When restricted on the celestial sphere, one has

rOp~xq “ Γp∆q
πΓp∆ ´ 1q

ż
d2~x1 O∆p~x1q

|~x ´ ~x1|2p2´∆q
. (40)

Following [53], the shadow of symmetric-traceless operator with spin J can be defined as

rOa1¨¨¨a|J|
p~xq “ k∆,J

π

ż
d2~x1

Ia1b1p~x ´ ~x1q ¨ ¨ ¨ Ia|J|b|J|
p~x ´ ~x1q

|~x ´ ~x1|2p2´∆q
O

b1¨¨¨b|J|

∆ p~x1q, (41)

where

Iabp~xq “ δab ´ 2
xaxb

|~x|2 . (42)

Properly choosing the normalization factor k∆,J can ensure that [52]

ĂĂOa1¨¨¨a|J|
p~xq “ O∆;a1¨¨¨a|J|

p~xq. (43)

For notational brevity, we will refer to the second shadow transformation that transforms

back to the original operator as the inverse shadow transformation.

A.2 Shadow of the stress tensor

The shadow of a 2D stress tensor is defined as

rTa1a2p~xq “ ik2,2

2π

ż
d2z1Ia1a2 , (44)

where

Ia1a2p~x, ~x1q “Ia1b1p∆~xqIa2b2p∆~xqT b1b2p~x1q

“
„
δa1b1 ´ 2

∆xa1∆xb1

pz ´ z1qpz̄ ´ z̄1q

„
δa2b2 ´ 2

∆xa2∆xb2

pz ´ z1qpz̄ ´ z̄1q


T b1b2p~x1q

“Ta1a2p~x1q ´ 2
∆xa2∆xb2Ta1b2p~x1q ` ∆xa1∆xb1Tb1a2p~x1q

pz ´ z1qpz̄ ´ z̄1q

` 4
∆xa1∆xa2∆xb1∆xb2Tb1b2p~x1q

pz ´ z1q2pz̄ ´ z̄1q2 ,

(45)
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and we define ∆x “ x ´ x1.

Setting a1 “ a2 “ z yields

Izz “Tzzp~x1q ´ 4
∆xz∆xb2Tzb2p~x1q
pz ´ z1qpz̄ ´ z̄1q ` 4

p∆xzq2∆xb1∆xb2Tb1b2p~x1q
pz ´ z1q2pz̄ ´ z̄1q2

“Tzzp~x1q ´ 2
∆xzTzzp~x1q ` ∆xz̄Tzz̄p~x1q

z ´ z1

` p∆xzq2Tzz ` p∆xz̄q2Tz̄z̄ ` 2∆xz∆xz̄Tzz̄p~x1q
pz ´ z1q2

“pz̄ ´ z̄1q2
pz ´ z1q2Tz̄z̄p~x1q “ pz̄ ´ z̄1q2

pz ´ z1q2Tz̄z̄pz1, z̄1q.

Similarly,

Iz̄z̄ “ pz ´ z1q2
pz̄ ´ z̄1q2Tzzpz1, z̄1q. (46)

Hence

rTzz “ ik2,2

2π

ż
d2z1Izz “ ik2,2

2π

ż
d2z1 pz̄ ´ z̄1q2

pz ´ z1q2Tz̄z̄pz1, z̄1q,

rTz̄z̄ “ ik2,2

2π

ż
d2z1Iz̄z̄ “ ik2,2

2π

ż
d2z1 pz ´ z1q2

pz̄ ´ z̄1q2Tzzpz1, z̄1q,
(47)

which recovers the result in [54].

On the celestial sphere, the shadow of the stress tensor is the “twice” shadow of the

first moment of the Bondi news. If the normalization factor is chosen properly, the shadow

of the stress tensor will yield the soft fact directly. We now verify this

rTz̄z̄ “ ik2,2

2π

ż
d2z1 pz ´ z1q2

pz̄ ´ z̄1q2Tzzpz1q

“3!k2,2

2π

ż
d2z1d2w

pz ´ z1q2
pz̄ ´ z̄1q2

pγzz̄N
p1q
z̄z̄ qpw, w̄q

pz1 ´ wq4

“k2,2

2π

ż
d2z1d2w

pγzz̄N
p1q
z̄z̄ qpw, w̄q

z1 ´ w
B3
z1

pz ´ z1q2
pz̄ ´ z̄1q2

“k2,2

2π

ż
d2z1d2w

pγzz̄N
p1q
z̄z̄ qpw, w̄q

z1 ´ w
Bz̄1B3

z1

pz ´ z1q2
z̄ ´ z̄1

“ ´ 2k2,2

ż
d2z1d2w

pγzz̄N
p1q
z̄z̄ qpw, w̄q

z1 ´ w
Bz̄1δp2qpz ´ z1q

“2k2,2

ż
d2z1d2wpγzz̄N

p1q
z̄z̄ qpw, w̄qδp2qpz ´ z1qBz̄1

1

z1 ´ w

“4πk2,2

ż
d2z1d2wpγzz̄N

p1q
z̄z̄ qpw, w̄qδp2qpz ´ z1qδp2qpz1 ´ wq

“4πk2,2

ż
d2wpγzz̄N

p1q
z̄z̄ qpw, w̄qδp2qpz ´ wq

“4πk2,2γ
zz̄N

p1q
z̄z̄ pz, z̄q.

(48)
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Therefore,

k2,2 “ ´i ô rTz̄z̄ “ ´4πiγzz̄N
p1q
z̄z̄ pz, z̄q, (49)

which will ensure that the insertion of the shadow of the stress tensor into the correlation

function will yield the soft factor.

A.3 Shadow of the deformed stress tensor

After the T T̄ deformation, the stress tensor is no longer traceless. We will split the

deformed stress tensor into its trace part for which we denote as Θ and traceless part

for which we denote as GAB. Then we can define the shadow of Θ and GAB in different

ways according to their conformal weights. Another effect from T T̄ deformation is that

the full stress tensor is not primary. We will follow the prescription in [54] to simply

extend the shadow operation to any traceless tensor.

