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Network structure shapes 
the impact of diversity in collective 
learning
Fabian Baumann , Agnieszka Czaplicka  & Iyad Rahwan *

It is widely believed that diversity arising from different skills enhances the performance of teams, 
and in particular, their ability to learn and innovate. However, diversity has also been associated 
with negative effects on the communication and coordination within collectives. Yet, despite the 
importance of diversity as a concept, we still lack a mechanistic understanding of how its impact 
is shaped by the underlying social network. To fill this gap, we model skill diversity within a simple 
model of collective learning and show that its effect on collective performance differs depending on 
the complexity of the task and the network density. In particular, we find that diversity consistently 
impairs performance in simple tasks. In contrast, in complex tasks, link density modifies the effect of 
diversity: while homogeneous populations outperform diverse ones in sparse networks, the opposite 
is true in dense networks, where diversity boosts collective performance. Our findings also provide 
insight on how to forge teams in an increasingly interconnected world: the more we are connected, 
the more we can benefit from diversity to solve complex problems.

Nowadays, humans communicate more than ever  before1. Often this communication takes place in order for 
humans to learn from each other or solve a problem together. With the aim of optimising such collective prob-
lem solving, previous studies have focused on the effects of network structure on the overall performance of a 
population. It has been found that groups do not necessarily benefit from close-knit networks where information 
can be shared freely and disseminated quickly. Instead, collective problem solving can only benefit when the 
characteristics of the network, in particular its link density, are adapted to the characteristics of the individual 
problem solvers as well as to the structure of the  problem2–11. Specifically, it was shown that collective perfor-
mance can be boosted by reducing the network’s connectivity, especially when the task to be solved is  complex2,5,6. 
Apart from the growing interconnectedness of social networks, the rise in global connectivity also results in 
individuals from diverse backgrounds and cultures engaging in interactions and collaborations to jointly solve 
 problems12. It is therefore crucial to examine not only how network structure affects collective performance, but 
also how individual differences within networked groups or societies—often referred to as diversity—shape the 
success of a group. Empirical studies have found contradictory, i.e., positive and negative, effects of diversity on 
the performance of groups and larger  organisations11,13–25. For example, greater occupational diversity predicts 
higher productivity of  cities14,26, and within organizations, the teams with the greatest diversity of educational 
backgrounds have been found to be the most  innovative13. Furthermore, it was shown that diverse teams are less 
prone to detrimental  groupthink24. However, there is also evidence that diversity can negatively impact collec-
tive performance. Specifically, diversity may impair the ability of groups to communicate and  coordinate18–21, 
be associated with reduced trust between  individuals14,22, and can be a source for social tension and  conflict15,23. 
Overall, there is limited mechanistic understanding of how network structure and diversity together affect the 
collective performance of a group, as previous modelling attempts have mainly focused on homogeneous popu-
lations of identical  individuals2,3,27.

In this paper, we address this gap by expanding upon an established model of collective problem-solving2,3. 
This extension involves incorporating diverse agents, allowing us to systematically examine the relationship 
between diversity and network structure, and how this interaction influences group performance in tasks of 
different complexity. The model is based on the paradigm of social learning, which has previously also been 
used in empirical studies of collective problem-solving including experiments on the evolution of  culture5,6, 
and more narrow cases where groups solved specific real world  tasks27,28. The basic idea of social learning is that 
individuals do not solve a problem alone. Instead, they exchange information with each other, a process that can 
dramatically increase the quality and speed of problem solving. However, it is unclear how network structure 
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shapes the impact of diversity on collective performance. Therefore, we investigate the dynamics of collective 
learning along three dimensions: (1) task complexity (simple, complex), (2) network structure (sparse, dense), 
and (3) group composition with regard to skill diversity (homogeneous, increasingly diverse), as depicted in 
Fig. 1A. Consistent with empirical  studies13–17, we find strong effects of diversity on collective performance, and 
we demonstrate that those effects are mixed, i.e., groups may benefit but also suffer from skill diversity. In the 
model, positive and negative effects of diversity arise as a result of varying the task complexity and the network 
structure. Diversity generally reduces the performance of groups in simple tasks. In the case of complex tasks, the 
link density of the network modifies the effect of diversity: the more we are connected, the more we can benefit 
from diversity to solve complex problems.

