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Abstract: Cell-free biosynthesis uses the machinery of cells, such as the metabolic reactions,
to carry out conversion processes in vitro. This can be more beneficial than in vivo approaches
like fermentations. Some advantages of these synthetic biology processes include higher product
yields, rates and titers, and more flexibility in pathway design. Cell-free biosynthesis is still
in early stages and, unlike in vivo production, there are very few examples of model-based
optimization. Moreover, we encounter static optimizations in most cases, neglecting the dynamic
nature of the processes. We present an optimal control framework to maximize the efficiency of
cell-free biosynthesis. We focus on fed-batch setups as they allow enhancing the reaction rates
via the feeding, extending production processes for longer times, and minimizing the potential
negative effects of enzyme kinetics with substrate inhibition. Our framework can in principle
handle several cost functions and exploit both static and dynamic degrees of freedom. An aspect
that can hinder model-based optimization is model uncertainty, which can arise due to uncertain
parameters, oversimplified model assumptions or unknown reaction mechanisms. To counteract
this, we propose the use of model predictive control during the process operation. In addition, we
outline the use of moving horizon estimation as an observer in the case of unmeasured states.
We consider the de novo cell-free synthesis of uridine diphosphate-N-acetylglucosamine as a
biomedical relevant case study, where we were able to maximize the volumetric productivity in
simulations, and indirectly also the titer and enzyme efficiency use.
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1. INTRODUCTION

Biotechnological manufacturing is mainly dominated by
cell-based approaches, meaning that whole cells or mi-
croorganisms catalyze the conversion reactions. However,
employing cells as biocatalysts carries intrinsic disadvan-
tages. For example, certain metabolites or products can
be toxic to the cell, thus limiting the achievable prod-
uct titers. Furthermore, there is a well-known trade-off
between biomass and product yield, i.e., increasing the
product yield often comes at the expense of decreasing the
biomass yield, and with that, the volumetric productivity.
Also, the downstream processing can be very complex
because the product of interest tends to be highly diluted,
and one also needs to deal with biomass waste. In addition,
the design-build-test-learn cycles are frequently slow since
pathway engineering usually involves genetic modifications
of the cells (Tinafar et al., 2019; Lim and Kim, 2022).

* This work was supported by the International Max Planck Re-
search School for Advanced Methods in Process and Systems Engi-
neering (IMPRS ProEng).

The cell-based paradigm has been increasingly challenged
by cell-free biosynthesis. The latter consists in taking the
metabolic reactions, and potentially other cellular machin-
ery, out of the cells to perform metabolic conversions in
vitro. A great advantage is that there are no competing
pathways, thus higher yields are possible. Higher fluxes
and volumetric productivities can be also reached because
the processes can operate at more favourable conditions.
Cell toxicity issues can be neglected, hence higher product
concentrations can be obtained. More concentrated prod-
uct streams and no biomass waste lead to a simpler down-
stream processing. Pathway engineering becomes easier
since the designed pathways do not need to sustain life,
and they can be tested in witro. Consequently, cell-free
systems can bring tremendous opportunities in the fields of
synthetic biology and biotechnology. They can be applied
in the manufacturing of therapeutics, antigens, virus-like
particles, antimicrobials, platform chemicals, biofuels, etc.
(Lim and Kim, 2022; Tinafar et al., 2019).

We identify three main challenges in the area of cell-free
biosynthesis. First, catalytic enzymes must be produced a
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priori, which can be expensive. Secondly, enzyme cofactors
often need to be added continuously to keep the pathways
active, also increasing the costs. However, cofactor regen-
eration schemes (Mordhorst and Andexer, 2020) have the
potential to greatly solve this issue. Finally, optimization
strategies are not always performed in a structured and ef-
ficient way. That is, many processes are designed based on
trial and error and recipes, requiring a lot of experimental
effort, time and resources. In that sense, most of the work
has focused on improving the enzymatic cascade, enzyme
optimization, best reaction conditions, and process design
(Siedentop et al., 2021).

Despite the potential benefits of model-based optimiza-
tion, such as less time, costs and resources needed, sur-
prisingly very little has been done in the field of cell-
free biosynthesis. Furthermore, static optimizations seem
to be the dominant approach (Siedentop et al., 2021),
overlooking the fact that cell-free reactions are dynamic
processes, operating in a dynamic environment. An aspect
that may limit model-based optimization is model uncer-
tainty. It is common when modeling cell-free systems that
some parameters are not observable, i.e., they cannot be
uniquely inferred from the available measurements. This
problem can also arise due to structurally non-identifiable
parameters (Bellman and Astrém, 1970). Another reason
for model uncertainty lies in wrong model assumptions,
meaning that the exact reaction mechanisms are not al-
ways known. Commonly used enzyme kinetics are often
based on steady state and reactant stationary assumptions
underlying the Michaelis-Menten equation (Schnell, 2014),
or on mass action kinetics where enzyme-specific parame-
ters are ignored (Du et al., 2016). Overall, this may lead
to a mismatch between the actual plant behaviour and the
model approximation.