B Surface integrals in the deformed soft factor

The explicit form of the complete deformed soft factor can be expressed in terms of the

following integral notation [69]

In1n2...nin̄1n̄2...n̄j
pw, w̄, zk1, zk2 , ..., zki, z̄l1 , z̄l2 , ..., z̄ljq “

ż
d2z

pz ´ wq2
pz̄ ´ w̄q2 pγzz̄r0sq2

ˆ 1

pz ´ zk1qn1pz ´ zk2qn2 ...pz ´ zkiqnipz̄ ´ z̄l1qn̄1pz̄ ´ z̄l2qn̄2 ...pz̄ ´ z̄lj qn̄j
, (50)

where ni or n̄j can be any integer. At λ2 order, the soft factor is

S
p1q´
r2s p~w|~zkq “ 2

π
λ2

#
ÿ

k,l,j

„
I112pw, w̄, zk, zl, z̄jqˆ̄hj`

1

2
I111pw, w̄, zk, zl, z̄jqpΓz̄j

z̄j z̄j∆̂j`2Bz̄jq


BzlBzk

`8
ÿ

k,l,j

„
I212pw, w̄, zk, zl, z̄jqĥk

ˆ̄hj`
1

2
I211pw, w̄, zk, zl, z̄jqĥkpΓz̄j

z̄j z̄j∆̂j`2Bz̄jq`1

2
I112pw, w̄, zk, zl, z̄jqΓzk

zkzk
∆̂k

ˆ̄hj

` 1

4
I111pw, w̄, zk, zl, z̄jqΓzk

zkzk
∆̂kpΓz̄j

z̄j z̄j∆̂j `2Bz̄jq


Bzl `4
ÿ

k,l,j

„
I222pw, w̄, zk, zl, z̄jqĥkĥl

ˆ̄hj

` 1

2
I221pw, w̄, zk, zl, z̄jqĥkĥlpΓz̄j

z̄j z̄j∆̂j ` 2Bz̄jq ` 1

2
I212pw, w̄, zk, zl, z̄jqĥkΓ

zl
zlzl

∆̂l
ˆ̄hj

` 1

4
I211pw, w̄, zk, zl, z̄jqĥkΓ

zl
zlzl

∆̂lpΓz̄j
z̄j z̄j∆̂j ` 2Bz̄jq ` 1

2
I122pw, w̄, zk, zl, z̄jqΓzk

zkzk
∆̂kĥl

ˆ̄hj

`1

4
I121pw, w̄, zk, zl, z̄jqΓzk

zkzk
∆̂kĥlpΓz̄j

z̄j z̄j∆̂j`2Bz̄jq`1

4
I112pw, w̄, zk, zl, z̄jqΓzk

zkzk
∆̂kΓ

zl
zlzl

∆̂l
ˆ̄hj

` 1

8
I111pw, w̄, zk, zl, z̄jqΓzk

zkzk
∆̂kΓ

zl
zlzl

∆̂lpΓz̄j
z̄j z̄j∆̂j ` 2Bz̄jq
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`4
ÿ

k,l

„
I32pw, w̄, zk, z̄lqˆ̄hl`

1

2
I31pw, w̄, zk, z̄lqp∆̂lΓ

z̄l
z̄lz̄l

`2Bz̄lq´I111pw, w̄, zk, zl, z̄lq∆̂lγ
r0s
zlz̄l


Bzk

`4
ÿ

k,l

„
2I42pw, w̄, zk, z̄lqĥk

ˆ̄hl`I41pw, w̄, zk, z̄lqĥkΓ
zl
zlzl

∆̂l´I211pw, w̄, zk, zl, z̄lqĥk∆̂lγ
r0s
zlz̄l

`2I41pw, w̄, zk, z̄lqĥkBz̄l

`1

2
I31pw, w̄, zk, z̄lqΓzk

zkzk
∆̂kBz̄l`

1

4
I21pw, w̄, zk, z̄lqpΓzk

zkzk
q2∆̂kBz̄l`

1

4
I31pw, w̄, zk, z̄lqΓzk

zkzk
∆̂kΓ

z̄l
z̄lz̄l

∆̂l

`1

8
I21pw, w̄, zk, z̄lqpΓzk

zkzk
q2∆̂kΓ

z̄l
z̄lz̄l

∆̂l`
1

2
I32pw, w̄, zk, z̄lq∆̂k

ˆ̄hlΓ
zk
zkzk

`1

4
I22pw, w̄, zk, z̄lq∆̂k

ˆ̄hlpΓzk
zkzk

q2

´1

2
I111pw, w̄, zk, zl, z̄lq∆̂k∆̂lγ

r0s
zlz̄l

Γzk
zkzk


´2

ÿ

k

”
I31pw, w̄, zk, z̄kq∆̂kγ

r0s
zkz̄k

`I21pw, w̄, zk, z̄kqΓzk
zkzk

∆̂kγ
r0s
zk z̄k

ı+
.

(51)

The soft factor will involve the following integrals

Inknln̄j
pw, w̄, zk, zl, z̄jq “

ż
d2z

pz ´ wq2
pz̄ ´ w̄q2

pγzz̄r0sq2
pz ´ zkqnkpz ´ zlqnlpz̄ ´ z̄jqn̄j

, (52)

which can be calculated separately in the following 4 conditions

k ‰ l ‰ j : Inknln̄j
“

ż
d2z

pz ´ wq2
pz̄ ´ w̄q2

pγzz̄r0sq2
pz ´ zkqnkpz ´ zlqnlpz̄ ´ z̄jqn̄j

;

k ‰ l, k “ j : Inknln̄k
“

ż
d2z

pz ´ wq2
pz̄ ´ w̄q2

pγzz̄r0sq2
pz ´ zkqnkpz̄ ´ z̄kqn̄kpz ´ zlqnl

;

k “ l ‰ j : Inkn̄j
“

ż
d2z

pz ´ wq2
pz̄ ´ w̄q2

pγzz̄r0sq2
pz ´ zkqnkpz̄ ´ z̄jqn̄j

;

k “ l “ j : Inkn̄k
“

ż
d2z

pz ´ wq2
pz̄ ´ w̄q2

pγzz̄r0sq2
pz ´ zkqnkpz̄ ´ z̄kqn̄k

.

(53)

The expressions in (53) can be written as a combination of the following 4 integrals

I1pw, w̄, zk, z̄kq “
ż

d2z
pz ´ wq2p1 ` zz̄q4
pz̄ ´ w̄q|z ´ zk|2

I2pw, zk, z̄jq “
ż

d2z
pz ´ wq2p1 ` zz̄q4
pz ´ zkqpz̄ ´ z̄jq

,

I3pw, w̄, zkq “
ż

d2z
pz ´ wq2p1 ` zz̄q4
pz ´ zkqpz̄ ´ w̄q ,

I4pw, zk, z̄kq “
ż

d2z
pz ´ wq2p1 ` zz̄q4

|z ´ zk|2 .

(54)

For k “ l “ j

Inkn̄k
“ Bnk´1

zk
Bn̄k
z̄k

Bw̄

pnk ´ 1q!pn̄k ´ 1q!

ż
d2z

pz ´ wq2
z̄ ´ w̄

pγzz̄r0sq2
|z ´ zk|2

“
Bnk´1
zk

Bn̄k
z̄k

Bw̄

4pnk ´ 1q!pn̄k ´ 1q!I1pw, w̄, zk, z̄kq.
(55)
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For k “ l ‰ j

Inkn̄j
“

Bnk´1
zk

Bn̄j´1
z̄j Bw̄

pnk ´ 1q!pn̄j ´ 1q!