Model
Setup and dynamics
Following previous  work2,3, we model collective learning as a process where a population of N interacting agents 
jointly search a space of solutions. In this mathematical metaphor one assumes that solutions to a problem 
differ in their quality and the collective dynamics is tuned to discover high-quality solutions and spread them 
throughout the population. We will use the word payoff to denote the quality measure that is used to compare 
two solutions: a solution Si has a higher quality than a solution Sj if it has a higher payoff as quantified by a func-
tion P, i.e., P(Si) > P(Sj).

The interactions between agents are modelled using (social) networks, as both empirical and theoretical 
studies have shown that the structure of the communication network strongly influences collective problem 

Figure 1.  Illustration of the model. Panel (A) depicts the features of the model that are varied: (i) task 
complexity, (ii) link density of the underlying network, and (iii) the composition of the population in terms 
of skill diversity. In panels (B,C), we schematically depict how agents’ skills map onto payoff functions P. In a 
homogeneous population, all agents have the same set of skills (panel B). This results in a single payoff function, 
which maps a latent solution Si to payoff value P(Si) an agent is able to extract from it. In homogeneous 
populations, all agents can extract the same payoff from a given solution Si , and hence there is one optimal 
solution SO (star symbol) for all agents. In panel (C), we show the case of a diverse population, where agents 
generally have different distributions of skills. For brevity, we depict two agents with different skill sets and their 
corresponding distinct payoff functions Pα and Pβ . As depicted two agents in diverse populations will generally 
not extract the same amount of payoff from a particular solution Si . Accordingly, also their optimal solutions 
differ (shown as star symbols).
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 solving2–5,27,29,30. Specifically, we consider random networks as a simple way to control the link density covering 
a range from very sparse to denser networks. Each agent in the population is associated to a node in the network, 
which thus defines an agent’s social environment, i.e. the subset of other agents in the population with which 
the agent can exchange information. For simplicity, we assume that two connected agents can learn equally well 
from each other and therefore consider undirected networks.

The collective learning dynamics evolves as follows. In each discrete simulation time step t, agent i aims to 
improve their solution in a two-step procedure that strikes a balance between exploitation and exploration, which 
typically leads to an iterative improvement of group  performance2–4,31–33. First, the agent engages in exploitation, 
i.e., they attempt to learn (or copy) a solution from a neighbour in the social network. As in previous studies 
(e.g. Refs.2–4), we implement a “best-member” learning strategy in which the agent first searches for the best 
solution among its neighbours and compares it with its current solution. If the neighbour’s solution has a higher 
payoff than the agent’s current solution, it is adopted. Otherwise, the agent i switches to exploration, where they 
aim to innovate a new solution; a process which is modeled as a local search in the solution space (see below). 
As in the exploitation step, the innovated solution is only adopted if it is associated to a higher payoff than the 
agent’s current  solution2,3,34,35. In line with previous  works2–4, we quantify the collective performance of the 
population at time t as the average of agents’ current payoffs, �P�(t) = N−1

∑N
i=1 Pi(t) , where Pi corresponds to 

the contribution of agent i.

Task complexity
Real-world tasks come in different complexities and it has been shown both in computational as well as empirical 
studies that task complexity strongly impacts collective  performance2,3,28. Here we use the NK  model35 that has 
previously been applied in theoretical studies of social  learning2,3. The strength of the NK model is that it allows 
us to flexibly tune the difficulty of a task—from simple to difficult—by changing the properties of the solution 
space as illustrated in Fig. 1A. In particular, a simple problem corresponds to a smooth payoff function with a 
single peak which is associated to the optimal solution SO , i.e., the solution with the highest  payoff3,35. Complex 
tasks, by contrast, are characterized by a rugged payoff landscape. While such rugged landscapes also have an 
optimal solution SO , they are characterized by additional peaks that are associated to locally optimal but glob-
ally suboptimal solutions. What makes complex tasks harder to solve—both individually and collectively as a 
group—is the fact that agents often converge to such suboptimal  solutions2,3,28.