In this work, we present a systems approach to optimize
cell-free biosynthesis. To do so, we propose the imple-
mentation of a fed-batch setup where materials such as
substrates and enzymes can be in principle continuously
added to the system to dynamically influence the reac-
tion rates (Section 2). Fed-batch processes could also help
to extend production for longer periods, thus bringing
a reduction in downtimes (non-production time between
batches). It can also be very useful in case of enzyme ki-
netics with substrate inhibition. In such cases, continuous
substrate feeding might be more beneficial than adding all
the substrate at once from the beginning. To maximize
the production efficiency, we formulate a flexible model-
based optimization problem (Section 3) that can handle
several cost functions and both static and dynamic degrees
of freedom. We also outline the use of shrinking horizon
model predictive control (MPC), an advanced feedback
control scheme, to tackle possible model uncertainty (Sec-
tion 4). Furthermore, we show how moving horizon es-
timation (MHE) can be used to infer unavailable state
measurements during the MPC implementation (Section
5). As a case study, we consider the uridine diphosphate
(UDP)-N-acetylglucosamine (GlcNAc) cell-free biosynthe-
sis. This sugar nucleotide can act as an activated sugar
donor in glycoengineering with promising applications for
the biomanufacturing of therapeutic proteins, enzymes,
glycan-based delivery systems, and drug molecules (Ma
et al., 2020; Gadekar et al., 2020).

2. FED-BATCH MODEL FOR CELL-FREE SYSTEMS

We express the dynamics of cell-free biosynthesis in fed-
batch as follows

d%ft) = SV(E,m,p) + (vlL> (Fin © min — Frm), (1a)
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m(to) = mo, (2)

E(ty) = Ey, (3)

vr(to) = vro, (4)

where m is the molar vector of metabolite species in the
pathway, S is the stoichiometric matrix of m, V' is a vector
function describing the reaction fluxes, E is the molar
vector of enzyme species, p is the vector of flux-related
parameters, vy, is the liquid volume of the reactor, F}, is
the vector of metabolite feeding rates, ©® is the Hadamard
product (i.e. element-wise product), m;, is the vector of
molar concentrations in the feed, Frr is the net feed flow
rate into the reactor, Fg is the vector of enzyme feeding
rates, Fji, is the vector of enzyme concentrations in the
feed, and dg is a vector of enzyme degradation rates.
Furthermore, mg, Eg and vy are the concentrations of m,
FE and vy, respectively, at the initial time ¢y. Note that
when F,, and Fg are zero-vectors, the system behaves
as a batch process. It is also worth noting that V' can
be typically modeled using kinetic relations which are
functions of E and m; therefore, both the enzyme and
metabolite concentrations can be exploited to influence the
reaction rates.

3. OPTIMAL CONTROL

We formulate an optimal control problem that maximizes
a given cost functional that captures the efficiency of the
process
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where u(-) is the input function, z € R™ is the state,
Il : RxR"™ x R™ — R is the stage cost, e : R X
R™ — R is the terminal cost, g : R x R?» x R™* — R"™s
are additional state and input constraints, and 7 is the
time that spans from ¢y to the final time ¢;. Note that ¢y
can also be optimized. Depending on the specific process
and context, one can maximize, e.g., the profit of the
plant (i.e., revenues minus operational costs), or certain
economy-related metrics such as the final product titer or
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volumetric productivity. In that regard, many variables
can affect the efficiency and economics of fed-batch cell-
free systems, which can thus be optimized. Therefore, for
the sake of generality, we consider in the above formulation
the feeding rates, the initial state concentrations, and the
final time of the process as potential degrees of freedom
for the optimization.

