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Network structure shapes
the impact of diversity in collective
learning

Fabian Baumann, Agnieszka Czaplicka & lyad Rahwan™*

It is widely believed that diversity arising from different skills enhances the performance of teams,
and in particular, their ability to learn and innovate. However, diversity has also been associated
with negative effects on the communication and coordination within collectives. Yet, despite the
importance of diversity as a concept, we still lack a mechanistic understanding of how its impact

is shaped by the underlying social network. To fill this gap, we model skill diversity within a simple
model of collective learning and show that its effect on collective performance differs depending on
the complexity of the task and the network density. In particular, we find that diversity consistently
impairs performance in simple tasks. In contrast, in complex tasks, link density modifies the effect of
diversity: while homogeneous populations outperform diverse ones in sparse networks, the opposite
is true in dense networks, where diversity boosts collective performance. Our findings also provide
insight on how to forge teams in an increasingly interconnected world: the more we are connected,
the more we can benefit from diversity to solve complex problems.

Nowadays, humans communicate more than ever before!. Often this communication takes place in order for
humans to learn from each other or solve a problem together. With the aim of optimising such collective prob-
lem solving, previous studies have focused on the effects of network structure on the overall performance of a
population. It has been found that groups do not necessarily benefit from close-knit networks where information
can be shared freely and disseminated quickly. Instead, collective problem solving can only benefit when the
characteristics of the network, in particular its link density, are adapted to the characteristics of the individual
problem solvers as well as to the structure of the problem?!. Specifically, it was shown that collective perfor-
mance can be boosted by reducing the network’s connectivity, especially when the task to be solved is complex***.
Apart from the growing interconnectedness of social networks, the rise in global connectivity also results in
individuals from diverse backgrounds and cultures engaging in interactions and collaborations to jointly solve
problems!?. It is therefore crucial to examine not only how network structure affects collective performance, but
also how individual differences within networked groups or societies—often referred to as diversity—shape the
success of a group. Empirical studies have found contradictory, i.e., positive and negative, effects of diversity on
the performance of groups and larger organisations''*-2*. For example, greater occupational diversity predicts
higher productivity of cities'**, and within organizations, the teams with the greatest diversity of educational
backgrounds have been found to be the most innovative!®. Furthermore, it was shown that diverse teams are less
prone to detrimental groupthink?*. However, there is also evidence that diversity can negatively impact collec-
tive performance. Specifically, diversity may impair the ability of groups to communicate and coordinate'®-?,
be associated with reduced trust between individuals'#??, and can be a source for social tension and conflict'>?3.
Overall, there is limited mechanistic understanding of how network structure and diversity together affect the
collective performance of a group, as previous modelling attempts have mainly focused on homogeneous popu-
lations of identical individuals®*%".

In this paper, we address this gap by expanding upon an established model of collective problem-solving®”.
This extension involves incorporating diverse agents, allowing us to systematically examine the relationship
between diversity and network structure, and how this interaction influences group performance in tasks of
different complexity. The model is based on the paradigm of social learning, which has previously also been
used in empirical studies of collective problem-solving including experiments on the evolution of culture®S,
and more narrow cases where groups solved specific real world tasks?”*%. The basic idea of social learning is that
individuals do not solve a problem alone. Instead, they exchange information with each other, a process that can
dramatically increase the quality and speed of problem solving. However, it is unclear how network structure
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shapes the impact of diversity on collective performance. Therefore, we investigate the dynamics of collective
learning along three dimensions: (1) task complexity (simple, complex), (2) network structure (sparse, dense),
and (3) group composition with regard to skill diversity (homogeneous, increasingly diverse), as depicted in
Fig. 1A. Consistent with empirical studies'~'7, we find strong effects of diversity on collective performance, and
we demonstrate that those effects are mixed, i.e., groups may benefit but also suffer from skill diversity. In the
model, positive and negative effects of diversity arise as a result of varying the task complexity and the network
structure. Diversity generally reduces the performance of groups in simple tasks. In the case of complex tasks, the
link density of the network modifies the effect of diversity: the more we are connected, the more we can benefit
from diversity to solve complex problems.