The NK model is fully defined by two parameters: NNK and KNK . Each solution S is given by a vector of NNK 
binary elements bi , or bits (0 or 1), and therefore the total number of possible solutions is 2NNK . The payoff of 
each solution S is defined as the average payoff contributions of each element bi , which is a uniformly distributed 
random number between 0 and 1 and is computed using the function f. Crucially, for KNK = 0 , the payoff con-
tribution f of a single element, bi , only depends on the state of that element (0 or 1), i.e. we have f (bi) , yielding 
P = N−1

∑
i f (bi) . By contrast, for KNK > 0 , the payoff contribution of element bi is interlinked to the states of 

KNK elements of the vector, i.e., we have f (bi|bi , bi+1, . . . , bKNK
) yielding P = N−1

∑
i f (bi|bi , bi+1, . . . , bKNK

) , 
where the KNK elements are determined randomly. Previously, it has been observed that for intermediate values 
of KNK the distribution of payoffs tends towards a normal distribution, such that most solutions have similar 
payoffs, which makes it hard to distinguish the collective performance in different  conditions3. We therefore 
first normalize the payoff function P by its maximum value Pmax

2,3,36 and take the normalized payoff function 
to the power of 8, such that there are only very few high-quality  solutions2,3. We distinguish between two sce-
narios: simple and complex tasks for which we set the parameters of the NK model to (NNK,KNK) = (15, 0) and 
(NNK,KNK) = (15, 7) , respectively.

In line with previous  research2,3, we describe agents’ exploration (or innovation) as a constrained search pro-
cess within the solution space. This means that an agent can only create or uncover new solutions that are close 
to their current solution Si . In the context of the NK model, or more broadly, in the realm of binary vectors, the 
nearest solutions to a given solution Si are those that differ in just one binary element. Consequently, when an 
agent seeks to innovate and generate a new solution, they do so by altering the state of a single element within 
Si . To account for the fact that new innovations often occur by chance, the choice of which element to change is 
typically determined  randomly2,3.

Homogeneous and diverse populations
Previously, theoretical works on social learning mainly considered homogeneous populations, where all agents 
are assumed to be  identical2,3,27. This uniformity implies that every agent possesses the same distribution of skills, 
which ultimately leads to a single payoff function P, see Fig. 1B. Thus, each agents derives the same payoff value, 
P(Si) , from a particular solution Si.

In diverse populations the situation is different and agents vary in terms of their skills, as exemplified in panel 
C of Fig. 1 which shows two agents with differing skills. An important assumption of our model is that the skills 
of agents and the task combined give rise to a payoff function that is used by agents to navigate the solution 
space (Fig. 1). This means that—in diverse populations—agents are associated to different payoff functions Pα , 
and therefore, generally do not extract the same amount of payoff from a particular solution Si , Pα(Si)  = Pβ(Si) . 
Consequently, in the case of diverse populations there is not a single optimal solution for all agents. Instead, dif-
ferent skill sets naturally lead to different solutions spaces and therefore different optimal solutions (star symbols), 
see Fig. 1C. As an illustration, let us consider a multi-disciplinary team where members tend to concentrate 
on solutions that align with their skills. For instance, an individual with strong analytical abilities is likely to 
derive greater benefits (high payoff) from a solution related to a mathematical problem. On the other hand, a 
team member who excels in linguistics should direct their attention on a solution related to language, aiming to 
maximize their contribution to the overall team performance.
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Simulations
Unless otherwise specified, we consider populations of N = 1000 agents. At the beginning of each simulation, we 
randomly assign each agent to a particular network node of a given network. Each agent initially has a solution 
Si that is randomly chosen from the total set of 2NNK solutions.

In diverse populations, we assume that populations can be divided into equally sized classes of agents with 
identical skills, i.e. identical payoff functions Pα . Each payoff function Pα is generated by the NK model using 
the same parameters. By increasing the number of skill classes, we therefore increase the degree of diversity in 
a population. For example, in the case of 1000 agents and assuming two skill classes ( α and β ) the population 
will consists of two groups of agents, each of size 500, and each agent is randomly assigned to one of the two 
payoff functions, Pα or Pβ.

