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Summary 

The functional properties of the human brain arise, in part, from the vast assortment of 

cell types that pattern the cortex. The cortical sheet can be broadly divided into distinct 

networks, which are further embedded into processing streams, or gradients, that extend from 

unimodal systems through higher-order association territories. Here, using transcriptional data 

from the Allen Human Brain Atlas, we demonstrate that imputed cell type distributions are 

spatially coupled to the functional organization of cortex, as estimated through fMRI. Cortical 

cellular profiles follow the macro-scale organization of the functional gradients as well as the 

associated large-scale networks. Distinct cellular fingerprints were evident across networks, and 

a classifier trained on post-mortem cell-type distributions was able to predict the functional 

network allegiance of cortical tissue samples. These data indicate that the in vivo organization 

of the cortical sheet is reflected in the spatial variability of its cellular composition.  
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Introduction 

A core goal of research in the brain sciences is to understand the multiscale 

relationships that link molecular and cellular processes with the in vivo functional organization of 

the human cerebral cortex. Historically, the localization of the borders and associated areal 

parcels along the cortical sheet were determined by invasive techniques including histology, 

anatomical tract tracing, electrophysiology, and lesion methods. Through these approaches 

neuroscientists and histologists produced landmark maps that divide cortical territories on the 

basis of regional patterns of cytoarchitecture1–8, revealing the presence of both serial and 

parallel information processing hierarchies9,10. Recently, the development of dense spatial 

transcriptional atlases has enabled the study of cellular correlates of brain functions in humans, 

for instance as estimated through functional magnetic resonance imaging (fMRI)11. Initial work in 

this area has established molecular correlates of large-scale functional network organization11–

13, including genes encoding ion channels14 and those enriched in supragranular layers of 

cortex15, as well as associations between the spatial distribution of interneuron-linked genes and 

regional differences in fMRI signal variability16,17. However, the extent to which associated ex 

vivo cellular architectures may mirror the hierarchical functional properties of the human 

cerebral cortex as measured by resting state fMRI (rs-fMRI) has yet to be systematically 

investigated. 

From sensation through cognition and action, the human cortex is organized into a 

multiscale system composed of areal units that are situated along segregated processing 

streams10. These areal units, or parcels, are embedded within corresponding large-scale 

functional networks that are evident through both anatomical projections, task-evoked activity, 

and patterns of coherent neural activity at rest18–20. Supporting this network architecture, 

converging evidence indicates the presence of a broad division separating unimodal 

somatosensory/motor (somato/motor) and visual territories from the heteromodal association 

areas that integrate long-distance projections across distributed brain systems9,21. This 

hierarchical property of brain organization is reflected in the presence of functional gradients 

that span the cortical sheet, situating functionally distinct networks and corresponding areal 

parcels along a continuous spectrum22. These gradients reflect low-dimensional representations 

of functional connectivity, with the first, or primary, gradient anchored at one end by unimodal 

regions supporting primary sensory or motor functions and at the other end by the association 

cortex. The second gradient of connectivity reflects a sensory organization (unimodal gradient) 

anchored at each end by either visual or somato/motor cortex22,23. However, while recent 
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evidence suggests a genetic basis for the macro-scale organization of the cortical sheet24–27, the 

extent to which cellular processes may underpin the functional organization of the brain remain 

to be established.    

 The translational challenge of linking molecular and cellular processes with properties of 

functional organization is addressable, in part, by integrating transcriptional data from ex vivo 

tissue samples with estimates of in vivo brain function11. Classic neuroanatomical discoveries 

revealed the evolutionary processes and developmental mechanisms that constrain the layout 

of cortical areas, their corresponding microstructure, and anatomical connectivity28–30. Recent 

work supports the presence of broad axes of cortical organization30,31, for instance as reflected 

in the spatial distribution of receptor densities32, intracortical myelination33, and supragranular-

infragranular pyramidal neuron soma size ratios34. Preliminary studies associating gene 

expression to functional networks have revealed shared enrichment of genes among anatomical 

regions that are functionally coupled12,14,15, perhaps indicating the network-preferential presence 

of particular cell types. In line with this conjecture, subsequent work has revealed that spatial 

profiles of signal variability observable in BOLD fMRI follow the relative distribution of certain 

classes of inhibitory interneurons, for instance parvalbumin (PVALB) and somatostatin (SST)16, 

and broadly separate unimodal and association cortices. Intriguingly, select aerial boundaries 

derived from rs-fMRI have also been shown to correspond to histologically and structurally 

defined architectonic areas19,23,35,36. However, while these data suggest a link between the 

micro- (molecular and cellular) and macro-scale (gradients and networks) properties of brain 

organization, our understanding of how the complex functional architecture of the cerebral 

cortex develops and is maintained over the lifespan remains fragmentary. One possibility is that 

the relative preponderance of certain cell classes may spatially couple to gradually shifting 

gradient patterns across the cortical sheet. An alternative, but not mutually exclusive, 

hypothesis is that the spatial distribution of cortical cell types tracks the topographic organization 

of functionally connected but spatially distinct large-scale cortical networks. 

 Here, we examine the association between cortical gradients, functional networks, and 

the spatial distribution of cortical cell types, inferred from patterns of gene transcription in bulk 

tissue data. In doing so, we demonstrate that imputed cell type distributions spatially track the 

macro-scale gradient organization of cortex, both at the level of individual cell types and 

multivariate cellular profiles. Suggesting the presence of a complementary network structure of 

cellular organization, distinct cellular enrichment patterns were also evident across large-scale 

cortical networks. These “cellular fingerprints” can be used to predict the network allegiance of 

cortical parcels from their corresponding cell type abundance measured in independent post-
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mortem brain tissue. These data help address a key challenge in neuroscience to understand 

how cell-type distributions may underlie the in vivo functional properties of the human brain, 

establishing spatial correspondence between regional cellular profiles and the hierarchical 

organization of the cortical sheet. 
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Fig. 1 Large-scale functional networks are embedded along two principal gradients. A. 
Functionally coupled cortical parcels are grouped into large-scale networks, based on the Yeo 

et al.23 7-network solution averaged across the 400-parcel functional atlas of Schaefer et al.35 B. 
The first principal gradient of intrinsic functional connectivity. Parcels are colored by their 

relative topological position spanning between the association cortex (bright yellow) and the 

unimodal cortex (dark blue). Scale bar reflects z-transformed principal gradient values derived 

from connectivity matrices using diffusion map embedding37. C. The second gradient of intrinsic 

functional connectivity is anchored within unimodal areas including primary visual cortex (bright 

yellow) at one end and somatomotor/auditory cortex at the other (dark blue). D. Figure displays 

the spatial organization of the seven networks along the two primary gradients. Adapted from 

Margulies et al.22. VentAttn, salience/ventral attention network; DorsAttn, dorsal attention 

network; Som/Motor, somato/motor network.  
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Results 

The large scale functional organization of human cortex 

The multiscale and hierarchical organization of cortical functions were characterized by 

macroscale gradients and large-scale networks (Fig. 1). Here, we applied the diffusion map 

embedding22,37,38 to decompose vertex-level rs-fMRI functional connectivity (FC) matrices into 

continuous gradients that capture the maximum variance across the 820 adults in the Human 

Connectome Project (HCP)39. To associate the functional measures with cellular profiles, the 

gradient values were parceled into the Schaefer-400 atlas35. Parcel-level network assignment 

was obtained as detailed in Yeo et al. 201123 (Fig. 1A). Next, we use these complementary 

gradient- and network-based approaches as a foundation to establish the cellular associates of 

the in vivo functional organization of the cerebral cortex.  

The current analyses focused on the first two primary gradients, reflecting the canonical 

information processing hierarchies in the human cortex10. Unlike linear methods that reduce 

geometric dimensionality, diffusion map embedding allows topologically similar local and long 

distance connections to be placed into common spaces with interpretable architectures22,38,40. 