4. MODEL PREDICTIVE CONTROL

To counteract for possible model uncertainty such as
model-plant mismatch, we propose the use of shrinking
horizon MPC during the process operation. MPC consists
in solving the optimal control problem described in (5)
at every sampling time ¢; (Rawlings et al., 2020). The
optimization problem reads

min flT,:L’T,UT dr +e(ts, x(ts)), 6a
min [t @ ()i elnatn), 6
s.t.  Egs.(1la) — (1d), (6b)
0> g(t, =(t), u(t)), (6¢)
u=[Fy, Fg|', (6d)
x=[m, E,v]", (6e)
T € [to, t7] C R, (6f)
x(tk) = Tp. (Gg)

Here, we assumed equidistant sampling times with interval
At, ie., tgy1 = tp + At, ty = 0. Note that, also non-
equidistant sampling time can be used. The integral of
the stage cost spans from t; to t¢, 7 € [tg,ts], and
the prediction horizon shrinks in time. Note that non-
equidistant sampling time can be also used. In this case,
we need the estimated or measured state at every sampling
time, x(t;) = Zx. As we will see in the next section, the
moving horizon estimator can be used for this purpose.

5. MOVING HORIZON ESTIMATION

Solving the MPC requires knowing the state T at each
sampling time to re-solve the optimization problem. De-
pending on the size and complexity of the considered
metabolic pathway, the number of states to be measured
can be considerably high. Therefore, we propose to use
MHE as an observer for inferring unmeasured states based
on available measurements (Rawlings, 2013). Similarly to
optimal control and MPC, the MHE solves an optimal
control problem along a horizon but projected into the
past. To consider state and measurement uncertainty, the
state noise w and measurement noise v are added to the
problem. The measurements are taken at discrete time
intervals. Here, without loss of generality, we assume they
are taken at constant time intervals At. For compactness,
let us indicate with (-); and (%) the optimization and
measured variables at time ¢;, respectively. Since the mea-
surements are taken at discrete sampling times, it is more
natural to write the MHE formulation using the dynamic
model in discrete form. At time t;,; MHE reads

xkd%{lg}w Wi J(@p_ N> PRy WE), (7a)
s.t. Tip1 = F(z, 03, pr) + wi, (7b)
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for i € [k — N,k], k,N €N, (7e)

where N is the MHE horizon length, x;_y is the state
at the beginning of the MHE horizon, p; is the vector of

the system parameters to be estimated, ¢ : R x R™ X
R™ x R™ — R™ are additional constraints, h : R x
R7 x R™ x R™ — R™ are the measurements equations,
and wi, = [w!] <, w!l < .., w]l]|" is the sequence of state
E—N° Yk—N+1> " Yk

noise. Note that the parameters are considered constant in
the horizon. The objective function is defined as

- 2
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k
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where |lal|} £ a'Aa, Py is the arrival cost weighting

matrix, R the measurements error matrix, and W the state
error matrix. The matrix of the arrival cost can be updated
at every time step, to better approximate the information
that is “outside” the horizon (Rawlings et al., 2020). p
and Ty_ N are the best guesses available of the parameters
and states at the beginning of the horizon, respectively.
Usually, they are initialized by the user and then can
be substituted with the estimated values after the first
estimation. Furthermore

ti+At
F(z;,04,p) = x(t;) +/ fz(t),a(t),p)dt, 9)
t;

where f(z(t),4(t), p) is a shorthand notation for Eqgs.(1a)-
(1d). The results of (7) are an optimal initial state x} 5,
an optimal parameter p; and an optimal state noise
sequence wj. With these optimal values we can obtain
an optimal state estimate Zj that is needed by the MPC.

6. APPLICATION STUDY

The considered cell-free UDP-GIcNAc pathway, based
on the process and mathematical model proposed by
Mahour et al. (2018), is depicted in Fig. 1. UDP-GlcNAc
is produced from uridine monophosphate (UMP), GlcNAc
and catalytic amounts of adenosine triphosphate (ATP).
Note that the pathway has an in situ ATP regeneration
cycle based on polyphosphate, avoiding the continuous
addition of this expensive cofactor.

The rate laws V(E,m,p) of the model are defined as
(Mahour et al., 2018)

VNahk = k1 ENahKMGIcNACTATP, (10a)
Vaalu-prA = k2 EGalumMGicNAc-1PTMUTP, (10Db)
MATP
VPPK3app, are = k3EPPK3 <mADP — > , (10c)
eql

m
VPPK3ypp, ure = kaEPPKs (mUDP - kUTP> ,  (10d)
eq?2

Vurae = ks Eurae (mUMPmATP - mUDkPmD> )
eq3

(10e)
where k; and k.q; are kinetic parameters. The parameter
values used in this study were obtained from Mahour
et al. (2018). Furthermore, we assumed negligible enzyme
degradation. Hereafter we will refer to this model as the
nominal model.