ż
d2z

pz ´ wq2pγzz̄r0sq2
pz ´ zkqpz̄ ´ w̄qpz̄ ´ z̄jq

“
Bnk´1
zk

Bn̄j´1
z̄j Bw̄

4pnk ´ 1q!pn̄j ´ 1q!

„
1

z̄jw

´
I2pw, zk, z̄jq ´ I3pw, w̄, zkq

¯
,

(56)

where

zjw “ zj ´ w, z̄jw “ z̄j ´ w̄. (57)

For k ‰ l ‰ j

Inknln̄j
“

Bnk´1
zk

Bnl´1
zl

Bnj´1
z̄j

pnk ´ 1q!pnl ´ 1q!pn̄j ´ 1q!

ż
d2z

pz ´ wq2
pz̄ ´ w̄q2

pγzz̄r0sq2
pz ´ zkqpz ´ zlqpz̄ ´ z̄jq

. (58)

So we just need to compute

I
k‰l
111̄

“
ż

d2z
pz ´ wq2
pz̄ ´ w̄q2

pγzz̄r0sq2
pz ´ zkqpz ´ zlqpz̄ ´ z̄jq

“ 1

zkl

”
I11̄pw, w̄, zk, z̄jq ´ I11̄pw, w̄, zl, z̄jq

ı
,

(59)

where

I11̄ “
ż

d2z
pz ´ wq2
pz̄ ´ w̄q2

pγzz̄r0sq2
pz ´ zkqpz̄ ´ z̄jq

“ Bw̄

4

„
1

z̄jw

´
I2pw, zk, z̄jq ´ I3pw, w̄, zkq

¯
.

(60)

For k ‰ l, k “ j

Inknln̄k
“

Bnk´1
zk

Bnl´1
zl

Bnj´1
z̄j

pnk ´ 1q!pnl ´ 1q!pn̄j ´ 1q!

ż
d2z

pz ´ wq2pγzz̄r0sq2
pz ´ zlqpz ´ zkqpz̄ ´ z̄kqpz̄ ´ w̄q2 . (61)

So we just need to compute

I
k“l
111̄ “ Bw̄

4

ż
d2z

pz ´ wq2p1 ` zz̄q4
pz ´ zlqpz ´ zkqpz̄ ´ z̄kqpz̄ ´ w̄q

“ Bw̄

4

„
1

zlkz̄kw

´
I2pw, zl, z̄kq ` I3pw, w̄, z̄kq ´ I3pw, w̄, z̄lq ´ I4pw, zk, z̄kq

¯
,

(62)

where zlk “ zl ´ zk and z̄kw “ z̄k ´ w̄.

The explicit forms of the integrals (54) on the celestial sphere can be explicitly worked

out. The strategy for computing surface integral in the stereographic coordinates z “
cot θ

2
eiφ, where pθ, φq are the usual spherical variables, is as follows. By virtue of the

Stocks’ theorem, a contour integral along the boundaries of the surface can be written as

a surface integral ¿
dzP “ ´

ĳ
d2zBz̄P, (63)
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or ¿
dz̄P “

ĳ
d2zBzP. (64)

Here, we normally need to introduce some boundaries on the celestial sphere to remove

some regions where the poles of the integrand are located. Otherwise, one can not apply

the Stocks’ theorem. Since (63) and (64) are true for any function P , we can rewrite a

surface integral as ż
d2z “

¿
dz̄

ż
dz “ ´

¿
dz

ż
dz̄. (65)

Note that the first integral
ş

dz or
ş

dz̄ is indefinite integral. See also [10, 70, 71] for rele-

vant discussions. The integration constants from those indefinite integral can not change

the results as they will not contribute after the contour integrals. When evaluating the

second contour integral, the integrand is not a holomorphic or anti-holomorphic function.

In this sense, it is not a usual contour integral. But z and z̄ are related from the constraint

on the boundaries (the contour). Then one can replace z(z̄) by z̄(z) for the integrand. But,

as holomorphic or anti-holomorphic function, the integrand can be different on different

parts of the boundary. This is another aspect that the second contour integral in (65) is

not a usual contour integral. The direction of the contour should be anticlockwise on the

boundary or respect to the remaining part of surface. For a compact 2D manifold, the

contour will be clockwise respect to the part that cut from the manifold for applying the

Stocks’ theorem. As an example, we will compute the area of unit 2D sphere. The area

of a unite 2D sphere in stereographic coordinates is

S “ ´i

ĳ
dzdz̄

2

p1 ` zz̄q2

“ ´2i

¿

BS

dz
1

zp1 ` zz̄q .
(66)

Note that z “ 0 is a pole of the integrand. So we remove that point (the north point on

the sphere where θ “ π) by introducing a cutoff θ “ α. Eventually we will take the limit

of α Ñ π to recover the area of the full sphere. Hence the boundary in (66) will be the

circle θ “ α. On the boundary zz̄ “ cot2 α
2

. Then (66) becomes

S “ ´2i sin2 α

2

¿

BS

dz

z

“ ´2i sin2 α

2

¿

BS

deiφ

eiφ
“ 4π sin2 α

2
.

(67)

Clearly, we recover the area of the sphere 4π when taking the limit α Ñ π.

Evaluation of I4 We start with the simplest one

I4pw, zk, z̄kq “
ż

d2z
pz ´ wq2p1 ` zz̄q4

|z ´ zk|2 . (68)
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ˆ Λ4

ǫ4

Figure 1: The contour of the I4 integral.

Let us define z1 “ z ´ zk and z̄1 “ z̄ ´ z̄k. This is nothing but moving the pole z “ zk to

the north pole θ “ π of the sphere. The integrand is also divergent at z Ñ 8, the south

pole θ “ 0. In the terms of the new variables pz1, z̄1q, the integral I4pw, zk, z̄kq becomes

I4 “ ´
¿

dz1

z1
pz1 ` zk ´ wq2

„
1

4
pz1z̄1 ` z̄1zkq4 ` 4

3
pz1z̄1 ` z̄1zkq3p1 ` z1z̄k ` zkz̄kq

` 3pz1z̄1 ` z̄1zkq2p1 ` z1z̄k ` zkz̄kq2 ` 4pz1z̄1 ` z̄1zkqp1 ` z1z̄k ` zkz̄kq3

` p1 ` z1z̄k ` zkz̄kq4 log z̄1


. (69)

Since the integrand involves logarithmic function, we need to introduce a branch cut

which can not be crossed when choosing the boundary. We introduce the radial coordinate

ρ “ cot θ
2
. We choose the real axis (the meridian φ “ 0) as the branch cut. The boundary

on the celestial sphere is chosen as demonstrated in Figure 1. Hence the contour integral

is divided into four parts

I4 “ I4a ` I4b ` I4c ` I4d. (70)