Model
Setup and dynamics
Following previous work>?, we model collective learning as a process where a population of N interacting agents
jointly search a space of solutions. In this mathematical metaphor one assumes that solutions to a problem
differ in their quality and the collective dynamics is tuned to discover high-quality solutions and spread them
throughout the population. We will use the word payoff to denote the quality measure that is used to compare
two solutions: a solution S; has a higher quality than a solution S; if it has a higher payoft as quantified by a func-
tion P, i.e., P(S;) > P(Sj).

The interactions between agents are modelled using (social) networks, as both empirical and theoretical
studies have shown that the structure of the communication network strongly influences collective problem
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Figure 1. Illustration of the model. Panel (A) depicts the features of the model that are varied: (i) task
complexity, (ii) link density of the underlying network, and (iii) the composition of the population in terms

of skill diversity. In panels (B,C), we schematically depict how agents’ skills map onto payoff functions P. In a
homogeneous population, all agents have the same set of skills (panel B). This results in a single payoff function,
which maps a latent solution S; to payoff value P(S;) an agent is able to extract from it. In homogeneous
populations, all agents can extract the same payoff from a given solution S;, and hence there is one optimal
solution Sp (star symbol) for all agents. In panel (C), we show the case of a diverse population, where agents
generally have different distributions of skills. For brevity, we depict two agents with different skill sets and their
corresponding distinct payoff functions P, and Pg. As depicted two agents in diverse populations will generally
not extract the same amount of payoff from a particular solution S;. Accordingly, also their optimal solutions
differ (shown as star symbols).
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solving?>?"#3_ Specifically, we consider random networks as a simple way to control the link density covering
arange from very sparse to denser networks. Each agent in the population is associated to a node in the network,
which thus defines an agent’s social environment, i.e. the subset of other agents in the population with which
the agent can exchange information. For simplicity, we assume that two connected agents can learn equally well
from each other and therefore consider undirected networks.

The collective learning dynamics evolves as follows. In each discrete simulation time step t, agent i aims to
improve their solution in a two-step procedure that strikes a balance between exploitation and exploration, which
typically leads to an iterative improvement of group performance?**'-33, First, the agent engages in exploitation,
i.e,, they attempt to learn (or copy) a solution from a neighbour in the social network. As in previous studies
(e.g. Refs.>*), we implement a “best-member” learning strategy in which the agent first searches for the best
solution among its neighbours and compares it with its current solution. If the neighbour’s solution has a higher
payoff than the agent’s current solution, it is adopted. Otherwise, the agent i switches to exploration, where they
aim to innovate a new solution; a process which is modeled as a local search in the solution space (see below).
As in the exploitation step, the innovated solution is only adopted if it is associated to a higher payoft than the
agent’s current solution®****. In line with previous works*, we quantify the collective performance of the
population at time  as the average of agents’ current payoffs, (P)(t) = N~ Zfil P;(t), where P; corresponds to
the contribution of agent i.

Task complexity

Real-world tasks come in different complexities and it has been shown both in computational as well as empirical
studies that task complexity strongly impacts collective performance®*?. Here we use the NK model® that has
previously been applied in theoretical studies of social learning®>. The strength of the NK model is that it allows
us to flexibly tune the difficulty of a task—from simple to difficult—by changing the properties of the solution
space as illustrated in Fig. 1A. In particular, a simple problem corresponds to a smooth payoff function with a
single peak which is associated to the optimal solution So, i.e., the solution with the highest payoff>**. Complex
tasks, by contrast, are characterized by a rugged payoft landscape. While such rugged landscapes also have an
optimal solution Sp, they are characterized by additional peaks that are associated to locally optimal but glob-
ally suboptimal solutions. What makes complex tasks harder to solve—both individually and collectively as a
group—is the fact that agents often converge to such suboptimal solutions>**.