6.1 Open-loop optimization
As mentioned before, several alternatives for the selection

of the cost function and decision variables of the opti-
mizations are in principle possible. For example, a high
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Fig. 1. Cell-free UDP-GlcNAc pathway. Figure made in
BioRender.com.

volumetric productivity usually correlates with shorter
production times and smaller facilities needed to achieve
a given production target. Therefore, it is very often an
economic parameter to be optimized towards maximizing
the plant profitability (Woodley, 2020). As a proof of
concept, we consider in our case study the maximization of
the volumetric productivity in a fed-batch configuration,
hence | = —mupp-cicNac in the optimal control problem
in (5). The chosen decision variables are the UMP and
GlecNAc feeding rates in a 10 h-process. By doing so, we
indirectly also maximize the product titer in the given
process time frame, and the catalytic potential of enzymes
per process run, defined as the amount of UDP-GlcNAc
produced per total initial enzyme amount. Note that a
step size At = 1/60 h is used and that ¢; is fixed to
10 h. All optimization problems were solved using HILO-
MPC (Pohlodek et al., 2022), an optimization and control
toolbox developed in our group.

First, we solved the optimal control problem using the
nominal model for the fed-batch system, and then applied
the inputs to the plant in an open-loop fashion (Fig. 2-
A), assuming no model-plant mismatch. The results are
shown in Fig. 3, where we compare the batch against the
fed-batch case for the same initial conditions and time
frame. The optimized fed-batch rendered a final UDP-
GlecNAc concentration of 0.85 mM compared to 0.37 mM
of the batch process, which represents around 2.3-fold
improvement in titer and thus volumetric productivity.
Given that both processes started with the same initial
enzyme concentrations, one could also state that the fed-
batch had 2.3-fold higher enzyme efficiency use per process
run.

Regarding the dynamics of the process, the fed-batch
system had significantly higher production rates compared
to the batch system. Moreover, while the rates in the batch

A) B)

Optimization
u(t)

Sensors
RET S

Optimization

u(t)

< y(©)

State estimation Optimization

£(6)

| Dynamic model | | Dynamic model |

u(®)

Fig. 2. Control configurations considered in this study. A)
Open-loop control. B) Model predictive control. C)
Model predictive control with state estimation.

setup gradually decreased over time, the rates in the fed-
batch remained comparatively unaffected, only starting to
slowly decrease by the end of the process. To explain this
difference, let us analyze the rate laws in Eqgs. (10a)-(10e).
As can be seen, the reaction rate Vg, can be enhanced by
either increasing the substrate or enzyme concentrations.
In our case study, the optimization predicted a GlcNAc
feeding rate profile such that the GlcNAc concentration
in the fed-batch reactor was kept always above the batch
one; therefore, this translated into higher reaction rates
through the cascade.

A similar statement can be made about the predicted
UMP feeding rates. However, the main difference is that
UMP does not accumulate in the reactor, in fact, it is
rapidly consumed and then reaches a sort of quasi-steady
state. This can be explained by the fast kinetics of the
first reaction in the UMP to UTP pathway branch. In
contrast, the metabolite that does accumulate is UTP.
One can see that the controller managed to keep the
UTP concentration in the fed-batch overall higher than
in the batch process, thus also boosting the reaction rates
downstream in the cascade.

Moreover, the optimizer managed to find a trade-off be-
tween adding more substrates to the system and excessive
enzyme dilution. This is relevant because too much sub-
strate feeding could bring the enzyme concentrations down
to levels that would negatively impact the conversion rates.
We should insist that here we only show the results for
maximizing the volumetric productivity, hence the input
profiles look relatively straightforward (on-off). Neverthe-
less, the results would probably differ if we considered more
complex cost functions (e.g., taking into account enzyme,
substrate and product costs, upstream and downstream
processing expenditures, etc.). Also, the simplified UDP-
GlecNAc model does not consider substrate inhibition or
substrate-limiting kinetics such as the Michaelis-Menten
equation, which would otherwise further constraint the
optimal input space, thus making the use of model-based
optimization even more pertinent towards enhancing the
process performance.

6.2 Closed-loop control in case of model uncertainty

As a second step, to show the potential of feedback control
to address model uncertainty, we assume that the model
used by the controller has a mismatch with respect to the
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actual plant. To do so, we disturb some parameters of the
nominal model and employ the modified model for the
controller and observer predictions. In contrast, the plant
simulations are based on the (unmodified) nominal model.
In Fig. 4 we present the results of two shrinking horizon
MPC configurations, one with full-state measurement and
no measurement noise (Fig. 2-B), and another one with
measurement noise and using MHE as an observer to
infer unmeasured states (Fig. 2-C). For the MHE/MPC
case, we consider that only measurements of GlcNAc,
UMP, UDP-GIcNAc, GlcNAc-1P and UTP are available.
These measurements are affected by Gaussian noise with
a relative standard deviation of 3 %. We use a growing
horizon length up the end of the fedbatch, i.e., to 10

Tlm-e [h]

Time Ih]

Fig. 4. Control results for the fed-batch UDP-GlcNAc
biosynthesis. Case 1: open-loop control (—), case 2:
model predictive control with full-state measurement
(---), case 3: model predictive control with moving
horizon estimation (—-). The batch process (----) is
presented for comparison. Only selected intermediate
metabolites are shown for simplicity of presentation.
Model uncertainty was considered.

