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Abstract The human brain supports social cognitive functions, including Theory of Mind, 
empathy, and compassion, through its intrinsic hierarchical organization. However, it remains unclear 
how the learning and refinement of social skills shapes brain function and structure. We studied 
if different types of social mental training induce changes in cortical function and microstructure, 
investigating 332 healthy adults (197 women, 20–55 years) with repeated multimodal neuroimaging 
and behavioral testing. Our neuroimaging approach examined longitudinal changes in cortical 
functional gradients and myelin- sensitive T1 relaxometry, two complementary measures of cortical 
hierarchical organization. We observed marked changes in intrinsic cortical function and micro-
structure, which varied as a function of social training content. In particular, cortical function and 
microstructure changed as a result of attention- mindfulness and socio- cognitive training in regions 
functionally associated with attention and interoception, including insular and parietal cortices. 
Conversely, socio- affective and socio- cognitive training resulted in differential microstructural 
changes in regions classically implicated in interoceptive and emotional processing, including insular 
and orbitofrontal areas, but did not result in functional reorganization. Notably, longitudinal changes 
in cortical function and microstructure predicted behavioral change in attention, compassion and 
perspective- taking. Our work demonstrates functional and microstructural plasticity after the training 
of social- interoceptive functions, and illustrates the bidirectional relationship between brain organi-
sation and human social skills.
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This important work extensively quantifies changes in cortical hierarchical organization induced by 
different types of social cognitive training. The evidence supporting this is compelling: the authors 
employ rigorous and complementary multi- modal neuroimaging assessments in a very large sample, 
measuring longitudinal changes in functional and structural metrics of cortical hierarchical orga-
nization. This work has broad applicability to basic neuroscience, illuminating the link between 
anatomical and functional hierarchies in the brain and social skills, and is also of interest to clinical 
psychology audiences due to its relevance to interventions such as mindfulness- based therapies.

Introduction
Humans unique social skills enhance cooperation and survival (Ochsner and Lieberman, 2001; Dunbar, 
1998). Social capacities can be divided into multiple sub- components (Singer, 2006; Schurz et al., 
2020; Schurz et al., 2021): (i) socio- affective (or emotional- motivational) abilities such as empathy 
allowing us to share feelings with others, and may give rise to compassion and prosocial motivation 
(Batson, 2009; Eisenberg and Fabes, 1990; de Vignemont and Singer, 2006); (ii) socio- cognitive 
abilities gain access to beliefs and intentions of others [also referred to as Theory of Mind (ToM) or 
mentalizing (Singer, 2006; Frith and Frith, 2006; Saxe and Kanwisher, 2003)]. Finally, interoceptive 
abilities, attention, and action observation serve as important auxiliary functions of social aptitudes, 
contributing to self- other distinction and awareness (Tomasello, 1995; Craig, 2009; Kleckner et al., 
2017). These capacities combine externally- and internally- oriented cognitive and affective processes 
and reflect both focused and ongoing thought processes (Chun et al., 2011; Barrett, 2017; Turn-
bull et al., 2020; Murphy et al., 2019; Sormaz et al., 2018). With increasing progress in task- based 
functional neuroimaging, we start to have an increasingly precise understanding of brain networks 
associated with the different processes implicated in social cognition. For example, tasks probing 
socio- emotional functioning and empathy consistently elicit functional activations in anterior insula, 
supramarginal gyrus, and midcingulate cortex (Singer, 2006; Singer and Lamm, 2009; Singer et al., 
2004), while emotional- motivational processes, such as compassion, implicate insular, and orbitof-
rontal areas (Lindquist et al., 2012; Singer and Klimecki, 2014). On the other hand, tasks involving 
socio- cognitive functioning generally activate regions of the human default mode network (DMN), 
such as medial frontal cortex, temporo- parietal junction, and superior temporal sulcus (Schurz et al., 
2020; Saxe and Kanwisher, 2003; Bzdok et al., 2012). Finally, attentional tasks activate inferior pari-
etal and lateral frontal and anterior insular cortices (Trautwein et al., 2016; Corbetta et al., 2008; 
Corbetta and Shulman, 2002) and interoceptive awareness is linked to anterior insula and cingulate 
regions (Craig, 2009; Kleckner et al., 2017; Seth and Friston, 2016; Critchley et al., 2003). These 
findings suggest a potentially dissociable neural basis of different social abilities in the human brain.