The NK model is fully defined by two parameters: Nyk and Knk. Each solution § is given 11)\}’ a vector of Nyk
binary elements b;, or bits (0 or 1), and therefore the total number of possible solutions is 2"NK. The payoff of
each solution S is defined as the average payoff contributions of each element b;, which is a uniformly distributed
random number between 0 and 1 and is computed using the function f. Crucially, for Kyg = 0, the payoff con-
tribution f of a single element, b;, only depends on the state of that element (0 or 1), i.e. we have f(b;), yielding
P = N~13". f(by). By contrast, for Kyk > 0, the payoff contribution of element b; is interlinked to the states of
Knk elements of the vector, i.e., we have f(b;|b;, bit1,- - ., bxy) yielding P = N72 S, £(bi|bi, bis1, - - - bryg)s
where the Knk elements are determined randomly. Previously, it has been observed that for intermediate values
of Knk the distribution of payoffs tends towards a normal distribution, such that most solutions have similar
payoffs, which makes it hard to distinguish the collective performance in different conditions®. We therefore
first normalize the payoff function P by its maximum value Ppax>>*® and take the normalized payoff function
to the power of 8, such that there are only very few high-quality solutions®>*. We distinguish between two sce-
narios: simple and complex tasks for which we set the parameters of the NK model to (Nxk, Knk) = (15, 0) and
(Nnk> Knk) = (15,7), respectively.

In line with previous research®?, we describe agents’ exploration (or innovation) as a constrained search pro-
cess within the solution space. This means that an agent can only create or uncover new solutions that are close
to their current solution §;. In the context of the NK model, or more broadly, in the realm of binary vectors, the
nearest solutions to a given solution S; are those that differ in just one binary element. Consequently, when an
agent seeks to innovate and generate a new solution, they do so by altering the state of a single element within
Si. To account for the fact that new innovations often occur by chance, the choice of which element to change is
typically determined randomly*”.

Homogeneous and diverse populations
Previously, theoretical works on social learning mainly considered homogeneous populations, where all agents
are assumed to be identical>>?’. This uniformity implies that every agent possesses the same distribution of skills,
which ultimately leads to a single payoft function P, see Fig. 1B. Thus, each agents derives the same payoff value,
P(S;), from a particular solution S;.

In diverse populations the situation is different and agents vary in terms of their skills, as exemplified in panel
C of Fig. 1 which shows two agents with differing skills. An important assumption of our model is that the skills
of agents and the task combined give rise to a payoff function that is used by agents to navigate the solution
space (Fig. 1). This means that—in diverse populations—agents are associated to different payoft functions Py,
and therefore, generally do not extract the same amount of payoff from a particular solution S;, Py (S;) # Pg(S)).
Consequently, in the case of diverse populations there is not a single optimal solution for all agents. Instead, dif-
ferent skill sets naturally lead to different solutions spaces and therefore different optimal solutions (star symbols),
see Fig. 1C. As an illustration, let us consider a multi-disciplinary team where members tend to concentrate
on solutions that align with their skills. For instance, an individual with strong analytical abilities is likely to
derive greater benefits (high payoff) from a solution related to a mathematical problem. On the other hand, a
team member who excels in linguistics should direct their attention on a solution related to language, aiming to
maximize their contribution to the overall team performance.
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Simulations

Unless otherwise specified, we consider populations of N = 1000 agents. At the beginning of each simulation, we
randomly assign each agent to a particular network node of a given network. Each agent initially has a solution
S; that is randomly chosen from the total set of 2NN solutions.

In diverse populations, we assume that populations can be divided into equally sized classes of agents with
identical skills, i.e. identical payoff functions P,. Each payoff function Py is generated by the NK model using
the same parameters. By increasing the number of skill classes, we therefore increase the degree of diversity in
a population. For example, in the case of 1000 agents and assuming two skill classes (« and §) the population
will consists of two groups of agents, each of size 500, and each agent is randomly assigned to one of the two
payoff functions, P, or Pg.