The resulting gradients are unitless and reflect the position of vertices along an associated 

embedding axis that captures the primary differences in FC patterns. Consistent with prior 

work22,38, the architecture of the first gradient (Gradient 1) spans from unimodal areas (including 

primary visual, auditory, somatosensory, and motor cortex) through transmodal, or association 

(default network), territories (Fig. 1B). The peak values in the second gradient (Gradient 2) were 

evident along the central and calcarine sulcus, differentiating the somato/motor cortex from the 

primary visual system (Fig. 1C). The first two gradients account for a substantial proportion of 

the variance in functional connectivity (Gradient 1: 26%; Gradient 2: 12%). As initially reported 

by Margulies et al.22, large-scale functional networks23,35 are distributed across the cortical sheet 

and spatially ordered along these first two primary gradients (Fig. 1D), a property of cortical 

organization reflected in the repeating transitions between networks across cortical lobes. 

These data highlight complementary analytic frameworks that situate large-scale cortical 

networks and functions in separate domains along overlapping organizing axes.   
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Fig. 2 Univariate cell type distributions align with functional gradient topographies. A. 

Cell types are imputed from gene expression in AHBA bulk tissue samples. Single-cell 

signatures are constructed from independent tissue samples in the frontal (Lake DFC) and 

visual (Lake VIS) lobes41, allowing for a technical replication of the cell-type imputation scheme. 

Resulting abundance of cell types were rank-ordered by spatial correlation to each principal 

functional gradient. Warm colors indicate positive correlation, and numbers in each cell reflect 

associated FDR corrected pspin. Significant correlations were boxed in A. Surviving from 

significance tests in both Lake DFC and Lake VIS, the spatial pattern of Gradient 1 was 

correlated with two interneuron subtypes: In1 and PVALB, as well as one excitatory neuron 

subtype: Ex1. Gradient 2 was significantly correlated to Ex4 excitatory neurons. B. Imputed cell 

type abundance distributed across cortex suggests Ex1 and In1 are preferably distributed 

around the transmodal end of Gradient 1 (bright yellow), whereas PVALB is preferably 

distributed around the unimodal end (dark blue). A difference score between Ex1 and PVALB 

distributions generates a pattern spatially consistent with the first functional gradient. C. Ex4 
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follows a spatial pattern aligning to the second gradient, peaking in visual pole (bright yellow) 

then gradually decreasing as it approaches the somato/motor and auditory cortices (dark blue). 

Parcels that are excluded from analyses, not covered by AHBA bulk samples, are colored in 

gray. D. Scatter plots with each cortical parcel colored by the corresponding functional networks 

show that cell type abundance gradually increase/decrease across the networks distributed 

along the gradients, with enrichment/absence evident within certain networks. Correlations were 

estimated by Spearman’s Rho (as reflected in the scale bar in A), but for visual reference, 

dotted lines reflecting linear correlation between cellular abundance and gradient values are 

also displayed.  
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Univariate cellular associates of cortical gradients 

Areal parcellations derived from rs-fMRI have been shown to follow boundaries of select 

histologically- and structurally-defined architectonic areas, for instance within somato/motor 

territories and putative language areas23,35. However, the extent to which regional cellular 

profiles spatially covary with the broad hierarchical organization of cortex has yet to be fully 

established in vivo. To examine the relationship between the topographic distribution of 

individual ex vivo cell types and the two primary functional gradients, the cortical topography of 

cell type abundances was inferred from Allen Human Brain Atlas (AHBA) post-mortem bulk 

gene expression samples using a previously validated method (see Methods)11. The 

transcription signatures identifying each class of cell in the AHBA bulk samples were derived 

from cortical single-nucleus droplet-based sequencing (snDrop-seq) data of visual and frontal 

cortex as reported by Lake et. al.41. The snDrop-seq data from the two regions allowed for 

parallel validation of the imputation process. The molecular signature profiles of 17 cell classes 

(see Methods) were constructed from snDrop-seq samples, including 5 interneuron subtypes 

(i.e., PVALB, SST, In1, In3, and In4), 6 excitatory neuron subtypes (i.e., Ex1, Ex3, Ex4, Ex5, 

Ex6, and Ex8), and 6 non-neuronal subtypes (astrocytes, oligodendrocytes, pericytes, 

endothelial, microglia, and oligodendrocyte precursor cells). The abundance of each cell type 

was estimated in available bulk samples which were further aggregated into the 400 cortical 

parcels (see Methods). The resulting distribution of parcel-level cell type abundances were 

examined relative to the in vivo functional gradient organization of the cortex. Statistical 

significance was established using permuted spin tests accounting for the spatial 

autocorrelation42,43, FDR corrected for 34 multiple comparisons (17 cell types x 2 gradients). 

The association between the two gradients and the 17 cell types were separately 

imputed using visual (Lake VIS) and frontal cortex (Lake DFC) samples are displayed in Fig. 2A. 

To minimize the effects of spatial heterogeneity of single-cell transcriptional signatures, we only 

discuss subtypes that survived multiple comparison correction across both Lake DFC and Lake 

VIS imputed samples and were therefore robust in their associations with gradient architecture. 

Fig. 2B-D shows the results based on Lake DFC, and the full results are displayed in 

Supplementary Fig 1-2. The first gradient (Gradient 1; Fig. 2B), spanning the unimodal-

transmodal axis, was positively associated with the imputed spatial distributions of interneuron 

In1 (Lake DFC: Spearman correlation,  Rho=0.309, pFDR= 0.011; Lake VIS: Rho=0.290, 

pFDR=0.041) and excitatory neuron Ex1 cells (Lake DFC: Rho=0.307, pFDR<0.001; Lake VIS: 

Rho=0.314, pFDR=0.009). Gene markers of both of these cell types are primarily clustered in the 

molecular layer of cortex (layer I)41.  
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As shown in Fig. 2B, Ex1 is densely distributed within: 1) temporoparietal junction, 

posteromedial cortex, superior frontal gyrus, superior temporal sulcus in the default network; 2) 

inferior temporal gyrus, inferior frontal gyrus in the dorsal attention network; and 3) select 

aspects of the frontoparietal network, including the frontal pole and inferior parietal lobe. Ex1 

cells (formally CBLN2+RASGRF2+ Ex1)41 are a subset of excitatory neurons marked by high 

expression of cerebellin 2 precursor (CBLN2) and ras protein specific guanine nucleotide 

releasing factor 2 (RASGRF2). CBLN2 is an extracellular synapses organizer44–46 particularly 

relevant to the expansion of dendritic spines within the human prefrontal cortex, compared to 

non-human primate47. RASGRF2 contributes to synaptic plasticity by mediating the induction of 

long-term potentiation48,49. In1 (including CCK+CNR1+RELN+ In1a, CCK+CNR1+THSD7B+ In1b, 

and VIP+CALB2+TAC3+ In1c)41 are a group of interneurons that exhibit a high expression of 

cholecystokinin (CCK), cannabinoid receptor 1 (CNR1). Of note, this class of cells includes 

subtypes like VIP and RELN inhibitory interneurons. As such, In1 cells can be marked by high 

expression of Reelin (RELN), thrombospondin type 1 domain containing 7B (THSD7B) or 

vasoactive intestinal peptide (VIP). In the current data, In1 peaks around the frontal and 

temporal pole, overlapping with default, ventral attention and dorsal attention network parcels 

(Fig 2B). In contrast, a negative association was observed between PVALB interneurons (Lake 

DFC: Rho=-0.367, pFDR=0.009; Lake VIS: Rho=-0.325, pFDR=0.009) and the first gradient. 

Consistent with prior work16,17, PVALB inhibitory interneurons, whose markers preferentially 

cluster in internal granule cell layer (layer IV)41, are preferentially distributed in somato/motor 

and visual areas such as postcentral gyrus, paracentral lobule and medial occipital lobe (Fig. 

2B).  

When considering Gradient 2, the analyses revealed a positive spatial association with 

excitatory Ex4 cells (formally RORB+IL1RAPL2+TSHZ2+FOXP2+; Lake DFC: Rho=0.375, 

pFDR<0.001; Lake VIS: Rho=0.535; pFDR<0.001; Fig 2C). Here, Ex4 presented a spectrum that 

peaked at visual and dorsal attention network parcels then gradually decreased along the dorsal 

attention network through default network areas, with increased presence within a subset of 

somato/motor parcels. The estimated preponderances of imputed cell types are displayed 

across cortical parcels (Gradient 1, Fig. 2B; Gradient 2, Fig. 2C), demonstrating that cell type 

abundance gradually increase/decrease across the functional networks distributed along the 

gradients, with their relative enrichment or absence evident within certain networks (Fig. 2D). 

