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In this paper, we derive a TT deformed soft graviton theorem in terms of celestial holography. As a
concrete example, it illustrates that a two-dimensional irrelevant deformation can be applied to a four-

dimensional theory at the level of amplitudes.
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I. INTRODUCTION

Newton’s constant has a negative mass dimension; there-
fore, general relativity is not renormalizable in the usual
sense, which 't Hooft conclusively confirms with Veltman
in the early 1970s [1]. As an effective theory, general
relativity can properly describe gravitational interaction at
the low energy scale in the Wilson scheme. Then the search
for a consistent ultraviolet (UV) completion for general
relativity has been a tremendous physical problem for more
than half a century, see, e.g., [2] for a comprehensive
introduction.

In general, conformal field theory (CFT) is central to
describing the fixed points of the renormalization group
flow. A common way of flowing away from fixed points to
probe the dynamics at higher energy scales is to consider
irrelevant deformations of the theory. In particular, it was
recently discovered that the composite operator 7T could
lead to a tractable and even solvable irrelevant deformation
in two-dimensional (2D) spacetime [3,4]. The deformed
theories in the deep UV are expected to be UV complete.
One crucial piece of evidence is that the 7T deformed
massless free scalar field theory relates to the Nambu-Goto
action in static gauge. The associated nonlocal property of
TT-deformed theories have already been discovered while
studying the effective theory of long relativistic strings [5,6].
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Furthermore, the relation between the T7T-deformation
theories and string theory have been intensively investigated
in [7-12].

Thanks to celestial holography, any quantum scattering
amplitude of massless particles in four-dimensional (4D)
asymptotically Minkowskian spacetime can be rewritten
as a correlation function on the celestial sphere at null
infinity [13-15], namely, celestial CFTs. We argue that a 2D
TT deformation of celestial CFTs can be applied to a 4D
gravitational theory, which could shed light on the con-
struction of a UV complete theory for general relativity. We
demonstrate our proposal by deriving a TT deformation soft
graviton theorem in the context of celestial CFTs. Soft
theorems and asymptotic symmetries are mathematically
equivalent in many theories with massless particles,
revealing the symmetry origin of universal factorization
properties of scattering amplitudes in the soft limit [16-37].
In particular, the subleading soft graviton theorem [38]
implies that the tree-level S matrix for quantum gravity
in four-dimensional Minkowski space has Virasoro sym-
metry [19]. Moreover, a 2D stress tensor was constructed
from the subleading soft graviton theorem [39]. It provokes
the writing of scattering amplitudes in a basis [13,14]
manifesting the conformal symmetries. Then 4D tree-level
scattering amplitudes are mapped to 2D correlators of CFT's
on the celestial sphere [15], see also [40-42] for recent
reviews and references therein. This connection allows one
to deform a 4D theory with a 2D operator.

We start from the 2D charge defined by the stress tensor
induced by the subleading soft graviton theorem [39]. By
introducing a soft graviton propagator, we can obtain the
shadow of the subleading soft factor from the 2D charge.
Then the subleading soft factor can be recovered by an
inverse shadow transformation. The 2D stress tensor can be
deformed by the TT operator in the standard way, which is
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given in a perturbative expansion of the deformation
parameter A. Accordingly, the deformed 2D charge leads
to the shadow of the deformed soft factor. We perform the
inverse shadow transformation and give the explicit form of
the soft factor up to 4> order. The deformed soft theorem
should be considered a universal factorization property of
UV-complete quantum gravity. If confirmed by the ordi-
nary amplitude calculation in momentum space, it provides
remarkable evidence for the ongoing celestial holography
program [40-43].

II. SOFT THEOREM IN ASYMPTOTIC
FLAT SPACETIME

The undeformed theory lives on the asymptotic flat
spacetime (AFS) background with retarded Bondi coor-
dinates (u, r, z,z). The AFS metric can be expanded near
future null infinity Z* (r - o0)

o

R
ds* = —Edu2 —2dudr + 2r?y-dzdz

2M
+—du® + rC..dz* + rCs:dz?

p
+ D*C,,dudz + D*Cs.dudz + ---, (1)

where the retarded time u = t — r is the coordinate of

the null vector on Z*. D, and R are the covariant
derivatives and Ricci scalar of the transverse metric ¥,

respectively. We choose y,. = Ty + % for the celestial

sphere. Correspondingly, 103 = 2. The asymptotic shear
C,p and the Bondi mass aspect M are independent of r.
The Bondi news tensor is defined as follows:

Nap = 0,Cyp, AB=z or Z. (2)

One can use kh,, (k = /322Gy ) to denote the perturbative
part of AFS metric, which can be expanded as outgoing
graviton modes

out —a aout =\ ,ig-x
q)e
/ o) ;2 ag"(q)
a==+

+e,ag(§) e, 3)

where we have adopted natural units 8zGy = 1, and g =
(w,q) is the 4-momentum of graviton. The polarization

tensor sffv can be factorized as two polarization vectors
eff,, =g, ¢+ . The momenta and the polarization vectors can

be parametrized as

_ z+z7 —-i(z—-2) 1-22Z
ﬂ b 9 - 17 b —_ 9 —_ ki
7"(@,2,%) w( 1+zz2 1+2zZ 1+zz>
e (q) = ﬁ(_z’ 1,—i,-7), g,(q) =& (q). (4)

The canonical quantification gives

(a3(3), a3 (q)'] = 20,6, (276G - ). (5)

Comparing (3) with (1), one obtains the mode expansion
for the shear and news tensors as

Ciz= —4—;21 A dwl[a®™(q)e " — a%(g) e,
N-: —%;2 ; odw[a®(g)e™ ™" + a%(q) e,
R 2
Ezs = —m— — >,
ZZ (1 T ZZ)Z Yz

where we used the stationary-phase approximation [28].
Hence, the nth moment of the news tensor can be written in
the mode expansion as

_ (_l) hmag’, /oo du(eiam +( )n _lwu)sz’

2 w-0 —
—_(_l)ng;} : 7 out _1\n ,out T
== limop {wla>(q) + (=1)"a$(a)"]}-

(6)

In the Heisenberg picture, the n-point tree level scatter-
ing problem in AFS can be regarded as that the asymptotic
states |[in) = |1, 5155 G Sm) defined on Z~ and |out) =
|Gt St 3G, Sy) defined on ZT are fixed and the S
matrix depends on the time evolution. We use ¢, s; to
denote the 4-momentum and helicity of kth massless hard
particle with finite energy @,. The expression of ¢, eff (qr)
can be similarly parametrized as (4). The n-point amplitude
of massless hard particles is defined as follows:

A, = {out|Sfin) = (O; - O,). (7)
where O, is annihilation or creation operator of kth hard
particle [44],

Oy, 21, %) = aP™(qr)0(wy) + ai (—q,)0(—y).

By introducing the following Mellin transform,

OAk,sk(Zk’Zk)_A dwkwk Ok(wk’zk’zk) (8)
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one can connect the operators between 2D and 4D.
Therefore, the 4D amplitude is equivalent to the 2D
correlation function by implementing Mellin transform
for all hard particles

-1t o (S

k=1

where X, = [[{_; Oa, s, (2x %), and €, = 1,1 for par-
ticles in |out) and |in) state, respectively. See more details
of the Mellin transform in [15].

In terms of the soft theorem, an amplitude containing n
hard particles and a soft graviton with energy @ — 0 can be
expanded by the power of soft energy w

‘An+1( )|m—>0 - 11m<OUt q, i2|8|1n>

— out — w1
3}11r(1)<0ut| (q)Slin) = ZS A,.

n=0
(10)

Since the nth news tensor can be expressed by the generator
of nth order soft factor (6), one can read off the results of
the insertion of the nth moment into the amplitude as

(=)"n!

(out|N:"Slin) = — S {out|Slin). (1)
T

The soft factors are universal for the first three orders [38].
In particular, the subleading soft graviton factors can be
written in the position space as [39]

no/=  =1\2 &
e ~E-2)° [ 2
SG = kz: -2 [Z 7 inzkh" = 5582, |5
-1
n 2 ~
- _~~lz—z) [ 2y -
S(szk) - Z Z—Zk |:Z -z - Fiizkhk - aZk + SkQZk ’
i
~ 1 2 1
hye _E(Sk_wkawk)v hy :E(_sk_wkawk)’ (12)

where 7 = (z,Z) and Z;, = (zx, Zx) are the locations of the
soft graviton and the hard particles, respectively, I, is the
Levi-Civita connection of the celestial sphere metric y_- and

re . . .
Q_ = ¢ is the spin connection.