In our simulations, we consider a synchronous updating of the system. This means that in each discrete time
step t each agents performs one exploitation and one exploitation step based on the current distribution of solu-
tions. Subsequently, the states of all agents are updated.

Results
Simple tasks
Figure 2 shows results obtained for simple tasks. In panels A-C, we consider populations coupled via sparse ran-
dom networks with an average degree of (k) = 4, and colors encode different levels of diversity, where diversity
increases with the number of skill classes (see legend of panel A). In panel D, we vary both the level of diversity
and the average degree of the underlying network.

Specifically, Fig. 2A depicts the collective performance quantified as the average payoff (P) over time. We
find that all populations, both homogeneous (black) and diverse ones (color coded), eventually converge to the
solutions Sp with maximum payoff, P(Sp) = 1. However, the time that populations need to reach Sp depends
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Figure 2. Collective performance in simple tasks. Panels (A-C) show the average payoffs over time (A),
average times (Tp) to discover the globally optimal solutions (B), and the normalized histograms of T (C) for
homogeneous and (increasingly) diverse populations on sparse networks with an average degree of (k) = 4.
Panel (D) depicts (To) (color coded) as a function of the average degree of the underlying network and the level
of diversity. The reported results are averages over 2500 realizations.
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on the level of diversity. To quantify this effect further we first define T as the time that an agent needs to find
So. In Fig. 2B, we depict the mean values of (Tp) as a function of diversity (number of skill classes). Clearly,
(To)is smallest in homogeneous populations, increases with diversity, and saturates for high levels of diversity.

In Fig. 2C, we show the full distributions of T for agents in homogeneous and diverse populations. For
homogeneous populations the distribution of Ty is narrowly centered around a small value (black). Instead, for
diverse populations the distributions are much broader and characterized by a pronounced positive skew (color
coded). Already for low levels of diversity, i.e. 2 skill classes (cyan line), the distribution of Ty strongly deviates
from a narrow distribution that is associated to the homogeneous case.

Finally, Fig. 2D shows (T() as a function of diversity and the link density of the network, which is tuned by
the value of the average degree (k). While for increasing (k), the effect of diversity becomes less pronounced the
qualitative behavior is the same: as populations become more diverse, the average time (To) to reach optimal
solutions increases. We also find that to solve simple problems collectively dense networks are generally beneficial
as agents converge faster to optimal solutions in networks with larger values of (k). This trend can be observed
for all levels of diversity, varying along the vertical axis in panel D of Fig. 2.

Taken together, the results reported in Fig. 2 suggest that in simple tasks diversity hampers collective per-
formance by reducing the speed of collective problem solving. We find that homogeneous populations are most
efficient in optimizing collective payoffs, and diverse populations need more time. This (qualitative) conclusion
holds independent of the average degree (k). To complement the findings depicted in Fig. 2, in the Supplemental
Information (SI) we show results for different types of networks, which show the same qualitative behavior.

Complex tasks

Figure 3 summarizes the results for complex tasks. In particular, in panels A-C, we compare the collective
dynamics and final performance of homogeneous and diverse populations on sparse and dense random net-
works. In panel D, we systematically vary both the diversity and the average degree of the underlying networks
over wider ranges.

In Fig. 3A, we depict the collective performance over time on sparse networks with the same average degree
as in panels A-C of Fig. 2, i.e., of (k) = 4. First, we note that both the homogeneous and diverse populations
(20 payoff classes) are not able reach the optimal collective performance (P) = 1. Instead, due to the ruggedness
of the complex solution space populations tend to converge to globally suboptimal peaks, which reduces the
performance to (P) < 1. As in the case of simple tasks, homogeneous populations converge quickly and diverse
populations converge more slowly to the final level of collective performance. More importantly, however, we
find that the final performance of diverse populations is worse than the one reached by homogeneous popula-
tions. As we will see in the following, this is not always the case and homogeneous populations do not generally
outperform diverse ones in complex tasks. Instead, the effect of diversity on collective performance depends on
the link density of the underlying network.