The value of cell type abundance is always positive and gradient values represent the parcels’ 

topological position relative to each other. Accordingly, both positive and negative correlations 

indicate that the presence of a given cell type follows the corresponding gradient values. Of 
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note, while these analyses reveal isolated cell types that are preferentially distributed along 

functional gradients, in large part anchored at each end, the large-scale organization of cortex is 

likely most apparent when simultaneously considering the spatial distribution of multiple cell 

types. To visualize this property of cellular organization, we took the difference between Ex1 

and PVALB spatial distributions within each parcel, as the former are distributed around 

transmodal territories and the latter within unimodal regions (Fig. 2B). This combination aligns 

with the first functional gradient. We further examined the combinatorial alignment of all the cell 

types to gradients in the next section. 
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Fig. 3 Multivariate cellular profiles follow the macroscale organization of cortex. 
A. The scatter plot displays results of permutational canonical correlation analysis where the 

first functional gradient was positively associated with a composite score of cell type 

abundance. B. Cell type composite score associated with the first functional gradient projected 

to the cortical surface. C. Canonical loadings of each cell type to the composite score implicate 

In1, Ex1, PVALB and the SST interneurons and endothelial cells (End; red indicates positive 

associations; blue, negative associations). D. The second functional gradient was positively 

associated with a cell type composite score of cell type abundance. E. Cell type composite 

score associated with the second functional gradient mapped to the cortical surface. F. 
Canonical loadings of each cell type to the composite score significantly implicated Ex4, Ex3 

(marked by gene NEFM) and Ex8 (MCTP2, NR4A2) excitatory neurons, and In3 (TSHZ2, 

SHISA8) interneuron, and End. 
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Multivariate cellular profiles track the functional gradient architecture of cortex 
Our initial analyses established spatial relationships between specific cell-types, studied 

in isolation, and the first two functional gradients of connectivity22. However, the extent to which 

the macroscale functional organization of cortex may be reflected in the spatial distribution of 

multiple cell types remains to be established. To examine the presence of these multivariate 

cellular profiles, we elected to use permutational canonical correlation analysis (PermCCA)50, 

which seeks the linear combination of cell type distributions that are maximally correlated to 

each individual gradient. Inference on the resulting canonical variates was performed using 

spin-test permutations42 on each functional gradient to account for spatial autocorrelation.  

Here, the resulting cell type composite scores reflect the linear combination of spatial 

distributions across all cell-types that are maximally correlated to each functional gradient. As 

displayed in Fig. 3, we observed cell type composite scores were correlated with both the first 

and second gradient across both visual and frontal cortex single-cell data (Lake DFC, Fig. 3A,D; 

Lake VIS, Supplementary Fig. 3A,D). In Fig. 3B,E (for Lake DFC; Lake VIS, Supplementary Fig. 

3B,E), we display the strength of involvement of each cell type composite score associated with 

the first and second functional gradient projected to the cortical surface. At the univariate level, 

as reported above, a common spatial distribution for these gradient-associated cell types 

emerged where the profile of enrichment is anchored at one end of the gradient (Fig. 2). 

Consistent with this pattern, as reflected in our PermCCA cell-type loadings, Gradient 1 (Lake 

DFC: r=0.524, pFDR= 0.004; Lake VIS: r=0.566, pFDR=0.002) is most positively correlated with 

In1, Ex1, and most negatively correlated with PVALB and End; whereas Gradient 2 (Lake DFC: 

r=0.586, pFDR=0.004; Lake VIS: r=0.650, pFDR=0.002) most positively correlates with Ex4 and 

End, and most negatively correlates with Ex3.  

Although the cell types that were primarily associated with gradients in isolation also 

preferentially contribute the signal to the multivariate analyses, the variance explained with 

using a composite score now increases to 27.5% (Gradient 1) and 34.3% (Gradient 2; Fig 3A,D) 

from 9.4% through 14.1% in the single cell-types emerging from the univariate analyses (Fig. 

2D). These data suggest that, rather than being specific to isolated classes of cells, the 

observed topographic similarities may be most apparent when considering the combined spatial 

profiles of multiple cell types across cortex. To test this idea, we repeated the PermCCA 

iteratively excluding different combinations of cells that reflect the major contributors for 

Gradient 1 and Gradient 2 (see Supplementary Table 1-2). Critically, when simultaneously 

removing all the significant gradient associated cell types revealed in the univariate analysis 

(Gradient 1: In1, Ex1, PVALB; Gradient 2: Ex4), the PermCCA results held for Gradient 1 (Lake 
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DFC: r=0.419, pFDR=0.029; Lake VIS: r=0.538, pFDR=0.002) and almost held for Gradient 2 (Lake 

DFC: r=0.497, pFDR=0.060; Lake VIS: r=0.546, pFDR=0.003). Therefore, while certain cell types 

may preferentially follow the gradient architecture of human cortex, the observed spatial 

relationships are robust and broadly conserved across a host of cell types (see cell type 

abundance correlation matrix in Supplementary Fig 4).  
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Fig. 4 Large-scale functional networks demonstrate distinct cellular profiles. A. The table 

displays the relative cell type enrichment, or absence, within each canonical functional network. 

Networks are ordered as their estimated position along the first principal gradient22. Empirical 

abundance for each cell type was aggregated within each of the 7 large-scale functional 

networks. Corresponding null distributions were constructed from parcel-level spin-test, which 

accounts for spatial autocorrelation51. Table fill colors reflect z-scores, derived via subtracting 

the mean of the null from the observed empirical abundance then dividing the difference by 

standard deviation of null distribution. Here, z-scores index empirical enrichment relative to the 

null. Warm colors indicate positive values, numbers in each cell represent the FDR corrected 

pspin of relative enrichment or absence. Reflecting the presence of a cell-type enrichment 

gradient spanning between somato/motor and limbic networks, each network shows a unique 

cell type profile. Marked boxes reflect significant enrichment (pFDR<0.05). B. Polar plots of z-

score across 17 cell types for each network suggest the potential of cellular profiles that may 

serve as fingerprints that can distinguish each functional network. Score above zero lines 

(dashed) indicate when a cell type is enriched within a given network relative to the overall 

distribution across cortical parcels, whereas below zero reflects the relative absence of a cell-

type. Polar plot corresponds to imputed cell densities from Lake DFC and Lake VIS are stacked 

together, with the overlapping area in darker color. 
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 The cellular composition of large-scale functional networks 
Certain cell-types may possess a preferential relationship with specific functional 

networks. For instance, we observed the increased presence of PVALB cells in the 

somato/motor and visual networks (Fig. 2D), confirming a similar pattern in prior work16. To 

explicitly assess these network-cell relationships, we calculated an enrichment score for each 

cell type (see Methods) across the 7 canonical functional networks23 (Fig. 4A). Similar to single-

cell gradient analyses above, PVALB, End, and oligodendrocyte (Oli) cell types exhibit 

heightened enrichment within unimodal somato/motor and visual networks, whereas Ex4 is 

preferentially enriched in visual networks over the other unimodal territories. Conversely, In1, 

Ex1, Ex5 (including HS3ST5+PCP4- Ex5a and HS3ST5-PCP4+ Ex5b)41, SST, astrocyte (AST) 

and oligodendrocyte progenitor cells (OPC) are most enriched in default and limbic networks, 

but also broadly across attention network parcels. Of note, some cell types did not cluster within 

the unimodal or association regions (default, limbic) that anchor the first gradient. Ex8 

(CBLN2+NR4A2+)41 cells, for instance, were preferentially enriched in the ventral attention 

network. 

