
PERSPECTIVE 

National Science Review 

10: nwad188, 2023 
https://doi.org/10.1093/nsr/nwad188 

Advance access publication 29 June 2023 

CHEMISTRY 

Visualization of charge carriers in photocatalysts 
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unique methods involving time-resolved 
and spatiotemporally resolved measure- 
ments to monitor the charge-transfer 
processes taking place in photocatalytic 
reactions [ 4 ]. Their results disclosed 
more details of charge transfer in Cu 2 O 

semiconductors. Specifically, Li and 
co-workers showed that quasi-ballistic 
inter-facet electron transfer and spatially 
selective trapping are the predominant 
processes that facilitate efficient charge 
separation in photocatalysts. Knowledge 
gained about the mechanism, which 
comprises ultrafast-hot-electron-transfer 
and anisotropic-trapping regimes, pro- 
vides in our opinion a new foundation for 
the rational design of high-performance 
semiconductors. 

In conventional semiconductors, pho- 
togenerated charge transfer often occurs 
in a random manner and this disor- 
der hinders the observation of dynamic 
photocatalytic process [ 5 ]. Li and co- 
workers exploited facet and defect engi- 
neering to produce a Cu 2 O semiconduc- 
tor in which photogenerated electrons 
and holes accumulate separately on the 
respective {001} and {111} facets. Be- 
cause of the anisotropic nature of the 
facets, charge transfer can be observed by 
using surface photovoltage microscopy 
(SPVM) [ 6 ]. Li and co-workers addition- 
ally employed time-resolved photoemis- 
sion electron microscopy (TR-PEEM) 
to monitor the internal ultrafast charge 
transfer in the Cu 2 O lattice and tran- 
sient surface photovoltage (SPV) anal- 
ysis to follow surface-charge trapping 
(Fig. 1 ) [ 7 ]. Anisotropic charge transfer 

was demonstrated to be the critical fac- 
tor causing improved performance of the 
new photocatalyst. 

Observations made in this inves- 
tigation show that an understanding 
of charge-carrier transfer mechanisms, 
needed to create advanced semicon- 
ductor photocatalysts, arose from using 
very well-defined materials that have 
structural features that enable the use 
of key characterization techniques. The 
fundamental properties of a material, 
including particle size, morphology and 
defects, are critical factors governing not 
only the activity, but also the ability to 
decipher the mechanism of an operation 
of a photocatalyst. The electrodeposition 
method applied by Li et al. led to a form 

of Cu 2 O nanoparticles in which the 
sub-picosecond-scale accumulation of 
photogenerated electrons at the {001} 
facet permitted analysis by utilizing 
SPVM. Owing to the existence of high 
concentrations of copper vacancies, 
only electrons can be detected on the 
Cu 2 O surface using this technique. To 
change this contrast, Li and co-workers 
altered the deposition current density 
to produce Cu 2 O nanoparticles that 
have the significantly increased hydro- 
gen densities required to compensate 
for copper vacancies. Due to their se- 
lective distribution on the respective 
{001} and {111} facets (Fig. 1i ), the 
electrons and holes are then sufficiently 
spatially separated so that they can be 
detected using a combination of steady- 
and dynamic-state SPV techniques. It 
should be noted that the distance over 
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emiconductors can generate excited 
harge carriers for photo- or electro- 
hemical reactions such as water splitting 
or H 2 production. Now, the dynamic 
harge-transfer process has been directly 
bserved to reveal the photocatalytic 
echanism. 
Illumination of a semiconductor with 

ppropriate light causes an electron to 
ransit from the valence to the conduc- 
ion band and concurrent formation of 
harge carriers in the form of a positively 
harged hole and a higher-energy elec- 
ron. As a result of this phenomenon, 
emiconductors are utilized as photocat- 
lysts for redox reactions. For example, 
ater can be split by such photocata- 
ysts under solar i l lumination into ele- 
ental oxygen and hydrogen—a highly 
ttractive energy-conversion and -storage 
ascade generally considered sustainable 
nd clean [ 1 ]. Understanding the path- 
ay(s) followed by the photogenerated 
arriers in the hydrogen and oxygen for- 
ation processes is crucial for design- 

ng photocells that make maximum use 
f charge carriers and produce hydro- 
en efficiently [ 2 ]. Although photocat- 
lysts have been investigated for several 
ecades, a detailed description of how 

hotogenerated carriers are transferred 
n the surfaces/interfaces of semicon- 
uctors has stayed conceptual only. It is 
imply difficult to obtain meaningful in- 
ormation about the dynamic processes 
hat take place at such short time and 
mall size scales [ 3 , 4 ]. 
In an elegant study recently published 

n Nature , Li and co-workers devised 
The Author(s) 2023. Published by Oxford University Press on behalf of China Science Publishing & Media Ltd. This is an Open Access article distributed under the terms of the Creative 
ommons Attribution License ( https://creativecommons.org/licenses/by/4.0/ ), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original 
ork is properly cited. 