Despite the progress in the mapping of the functional topography of networks mediating social 
and interoceptive abilities, the interplay between social behavior and brain organization is less well 
understood (Paquola et al., 2022). Prior research has shown that cortical function and microstructure 
follow parallel spatial patterns, notably a sensory- transmodal axis that may support the differentia-
tion of sensory and motor function from higher order cognitive processes, such as social cognition 
(Valk et al., 2022; Park et al., 2021b; Paquola et al., 2019b; Huntenburg et al., 2017; Goulas 
et al., 2018). Put differently, a sensory- transmodal framework situates abstract social and interocep-
tive functions in transmodal anchors, encompassing both heteromodal regions (such as the prefrontal 
cortex, posterior parietal cortex, lateral temporal cortex, and posterior parahippocampal regions) as 
well as paralimbic cortices (including orbitofrontal, insular, temporo- polar, cingulate, and parahippo-
campal regions; Mesulam, 2000). Distant from sensory systems, transmodal cortices take on functions 
that are only loosely constrained by the immediate environment (Margulies et al., 2016), allowing 
internal representations to contribute to more abstract, and social cognition and emotion (Paquola 
et al., 2019b; Huntenburg et al., 2017; Margulies et al., 2016; Huntenburg et al., 2018; Mesulam, 
1998; Mesulam, 1994; Salehi et  al., 2020; Cole et  al., 2013; Beul et  al., 2017; Barbas, 2015), 
thereby enhancing behavioral flexibility (Mesulam, 1998; Murphy et al., 2018). However, despite the 
presumed link between cortical microstructure and functional processes it may support, whether and 
how changes in social behavior impact intrinsic function and microstructure it is not known to date.

Longitudinal investigations can reveal causal links between behavioral skills and brain organization, 
for example via targeted mental training studies. A range of prior studies indicated that mental training 
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may alter brain function and gross morphology (Slagter et al., 2007; Hölzel et al., 2011; Lazar et al., 
2005; Fox et  al., 2016; Fox et  al., 2014), but findings do not yet point to a consistent pattern. 
For example, a randomized controlled trial showed little effect on brain morphology of 8 weeks of 
mindfulness- based training in healthy adults (Kral et al., 2022). Arguably, sample sizes have been rela-
tively modest and training intervals short. Moreover, few studies have compared different practices 
or focussed on different social skills, despite different types of mental training likely having unique 
effects on brain and behavior (Lutz et al., 2021; Klimecki et al., 2014; Singer and Engert, 2019). 
In a previous study realized in the context of the ReSource project (Singer et al., 2016), our group 
demonstrated differentiable change in MRI- derived cortical thickness, in support of macrostructural 
plasticity of the adult brain following the training of social and interoceptive skills (Valk et al., 2017b). 
As the ReSource project involved a targeted training of attention- mindfulness (Presence training- 
module, TM), followed by socio- affective (Affect TM) and socio- cognitive/ToM training (Perspective 
TM) over the course of nine months, this study design can help to dissociate different mental training 
effects. Whereas Presence aimed at initially stabilizing the mind and nurturing introspective abilities, 
the Affect and Perspective TMs focussed on nurturing social skills such as empathy, compassion, and 
perspective taking on self and others.