Each column in Fig. 4A shows cellular enrichment profiles across large-scale functional 

networks. Although the gradient properties of cellular organization are evident from unimodal 

through association territories, visually distinct network-level enrichment profiles are also 

apparent, embedded within this sweeping organizational motif. This is further reflected in the 

polar plots in Fig. 4B, displaying enrichment scores across cell types for each network. Situated 

at distinct ends of the first functional gradient of connectivity (Fig. 1B), both the unimodal 

somato/motor and visual networks and the default and limbic networks exhibit the most contrast 

between heightened or reduced enrichment profiles across cell types, with the ventral attention 

network also exhibiting pronounced variability in cellular enrichment. Broadly, the presence of 

distinct cellular fingerprints across functional networks suggests that cellular profiles derived 

from most-mortem tissue samples may reflect, and be predictive of, the functional allegiance of 

a given cortical parcel.  
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Fig. 5 Large-scale functional network assignment can be predicted by cell-type 
abundance in post-mortem tissue. A. Histograms display the SVM recall, or the probability of 

correctly classifying a parcel to the associated network. These data suggest the classifiers were 

able to predict somato/motor, visual, ventral attention, and limbic networks significantly above 

chance. Distributions in darker color were constructed from 1000 classifiers trained on real 

network labels, and the lighter colored distribution represent classifiers trained on network labels 

shuffled by spin-test that controls for spatial autocorrelation50,52. The solid lines indicate median 

and the dashed lines represent quartiles of the distribution. Significance of empirical recall were 

constructed relative to thresholds of increasing stringency, (1) theoretical chance (1/7, pchance); 

(2) models trained from randomly permuted network labels (pperm) (3) or labels shuffled by spin-

test (pspin).  B. Accuracy of network assignment across cortical parcels, calculated from all 

testing sets. C. Each row of the confusion matrix represents the fraction of parcels within the 

specific network that were predicted as belonging to each of the 7 networks. The diagonal 

represents the percentage of correctly classified parcels within each network. Here, the 

confusion matrix suggests a preferentially distinct cellular profile for somato/motor, visual, and 

limbic networks. While classification accuracies were low for the remaining association cortex 
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networks, dorsal attention, default, and control networks display a higher rate of 

misclassifications among each other, relative to unimodal networks.  
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Predicting network allegiance from cell-type abundance in post-mortem tissue. 
 Our findings raise an important question: can cellular profiles imputed from bulk tissue 

samples be used to directly infer in vivo properties of brain organization? The above analyses 

identify individual cell classes that preferentially follow the spatial topography of large-scale 

functional networks, suggesting the presence of network specific cellular fingerprints. We use 

these results as a foundation to directly test the extent to which parcel-level multivariate cellular 

profiles can be used to predict their corresponding functional network assignments, as derived 

through fMRI. Support vector machines (SVM) were trained to predict the functional network 

allegiance of post-mortem tissue samples from parcel-level cell type abundance (see Methods). 

Performance of models trained from empirical data were compared to a comprehensive set of 

increasingly stringent null models: (1) theoretical chance of predicting correctly given that the 

parcel is from certain network (1/7, pchance); (2) through models trained from network labels that 

are randomly permuted (pperm) or (3) shuffled while controlling for spatial autocorrelation (pspin). 

Here, we focus our interpretation on the most stringent significance null-model (pspin). The 

network- and parcel-level prediction accuracy and alternate significance thresholds are 

displayed in Fig. 5. 

The SVM model was able to successfully decode parcel-level network assignments 

across cortex (empirical F1median=0.411, null F1median=0.252, pspin<0.001, distribution plots in 

Supplementary Fig. 5), indicating that inferred cellular abundance from resected post-mortem 

tissue reflects functionally relevant properties of brain organization. When considering individual 

networks, the SVM models trained on parcel-level imputed cell densities successfully predicted 

somato/motor (pspin<0.001), visual (pspin=0.027), ventral attention (pspin=0.037) and limbic 

(pspin=0.006) networks (all other pspin>0.173, Fig. 5A). When projecting parcel-level accuracies to 

the cortical surface (Fig. 5B), within network variability was evident, indicating spatial 

heterogeneity of the cellular composition and associated network level assignment accuracies 

[somato/motor (average parcel accuracies±standard deviation: 0.605±0.390); visual 

(0.674±0.390); limbic (0.654±0.371); dorsal attention (0.271±0.238); ventral attention 

(0.323±0.350); default (0.264±0.246); and control (0.225±0.236); detailed in Supplements 

table2)]. The confusion table, presented in Fig. 5C, highlights the assignment stability of the 

somato/motor, visual, and limbic networks. Of note, while assignment accuracy is reduced in the 

three remaining networks, where misassignment occurs in parcels from control, attention, and 

default networks, they are likely to be assigned to other association cortex networks. For 

example, the dorsal attention network borders with, and is interdigitated between, unimodal and 

transmodal areas. However, when misclassifications occur, dorsal attention parcels are more 
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likely to be labeled as default or control than somato/motor or visual. The SVM results emerging 

from different data exclusion criteria are displayed in Supplementary Figs 6-10. Together, these 

data confirm the presence of distinct cellular fingerprints within some functional systems and 

support the need for additional research into the cytoarchitectonic determinants of network 

topography. 

Discussion 

 Since Theodor Hermann Meynert first observed regional variations in the histological 

structure of gray matter across the cerebral cortex2, the resection and study of post-mortem 

tissue samples has revealed core insights into the cellular composition of the central nervous 

system. Over the past few decades, methodological advances have made it possible to map the 

macroscale organization of brain functions in vivo, providing the potential for deep biological 

insight into the genetic, molecular, and cellular bases of cortical brain organization. Here, 

integrating transcriptional and neuroimaging data, we demonstrate that imputed cell type 

distributions follow the hierarchical functional architecture of the cortical sheet. Select cell types 

were found to spatially couple with aspects of cortical gradient and network organization, which 

was most evident in a distinction between higher-order association and unimodal territories. 

Suggesting that regional variation in cellular profiles may reflect the layered aspects of cortical 

organization, multivariate cellular fingerprints captured a substantial portion of the spatial 

variability in both functional gradient topographies and parcel-level network assignments. 

Finally, imputed cell type densities, derived from post-mortem tissue samples, could be used to 

accurately predict parcel-level network assignments, suggesting the presence of cellular 

markers of network-level brain functions as assessed through rs-fMRI. Together, these results 

indicate a close link between the functional organization of cortex and spatial variability of cell-

type distributions with important implications for the study of the cellular basis of brain functions 

across health and disease. 

Recent work suggests that the distributions of select cell gene markers may spatially 

couple to regional differences in functional MRI signal variability. For instance, single-marker 

and polygenic cell deconvolution has established a spatially dependent relationship between 

heritable variance in in-vivo functional MRI signal amplitude and the topography of parvalbumin 

expression in post-mortem brain tissue16. Here, we extend upon this work, demonstrating the 

presence of spatial alignment between regional cell densities, imputed from post-mortem tissue, 

and the functional gradient architecture of cortex. Inhibitory neuron In1, including subtypes as 
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CCK, RELN and VIP, preferentially align with the association end of the principal functional 

gradient (Gradient 1), whereas PVALB are generally enriched within unimodal areas. The 

presence of a dichotomous relationship between these two groups of interneurons, embedded 

within a hierarchical somato/motor-association gradient in adults, echoes their positioning during 

early embryonic development. The properties of interneuron subtypes are, in part, determined 

by their spatial origin in the embryonic ganglionic eminence53. In rodents, interneuron destined 

cell types originate from distinct embryonic progenitor zones in the ventral telencephalon. 

Neural progenitor cells in the medial ganglionic eminence (MGE) give rise to PVALB, whereas 

progenitors in the caudal ganglionic eminence (CGE) generate RELN and VIP54. After 

neurogenesis, these two broad cell classes are governed by separate transcriptional cascades 

that direct their tangential migration, layer-specific positioning, and maturation55,56. For example, 

the MGE-originated PVALB is sequentially regulated by transcriptional factors Nkx2.1, Lhx6, 

and Sox6. As a vastly different regulator for the other interneuron groups, Prox1 plays a crucial 

role in allocating the CGE-derived VIP and RELN into superficial layers, and in regulating the 

subsequent circuit integration and refinement. In addition, excitatory neuron Ex1 also aligns with 

the association endpoint of Gradient 1. Its marker, CBLN2, whose prenatal upregulation 

coincides with synapse formation onset, promotes dendritic spine formation47. Consistent with 

preferential expansion of prefrontal regions across our evolutionary lineage57, the enrichment of 

the CBLN2 in prefrontal cortex is increased in human primates, relative to rhesus macaques58.  