III. FROM 4D SUPERROTATION CHARGE
TO 2D VIRASORO CHARGE

In 4D AFS, the gravitational scattering has Bondi-
Metzner-Sachs invariance [17], which reveals the symmetry
origin of the soft graviton theorem. The Bondi-Metzner-
Sachs symmetry consists of supertranslations and super-
rotations related to the leading [18] and subleading [19,21]
soft graviton theorem, respectively. The superrotation

charge includes two parts, namely the soft part and the
hard part [19,21,40,41],

Q= Qg+ 9y, (13)

which are given by
Qy = —2i / Ve d22du(Y:TS + ub, Y TW)),
I+

Qg =i /S dzrDING =i / Pzr:adny o (14)

for the holomorphic case, where T,(Zt) is the 4D total stress
tensor [28] and Y* is the superrotation parameter. The Ward
identity of the superrotation charge yields the insertion of
soft charge Qg as [19]

n

= (r(o,

k=1

x (out|S]in). (15)

(out|QSlin) = 5:Q,,) + D, Yy

Applying the Mellin transform for hard particles in (15)
yields

n

(0yX,) = [rs(o,

k=1

_Sszk) —i_Dzkszl’llc]<Xn>7 (16)

where (hy, hy) = (%%) are the conformal weights

of kth hard particle on the celestial sphere. The subscript
Y in the charge indicates that it corresponds to a 2D
charge operator. Remarkably, Eq. (16) recovers the Ward
identity of 2D Virasoro charge constructed in [39] from
2D stress tensor,

1
Oy = f dzT, Y*, (17)

where the integral contour C separates the locations of all
hard particles 7, and soft particles 7. The insertion of the
2D stress tensor in (17) into the correlator yields [39]

<TX>:2”:{ T
o =1 (Z_Zk)2 =3k
0y mne)| ) 09

which is precisely the conformal Ward identity of the
stress tensor on celestial sphere [45]. While the operator
product expansions of the stress tensor are derived by
inserting two components of the stress tensor into the
amplitude and implementing Mellin transform [46],
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2T e a T ! /
T.. T~ L -+ regular,
22422 (Z _ Z/)2 z—
T..T»» ~ regular, (19)

which indicates that the central charge of the correspond-
ing CFT on the celestial sphere is vanishing and the stress
tensor is traceless.

Following the above procedures, one can easily recover
the correspondence between the 4D and 2D charges for the
antiholomorphic part.

IV. FROM 2D VIRASORO CHARGE
TO SUBLEADING SOFT
GRAVITON THEOREM

Superrotations reveal the symmetry origin of the sub-
leading soft graviton theorem [19,21,47]. Hence, the 2D
Virasoro charge is related to the subleading soft graviton
theorem in the context of celestial holography [40-43]. It
is shown that soft theorems can be directly derived in the
2D conformal basis [48—50]. Here, we propose a direct
way to reveal the subleading conformally soft graviton
theorem [48—50] from 2D Virasoro charge. The 2D stress
tensor with dimension A = 2 is the shadow transformation
of the subleading soft-graviton operator [51] with dimen-
sion A = 0 [48-50]. One can refer to the shadow trans-
formation in the Supplemental Material [52] and also
in [14,62-64]. Thanks to this shadow relation, one can
verify that the 2D Virasoro charge associated with a
particular choice [28] of the superrotation parameter
Y: = WL_Z is the shadow of the subleading soft-graviton
operator. Further, one can apply the same choice for
superrotation charge to recover the subleading soft grav-
iton theorem [19,28]. We would refer to the particular
choice Y* [28] as a soft graviton propagator. In such a way,
the 2D Virasoro charge reveals the symmetry origin of the
conformally soft graviton theorem [48-50] in the 2D
context. It can be justified by inserting the Mellin trans-
form of the 2D charge associated with the soft graviton
propagator into a 4D amplitude,

(out|QySlin) = 3V~

(D" (out|Slin). (20)

where

k7
FZ;Z]( hk + azk - SkQZk
(W—Zk)2 W= Zk W —Z '

s+ _ y { s + Z“Ah" aik"'stZk]
<[ (W =27 W—Z W= Zk

The factor S E”)* ) is related to soft factor S E in (12) by
the shadow transformation as

- _ 3 [ ]

. )
So =4z ) Vi rte

- _ L[5 (2=w) -
S8 =5, ] P S (22)