Here, we leverage the ReSource study dataset to assess whether the targeted training of attention- 
interoception, socio- affective, and socio- cognitive skills can lead to domain- specific reorganization of 
(i) intrinsic function (as indexed by resting- state fMRI connectivity gradient analysis), and (ii) cortical 
microstructure as indexed by quantitative T1 relaxometry, probed along the direction of cortical 
columns (Marques et al., 2010; Paquola et al., 2020; Paquola and Hong, 2023). Such results would 
be in line with prior observations suggesting coupled change in brain structure and function (Mount 
and Monje, 2017; de Faria et al., 2021), and would help to gain insights into the association between 
social skills and models of brain organization. Longitudinal analyses of subjects- specific measures 
of functional integration and segregation evaluated whether these changes corresponded to corre-
sponding change in intracortical microstructure. We also tested for associations to behavioral change 
in attention, compassion, and ToM markers using machine learning with cross- validation, to evaluate 
behavioral relevance at the individual level.

eLife digest Navigating daily life requires a number of social skills, such as empathy and under-
standing other people’s thoughts and feelings. Research has found that specific parts of the brain 
support these abilities in humans. For instance, the brain areas that support compassion are different 
from the regions involved in understanding other people’s perspective and thoughts.

It is unclear how learning and refining social skills alters the brain. Previous studies have shown that 
learning new motor skills restructures the areas of the brain that regulate movement. Could acquiring 
and improving social skills have a similar effect?

To investigate, Valk et al. trained more than 300 healthy adults in different social skills over the 
course of three months as part of the ReSource project. The program was designed to enhance abil-
ities in compassion and perspective through mental exercises and working in pairs. Participants were 
also trained using different approaches to see whether changes to the brain are influenced by how a 
skill is learnt.

The brains of the participants were repeatedly pictured using magnetic resonance imaging (MRI). 
This revealed that different types of training caused unique changes in specific parts of the brain. For 
example, teaching mindfulness made parts of the brain less functionally connected, whereas training 
to understand other people’s thought increased functional connections between various regions. 
These functional alterations were paralleled by changes in brain structure. They could also predict 
improvements in social skills which were measured throughout the study using behavioural tests.

These findings suggest that training can help to improve social skills even in adults, which may 
benefit their quality of life through stronger social connections. Better knowledge of how to develop 
social skills and their biological basis will help to identify people who need support with these inter-
actions and develop new therapies to nurture their abilities.
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Results
Embedding of socio-affective and -cognitive functions in cortical brain 
organization (Fig. 1)
Our work examined changes in brain function and microstructure following social and cognitive 
mental training. We analyzed resting- state functional MRI (fMRI) measures, myelin- sensitive quantita-
tive T1 (qT1) relaxometry, and behavioral data from 332 adults studied in the ReSource Project (Singer 
et al., 2016). The preregistered trial (https://clinicaltrials.gov/ct2/show/NCT01833104) involved three 
3 month long TMs: (i) Presence, targeting interoception and attention, (ii) Affect, targeting empathy 
and emotion, and (iii) Perspective, targeting ToM. To gain a system- level understanding of brain 
changes associated with each TM, we took a multi- level approach, combining cortex- wide exploratory 
analyses of changes in functional and microstructural organization, with an investigation of a- priori 
defined functional networks hypothesized to be targeted by each TM, behavioral prediction of behav-
iors implicated in each domain.

For a- priori functional localization, we selected meta- analytical functional networks mapping these 
functions using NeuroSynth (Yarkoni et al., 2011), (Figure 1). To investigate changes in intrinsic func-
tional organization following different types of social and cognitive mental training we focused on 
changes within a 3D framework of functional axes, explaining in total more than 50% of variance 
within the functional connectome (Margulies et al., 2016; de Wael et al., 2020; Coifman et al., 
2005; Haak and Beckmann, 2020; Bernhardt et al., 2022). These axes differentiate primary from 
transmodal cortices (sensory/motor versus abstract cognition, principle gradient, G1), and within this 
axis further differentiation of visual from sensory- motor regions (secondary gradient, G2), and multiple 
demand and from default networks (tertiary gradient, G3). To synoptically assess changes within this 
functional framework, we combined the first three gradients into a marker of functional eccentricity, 
similar to previous work (Park et al., 2021a). Here, regions at either end of the gradient have a high 
eccentricity, a value based on the average of the three gradients. Following, we investigated gradient- 
specific effects.