Indicating the presence of multivariate cellular profiles that follow the macroscale 

functional organization of cortex, PermCCA analyses revealed spatial correspondence robustly 

linking functional gradient architectures with imputed cell-type densities. When considering 

Gradient 1, the topography of cell type distributions is aligned with the primary unimodal-

transmodal gradient of connectivity, reflecting 27.5% of the variance in functional connectivity. 

Intriguingly, as alluded to above, the spatial patterns of cellular enrichment in adult post-mortem 

tissue samples seems to mirror the relative spatial distribution of these cell types within their 

respective embryonic progenitor zones. Interneuron cells enriched in the association areas in 

adulthood, as one example, include In1, SST, and PVALB. Here, In1 (CCK, VIP, RELN) cells 

originate within the CGE, SST are derived from the dorsal MGE; whereas the unimodal enriched 

PVALB are generated from ventral MGE59,60. Highlighting the intertwined nature of cellular 

interactions across cortex, the co-enrichment of excitatory Ex1 (CBLN2+) and inhibitory In1 

(CCK+VIP+RELN+) in transmodal association areas may reflect a regulatory role of In1 on Ex1 

functions. In mice, CBLN2 serves as an essential extracellular scaffolding protein for VIP-

specific inhibitory synaptogenesis61,62. These data hint that the cellular basis of the brain’s 
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functional architecture is likely instantiated early in fetal development, providing the opportunity 

for the study of how patterns of cell migration and maturation shape the cortical functional 

connectome.  

CCK and PVALB inhibitory interneurons differ across a host of morphological and firing 

properties, forming distinct local inhibitory circuits that can differentially bias network 

oscillations63. Our present analyses highlight a relationship between the primary gradient 

(Gradient 1) and the relative presence of PVALB and In1 (CCK, VIP, RELN) cells. The distinct 

computational properties of unimodal- and heteromodal association territories are theorized to 

reflect the relative preponderance of associated cell types and their specialized roles in primary 

sensation and cognition64. For example, PVALB expressing inhibitory interneurons are 

preferentially situated in the unimodal visual and somato/motor cortex. PVALB cells are a class 

of inhibitory interneurons that broadly synapse on the perisomatic region of cortical projection 

neurons to regulate output65. Computational models in rodents suggest that a relative increase 

in PVALB, relative to SST,  may result in stronger feedback inhibition on excitatory neurons 

within a given patch of cortex. This profile of excitability is thought to allow for short activation 

timescales that may be optimally suited for processing constantly changing sensorimotor 

stimuli16,64,66. Conversely, enriched in the transmodal association area, CCK interneurons 

display a broad range of spiking patterns, varying from synchronous transmission, which may 

enhance precise inhibition timing, through asynchronous repetitive activations that are thought 

to modulate inhibition strength and signal durations67–69. This wide spiking spectrum, well suited 

for association cortex, enables them to integrate signals from various sources. Although future 

computational modeling work is warranted, the present data suggest a link between the 

migration and maturation of local cellular circuits across cortex and the subsequent 

development and refinement of macro-scale functional systems. Here we show cell-types that 

link to Gradient 1 and Gradient 2 in adults. Although these cell classes reach their cortical 

destinations in early life, the associated developmental and maturational trajectories extend 

from childhood to adolescence38. It remains to be determined how cell maturation, refinement, 

and synaptic connectivity links to the development of functional gradient architectures across 

the lifespan. 

 The large-scale network architecture of the cortex includes abrupt transitions that are 

embedded along continuous functional gradients22. Broadly, similar patterns are evident in 

cortical atlases defined through cell staining and morphological analysis, where homogeneous 

cell components are evident within local patches while relatively abrupt transitions can occur 

between some adjacent territories6. Evidence has emerged suggesting links between functional 
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network parcellations of cortex and the presence of some cytoarchitectonic boundaries23. Here, 

functional network defined boundaries and parcels have been observed to adhere to select 

histologically defined areas, including Broca’s area (area 44) and aspects of the postcentral 

sulcus (area 2 and 3)35. In the present analyses, using the imputed abundance across neuronal 

and nonneuronal cells in post-mortem tissue, we demonstrate that the functional network 

allegiance across cortical parcels can be generally predicted. Although parcel-level prediction 

was broadly evident across cortex, substantial spatial heterogeneity was evident in the relations 

linking cellular profiles with network assignments. The somato/motor, visual, limbic and ventral 

attention networks exhibited the most distinct and predictable cellular profiles. In contrast, 

control, dorsal attention and default networks displayed smoother and/or more heterogeneous 

spatial transitions across cell types. Underscoring the translational potential of multi-scale 

neuroscience approaches, these findings bridge levels to demonstrate predictive relationships 

connecting cellular profiles across the cortex with the in vivo functional organization of the 

human brain.  

The present work should be interpreted in light of several limitations. First, the reported 

cell type abundance are imputed from the bulk tissue microarray data based on the gene 

expression signature constructed from single-nucleus RNA sequencing. The microarray 

approach does not provide direct estimates of gene transcription, rather, here we examine 

within-probe differences across samples. To obtain estimates robust across subjects, bulk 

samples require aggregation into parcels, limiting the spatial resolution. As parcellation and cell-

type definitions improve the pattern observed will likely unfold in more detail. Second, to control 

for spatial heterogeneity of single-cell signature, only the cell types common on both Lake DFC 

and Lake VIS are studied here. This may have resulted in an underestimation of the true 

relationships linking the spatial distributions of cell types and brain functions. In mice, 

interneuron cell types are broadly conserved across cortical regions, while pyramidal cell 

diversity shows higher spatial variability70. The reported imputed spatial distribution of cell types 

common in both single-cell samples (Lake DFC and Lake VIS) showed robust patterns, but it 

remains unclear how the cell type diversity varies across the human cortex. As single-cell 

samples covering more cortical regions are gradually developed, future work should incorporate 

these spatially variable profiles when considering cell type abundances. Finally, in the present 

work cells are defined from transcriptomics. As cells may be defined though their transcriptional 

profiles, morphology, or firing patterns65, follow-up studies should consider how to best integrate 

these diverse cell definitions in analyses. Here, researchers should consider alternate 

organizational models of brain functioning (e.g., additional network atlases, graph theoretical 
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models of cortical information processing, anatomical and diffusion defined network solutions, 

etc). 

The present results demonstrate that the functional gradients and networks of the 

cerebral cortex are linked to spatial variability in cellular profiles. These data suggest that the 

imputed cell type densities from post-mortem tissue capture global patterns functional 

connectivity as assessed through rs-fMRI, revealing the potential to bridge across in vivo and ex 

vivo methods in the study of human brain functions. Collectively, these findings highlight a 

connection between the functional organization of the cortex and its cellular underpinnings, 

which has significant implications for understanding the cellular basis of brain functions in both 

healthy and diseased states. 
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Methods 

Functional Connectivity Gradient Analysis 

Gradients, or components with similar functional connectivity patterns, were derived in a manner 

consistent with Margulies et al.22. Briefly, functional connectivity matrices averaged from 820 

subjects in HCP dataset39 coregistered via MSMAll were downloaded from 

ConnectomeDB71(https://www.humanconnectome.org/storage/app/media/documentation/s900/8

20_Group-average_rfMRI_Connectivity_December2015.pdf). The 10,242 x 10,242 per 

hemisphere cortical FC matrices (represented in fsaverage5 surface space72) for each subject 

was calculated from 1-hour resting-state fMRI concatenated from four minimally 

preprocessed73–76, spatially normalized 15-min scans. From these group-averaged FC matrices, 

correlation coefficients were Fisher z-transformed via a hyperbolic tangent function to scale the 

value between -1 and 1. The top 10% connections of each vertex were preserved and all other 

values were set to 0 to enforce sparsity. The cosine distance between any two rows of the FCz 

matrix were calculated then subtracted from 1 to generate a symmetrical similarity matrix. 