V. TWO-DIMENSIONAL CHARGES FROM TT
DEFORMED STRESS TENSOR

The TT flow effect on action is

oSt
e A

(23)

where 1 is the coupling constant of 77 deformation and T
denotes the trace of stress tensor. The superscript [0]
denotes quantities before 7T deformation, while [A]
denotes the deformed quantities. The flow equation can
be exactly solved with variational principle [65]

4y A A A0 0 0
4, = 74 = B0 = 1%, L7100,

410 410
van = ran = 2Taph + TacTapr G 22,

Tl _ [0]
T = 201 (24)
17— 0[ e

One can check that the deformed stress tensor is conserved,

namely yf‘f D[ Irl ]C = 0, where Dg] is the covariant deriva-

tive with respect to the deformed metric ygg. On the
celestial sphere, the perturbative terms of components of
the deformed stress tensor are

T — Tl {1+4Z 0112}
0
[zz: z%[]+4z ]'12 }
gy p—y [3+4Z oll2) ] ol (25

For the deformed stress tensor, the corresponding 2D
charge is

0= j{ aeTiys — o L o (26)

where
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R Q) S f a7 ye
QY %:‘ 1 zz +27[l - v4 7z )

2ri
o = L qzrilyz y 1 7{ Aty (27)
Y i Id wz 2mi Id w“ ’

Inserting the deformed stress tensor (25), we obtain the
minus helicity charge (27) in series expansion of 4 as

dz dz :
ol = 7{ 2—m_YZTL2] -3 7{ Syl 7070

oo s dZ 0]y s 0\ s Z)2s
Oy ]é S V(T (Tl g

=, [ dz 0]\ s O\s (.22 \2s
vy 7 ]! Tl e, e8)

To close this section, two remarks about the deformed
charges are as follows. First, since the deformed stress
tensor has three independent components, one cannot
directly apply the connection [39] between the 2D traceless
stress tensor and the subleading soft graviton theorem to
our case. Alternatively, we construct the deformed charge
by contracting the deformed stress tensor with the super-
rotation (conformal killing) vectors. Second, since the
contour integration associated with the 4 odd order terms
in (28) is irrelevant to minus helicity soft graviton propa-
gator Y?, the integration contour cannot attach the soft
graviton propagator to any hard particles. It corresponds to
disconnected correlators, namely a soft graviton propagator
plus the correlation function of hard particles.

VI. TT DEFORMED SOFT THEOREM

The deformed charges play essential roles in obtaining
the deformed soft graviton theorem. In particular, one can
insert the charge (28) into the amplitudes to get the shadow
of a deformed subleading minus helicity soft graviton
theorem. In the Heisenberg picture, the asymptotic states
(out| and |in) are the same as the ones in undeformed theory,
the information of deformation is hidden in & matrix,

AP = (out|S¥|in). (29)

As discussed previously, after the insertion of Q[Yﬂ into the
amplitudes, together with Y* = WL_Z, the shadow of the soft

factor will be obtained by shrinking the integral contour
away from locations of hard particles z,

340~ (out|SH lin) = (out| QS fin),  (30)

(W,%¢)

which is equivalent to the insertion of T% and subtracting

all extra ¢ functions because the integral contour does not
pass through the poles of the delta function. The shadow of
the deformed soft factor is given by

0

- _w)- 25,22 \2s[ (D)= s+ gD+ g8

Stitaz) = Sz +4§_;'1 o) Sz Bway!
(31)

where S‘Eév);) is the shadow of undeformed subleading soft

factor (21). The TT deformation does not change the
helicity of T, and T, and they follow the same shadow
formula (22). The explicit formula of the soft factor is

D=z 2y _ oD, 2% 0 [ o (2= W)
z\2sra(l)— 1s+1pe( K
x (rig) > Blaz)) " Blam)' (32)

(1)-
where S G2

The leading order of A expansion restores the undeformed
soft factor. The explicit forms at A% order and the strategy of
computing surface integral on the celestial sphere in the
complex stereographic coordinates are presented in the
Supplemental Material [52]. Finally, the soft factor can
be translated into momentum space with the relation
between the celestial sphere coordinates and null momenta
and polarization vectors in (4). Similarly, the plus helicity
soft graviton theorem can be obtained from the antiholo-
morphic charge Qy defined in (27).

is the undeformed subleading soft factor (21).
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