In our simulations, we consider a synchronous updating of the system. This means that in each discrete time 
step t each agents performs one exploitation and one exploitation step based on the current distribution of solu-
tions. Subsequently, the states of all agents are updated.

Results
Simple tasks
Figure 2 shows results obtained for simple tasks. In panels A–C, we consider populations coupled via sparse ran-
dom networks with an average degree of �k� = 4 , and colors encode different levels of diversity, where diversity 
increases with the number of skill classes (see legend of panel A). In panel D, we vary both the level of diversity 
and the average degree of the underlying network.

Specifically, Fig. 2A depicts the collective performance quantified as the average payoff 〈P〉 over time. We 
find that all populations, both homogeneous (black) and diverse ones (color coded), eventually converge to the 
solutions SO with maximum payoff, P(SO) = 1 . However, the time that populations need to reach SO depends 

Figure 2.  Collective performance in simple tasks. Panels (A–C) show the average payoffs over time (A), 
average times 〈TO〉 to discover the globally optimal solutions (B), and the normalized histograms of TO (C) for 
homogeneous and (increasingly) diverse populations on sparse networks with an average degree of �k� = 4 . 
Panel (D) depicts 〈TO〉 (color coded) as a function of the average degree of the underlying network and the level 
of diversity. The reported results are averages over 2500 realizations.
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on the level of diversity. To quantify this effect further we first define TO as the time that an agent needs to find 
SO . In Fig. 2B, we depict the mean values of 〈TO〉 as a function of diversity (number of skill classes). Clearly, 
〈TO〉 is smallest in homogeneous populations, increases with diversity, and saturates for high levels of diversity.

In Fig. 2C, we show the full distributions of TO for agents in homogeneous and diverse populations. For 
homogeneous populations the distribution of T0 is narrowly centered around a small value (black). Instead, for 
diverse populations the distributions are much broader and characterized by a pronounced positive skew (color 
coded). Already for low levels of diversity, i.e. 2 skill classes (cyan line), the distribution of T0 strongly deviates 
from a narrow distribution that is associated to the homogeneous case.

Finally, Fig. 2D shows 〈TO〉 as a function of diversity and the link density of the network, which is tuned by 
the value of the average degree 〈k〉 . While for increasing 〈k〉 , the effect of diversity becomes less pronounced the 
qualitative behavior is the same: as populations become more diverse, the average time 〈TO〉 to reach optimal 
solutions increases. We also find that to solve simple problems collectively dense networks are generally beneficial 
as agents converge faster to optimal solutions in networks with larger values of 〈k〉 . This trend can be observed 
for all levels of diversity, varying along the vertical axis in panel D of Fig. 2.

Taken together, the results reported in Fig. 2 suggest that in simple tasks diversity hampers collective per-
formance by reducing the speed of collective problem solving. We find that homogeneous populations are most 
efficient in optimizing collective payoffs, and diverse populations need more time. This (qualitative) conclusion 
holds independent of the average degree 〈k〉 . To complement the findings depicted in Fig. 2, in the Supplemental 
Information (SI) we show results for different types of networks, which show the same qualitative behavior.

Complex tasks
Figure 3 summarizes the results for complex tasks. In particular, in panels A–C, we compare the collective 
dynamics and final performance of homogeneous and diverse populations on sparse and dense random net-
works. In panel D, we systematically vary both the diversity and the average degree of the underlying networks 
over wider ranges.

In Fig. 3A, we depict the collective performance over time on sparse networks with the same average degree 
as in panels A–C of Fig. 2, i.e., of �k� = 4 . First, we note that both the homogeneous and diverse populations 
(20 payoff classes) are not able reach the optimal collective performance �P� = 1 . Instead, due to the ruggedness 
of the complex solution space populations tend to converge to globally suboptimal peaks, which reduces the 
performance to 〈P〉 < 1 . As in the case of simple tasks, homogeneous populations converge quickly and diverse 
populations converge more slowly to the final level of collective performance. More importantly, however, we 
find that the final performance of diverse populations is worse than the one reached by homogeneous popula-
tions. As we will see in the following, this is not always the case and homogeneous populations do not generally 
outperform diverse ones in complex tasks. Instead, the effect of diversity on collective performance depends on 
the link density of the underlying network.