Gradients were derived from the similarity matrix by diffusion map embedding, as validated and 

detailed in22,38(https://github.com/satra/mapalign). This approach nonlinearly projects high-

dimensional functional connectivity into a low-dimensional space. Here, a gradient reflects an 

axis of FC variance along which cortical vertices fall in a spatially continuous order, with 

adjacent vertices sharing similar geographically short- and long-range correlations to the rest of 

the cortex. The two gradients explaining highest variance were selected for subsequent 

analysis. Vertex-level gradients were averaged across the 400 cortical parcels in the Schaefer 

functional atlas35. 

Functional Parcellation Analysis 

To characterize the functional network structure of the cortical sheet, we used 400 roughly 

symmetric ROIs from 7 specific brain networks23 in the left and right hemispheres as derived 

through the cortical parcellation of Schaefer and colleagues35. The functional networks used 

here were previously derived and validated using data from 1000 adults in the Genomics 

Superstruct Project (GSP)77 as detailed in23,35. In short, each network is a cluster of vertices that 

shares homogenous resting-state fMRI FC to the rest of the cortex. 

 

Brain Gene Expression Data Processing 
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Human microarray gene expression data obtained from bulk samples of 6 postmortem brains 

were downloaded from AHBA dataset (http://human.brain-map.org/)11. Raw data were 

processed using the abagen toolbox (https://github.com/netneurolab/abagen)78,79 at the sample 

level, following the practice recommended by Arnatkevičiūtė et al80 and implemented by 

others13. Probes were reannotated using data provided by Arnatkevičiūtė et al78, and those 

without Entrez IDs were excluded. Probes that exceed background noise in 30% of all tissue 

samples were included, among which the probe with highest differential stability for each gene 

was selected. 16,383 genes were retained after the processing. For each donor, tissue sample 

expression values were first z-scored across genes and then these gene expression values 

were then z-scored across samples. Consistent with Anderson et al16, individual cortical tissue 

samples were mapped to each AHBA donor’s Freesurfer derived cortical surfaces, downloaded 

from Romero-Garcia and colleagues81. Native space mid-thickness surfaces were transformed 

to a common fsLR32k group space while maintaining the native cortical geometry of each 

individual donor. The native voxel coordinate of each tissue sample was mapped to the closest 

surface vertex using tools from the HCP workbench. Tissue samples were included if they were 

collected from less than 4 mm from the nearest surface vertex, resulting in 1,676 analyzable 

cortical samples. 

  

Cell Type Deconvolution 
Cortical cell type abundance distributions were inferred following the procedures detailed in 

Anderson et al16. In brief, single-nucleus droplet-based sequencing data obtained by Lake et al. 

were downloaded from Gene Expression Omnibus website (“GSE97930” 

[https://www.ncbi.nlm.nih.gov/geo])41. Count matrices derived from unique molecular identifier 

(UMI) were preprocessed via Seurat82, where outlier cells and minimally expressed genes were 

filtered then the data were log-normalized. Genes were referred to by Entrez IDs, among which 

only the IDs shared by both Lake and AHBA datasets were included. The superordinate cell 

identities defined by Lake et al41 were applied for categorizing transcriptionally similar cell types, 

to reduce the collinearity. After processing, the snDrop-seq data were de-log-transformed before 

feeding into CIBERSORTx(https://cibersortx.stanford.edu/)83 as reference for cell type 

abundance imputation on each AHBA bulk tissue sample. Gene signature matrices for 18 cell 

types were derived from visual (Lake VIS) and frontal (Lake DFC) samples separately. Cell type 

abundances were consequently imputed from across AHBA samples taking each signature 

matrix as reference per donor. The correlation between Lake VIS and Lake DFC derived gene 

signatures was validated in Anderson et al16.To further minimize the effects of spatial 
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heterogeneity of single-cell transcriptional signatures, later analysis only utilized common cell 

types between Lake DFC (excluding Ex2) and Lake VIS (excluding In2), which is in total 17 cell 

types. The cell type abundance for each AHBA cortical sample were mapped to the cortical 

vertices represented in fsaverage6 surface space then parceled into the Schaefer 400 atlas35, 

first at the individual level and then averaged across donors. 

  

Identification of Cell Types Spatially Correlated to Functional Gradients 

The spatial pattern of each of the 17 cell type abundances parceled in the Schaefer atlas was 

correlated (Spearman’s Rho) with the primary and secondary functional gradients parceled 

using the same atlas. The statistical significance of correlation was assessed through spin-

test42, which permuted the gradient at vertex level (represented in fsaverage5) for 1000 times 

while reserving the spatial auto-correlation. The permuted gradient and cell-type correlations 

were used to construct a null distribution of correlation values. The cell type abundances 

inferred based on the visual and frontal single-nucleus samples were tested separately and 

were FDR corrected for 34 multiple comparisons (17 cell types x 2 gradients). 

 

Examination of Cell Types Combinational Correlation to Functional Gradients 
Permutation canonical correlation analysis (PermCCA) was used to investigate the multivariate 

relationship between spatial distribution of cell types and each gradient. CCA allows us to 

examine the linear combination of all the cell type abundances that maximally correlate with 

each gradient. The statistical significance of the canonical variates were tested via a 

permutation method that controls for cortical spatial autocorrelation 

(https://github.com/andersonwinkler/PermCCA/tree/master)50, where the null distributions of 

gradients were generated from spin-test described in the previous section. Then FDR was 

applied to correct for multiple comparisons (2 gradients). The cell types’ linear combinational 

correlation to the first two gradients was measured by cell type composite score. Each cell 

type’s contribution to this correlation was measured by loadings, the correlation between cell 

type abundance distribution and gradient canonical variate. 

PermCCA was repeated with removal of different combinations of the cell types that were each 

univariately correlated with Gradient 1 and 2. Each group of PermCCA results were FDR 

corrected for the number of removal combinations (12 for Gradient 1 with Lake DFC imputed 

cell types, 10 for Gradient 1 with Lake VIS imputed cell types; 3 for Gradient 2 with Lake DFC 

imputed cell types, 1 for Gradient 2 with Lake VIS imputed cell types). 
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Cell Types Enrichment in Functional Networks 
Each one of the 400 cortical parcels was assigned to a functional network in a validated 7-

network solution derived by Thomas Yeo23. Across each cell type, the empirical abundances 

were averaged across parcels within a given functional network. The empirical abundances 

were then permuted across the cortex for 1000 times, controlling for spatial autocorrelation, 

yielding 1000 null models for each cell type. Given that the cell type abundances were 

aggregated at parcel level, the Cornblath version of spin-test51 was used as recommended by 

Markello and Misic84, which projects parcel abundances to vertices, rotates, and takes the mean 

of vertices in each parcel. The same within-network cell type abundance averaging process was 

repeated on these null models, generating a null distribution of mean abundance for each cell 

type within each network. For each type of cell, the enrichment score of a network was 

calculated by taking the difference between the empirical abundance and the mean of null 

abundance distribution, then divided by the standard deviation of the null abundance 

distribution. P-values were first calculated from two-tailed tests then FDR corrected for 119 

multiple corrections (17 cell types x 7 networks). 
 
Cell Types Predicting Functional Networks 
Support vector machines (https://scikit-learn.org/stable/modules/svm.html#svm-classification) 

were trained to predict the functional network each cortical parcel belongs to based on 

abundances of 17 cell types within that parcel. Since two out of six donors in AHBA had 

samples from the right hemisphere, models were trained on parcels from only the left 

hemisphere and from both hemispheres as two parallel groups. Within each group, three sub-

groups of models were trained separately, based on the cell type abundance imputed from 

independent single-cell samples, Lake DFC and Lake VIS, as two replicates. Two sub-groups 

were trained from the two replicates respectively and one sub-group ensembled the information 

from the two replicates. For each model, parcels were randomly shuffled and split into 1000 

distinct train (70%) and test (30%) sets without replacement. Given that the number of parcels 

within each functional network are not balanced, the train-test split was stratified within each 

network category. Nested three-fold cross-validation was implemented to select and validate the 

hyperparameters in the training set. Kernels and regularization parameters were first selected 

and tuned in the inner 2-fold cross-validation, the models' performance were then evaluated in 

the outer 3-fold cross-validation, the final model was the parameter combination with the highest 

score. The regularization parameter was set to adjust weights inversely proportional to class 

frequencies in the training data to control for the unbalanced class size within each split. F-1 
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score was used to evaluate the models’ overall performance. Recall, which indexes the 

probability of correctly classifying a parcel given it is from a certain class, was used to evaluate 

the predicting performance within each class. Accuracy for each parcel, calculated by total 

number of times it was correctly classified over total number of the times it was included in the 

test set. These metrics were evaluated from the 1000 test sets. 