https://doi.org/10.1093/nsr/nwad188
https://creativecommons.org/licenses/by/4.0/


Natl Sci Rev , 2023, Vol. 10, nwad188 

Inter-facet e- transfer 

Time/s

SPV
Time-resolved photoemission electron

microscopy
Transient surface photovoltage microscopy

(SPV) 

10-12 10-9 10-6 10-3

001

Cu2O
H-VCu

VCu

ps ns μs ms

SPV (mV) SPV (mV)Intensity (a.u.)

Length/μm
1

40

-40

0
hν

0

e-

e-

h+

h+

Holes

Electrons

Charge generation Charge transfer Surface trapping Steady-state

{111} 
{001} 

h+ trapping e- trapping

H-VCu

VCu

{111} {001} 

e-

e-

h+

h+

VCu

h+

e-

e-

h+

h+

H-VCu e-

{111}

{001} H-VCu

VCu

e- h+

h+

e-

h+h+

e-
e-

001
111

e- drift

(i) (ii) (iii) (iv)

111

+

Figure 1. Schematic illustration of approaches used to monitor charge-transfer processes spatially and temporally in semiconductors, reproduced 
from [ 4 ]. (i) Morphology and band structure of CuO 2 with spatially distributed defects on the {001} and {111} facets. (ii) The results of time-resolved 
photoemission electron microscopy (TR-PEEM) in the form of a plot of energy-integrated photoelectron intensity versus delay time, revealing that 
ultrafast charge generation, quasi-ballistic inter-facet e − transfer and e − drift take place on picosecond (10 −12 s) to nanosecond (10 −9 s) timescales. 
(iii) Transient SPV analysis that shows the occurrence of surface hole trapping on the {001} facet after a few nanoseconds and electron trapping on the 
{111} facet after tens of microseconds (10 −6 s). (iv) SPV analysis displaying the localized charge distributions of electrons on {001} and holes on {111} 
facets. 
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hich charges are transferred governs 
he ability to separate and observe the 
ynamics of the individual electron- and 
ole-transfer processes. It was found that 
u 2 O crystals with sizes of 4–6 μm allow 

he electrons and holes on the two facets 
o be clearly distinguishable. 
Importantly, characterization tech- 

iques that provide spatial and temporal 
nformation were complementarily used 
o gain a detailed understanding of the 
ynamic processes occurring in materials 
 8 ]. In their study, Li and his co-workers 
sed SPV to quantitatively assess the 
ocalized charge separation at Cu 2 O 

rystal surfaces, TR-PEEM to elucidate 
he nature of the ultrafast inter-facet 
lectron transfer on the femtosecond (fs, 
0 −15 s) and nanosecond (ns, 10 −9 s) 
imescales and finally transient SPV spec- 
roscopy to analyse the charge-carrier 
rapping process at surface defects on the 
anosecond-to-microsecond scale (Fig. 
ii –iv ). The results reveal the holistic 
ature of the charge-transfer processes 
ccurring in Cu 2 O and led the authors to 
ropose a new quasi-ballistic transport 
echanism as a replacement for the 
lassical drift-diffusion model [ 9 , 10 ]. 
We believe that the surface photo- 
oltage techniques for visualizing the 
eparation and distribution of photo- 
enerated charges in combination with 
ime-resolved spectroscopy methods for 
lucidating the charge-transfer dynam- 
cs, which were utilized in this study, 
i l l serve as powerful tools for future 
nvestigations aimed at determining the 
echanisms of processes promoted by 
ther semiconductor-based photocat- 
lysts. Going forward, applications of 
hese approaches, potentially in combi- 
ation with theoretical simulations, wi l l 
llow the answers to other long-standing 
uestions on mechanisms of virtually all 
hotocatalysed reactions to be formu- 
ated and rational system engineering 
esigns of high-performance photocat- 
lytic devices to be crafted afterwards. 
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