In Fig. 3B, we show results for a random network with the tenfold average degree as compared to panel A, i.e., 
�k� = 40 . While fixing all other model parameters, we find that the increased link density significantly impacts the 
collective dynamics and qualitatively reverses the previous result. Although, again, diverse populations converge 
more slowly, the final collective performance of diverse populations is superior to the one reached by homoge-
neous populations. These findings suggest that collective problem solving in networked populations exhibits a 
transition point with respect to link density above which diversity becomes beneficial and boosts performance. 
The results shown in Fig. 3 depend on the definition of group performance. In the SI, we show that the impact 
of network structure on collective performance is much smaller if we focus on the best or worst payoff in the 
group rather than looking at the average payoff.

To visualize this phenomenon more clearly, Fig. 3C depicts the final performance of homogeneous and 
diverse populations in networks of increasing average degree. For low average degrees, homogeneous popula-
tions outperform diverse ones, i.e., final solutions found by homogeneous populations have on average higher 
payoffs. However, as 〈k〉 increases, diversity becomes beneficial and the final collective performance reached by 
diverse populations exceeds the one of homogeneous populations. As we show in the SI, this result holds in the 
limiting case of a fully connected network, where the final collective performance is lowest for homogeneous 
populations and improves for higher levels of diversity.

In Fig. 3D, we shed further light on the combined effect of link density and diversity by varying both simulta-
neously. In gray scale we show the final collective performance as a function of the average degree and the number 
of skill classes. As we have already learnt from Fig. 3C, the performance of homogeneous populations is impaired 
as the average degree of the network increases. Similarly, on sparse networks the introduction of diversity, i.e., 
the increase of the number of skill classes, leads to a strong decrease in performance. This is not the case for 
networks with a higher link density (increasing values of 〈k〉 ). Instead, we find that the more dense the network 
becomes, the higher is the ideal level of diversity, which optimizes the final collective performance of the popula-
tion. To demonstrate that these findings are not restricted to random networks with Poisson degree distribution, 
we performed additional simulation on random networks with fixed degree and small world networks, see SI.

Discussion
While various experimental works have found strong effects of diversity on collective performance, theoreti-
cal studies that provide a mechanistic understanding of the underlying dynamics induced by the interaction 
between diversity and network structure are scarce. Here, we fill this gap by means of a simple model of social 
learning that we extend by agents that differ with respect to their skills. In line with previous studies, we find that 
diversity can be both beneficial and detrimental to collective  performance13–24,37. Our modeling approach allows 
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to draw intuitive conclusions on the effects of diversity that are related to the underlying network structure and 
the complexity of the task.

For simple problems, all populations—regardless of their level of diversity—finally reach the optimal col-
lective performance. Thus to gauge the effect of diversity in simple tasks, we have quantified how much time it 
takes for populations to converge to the optimal collective performance, �P� = 1 . We find that diversity generally 
slows down the speed of convergence towards optimal performance and therefore hampers collective problem-
solving in terms of efficiency. While this effect is more pronounced on sparse networks, it holds qualitatively 
true on densely connected networks. In the case of complex tasks, the situation is more differentiated. There 
is no constant effect of diversity on collective problem solving. Instead, the effects of skill diversity depend on 
the underlying network structure. On sparse networks with a low average degree, diversity impairs collective 
problem-solving and diverse populations perform worse as compared to homogeneous ones. However, as soon 
as networks become sufficiently dense diversity becomes beneficial and can boost collective performance beyond 
that of homogeneous populations.