Gradients of each individual were Procrustes aligned to the mean functional connectome based 
on the human connectome project sample (Valk et al., 2022; Van Essen et al., 2013), and we calcu-
lated region- wise distances to the center of a coordinate system formed by the first three gradients 
G1, G2, and G3 for each individual [based on the Schaefer 400 parcellation (Schaefer et al., 2018)]. 
Such a gradient eccentricity measures captures intrinsic functional integration (low eccentricity) vs 
segregation (high eccentricity) in a single scalar value (Park et al., 2021a). Highest segregation was 
observed in visual and sensory- motor networks, while ventral attention and limbic networks were 
closest to the center of the space. Notably, the a- priori networks showed a unique embedding in 
3D gradient space (F(5,394) 8.727, P<0.001), with Affect- associated networks being most integrated 
while and Perspective- networks were most segregated. Studying cortical microstructure, a marker of 
structural hierarchical organization, we observed patterns of high microstructural integrity (low qT1) 
in primary areas and low microstructural integrity (high qT1) in transmodal areas, similar to previous 
work (Paquola et al., 2019a; Burt et al., 2018). Evaluating a- priori network microstructural integ-
rity, we found that compartment 5:12 showed unique microstructural loadings (F(5,394) >5.760, 
p<0.001), with the emotion meta- analytical network showing lowest microstructural integrity in deep 
compartments.

Mental training-specific change in functional organization (Fig. 2)
We first tracked training- related longitudinal changes in functional organization using a holistic 
and cortex- wide approach through probing the combination of functional gradients 1–3 in func-
tional eccentricity following the different ReSource TMs. Following, we investigated specificity of 
effects in terms of functional gradient and a- priori functional networks associated with the TMs. In 
the Resource study, participants were randomly assigned to two training cohorts (TC1, N=80; TC2, 
N=81), which each underwent a 9- month training consisting of three sequential TMs (i.e., Presence, 
Perspective, and Affect) and with weekly group sessions and daily exercises, completed via cell- 
phone and internet platforms (Figure  1, Tables  1–3, Materials and Methods and Supplementary 
Materials for details). TC1 and TC2 underwent the latter two TMs in different order (TC1: Affect-
Perspective; TC2 PerspectiveAffect) to serve as active control groups for each other (Figure 1A). 
Additionally, a matched test- retest control cohort did not undergo any training (RCC, N=90), but 
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Figure 1. Study design. (A) Training design of the ReSource study; (B) Training modules; (C) Task- based meta- analytical maps, and a legend of the 
color- coding of the maps; (D) Functional cortical organization: i. functional connectivity matrix, gradient 1–3, eccentricity metric; ii. task- based network 
embedding; iii. intracortical microstructure, mean qT1 values as a function of task- based meta- analytical maps and cortical depth and relative values 
(z- scored per depth- compartment).

https://doi.org/10.7554/eLife.85188
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was followed with the same neuroimaging and behavioral measures as TC1 and TC2. All partici-
pants were measured at the end of each three- month TM (T1, T2, T3) using 3T MRI and behavioral 
measures that were identical to the baseline (T0) measures. There was furthermore an active control 
group (TC3; N=81), which completed three months of Affect training only. In our main analyses, we 
compared TMs against each other focusing on TMs completed by TC1 and TC2, that is Presence 
(T0→T1, TC1 and TC2), Affect (T1→T2, TC1 and T2→T3, TC2), Perspective T2→T3, TC1 and T1→T2, TC2 
and supplementary investigations including also TC3 that only completed a socio- affective training 
and retest control cohorts.