I4a “ lim
ǫ4Ñ0

ż

ǫ4

dz1

z1
pz1 ` zk ´ wq2

„
4

z1
pz1 ` zkqp1 ` z1z̄k ` zkz̄kq3ρ2

` 3

z12
pz1 ` zkq2p1 ` z1z̄k ` zkz̄kq2ρ4 ` 4

3z13
pz1 ` zkq3p1 ` z1z̄k ` zkz̄kqρ6

` 1

4z14
pz1 ` zkq4ρ8 ` p1 ` z1z̄k ` zkz̄kq4plog ρ2 ´ log z1q


. (71)
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I4b “ ´ lim
Λ4Ñ8

ż

Λ4

dz1

z1
pz1 ` zk ´ wq2

„
4

z1
pz1 ` zkqp1 ` z1z̄k ` zkz̄kq3ρ2

` 3

z12
pz1 ` zkq2p1 ` z1z̄k ` zkz̄kq2ρ4 ` 4

3z13
pz1 ` zkq3p1 ` z1z̄k ` zkz̄kqρ6

` 1

4z14
pz1 ` zkq4ρ8 ` p1 ` z1z̄k ` zkz̄kq4plog ρ2 ´ log z1q


. (72)

I4c “ ´
ż Λ4

ǫ4

dρ

ρ
pρ ` zk ´ wq2

„
1

4
pρ2 ` ρzkq4 ` 4

3
pρ2 ` ρzkq3p1 ` ρz̄k ` zkz̄kq

` 3pρ2 ` ρzkq2p1 ` ρz̄k ` zkz̄kq2 ` 4pρ2 ` ρzkqp1 ` ρz̄k ` zkz̄kq3

` p1 ` ρz̄k ` zkz̄kq4 log ρ

. (73)

I4d “
ż Λ4

ǫ4

dρ

ρ
pρ ` zk ´ wq2

„
1

4
pρ2 ` ρzkq4 ` 4

3
pρ2 ` ρzkq3p1 ` ρz̄k ` zkz̄kq

` 3pρ2 ` ρzkq2p1 ` ρz̄k ` zkz̄kq2 ` 4pρ2 ` ρzkqp1 ` ρz̄k ` zkz̄kq3

` p1 ` ρz̄k ` zkz̄kq4plog ρ ´ 2πiq

. (74)

One can easily show that

I4c ` I4d “ ´ 2πi

ż Λ

ǫ

dρ

ρ
pρ ` zk ´ wq2p1 ` ρz̄k ` zkz̄kq4

“2πi

"
1

4
z̄2k

“
3w2z̄2k ` 2wz̄kpz̄kzk ` 4q ` z̄2kz

2
k ` 4z̄kzk ` 6

‰
pρ ´ w ` zkq4

` 1

3
z̄k

“
w3z̄3k ` w2z̄2kpz̄kzk ` 4q ` wz̄k

`
z̄2kz

2
k ` 4z̄kzk ` 6

˘
` z̄3kz

3
k

` 4z̄2kz
2
k ` 6z̄kzk ` 4

‰
pρ ´ w ` zkq3 ` 1

6
z̄4kpρ ´ w ` zkq6

` 1

5
z̄3kp3wz̄k ` z̄kzk ` 4qpρ ´ w ` zkq5 ` 1

2
pz̄kzk ` 1q4pρ ´ w ` zkq2

´ pw ´ zkqpz̄kzk ` 1q4pρ ´ w ` zkq ` pw ´ zkq2pz̄kzk ` 1q4 log ρ
*ˇ̌

ˇ̌
ǫ4

Λ4

.
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I4a “2πi

"
3ρ4

„
w2p6z̄2kz2k ` 6z̄kzk ` 1q ´ 2wzkp10z̄2kz2k ` 12z̄kzk ` 3q

` z2kp15z̄2kz2k ` 20z̄kzk ` 6q


` 1

4
ρ8

`
w2 ´ 10wzk ` 15z2k

˘

` 4

3
ρ6

„
w2p4z̄kzk ` 1q ´ 4wzkp5z̄kzk ` 2q ` 10z2kp2z̄kzk ` 1q



` 4ρ2pw ´ zkqpz̄kzk ` 1q2 r4wz̄kzk ` w ´ 3zkp2z̄kzk ` 1qs
` pw ´ zkq2pz̄kzk ` 1q4 log ρ2

´ 1

6
ρ6z̄4k ` 2

5
ρ5z̄3kpwz̄k ´ 3z̄kzk ´ 2q

´ 1

4
ρ4z̄2k

“
w2z̄2k ´ 2wz̄kp5z̄kzk ` 4q ` 15z̄2kz

2
k ` 20z̄kzk ` 6

‰

´ 4

3
ρ3z̄kpz̄kzk ` 1q

“
w2z̄2k ´ wz̄kp5z̄kzk ` 3q ` 5z̄2kz

2
k ` 5z̄kzk ` 1

‰

´ 1

2
ρ2pz̄kzk ` 1q2

“
6w2z̄2k ´ 4wz̄kp5z̄kzk ` 2q ` 15z̄2kz

2
k ` 10z̄kzk ` 1

‰

´ 2ρpw ´ zkqpz̄kzk ` 1q3p2wz̄k ´ 3z̄kzk ´ 1q

´ pw ´ zkq2pz̄kzk ` 1q4plog ρ ` πiq
*
.

ˇ̌
ˇ̌
ρÑǫ4

I4b “ ´ 2πi

"
3ρ4

„
w2p6z̄2kz2k ` 6z̄kzk ` 1q ´ 2wzkp10z̄2kz2k ` 12z̄kzk ` 3q

` z2kp15z̄2kz2k ` 20z̄kzk ` 6q


` 1

4
ρ8

`
w2 ´ 10wzk ` 15z2k

˘

` 4

3
ρ6

„
w2p4z̄kzk ` 1q ´ 4wzkp5z̄kzk ` 2q ` 10z2kp2z̄kzk ` 1q



` 4ρ2pw ´ zkqpz̄kzk ` 1q2 r4wz̄kzk ` w ´ 3zkp2z̄kzk ` 1qs
` pw ´ zkq2pz̄kzk ` 1q4 log ρ2

´ 1

6
ρ6z̄4k ` 2

5
ρ5z̄3kpwz̄k ´ 3z̄kzk ´ 2q

´ 1

4
ρ4z̄2k

“
w2z̄2k ´ 2wz̄kp5z̄kzk ` 4q ` 15z̄2kz

2
k ` 20z̄kzk ` 6

‰

´ 4

3
ρ3z̄kpz̄kzk ` 1q

“
w2z̄2k ´ wz̄kp5z̄kzk ` 3q ` 5z̄2kz

2
k ` 5z̄kzk ` 1

‰

´ 1

2
ρ2pz̄kzk ` 1q2

“
6w2z̄2k ´ 4wz̄kp5z̄kzk ` 2q ` 15z̄2kz

2
k ` 10z̄kzk ` 1

‰

´ 2ρpw ´ zkqpz̄kzk ` 1q3p2wz̄k ´ 3z̄kzk ´ 1q

´ pw ´ zkq2pz̄kzk ` 1q4plog ρ ` πiq
*
.