In Fig. 3B, we show results for a random network with the tenfold average degree as compared to panel A, i.e.,
(k) = 40. While fixing all other model parameters, we find that the increased link density significantly impacts the
collective dynamics and qualitatively reverses the previous result. Although, again, diverse populations converge
more slowly, the final collective performance of diverse populations is superior to the one reached by homoge-
neous populations. These findings suggest that collective problem solving in networked populations exhibits a
transition point with respect to link density above which diversity becomes beneficial and boosts performance.
The results shown in Fig. 3 depend on the definition of group performance. In the SI, we show that the impact
of network structure on collective performance is much smaller if we focus on the best or worst payoff in the
group rather than looking at the average payoff.

To visualize this phenomenon more clearly, Fig. 3C depicts the final performance of homogeneous and
diverse populations in networks of increasing average degree. For low average degrees, homogeneous popula-
tions outperform diverse ones, i.e., final solutions found by homogeneous populations have on average higher
payoffs. However, as (k) increases, diversity becomes beneficial and the final collective performance reached by
diverse populations exceeds the one of homogeneous populations. As we show in the SI, this result holds in the
limiting case of a fully connected network, where the final collective performance is lowest for homogeneous
populations and improves for higher levels of diversity.

In Fig. 3D, we shed further light on the combined effect of link density and diversity by varying both simulta-
neously. In gray scale we show the final collective performance as a function of the average degree and the number
of skill classes. As we have already learnt from Fig. 3C, the performance of homogeneous populations is impaired
as the average degree of the network increases. Similarly, on sparse networks the introduction of diversity, i.e.,
the increase of the number of skill classes, leads to a strong decrease in performance. This is not the case for
networks with a higher link density (increasing values of (k)). Instead, we find that the more dense the network
becomes, the higher is the ideal level of diversity, which optimizes the final collective performance of the popula-
tion. To demonstrate that these findings are not restricted to random networks with Poisson degree distribution,
we performed additional simulation on random networks with fixed degree and small world networks, see SI.

Discussion

While various experimental works have found strong effects of diversity on collective performance, theoreti-
cal studies that provide a mechanistic understanding of the underlying dynamics induced by the interaction
between diversity and network structure are scarce. Here, we fill this gap by means of a simple model of social
learning that we extend by agents that differ with respect to their skills. In line with previous studies, we find that
diversity can be both beneficial and detrimental to collective performance'*~2**. Our modeling approach allows
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Figure 3. Collective performance in complex tasks. In panels (A,B), we depict average payoffs over time of
homogeneous and diverse populations on sparse ((k) = 4) and more dense ({(k) = 40) random networks,
respectively. Panel (C) depicts the average final payoffs for increasing average degrees of the underlying network.
Panel (D) shows the average final payoffs (in gray scale) as a function of the average degree of the underlying
network and the level of diversity. The reported results are averages over 2500 realizations. The shaded areas in
panel (C) depict standard deviations. We have tested the statistical significance of the reported performance
differences between homogeneous and diverse populations in both sparse and dense networks, see SIL.

to draw intuitive conclusions on the effects of diversity that are related to the underlying network structure and
the complexity of the task.

For simple problems, all populations—regardless of their level of diversity—finally reach the optimal col-
lective performance. Thus to gauge the effect of diversity in simple tasks, we have quantified how much time it
takes for populations to converge to the optimal collective performance, (P) = 1. We find that diversity generally
slows down the speed of convergence towards optimal performance and therefore hampers collective problem-
solving in terms of efficiency. While this effect is more pronounced on sparse networks, it holds qualitatively
true on densely connected networks. In the case of complex tasks, the situation is more differentiated. There
is no constant effect of diversity on collective problem solving. Instead, the effects of skill diversity depend on
the underlying network structure. On sparse networks with a low average degree, diversity impairs collective
problem-solving and diverse populations perform worse as compared to homogeneous ones. However, as soon
as networks become sufficiently dense diversity becomes beneficial and can boost collective performance beyond
that of homogeneous populations.