We evaluated how cortical functional gradients would change following mental training using 
mixed- effects models (Dale et al., 1999). Excluding participants with missing functional or structural 
data, or excessive movement, the sample included 109 individuals for Presence, 104 individuals for 
Affect, 96 individuals for Perspective, 168 retest controls and 60 active controls (Affect) with func-
tional and structural change scores. At the whole- cortex level, we observed marked gradient eccen-
tricity changes following Presence and Perspective (Figure 2, descriptive statistics: Supplementary 
file 1a- e). Presence training resulted in increased eccentricity of bilateral temporal and right supe-
rior parietal areas (FDRq <0.05), indicative of increased segregation. Perspective training resulted 
in decreased eccentricity of right temporal regions, together with left insular cortices (FDRq <0.05). 
We observed no eccentricity change following Affect training. Post- hoc analysis indicated changes 
between Presence and Perspective were underlying eccentricity change were most marked in G2 
(t=–4.647, p<0.001, d=−0.403), dissociating sensory- motor from visual systems, but not G1 (t=–1.495, 
p>0.05, d=−0.130) or G3 (t=–0.493, p>0.05, d=−0.043) gradient. Focussing on a- priori networks, 
in particular attention (t=2.842, p=0.005, d=0.247) and interoception (t=2.765, p=0.006, d=0.240) 
networks showed alterations in Presence- vs-Perspective, (Table 4, Figure 2 and Figure 2—figure 
supplement 1). Although effects varied, they were also observed after Global Signal Regression 
(GSR) control, in TC1 and TC2, and versus RCC (Supplementary file 1f- j). Evaluating gradient- specific 
alterations per a- priori network we observed a link between Presence versus Affect in the empathy- 
network along G2 (t=3.215, p<0.002; Supplementary file 1k- m, Figure 2—figure supplements 2–4). 
Findings were robust when controlling for previously reported cortical thickness change (Valk et al., 
2017b), Supplementary file 1n. We did not find evidence for overall effects of training on functional 
eccentricity relative to RCC (Supplementary file 1o).

Table 1. Participant inclusion in resting- state analysis and quantitative T1 analysis.

Recruited (N, mean age, % female) T0 (N) T1 (N) T2 (N) T3 (N)

Total (N=332)
TC1 (N=80; 41.3; 58.8)
TC2 (N=81; 41.2; 59.3)
RCC (N=90; 40.0; 58.9)
TC3 (N=81; 40.4; 60.5)

268
69
67
65
67

259
65
59
68
67

182
57
61
64

184
55
64
65

Table 2. Reason for missing data across the study duration.
MR incidental findings are based on T0 radiological evaluations; participants who did not survive 
MRI quality control refers to movement and/or artefacts in the T1- weighted MRI; dropout details 
can be found in Singer et al., 2016; no MRT: due to illness / scheduling issues / discomfort in 
scanner; other: non- disclosed; functional MRI missing: no complete functional MRI; functional MRI 
quality:>0.3 mm movement (low quality in volume +surface).

Reason for dropout
(TC1, TC2, RCC) T0 T1 T2 T3

Structural MR incidental finding
Structural MRI quality control
Dropout
Medical reasons
Other
Functional MRI missing/QC qT1 
missing

5
7
2
1
4
18
13

(5 based on T0)
6
7 (2 based on T0)
7 (1 based on T0)
10
14
7

(5 based on T0)
4
7 (9 based on T01)
7 (8 based on T01)
7
16
6

(5 based on T0)
2
7 (16 based on T012)
(15 based on T012)
7
8
7

https://doi.org/10.7554/eLife.85188
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Overall training effects in 
microstructure as a function of 
cortical depth (Fig. 3)
Having established alterations in integration and 
segregation of a- priori networks, we evaluated 
the neurobiological relevance of these alterations. 
We investigated changes in cortical microstruc-
ture as a function of cortical depth, motivated by 
the idea that intrinsic functional changes may be 
anchored in microstructural plasticity that occurs 
in a depth- varying manner (Paquola et al., 2022). 
Overall, ReSource training led to decreased qT1 
values, i.e. increased myelination, in both TC1 
and TC2 relative to RCC over the nine months 
training time, in all a- priori functional networks in 
particular in deeper compartment microstructure, 
whereas RCC showed subtle increases of qT1, 
suggesting decreased myelination (Figure  3, 
Supplementary file 1p, Figure  3—figure 
supplement 1). Studying training- specific effects, 