There are two separate effects introduced by skill diversity that allow us to qualitatively understand the 
presented findings. First, in diverse populations a particular solution Si is not evaluated equally by all agents. 
Thus, a solution may be profitable for some agents (they can extract a high payoff value from it), but not for 
others (low payoff): we generally find Pα(Si)  = Pβ(Si) as depicted in panel B of Fig. 1. This feature of diversity 
introduces noise to the dynamics of collective problem solving. It negatively affects the collective filtering and 
efficient dissemination of solutions throughout the population. In the case of complex tasks, there is a second 
effect of diversity that is connected to the ruggedness of the solution space. Here, it is not only that two agents 
with different skill distributions extract different payoff values from a particular solution Si . Additionally, the 
local neighborhood of a solution in the payoff space may differ. Indeed, while Si may correspond to a local peak, 

Figure 3.  Collective performance in complex tasks. In panels (A,B), we depict average payoffs over time of 
homogeneous and diverse populations on sparse ( �k� = 4 ) and more dense ( �k� = 40 ) random networks, 
respectively. Panel (C) depicts the average final payoffs for increasing average degrees of the underlying network. 
Panel (D) shows the average final payoffs (in gray scale) as a function of the average degree of the underlying 
network and the level of diversity. The reported results are averages over 2500 realizations. The shaded areas in 
panel (C) depict standard deviations. We have tested the statistical significance of the reported performance 
differences between homogeneous and diverse populations in both sparse and dense networks, see SI.
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or maximum, in the payoff function of one agent where they can get stuck, Si potentially corresponds to a local 
minimum for a differently skilled agent. The second agent is then able to improve upon the solution by local 
exploration. This feature gives rise to a mechanism that helps agents in diverse populations to escape suboptimal 
solutions to complex task. In other words, precisely because two agents have different skill sets (and payoff func-
tions), they can benefit from mutual information sharing in order to improve their solutions.

In simple tasks, the payoff landscape is smooth and agents are able to reach solutions that lead to optimal 
performance, even by individual and local exploration  only38. Copying from peers with identical skills acceler-
ates this process as time resources spent on individual learning are  saved31. In essence, solutions are evaluated 
equally by all agents and homogeneous populations can efficiently filter and disseminate beneficial solutions. 
The same process is disrupted in diverse populations, as agents with different skills do not agree on the value of 
a particular solution ( Pα(Si)  = Pβ(Si) ), ultimately decreasing the convergence rate towards optimal collective 
performance. The finding is in line with empirical studies, suggesting that diversity often reduces the ability of 
groups to communicate efficiently, thereby creating an obstacle for collective problem solving in simple  tasks15. 
In complex tasks, the situation is different and diversity can boost collective performance: diverse populations 
outperform homogeneous ones on densely connected networks. As argued previously, homogeneous popula-
tions rapidly collapse to, and get trapped at, suboptimal solutions when they copy solutions from their best 
performing  peers2,3. Noise from various sources, originating either from different social learning strategies, less 
well-connected networks or distrust between individuals, has been shown to lead to better exploration of the 
solution space and improved  performance2–4,39. Here we identify diversity as another way to boost collective 
performance. Different skill sets that map onto distinct payoff functions allow agents to mutually assist each other 
in escaping local optima, a benefit of diversity that is based on the information exchange among dissimilar peers.

While our work provides a novel perspective on the relationship between diversity, network structure, and 
collective performance it comes with noteworthy limitations. We considered the specific type of diversity, where 
the population can be subdivided in equally sized skill classes. Generally, however, it can be assumed that groups 
of any kind are not of the same size. As previously shown for different types of social dynamics ranging from 
collective opinion change to the emergence of conventions, a broader distribution of group sizes can affect system 
level  outcomes40,41. An interesting extension to our presented results could furthermore consider different task 
complexities simultaneously. More specifically, our framework allows to investigate cases where a particular task 
is complex for most agents in the population, while others can solve it easier. This may shed light on the role 
of diversity in the context of generalists and specialists, which has previously been studied for homogeneous 
 populations29. Moreover, future work building on our proposed modeling framework could explore how the 
network position of single—and differently skilled—individuals affects collective dynamics to make problem-
solving interventions more efficient.

Overall, our findings suggest that diversity offers a pathway to boost collective performance in complex 
tasks. Specifically, we have shown that the more we are connected, the more we can benefit from diversity to 
solve complex problems—a finding which informs the compilation of problem solving teams in an increasingly 
interconnected and diverse world.

Data availability
The code to produce the raw data analysed in this paper is available at https:// github. com/ naiba f2/ diver sity.

Code availability
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