ˇ̌
ˇ̌
ρÑΛ4
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Clearly, the terms that are independent of the cutoff in I4a and I4b are canceled. Thus there

are only divergent terms when we take the limit ǫ4 Ñ 0 and Λ4 Ñ 8. If one properly

chooses the relation of 1
ǫ4

and Λ4 which will just modify the way of ǫ4 and Λ4 approaching

0 and 8 respectively, all the divergent terms can be canceled. Hence,

I4pw, zk, z̄kq “ 0. (75)

Evaluation of I1 Next, we consider the first interal

I1pw, w̄, zk, z̄kq “
ż

d2z
pz ´ wq2p1 ` zz̄q4
pz̄ ´ w̄q|z ´ zk|2 (76)

In the pz1, z̄1q coordinates, the integral I1pw, w̄, zk, z̄kq is reduced to

I1 “ ´
¿

dz1

z1
pz1 ` zk ´wq2

„
z̄1pz1 ` zkq2

ˆ
w̄2pz1 ` zkq2 ` 2w̄pz1 ` zkqpz1z̄k ` z̄kzk ` 2q

` 3z12z̄2k ` 2z1z̄kp3z̄kzk ` 4q ` 3z̄2kz
2
k ` 8z̄kzk ` 6

˙

` 1

2
z̄12pz1 ` zkq3rw̄pz1 ` zkq ` 3z1z̄k ` 3z̄kzk ` 4s ` 1

3
z̄13pz1 ` zkq4

` rw̄pz1 ` zkq ` 1s4 logpz̄1 ` z̄k ´ w̄q
w̄ ´ z̄k

´ pz1z̄k ` z̄kzk ` 1q4 log z̄1

w̄ ´ z̄k


. (77)

The integrand is divergent at the north and south pole and the north point is a branch point.

There is another branch point z1 “ zwk where zwk “ w ´ zk. So we need to introduce

another branch cut that connecting the point zwk to the north pole. The boundary on

the celestial sphere is chosen as in Figure 2 where we choose the other branch cut the

meridian φ “ φ0. We will introduce new cutoff parameters Λ2 and ǫ2. It is important to

notice that the introduction of the cutoff is not from physical aspect, e.g., energy scale

etc. The reason for the present computation is to remove the divergence in the integrand

which prevents the application of Stocks’ theorem for evaluating the surface integral.

For each surface integral, one can introduce independent cutoff parameters according to

the property of the integrand. In the end, the integral can cover the full surface by taking

proper limit of the cutoff parameters. And one can further regularize the results by slightly

changing the way that the cutoff parameters approach the proper limit. We separate the

I1 integral into two parts

I
1
1 “ ´

¿
dz1

z1
pz1 ` zk ´wq2

„
z̄1pz1 ` zkq2

ˆ
w̄2pz1 ` zkq2 ` 2w̄pz1 ` zkqpz1z̄k ` z̄kzk ` 2q

` 3z12z̄2k ` 2z1z̄kp3z̄kzk ` 4q ` 3z̄2kz
2
k ` 8z̄kzk ` 6

˙

` 1

2
z̄12pz1 ` zkq3rw̄pz1 ` zkq ` 3z1z̄k ` 3z̄kzk ` 4s ` 1

3
z̄13pz1 ` zkq4
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ˆˆzwk

Λ1 ǫ1

τ1

Figure 2: The contour of the I1 integral.

´ pz1z̄k ` z̄kzk ` 1q4 log z̄1

w̄ ´ z̄k


, (78)

and

I
2
1 “ ´

¿
dz1

z1
pz1 ` zk ´ wq2 rw̄pz1 ` zkq ` 1s4 logpz̄1 ` z̄k ´ w̄q

w̄ ´ z̄k
. (79)

The first part does not have the second branch point zwk. So its integral contour can be

reduced to the one in Figure 1. Thus this part has very similar structure as I4. One can

only obtain divergent terms from this part when taking the limits ǫ1 Ñ 0 and Λ1 Ñ
8. Eventually we will regularize the divergent terms by properly choosing the relation

between 1
ǫ1

and Λ1. So we will not specify the explicit form of I1
1. In the second part, the

logarithm will not contribute argument when evaluating the two line integrals between

the south and north pole. Hence those two line integrals cancel each other. Then the full

contour integral will be reduced to two smaller contour integrals. The first one is

I
2
1a “ lim

ǫ1Ñ0

¿

ǫ1

dz1

z1
pz1 ` zk ´ wq2 rw̄pz1 ` zkq ` 1s4 logpz̄1 ` z̄k ´ w̄q

w̄ ´ z̄k
. (80)

We can massage the logarithmic term as follow

logpz̄1 ` z̄k ´ w̄q “ logpz̄k ´ w̄q ` log

ˆ
1 ´ z̄1

w̄ ´ z̄k

˙

“ logpz̄k ´ w̄q ´
8ÿ

k“1

1

k
p z̄1

w̄ ´ z̄k
qk,

(81)

where we have applied the relation

Li1p
z̄1

w̄ ´ z̄k
q “

8ÿ

k“1

1

k
p z̄1

w̄ ´ z̄k
qk “ ´ log

ˆ
1 ´ z̄1

w̄ ´ z̄k

˙
, for | z̄1

w̄ ´ z̄k
| ă 1. (82)
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Then we obtain from the first piece that

I
2
1a “ 2πipzk ´ wq2 pw̄zk ` 1q4 logpz̄k ´ w̄q

w̄ ´ z̄k
. (83)

The second one is

I
2
1b “ ´

¿
dz1

z1
pz1 ` zk ´ wq2 rw̄pz1 ` zkq ` 1s4 logpz̄1 ` z̄k ´ w̄q

w̄ ´ z̄k
, (84)

where the contour includes four pieces

I
2
1bA “ ´ lim

Λ1Ñ8

ż

Λ1

dz1

z1
pz1 ` zk ´ wq2 rw̄pz1 ` zkq ` 1s4 logpz̄1 ` z̄k ´ w̄q

w̄ ´ z̄k
, (85)

I
2
1bB “ lim

τ1Ñ0

ż π

´π

dz1

z1
pz1 ` zk ´ wq2 rw̄pz1 ` zkq ` 1s4 logpz̄1 ` z̄k ´ w̄q

w̄ ´ z̄k
, (86)

I
2
1bC “

ż Λ1e
iφ0

zwk

dz1

z1
pz1 ` zk ´ wq2 rw̄pz1 ` zkq ` 1s4 logpz̄1 ` z̄k ´ w̄q

w̄ ´ z̄k
, (87)