The batch process reached a maximum UDP-GlcNAc titer
of 0.37 mM, while the open-loop fed-batch system achieved

1 Since we use all the available measurements from the beginning
of the process, the estimation window actually grows but does not
mowe. This special type of configuration can be referred to as a full
information estimation (Rawlings et al., 2020).
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0.71 mM, about 1.9-fold enhancement in volumetric pro-
ductivity and enzyme efficiency use. In line with the dis-
cussion from the previous section, the GlcNAc and UMP
feeding rates kept the production pathway working at
higher conversion rates compared to the batch. As ex-
pected, the improvement with this open-loop optimization
was lower than in the scenario presented in Fig. 3 since
there we assumed no model-plant mismatch, while now
the controller uses a model that does not exactly match
the plant behaviour.

Using MPC with full state measurement increased the
UDP-GIcNAc concentration up to 0.79 mM, by adapting
the feeding rates online to compensate for the model-plant
mismatch. Compared to the open-loop profile, the feeding
rate of UMP was extended longer, thereby increasing the
turnover of the UMP to UTP subpathway, and in turn
the overall production rates. Similarly, the MPC delivered
a slightly more prolonged GlcNAc feeding. This led to an
improvement close to 11.3 % with respect to the open-loop
fed-batch. However, one should be aware that this MPC
scenario is naturally very optimistic because we assume
that all state measurements are available and that there is
no measurement noise.

The MPC coupled to MHE;, in principle a more realistic
scenario with limited state measurements and measure-
ment noise, reached a product titer of 0.80 mM. That
is, the MHE/MPC configuration was able to match —and
slightly surpass— the performance of the MPC with full
state information and no measurement noise, with the
added benefit of reducing the number of model states
needed to be measured online, from 14 to only five. It
is also worth noting that, in particular at the beginning
of the process, the UMP feeding rate predictions with
MHE/MPC were different compared to those of the MPC
with full state information. As the estimation horizon
grew, the MHE /MPC predictions started to get better and
the controller managed to compensate for the previous
suboptimal control actions. The GlcNAc feeding profile
was, in contrast, practically the same for both scenarios.

Although the feedback control cases did improve the cell-
free bioprocess compared to the system without corrective
actions, remark that they still could not fully tackle all
model uncertainty. In other words, they did not manage
to reach the 0.85 mM UDP-GlcNAc achieved in the most
idealistic case with no model-plant mismatch, as presented
in Section 6.1. To further improve the performance of the
MPC, one could consider an adaptive MPC scheme where
the model parameters —along with the unmeasured states—
are re-estimated online using the MHE algorithm.

7. CONCLUSION AND OUTLOOK

In this work, we showed a general model-based optimiza-
tion framework to maximize the production efficiency of
cell-free processes, with emphasis on fed-batch regime.
The framework can in principle consider several economic
objectives and optimization variables, as well as input and
state constraints if necessary. Furthermore, we outlined
the use of MPC to counteract model uncertainty. We also
discussed how an observer such as MHE can be integrated
with MPC to infer unmeasured states based on available
process information.

Using the de novo cell-free UDP-GIcNAc biosynthesis as a
case study, we demonstrated the benefits of our optimiza-
tion strategy for improving the volumetric productivity,

product titer, and efficiency of enzyme use per process
run compared to conventional batch schemes. This was
achieved by optimizing the substrate feeding rates of UMP
and GlcNAc. Moreover, we have shown that MPC alone,
but optionally also coupled to MHE, can be in general very
beneficial to tackle model uncertainty online.

Based on these results, we would like to encourage the
synthetic biology and biotechnology community to con-
sider the benefits of control theory and process engineer-
ing applied to cell-free biosynthesis. We are convinced
that such a systems engineering perspective could make
these emerging types of synthetic biology processes more
economically efficient, competitive and robust, thus fa-
cilitating their commercial implementation. Future work
involves a detailed (machine learning-supported) kinetic
modeling strategy towards model-based optimization and
control of cell-free synthesis, and the application of our
framework to different case studies.
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