 

The predictive metrics for every model were evaluated against models fitted from permuted 

network labels85,86. A Hungarian version of spin-test was applied, which uniquely reassigns each 

parcel’s network label for every rotation that controls spatial autocorrelation52,84. Each 

permutation was used to train and test a null model using a randomly selected hyperparameter 

combination from the set of 1000 optimal hyperparameter combinations for the original model87. 

Prediction performance metrics from each of the original model’s 1000 train-test splits were then 

compared to the median prediction accuracy from the null distribution. Consistent with prior 

works85,86, the p-value for each metric’s significance is defined as the proportion of 1000 original 

models with performance score less than or equal to the median performance of the null model. 

Performance metrics were considered to be significant if they performed better than the median 

null performance for more than 950 of the 1000 original models.  

 

Code and associated cell type abundance maps will be publicly available upon publication. 
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Multivariate Cell Type Abundances Correlation with Gradient 1 

Frontal Cortex Cell Signature (Lake DFC) Visual Cortex Cell Signature (Lake VIS) 

Removed Cell Types r pFDR Removed Cell Types r pFDR 

Ex1, In1, PVALB 0.419 0.029 Ex1, In1, PVALB 0.538 0.002 

Ex1 0.508 0.003 Ex1 0.561 0.002 

In1 0.502 0.003 In1 0.548 0.002 

End 0.513 0.003 Ex5 0.535 0.002 

PVALB 0.505 0.003 PVALB 0.564 0.002 

Ex1, End 0.493 0.003 Ex5, PVALB 0.529 0.002 

In1, PVALB 0.477 0.008 Ex1, PVALB 0.560 0.002 

Ex1, PVALB 0.469 0.008 In1, PVALB 0.546 0.002 

In1, End 0.491 0.003 Ex5, Ex1, In1 0.519 0.002 

Ex1, In1 0.479 0.010 Ex5, Ex1, In1, PVALB 0.509 0.002 

End, PVALB 0.484 0.003    

Ex1, In1, End, PVALB 0.366 0.096    
 
Supplementary Table 1. Multivariate cellular correlation with Gradient 1 after iteratively 
removing cell types individually associated with Gradient 1. Cell types that are univariately 

correlated with the first principal gradient are removed from CCA in different combinations. The 

top row is the CCA performed without the combination of all the Gradient 1-related cell types 

surviving from significance tests in both Lake DFC and Lake VIS imputed cell type abundances. 

The rows coming after are CCA performed excluding different combinations of Gradient 1-

related cell types surviving from univariate significance tests in Lake DFC (Ex1, In1, End, 

PVALB) or Lake VIS (Ex1, In1, Ex5, PVALB) imputed cell type abundances. The correlations 

between multivariate cell types and Gradient 1 remain above 0.419 for all removal 

combinations, with one exception (removing all significant univariate cell types in Lake DFC: 

Ex1, In1, End, PVALB). These data suggest the cellular correlation with Gradient 1 is preserved 

across a host of different cell types. The r values reflect Pearson Correlations. PFDR reflects the 
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p-values emerging from the spin tests following multiple comparison correction with Lake DFC 

or Lake Vis.   
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Multivariate Cell Type Abundances Correlation with Gradient 2 

Frontal Cortex Cell Signature (Lake DFC) Visual Cortex Cell Signature (Lake VIS) 

Removed Cell Types r pFDR Removed Cell Types r pFDR 

Ex4 0.497 0.060 Ex4 0.546 0.003 

End 0.509 0.060    

Ex4, End 0.393 0.220    
 
Supplementary Table 2. Multivariate cellular correlation with Gradient 2 after iteratively 
removing cell types individually associated with Gradient 2. Cell types that are univariately 

correlated with the second principal gradient are removed from CCA. The top row is the CCA 

performed without the combination of all the Gradient 2-related cell types surviving from 

significant tests in both Lake DFC and Lake VIS imputed cell type abundances (Ex4 only). The 

rows coming after are CCA performed without different combinations of Gradient 2-related cell 

types surviving from significance tests in Lake DFC (Ex4 and End) or Lake VIS (Ex4 only) 

imputed cell type abundances. The correlations between multivariate cell types and Gradient 2 

remain above 0.497 for all combinations, with one exception (removing all significant univariate 

cell types in Lake DFC: Ex4 and End).  
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Networks Mean Max Min Std 

Som/Motor 0.605 1.000 0.000 0.390 

Visual 0.674 1.000 0.000 0.390 

DorsAttn 0.271 0.789 0.007 0.238 

Sal/VentAttn 0.323 0.991 0.000 0.351 

Limbic 0.654 1.000 0.000 0.371 

Control 0.225 0.819 0.000 0.236 

Default 0.264 0.864 0.000 0.246 
 
Supplementary Table 3. Summary statistics for parcel-level classification accuracy 
across the seven functional networks. Parcel-level accuracy was obtained from SVM 

classifiers trained and tested on the samples from both hemispheres, ensembling Lake DFC 

and Lake VIS imputed cell type abundance. Statistics were calculated from prediction accuracy 

of parcels belonging to the same network. 
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Supplementary Fig 1. Spatial distribution of cell types preferentially distributed in 
association cortex. The imputed cell type abundance across cortex in both hemispheres are 

aggregated in 400 Schaffer parcels. Cell types imputed from single-nucleus droplet (snDrop) 

samples in the frontal lobe (Lake DFC) are on the left panel and the right is imputed from visual 

cortex-sourced snDrop samples (Lake VIS). Within each panel, the scatter plot on the left shows 

the correlation between cell abundance and the first principle gradient (Gradient 1) across 

cortical parcels, and the correlation with the second gradient (Gradient 2) is displayed on the 

right. Dots are color-coded by the functional network each parcel belongs to. A positive 

correlation with Gradient 1 indicates the cell is preferentially spaced on the transmodal 

association cortex. Such distribution preference reflected on the scatter plot of Gradient 2 is a 

peak near 0. Though only the top two cells (Ex1 and In1) have significant positive relationships 

with Gradient 1, the patterns are visually identifiable in the rest of the top five cells (SST, OPC, 

and Ex5). 
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Supplementary Fig 2. Spatial distribution of cell types preferentially distributed in the 
unimodal area. The imputed cell type abundance across cortex in both hemispheres are 

aggregated in 400 Schaffer parcels. Cell types imputed from single-nucleus droplet (snDrop) 

samples in the frontal lobe (Lake DFC) are on the left panel and the right is imputed from visual 

cortex-sourced snDrop samples (Lake VIS). Within each panel, the scatter plot on the left shows 

the correlation between cell abundance and the first principle gradient (Gradient 1) across 

cortical parcels, and the correlation with the second gradient (Gradient 2) is displayed on the 

right. Dots are color-coded by the functional network each parcel belongs to. A negative 

correlation with Gradient 1 indicates the cell is preferentially spaced on the unimodal area. On 

the scatter plots, this is the peak near the negative end of Gradient 1. On Gradient 2, this is the 

peak on the visual or somato/motor or both ends. Though only the top two cells (PVALB and 

End) have significant negative relationships with Gradient 1, the patterns are visually evident in 

the rest of the top four cells (In4 and Ex4).  
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Supplementary Fig 3. Lake VIS imputed cell type abundance: Multivariate cellular profiles 
follow the macroscale organization of cortex. The analysis performed based on the Lake 