I
2
1bD “ ´

ż Λ1e
iφ0

zwk

dz1

z1
pz1 ` zk ´ wq2 rw̄pz1 ` zkq ` 1s4rlogpz̄1 ` z̄k ´ w̄q ` 2πis

w̄ ´ z̄k
, (88)

where φ0 “ argpzwkq is a constant and eiφ0 “ zwk

|zwk|
. We introduce new variable t “

z1 ´ zwk. The first two integrals are reduced to

I
2
1bA “ ´ lim

Λ1Ñ8

ż

Λ1

dt

t ` zwk

t2
pw̄t ` aq4 log t̄

w̄ ´ z̄k
, a “ 1 ` w̄pzwk ` zkq, (89)

I
2
1bB “ lim

τ1Ñ0

ż π

´π

dt

t ` zwk

t2
pw̄t ` aq4 log t̄

w̄ ´ z̄k
“ 0. (90)

Applying the series expansion

1

t ` zwk

“ 1

t

8ÿ

n“0

pzkw
t

qn, (91)

I
2
1bA becomes

I
2
1bA “ ´ 1

w̄ ´ z̄k
lim

Λ1Ñ8

ż

Λ1

dt

8ÿ

n“0

pzkw
t

qntpw̄t ` aq4 log t̄. (92)

The terms in this series will be either vanishing or divergent when taking the limit Λ1 Ñ
8. Since we will regularize all the divergent terms, we will not present the explicit

formulas here. For the other two integrals, we have

I
2
1bC ` I

2
1bD “ ´2πi

ż Λ1e
iφ0

zwk

dz1

z1
pzk ´ w ` z1q2 rw̄pzk ` z1q ` 1s4

w̄ ´ z̄k

“ ´ 2πi

w̄ ´ z̄k

„
G1b

ˆ
Λ1

zwk

|zwk|

˙
´ G1bpzwkq


,

(93)

23



where

G1bpzq “ 1

4
w̄2

“
3w2w̄2 ` 2ww̄pw̄zk ` 4q ` w̄2z2k ` 4w̄zk ` 6

‰
pz ´ w ` zkq4

` 1

3
w̄

„
w2w̄2pw̄zk ` 4q ` w3w̄3 ` ww̄

`
w̄2z2k ` 4w̄zk ` 6

˘

` w̄3z3k ` 4w̄2z2k ` 6w̄zk ` 4


pz ´ w ` zkq3

` 1

6
w̄4pz ´ w ` zkq6 ` 1

5
w̄3p3ww̄ ` w̄zk ` 4qpz ´ w ` zkq5

` 1

2
pw̄zk ` 1q4pz ´ w ` zkq2 ´ pw ´ zkqpw̄zk ` 1q4pz ´ w ` zkq

` logpzqpw ´ zkq2pw̄zk ` 1q4. (94)

Hence,

G1bpzwkq “ logpzwkqpw ´ zkq2pw̄zk ` 1q4. (95)

Finally we obtain that

I1 “ 2πi

w̄ ´ z̄k

“
pzk ´ wq2pw̄zk ` 1q4 logpz̄k ´ w̄q ` G1bpzwkq

‰

“ 2πi

w̄ ´ z̄k
pzk ´ wq2pw̄zk ` 1q4 logpzwkz̄kwq

(96)

Evaluation of I3 We continue with the third integral

I3pw, w̄, zkq “
ż

d2z
pz ´ wq2p1 ` zz̄q4
pz ´ zkqpz̄ ´ w̄q . (97)

We define u “ z ´ w in this case. In the new coordinates pu, ūq, the integral I3pw, w̄, zkq
yields

I3 “ ´
¿

du

u ´ zkw
u2

„
1

4
ū4pu ` wq4 ` 4

3
ū3pu ` wq3puw̄ ` ww̄ ` 1q

` 3ū2pu ` wq2puw̄ ` ww̄ ` 1q2 ` 4ūpu ` wqpuw̄ ` ww̄ ` 1q3

` logpūqpuw̄ ` ww̄ ` 1q4

. (98)

The integrand has two branch points u “ 0, u Ñ 8 and a pole at u “ zkw. We will choose

two separated boundary for this integral on the celestial sphere. One is an infinitesimal

circle around the pole u “ zkw and the other is to remove the branch points and the branch

cut which we choose as the real axis. The contours are shown in Figure 3. We split this

integration into two parts

I
1
3 “ ´

¿
du

u ´ zkw
u2

„
1

4
ū4pu ` wq4 ` 4

3
ū3pu ` wq3puw̄ ` ww̄ ` 1q

` 3ū2pu ` wq2puw̄ ` ww̄ ` 1q2 ` 4ūpu ` wqpuw̄ ` ww̄ ` 1q3

, (99)
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ˆ

ˆzkw

Λ3

ǫ3

τ3

Figure 3: The contour of the I3 integral.

and

I
2
3 “ ´

¿
du

u ´ zkw
u2 logpūqpuw̄ ` ww̄ ` 1q4. (100)

The first part is reduced to three loop integrals

I
1
3 “ I

1
3a ` I

1
3b ` I

1
3c. (101)

I
1
3a “ lim

ǫ3Ñ0

¿

ǫ3

du

u ´ zkw
u2

„
1

4
ū4pu ` wq4 ` 4

3
ū3pu ` wq3puw̄ ` ww̄ ` 1q

` 3ū2pu ` wq2puw̄ ` ww̄ ` 1q2 ` 4ūpu ` wqpuw̄ ` ww̄ ` 1q3


“ 0, (102)

I
1
3b “ lim

τ3Ñ0

¿

zkw

du

u ´ zkw
u2

„
1

4
ū4pu ` wq4 ` 4

3
ū3pu ` wq3puw̄ ` ww̄ ` 1q

` 3ū2pu ` wq2puw̄ ` ww̄ ` 1q2 ` 4ūpu ` wqpuw̄ ` ww̄ ` 1q3


“2πiz2kw

„
1

4
z̄4kwz

4
k ` 4

3
z̄3kwz

3
kpzkw̄ ` 1q ` 3z̄2kwz

2
kpzkw̄ ` 1q2

` 4z̄kwzkpzkw̄ ` 1q3

,

(103)
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I
1
3c “ ´ lim

Λ3Ñ8

¿

Λ3

du

u ´ zkw
u2

„
1

4
ū4pu ` wq4 ` 4

3
ū3pu ` wq3puw̄ ` ww̄ ` 1q

` 3ū2pu ` wq2puw̄ ` ww̄ ` 1q2 ` 4ūpu ` wqpuw̄ ` ww̄ ` 1q3


“πiΛ2
3

6

„
8w3w̄

“
Λ2

3p8Λ2
3 ` 9q ` 24w̄2z2kw ` 18pΛ2

3 ` 1qw̄zkw
‰

` 12w4w̄2
`
3Λ2

3 ` 4w̄zkw
˘

` 6w2
“
Λ2

3p3Λ4
3 ` 8Λ2

3 ` 6q ` 48w̄3z3kw

` 36pΛ2
3 ` 2qw̄2z2kw ` 4p4Λ4

3 ` 9Λ2
3 ` 6qw̄zkw

‰
` 4wzkw

“
48w̄3z3kw

` 3pΛ6
3 ` 4Λ4

3 ` 6Λ2
3 ` 4q ` 36pΛ2

3 ` 3qw̄2z2kw

` 2p8Λ4
3 ` 27Λ2

3 ` 36qw̄zkw
‰

` z2kw
“
3Λ6

3 ` 16Λ4
3 ` 36Λ2

3

` 48w̄3z3kw ` 36pΛ2
3 ` 4qw̄2z2kw ` 8p2Λ4

3 ` 9Λ2
3 ` 18qw̄zkw ` 48

‰
.