There are two separate effects introduced by skill diversity that allow us to qualitatively understand the
presented findings. First, in diverse populations a particular solution S; is not evaluated equally by all agents.
Thus, a solution may be profitable for some agents (they can extract a high payoff value from it), but not for
others (low payoff): we generally find P (S;) # Pg(S;) as depicted in panel B of Fig. 1. This feature of diversity
introduces noise to the dynamics of collective problem solving. It negatively affects the collective filtering and
efficient dissemination of solutions throughout the population. In the case of complex tasks, there is a second
effect of diversity that is connected to the ruggedness of the solution space. Here, it is not only that two agents
with different skill distributions extract different payoft values from a particular solution S;. Additionally, the
local neighborhood of a solution in the payoft space may differ. Indeed, while S; may correspond to a local peak,
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or maximum, in the payoft function of one agent where they can get stuck, S; potentially corresponds to a local
minimum for a differently skilled agent. The second agent is then able to improve upon the solution by local
exploration. This feature gives rise to a mechanism that helps agents in diverse populations to escape suboptimal
solutions to complex task. In other words, precisely because two agents have different skill sets (and payoff func-
tions), they can benefit from mutual information sharing in order to improve their solutions.

In simple tasks, the payoff landscape is smooth and agents are able to reach solutions that lead to optimal
performance, even by individual and local exploration only*®. Copying from peers with identical skills acceler-
ates this process as time resources spent on individual learning are saved?. In essence, solutions are evaluated
equally by all agents and homogeneous populations can efficiently filter and disseminate beneficial solutions.
The same process is disrupted in diverse populations, as agents with different skills do not agree on the value of
a particular solution (Py (S;) # Pg(S;)), ultimately decreasing the convergence rate towards optimal collective
performance. The finding is in line with empirical studies, suggesting that diversity often reduces the ability of
groups to communicate efficiently, thereby creating an obstacle for collective problem solving in simple tasks'.
In complex tasks, the situation is different and diversity can boost collective performance: diverse populations
outperform homogeneous ones on densely connected networks. As argued previously, homogeneous popula-
tions rapidly collapse to, and get trapped at, suboptimal solutions when they copy solutions from their best
performing peers®®. Noise from various sources, originating either from different social learning strategies, less
well-connected networks or distrust between individuals, has been shown to lead to better exploration of the
solution space and improved performance***. Here we identify diversity as another way to boost collective
performance. Different skill sets that map onto distinct payoft functions allow agents to mutually assist each other
in escaping local optima, a benefit of diversity that is based on the information exchange among dissimilar peers.

While our work provides a novel perspective on the relationship between diversity, network structure, and
collective performance it comes with noteworthy limitations. We considered the specific type of diversity, where
the population can be subdivided in equally sized skill classes. Generally, however, it can be assumed that groups
of any kind are not of the same size. As previously shown for different types of social dynamics ranging from
collective opinion change to the emergence of conventions, a broader distribution of group sizes can affect system
level outcomes*™*!. An interesting extension to our presented results could furthermore consider different task
complexities simultaneously. More specifically, our framework allows to investigate cases where a particular task
is complex for most agents in the population, while others can solve it easier. This may shed light on the role
of diversity in the context of generalists and specialists, which has previously been studied for homogeneous
populations®’. Moreover, future work building on our proposed modeling framework could explore how the
network position of single—and differently skilled—individuals affects collective dynamics to make problem-
solving interventions more efficient.

Overall, our findings suggest that diversity offers a pathway to boost collective performance in complex
tasks. Specifically, we have shown that the more we are connected, the more we can benefit from diversity to
solve complex problems—a finding which informs the compilation of problem solving teams in an increasingly
interconnected and diverse world.

Data availability
The code to produce the raw data analysed in this paper is available at https://github.com/naibaf2/diversity.

Code availability
Simulation code is available at https://github.com/naibaf2/diversity.
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