we observed marked changes in cortical microstructure following 3- month- long mental training 
across domains (all FDRq  <0.05). Presence showed marked increases in qT1 in posterior areas in 
superficial depth compartments, and marked decreases in qT1 in prefrontal and occipital regions 
that showed increased spatial extent as a function of cortical depth. Conversely, Affect resulted in 
extended decreases in qT1 in mid and deep depth compartments, in particular in bilateral frontal 
areas extending to parietal lobe, bilateral posterior cingulate, left fusiform gyrus and right insula. 
Perspective showed largely decreases in qT1 in superficial depths in parietal- temporal, precuneus, 
and sensory- motor areas, and an increase in qT1 in left prefrontal regions. Patterns were similar when 
comparing the TMs against each other, highlighting the differentiation between superficial and deep 
depth- varying changes between Perspective and Affect and medial prefrontal qT1 decrease following 
Presence relative to Perspective and Affect as well as Affect TC3 and RCC (in particular in case of TC1, 
Figure 3—figure supplement 2).

Corresponding changes in functional organization and intra-cortical micro-
structure (Fig. 4)
Having shown alterations in functional and microstructural organization following social mental 
training, we evaluated corresponding changes in cortical microstructure. A multilevel approach was 
chosen. First, we evaluated whether the regions observed in functional reorganization in Presence 
versus Perspective would also show microstructural change. Second, we studied training- specific 
microstructural alterations in a- priori functional networks. Third, we evaluated the spatial correlation 
between functional and structural organization as a function of cortical depth. To do so, we sampled 
qT1 relaxometry values across 12 equidistant intracortical surfaces between the pial and the white 
matter (Paquola et al., 2019b; Figure 4). Regions with low mean qT1 were located in sensory- motor 
and visual regions, regions known to have a high myelin content (Dinse et al., 2015; Sanides and 
Hoffmann, 1969). On the other hand, regions with high mean qT1 and thus low myelin content 
were located in transmodal areas, as previously shown (Paquola et al., 2020). We then examined 
how intra- cortical microstructural organization mirrored observed changes in functional eccentricity 
in clusters showing differential change during Presence vs Perspective. We observed a correspon-
dence (FDRq <0.05) between functional eccentricity and upper layer microstructural compartments 
(1st: t=3.167 p=0.002, d=0.275; 2nd compartment: t=2.911, p=0.004, d=0.253) in regions showing 
differences in eccentricity between Presence and Perspective. Following, assessing TM- specific 
effects in microstructure in a- priori task- based functional networks through comparing all TMs, we 
found all but the emotion network to show increases in qT1 of Presence versus Affect and Perspec-
tive in the upper compartments, extending to deeper compartments when comparing Presence and 

Table 3. Reason for missing data across the 
study duration.
MR incidental findings are based on T0 
radiological evaluations; participants who 
did not survive MRI quality control refers to 
movement and/or artefacts in the T1- weighted 
MRI; dropout details can be found in Singer 
et al., 2016; no MRT: due to illness / scheduling 
issues / discomfort in scanner; other: non- 
disclosed.

Reason for dropout (TC3) T0 T1

MR incidental finding
MRI quality control
Dropout
Medical reasons
Other
Functional MRI missing/QC 
qT1 missing

3
0
0
1
5
1
4

(3 based on T0)
0
3
2
3
3
0

https://doi.org/10.7554/eLife.85188
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Figure 2. Training- induced changes in cortical functional organization. (A) upper: T- maps of TM- specific changes in functional eccentricity; lower: TM- 
specific change in functional eccentricity, p<0.01, FDRq <0.05 outlined in black, below: alterations of eccentricity in the FDRq <0.05 regions, right: mean 
changes in FDRq <0.05 eccentricity regions as a function of G1- G2- G3; (B) A- priori network functional eccentricity change in networks that showed TM- 
specific change.