(104)

The second part includes five pieces

I
2
3a “ lim

ǫ3Ñ0

ż

ǫ3

du

u ´ zkw
u2 logpūqpuw̄ ` ww̄ ` 1q4 “ 0. (105)

I
2
3b “ ´

ż Λ3

ǫ3

dρ

ρ ´ zkw
ρ2 logpρqpρw̄ ` ww̄ ` 1q4. (106)

I
2
3c “

ż Λ3

ǫ3

dρ

ρ ´ zkw
ρ2plog ρ ´ 2πiqpρw̄ ` ww̄ ` 1q4. (107)

I
2
3d “ ´ lim

Λ3Ñ8

ż

Λ3

du

u ´ zkw
u2 logpūqpuw̄ ` ww̄ ` 1q4. (108)

I
2
3e “ lim

τ3Ñ0

¿
du

u ´ zkw
u2 logpūqpuw̄ ` ww̄ ` 1q4

“2πiz2kw logpz̄kwqpzkw̄ ` 1q4.
(109)

Similar to the previous case, I2
3d only has divergent terms when the limit Λ3 Ñ 8 is

applied. The remaining two line integrals can be organized as follows

I
2
3b ` I

2
3c “ ´2πi

"
Λ3zkwpww̄ ` w̄zkw ` 1q4 ` 1

2
Λ2

3pww̄ ` w̄zkw ` 1q4

` 1

3
Λ3

3w̄

„
4w3w̄3 ` 6w2w̄2pw̄zkw ` 2q ` 4ww̄

`
w̄2z2kw ` 3w̄zkw ` 3

˘
` w̄3z3kw

` 4w̄2z2kw ` 6w̄zkw ` 4


` 1

4
Λ4

3w̄
2

„
6w2w̄2 ` 4ww̄pw̄zkw ` 3q

` w̄2z2kw ` 4w̄zkw ` 6


` 1

5
Λ5

3w̄
3p4ww̄ ` w̄zkw ` 4q ` Λ6

3w̄
4

6

` z2kwpww̄ ` w̄zkw ` 1q4 logpΛ3 ´ zkwq
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´ z2kwpw̄zk ` 1q4 log zwk.

*
(110)

After the regularization, we obtain

I3pw, w̄, zkq “ 2πiz2kw

„
1

4
z̄4kwz

4
k ` 4

3
z̄3kwz

3
kpzkw̄ ` 1q ` 3z̄2kwz

2
kpzkw̄ ` 1q2

` 4z̄kwzkpzkw̄ ` 1q3 ` pzkw̄ ` 1q4 log pz̄kwzwkq

. (111)

Evaluation of I2 For evaluating the second integral

I2pw, zk, z̄jq “
ż

d2z
pz ´ wq2p1 ` zz̄q4
pz ´ zkqpz̄ ´ z̄jq

, (112)

we define v “ z ´ zj . Then this integral is reduced to

I2 “ ´
¿

dv

v ´ zkj
pv ` zjwq2

„
1

4
v̄4pv ` zjq4 ` 4

3
v̄3pv ` zjq3pvz̄j ` z̄jzj ` 1q

` 3v̄2pv ` zjq2pvz̄j ` z̄jzj ` 1q2 ` 4v̄pv ` zjqpvz̄j ` z̄jzj ` 1q3

` logpv̄qpvz̄j ` z̄jzj ` 1q4

. (113)

This integral has a very similar form as I3. We just present regularized results. The details

can be consulted from the previous derivation. The final result is

I2pw, zk, z̄jq “ 2πiz2kw

„
1

4
z̄4kjz

4
k ` 4

3
z̄3kjz

3
kpzkz̄j ` 1q ` 3z̄2kjz

2
kpzkz̄j ` 1q2

` 4z̄kjzkpzkz̄j ` 1q3 ` pzkz̄j ` 1q4 log pz̄kjzjkq

. (114)

C Loop correction and TT̄ deformation

In this section, we will choose γzz̄ “ 1, namely the celestial sphere becomes celestial

plane, and the 4D metric is still AFS [72–76]. In this case, the Minkowskian coordinates

can be parameterized as [77]

xµ “ uBzBz̄q̂
µ ` rq̂µ “ 1?

2

´
rp1 ` zz̄q ` u, rpz ` z̄q,´irpz ´ z̄q, rp1 ´ zz̄q ´ u

¯
,

celestial plane : xA “ px1, x2q “ r?
2

´
z ` z̄,´ipz ´ z̄q

¯
, A “ 1, 2,

(115)

where

qµ “ ωq̂µ “ ω?
2

´
1 ` zz̄, z ` z̄,´ipz ´ z̄q, 1 ´ zz̄

¯
(116)

is the massless momentum parameterized by 4D Minkowskian coordinates.
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C.1 First order correction of TT̄ deformed correlator

We will use the standard CFT coordinate pZ, Z̄q to discuss the theory on celestial plane

Z “ x1 ` ix2 “
?
2Rz, Z̄ “ x1 ´ ix2 “

?
2Rz̄. (117)

Here R should be considered as a dimensionful constant which is to construct the dimen-

sionful coordinates. Hence all the results in [39] can be recovered using the coordinates

pZ, Z̄q. On the celestial plane, one has R “ Constant Ñ 8. The T T̄ deformed correlator

on celestial plane is

xXnyrλs “
Bˆ

1 ´ λ

ż
d2xT

r0s
ZZT

r0s

Z̄Z̄
` Opλ2q

˙
Xn

F
. (118)

The first-order correction of the correlator

xXnyp1q
rλs “ ´λ

ÿ

i‰j

´
I22̄ij̄ hih̄j ` I21̄ij̄ hiBZ̄j

` I12̄ij̄ h̄jBZi
` I11̄ij̄ BZ̄j

BZi

¯
xXny (119)

where we used Ward identity of stress tensor on the plane, and the integrals are as follows

Irs̄ij̄ “
ż

d2x

pZ ´ ZiqrpZ̄ ´ Z̄jqs
“

Br´1
Zi

Bs´1

Z̄j

pr ´ 1q!ps ´ 1q!I
11̄
ij̄ , d2x “ dx1 ^ dx2 “ i

2
d2Z.