VIS imputed cell type abundance showed similar correlation strength and pattern with functional 

gradients, consistent with the results of Lake DFC (in Fig. 3).  A. The scatter plot displays 

permutational canonical correlation analysis modeling results. Across cortical parcels, the first 

functional gradient was positively associated with the cell type composite score. B. Cell type 

composite score associated with the first functional gradient projected to the cortical surface. C. 
Cell type loadings from the first gradient indicate the correlation is strongest within previously 

identified Ex1, In1, and PVALB (red indicates positive associations; blue, negative 

associations). D. The second functional gradient was positively associated with the cell type 

composite score. E. Cell type composite score associated with the second functional gradient 

mapped to the cortical surface. F. Ex4 and Ex8 (MCTP2, NR4A2) excitatory neurons remain 

strong contributors to the correlation with Gradient 2.  
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Supplementary Fig 4. Spatial correlation of cortical cell type abundances. The abundance 
of each cell type across cortical parcels is correlated with other cell types. A higher correlation 
(in red) indicates more similar spatial distribution between cell types. Elements in the diagonal 
represent the correlation between the same cell type imputed from Lake DFC and Lake VIS. 
Elements in the upper triangle represent the correlation between two different cell types imputed 
from Lake DFC and the lower triangle are the correlations imputed from Lake VIS.  
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Supplementary Fig 5. F-1 scores for models trained and tested in the six different groups. 
Distributions in blue were constructed from 1000 classifiers trained on real network labels, and 

the gray colored distribution represent classifiers trained on network labels shuffled by a 

Hungarian spinning method that controls for spatial autocorrelation. P-values were calculated as 

the percentage of null F-1 scores that are greater than the median of the empirical F-1 scores. 

The first row are the models trained and tested from parcels of both hemispheres, and the 

second row are the models trained and tested from parcels of the left hemisphere only. The first 

column is the models assembling information from both Lake DFC and Lake VIS. The second 

and the third column are the models trained from Lake DFC and Lake VIS only. Each one of the 

6 ways of training and testing models yield a significant p-value for F-1 score.  
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Supplementary Fig 6. Trained and predicted on the left hemisphere only, ensembling 
Lake DFC and Lake VIS: Large-scale functional network assignment can be predicted by 
cell-type fractions in post-mortem tissue. A. Histograms display the SVM recall, or the 

probability of correctly classifying a parcel to the associated network. Consisting with Fig. 5, 

these data suggest the classifiers were able to predict somato/motor, visual, ventral attention, 

and limbic networks significantly above chance. Distributions in darker color were constructed 

from 1000 classifiers trained on real network labels, and the lighter colored distribution 

represent classifiers trained on network labels shuffled by spin-test that controls for spatial 

autocorrelation. The solid lines indicate median and the dashed lines represent quartiles of the 

distribution.  B. Accuracy for network assignment across cortical parcels, calculated from all 

testing sets. C. Each row of the confusion matrix represents the fraction of parcels within the 

specific network that were predicted as belonging to each of the 7 networks. The diagonal 

represents the percentage of correctly classified parcels within each network. Here, the 

confusion matrix suggests a preferentially distinct cellular profile for somato/motor, visual, and 

limbic networks. While classification accuracies were low for the remaining association cortex 

networks, dorsal attention, default, and control networks display a higher rate of 

misclassifications among each other, relative to unimodal networks.  
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Supplementary Fig 7. Trained and predicted on the left hemisphere only, using Lake 
DFC: Large-scale functional network assignment can be predicted by cell-type fractions 
in post-mortem tissue. A. Histograms display the SVM recall, or the probability of correctly 

classifying a parcel to the associated network. These data suggest the classifiers were able to 

predict somato/motor and ventral attention networks significantly above chance. Distributions in 

darker color were constructed from 1000 classifiers trained on real network labels, and the 

lighter colored distribution represent classifiers trained on network labels shuffled by a 

Hungarian spinning method that controls for spatial autocorrelation. The solid lines indicate 

median and the dashed lines represent quartiles of the distribution. B. Accuracy for network 

assignment across cortical parcels, calculated from all testing sets. C. Each row of the 

confusion matrix represents the fraction of parcels within the specific network that were 

predicted as belonging to each of the 7 networks. The diagonal represents the fraction of 

correctly classified parcels within each network. Consisting with Fig. 5, the confusion matrix 

suggests a preferentially distinct cellular profile for somato/motor, visual, and limbic networks. 

While classification accuracies were low for the remaining association cortex networks, dorsal 

attention, default, and control networks display a higher rate of misclassifications among each 

other, relative to unimodal networks.  
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Supplementary Fig 8. Trained and predicted on the left hemisphere only, using Lake VIS: 
Large-scale functional network assignment can be predicted by cell-type fractions in 
post-mortem tissue. A. Histograms display the SVM recall, or the probability of correctly 

classifying a parcel to the associated network. These data suggest the classifiers were able to 

predict ventral attention and limbic networks significantly above chance. Distributions in darker 

color were constructed from 1000 classifiers trained on real network labels, and the lighter 

colored distribution represent classifiers trained on network labels shuffled by a Hungarian 

spinning method that controls for spatial autocorrelation. The solid lines indicate median and the 

dashed lines represent quartiles of the distribution. B. Accuracy for network assignment across 

cortical parcels, calculated from all testing sets. C. Each row of the confusion matrix represents 

the fraction of parcels within the specific network that were predicted as belonging to each of the 

7 networks. The diagonal represents the fraction of correctly classified parcels within each 

network. Consisting with Fig. 5, the confusion matrix suggests a preferentially distinct cellular 

profile for somato/motor, visual, and limbic networks. While classification accuracies were low 

for the remaining association cortex networks, dorsal attention, default, and control networks 

display a higher rate of misclassifications among each other, relative to unimodal networks.  
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Supplementary Fig 9. Trained and predicted on both hemispheres, using Lake DFC: 
Large-scale functional network assignment can be predicted by cell-type fractions in 
post-mortem tissue. A. Histograms display the SVM recall, or the probability of correctly 

classifying a parcel to the associated network. These data suggest the classifiers were able to 

predict somato/motor, visual, and limbic networks significantly above chance. Distributions in 

darker color were constructed from 1000 classifiers trained on real network labels, and the 

lighter colored distribution represent classifiers trained on network labels shuffled by a 

Hungarian spinning method that controls for spatial autocorrelation. The solid lines indicate 

median and the dashed lines represent quartiles of the distribution. B. Accuracy for network 

assignment across cortical parcels, calculated from all testing sets. C. Each row of the 

confusion matrix represents the fraction of parcels within the specific network that were 

predicted as belonging to each of the 7 networks. The diagonal represents the percentage of 

correctly classified parcels within each network. Consisting with Fig. 5, the confusion matrix 

suggests a preferentially distinct cellular profile for somato/motor, visual, and limbic networks. 

While classification accuracies were low for the remaining association cortex networks, dorsal 

attention, default, and control networks display a higher rate of misclassifications among each 

other, relative to unimodal networks.  

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 6, 2023. ; https://doi.org/10.1101/2023.07.05.547828doi: bioRxiv preprint 

https://doi.org/10.1101/2023.07.05.547828
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 
Supplementary Fig 10. Trained and predicted on both hemispheres, using Lake VIS: 
Large-scale functional network assignment can be predicted by cell-type fractions in 
post-mortem tissue. A. Histograms display the SVM recall, or the probability of correctly 

classifying a parcel to the associated network. Consisting with Fig. 5, these data suggest the 

classifiers were able to predict somato/motor, visual, ventral attention, and limbic networks 

significantly above chance. Distributions in darker color were constructed from 1000 classifiers 

trained on real network labels, and the lighter colored distribution represent classifiers trained on 

network labels shuffled by a Hungarian spinning method that controls for spatial autocorrelation. 

The solid lines indicate median and the dashed lines represent quartiles of the distribution. B. 
Accuracy for network assignment across cortical parcels, calculated from all testing sets. C. 
Each row of the confusion matrix represents the fraction of parcels within the specific network 

that were predicted as belonging to each of the 7 networks. The diagonal represents the 

percentage of correctly classified parcels within each network. The confusion matrix suggests a 

preferentially distinct cellular profile for somato/motor, visual, and limbic networks. While 

classification accuracies were low for the remaining association cortex networks, dorsal 

attention, default, and control networks display a higher rate of misclassifications among each 

other, relative to unimodal networks. 
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