(120)

The integrals I11̄
ij̄

can be computed by applying Stokes formula discussed in section B

I11̄ij̄ “ ´ i

2

¿
dZ

ż
dZ̄

pZ ´ ZijqZ̄
“ ´ i

2

¿
dZ

log Z̄

Z ´ Zij

. (121)

The contour is the same as Fig 3 and we choose different cut-off parameters for different

ij, denoted as Λij . Then I11̄
ij̄

can be divided into 4 parts

IΛij
“1

2

ż 2π

0

Λije
iθdθ

log Λij ´ iθ

Λijeiθ ´ Zij

“ 1

2

ż 2π

0

dθplog Λij ´ iθq ` Zij

2

ż 2π

0

dθ
log Λij ´ iθ

Λijeiθ ´ Zij

“π log Λij ´ π2i ` 0;

(122)

Iǫ3 “ ´1

2

ż 2π

0

ǫ3e
iθdθ

log ǫ3 ´ iθ

ǫ3eiθ ´ Zij

Ñ 0; (123)

Iτ3 “ i

2

¿

|Z´Zij|“τ3

dZ
log

´
Z̄ij ` τ2

3

Z´Zij

¯

Z ´ Zij

“ i

2

¿

|Z 1|“τ3

dZ 1

Z 1
log

ˆ
Z̄ij ` τ 23

Z 1

˙

“ i

2

¿

|Z 1|“τ3

dZ 1

Z 1

„
log Z̄ij ` log

ˆ
1 ` τ 23

Z 1Z̄ij

˙
“ ´π log Z̄ij ´ i

2

8ÿ

n“1

1

n

¿

0

dz

Zn`1

ˆ
τ 23
Z̄ji

˙n

“ ´ π log Z̄ij ´ 0;

(124)
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Ix “ ´ i

2

ż Λij

ǫ3

dx
log x

x ´ Zij

` i

2

ż Λij

ǫ3

dx
log x ´ 2πi

x ´ Zij

“ π

ż Λij

ǫ3

dx

x ´ Zij

“ π log Λ ´ π logZji.

(125)

Summing over all terms, one obtains

I11̄ij̄ “ 2π log Λ ´ π log
`
´|Zij|2

˘
´ π2i “ ´π log

ˆ |Zij|2
Λ2

ij

˙
. (126)

Applying the relations in (117), the first-order corrected correlator (119) is finally ob-

tained as

xXnyp1q
rλs “ λπ

ÿ

i‰j

„
hi

Zji

BZ̄j
` h̄j

Z̄ij

BZi
`

ˆ
log

|Zij|2
Λ2

ij

˙
BZ̄j

BZi


xXny. (127)

where the anti-symmetric term Bx1

i
Bx2

j
´ Bx2

i
Bx1

j
is zero after summation. Note that the

second term on the right-hand side can be dropped if we introduce the regularization

scheme |Z ´ Zi| ą ε1pε1 ! Λijq implemented by Cardy [58].

C.2 Writing one-loop corrected amplitude as 2D correlator

The inferred divergent part of one-loop corrected gravity amplitude is [60, 64]

A
leading-div

np1q “ GN

σn

ǫ
Ap0q

n , σn “ 1

4π

nÿ

i,j“1

p2qi ¨ qjq log
ˆ´2qi ¨ qj

µ2

˙
, (128)

where µ is the energy scale [60], and A
p0q
n “ A

p0q
n rqkp~zk, ωkqs is the tree amplitude in

momentum space. Here ~z and ω are used to reparametrize the null momentum. Consider-

ing the amplitude in position space rAp0q
n p~z1

k, r
1
k, u

1
kq which is the Fourier transform of the

amplitude in momentum space, the amplitude relation (128) can be rewritten as

A
leading-div

np1q “ GN

σn

ǫ

nź

k“1

ż
d4x1

ke
iqk¨x1

k rAp0q
n p~z1

k, r
1
k, u

1
kq, d4x1

k “ r12
k du

1
kdr

1
kd

2z1
k. (129)

Since the scattering data is defined on the null infinity I˘ (r1 “ R Ñ 8), the amplitude in

position space rAp0q
n p~z1

k, r
1
k, u

1
kq should be determined by the infinity data which is related

to Carrollian CFT correlation [62, 63]. Hence, after inserting a delta function δpr1
k ´ 8q,

the amplitude relation (129) is reduced to

A
leading-div

np1q rqkp~zkqs
ˇ̌
I˘ “ ´GN

2πǫ

nź

k“1

ż 8

´8

du1
ke

´iu1
k
ωk

ż
d2z1

ke
´iRωk |zk´z1

k
|2

ˆ
nÿ

i,j“1

ˆ
log

|Zij|2
Λ2

ij

˙
Bx

1µ
i

Bx1
j,µ

rAp0q
n p~Z 1

k, u
1
kq

“ ´GN

πǫ

nÿ

i,j“1

log

ˆ |Zij|2
Λ2

˙
pωiωj ` 2BZi

BZ̄j
q

ˆ
nź

k“1

ż
du1

ke
´iu1

k
ωk rAp0q

n r~Zkpqkq, u1
ks. (130)
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In the first equality, we used (115) and (116), and absorbed R2 into rAp0q
n r~Zkpqkq, u1

ks to

balance the dimension. In the second equality, we used the saddle point approximation

(z1
k “ zk) following the treatment in [28] for a similar computation. The relation between

the length scale Λij of the celestial plane and the energy scale µ of the 4D theory is

?
ωiωjΛij “ Rµ. (131)

Following [62, 63], rAp0q
n p~Z 1

k, u
1
kq can be interpreted as Carrollian correlator which can be

expressed by Carrollian operator Φ

rAp0q
n p~Z 1

k, u
1
kq “

C
nź

k“1

Φkpu1
k,
~Z 1
kq

G
. (132)

The correlator relation on the celestial plane is obtained from the amplitude relation (130)

by Mellin transform which yields

xXnyleading-div

p1q “ ´GN

πǫ

nÿ

i,j“1

log

ˆ |Zij|2
Λ2

ij

˙ `
2BZi

BZ̄j
´ TiTj

˘
xXnyr0s (133)

where we used the relation between the Carrollian field and the celestial CFT field [62]

O∆,sp~Z 1q “
ż 8

0

dωω∆´1

ż 8

´8

du1e´iωu1

Φpu1, ~Z 1q “ i∆Γp∆q
ż 8

´8

du1u1´∆Φpu1, ~Z 1q;
(134)

and the action of the operator Tk is

TkO∆k ,skp~zkq “ ´iO∆k`1,skp~zkq. (135)

Finally, by identifying the GN and the λ as

λ “ ´2GN

π2ǫ
, (136)

the resulting correlator relation (36) includes the first-order TT deformation result (127)

which means that the T T̄ deformation captures part of the loop correction information of

gravity amplitude.
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