Figure 2 continued on next page

https://doi.org/10.7554/eLife.85188
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Affect (FDRq <0.05). Conversely, in deeper compartments, near the GM/WM boundary, we observed 
decreases of Affect relative to Perspective in interoception and emotion- related networks (descriptive 
statistics: Supplementary file 1q- u, Figure 4—figure supplement 1, Supplementary file 1v- x). Find-
ings were largely consistent across the different training cohorts, yet weak relative to retest controls 
(Supplementary file 1y- zl, Figure 4—figure supplement 2). As for the functional change, findings 
were also observed when controlling for cortical thickness (Supplementary file 1: zm- zo), indicating 
that microstructural change goes above and beyond previously reported morphological change (Valk 
et  al., 2017b). Exploring correspondence between functional and microstructural change within 
TMs, rather than by contrasting TMs, we observed a spatial correlation between functional change in 
eccentricity and G2 in upper and middle compartment microstructure in Presence and overall corre-
spondence with G3 changes, correcting for spatial autocorrelation (pspin <0.05), whereas microstruc-
tural alterations in mid- and deeper compartments showed correspondence to eccentricity and G2 in 
Affect (pspin <0.05).

Functional eccentricity and intracortical microstructure predict social cogni-
tive performance (Fig. 5)
Last, we evaluated whether alterations in cortical microstructure and function following mental 
training could predict behavioral changes in domains targeted by the TMs. To model changes in brain 
functional and structural organization, we focused on functional eccentricity, the three gradients, and 
microstructural depth divided in upper, mid, and deep compartments averaged within a- priori func-
tional networks. Previous work has indicated TM specific behavioral changes in attention, compas-
sion, and perspective- taking, as measure using a cued- flanker (attention) and the EmpaTom task 
(compassion and perspective- taking; Trautwein et al., 2020). Supervised learning (lasso regression, 
fivefold cross validation, 100 repetitions) with sequential feature selection (7 components, 20% of 
features) was utilized to predict behavioral change from the average functional gradient eccentricity, 
and G1- G3, as well as microstructure in superficial (1:4), middle (5:8), and deep (9:12) compartments 
in the five a- priori networks, resulting in 35 features to select from (Figure 5). We incorporated age 
and sex regression into the cross- validation model, to avoid leakage. Attention change predictions in 
Presence (N=85, TC1 and TC2) were most marked in attention network in microstructure at superficial 
depts and eccentricity (nMAE (mean ± SD): –0.037±0.003, out of sample r (mean ± SD): 0.325±0.308). 
Conversely, compassion change following Affect (N=100, TC1 and TC2) was predicted primarily 
through structural and functional reorganization of attention, interoception and emotion networks 
(MAE: –0.412±0.029, out of sample r: 0.284±0.279). Last, Theory of Mind change following Perspec-
tive (N=93, TC1 and TC2) predictions (nMAE: –0.081±0.006 out- of- sample r: 0.301±0.281) were most 

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. TM- specific change in functional eccentricity as a function of training cohort and a- priori network.

Figure supplement 2. TM- specific change in functional Gradient 1.

Figure supplement 3. TM- specific change in functional Gradient 2.

Figure supplement 4. TM- specific change in functional Gradient 3.

Figure 2 continued

Table 4. TM- specific changes in eccentricity per a priori networks.

Presence (n=109) vs 
Perspective (n=96)

Presence (n=109) vs Affect 
(n=104)

Perspective (n=96)
vs Affect (n=104)

Attention t=2.842, p=0.005*, d=0.247 t=1.458, p>0.05, d=0.127 t=−1.692, p>0.05, d=−0.147

Interoception t=2.765, p=0.006*, d=0.240 t=1.043, p>0.05, d=0.091 t=−2.008, p=0.045, d=−0.174

Emotion t=0.387, p>0.05, d=0.035 t=−0.135, p>0.05, d=−0.011 t=−0.552, p>0.05, d=−0.048

Empathy t=2.218, p=0.027, d=193 t=0.879, p>0.05, d=0.076 t=−1.569, p>0.05, d=−0.136

Theory of Mind t=1.721, p>0.05, d=0.149 t=1.324, p>0.05, d=0.115 t=−0.601, p>0.05, d=−0.052

*signifies FDR corrected differences.

https://doi.org/10.7554/eLife.85188
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likely to occur in attention networks along G3 and microstructure of upper and middle compartments, 
as well as emotion related networks along G3. To further test our predictive models, we evaluated 
model performance on random test data, as well as non- domain behavioral scores. We found that in 
all cases, the domain- specific TM model performed best on test data of the respective TM (p<0.001).

Discussion
We studied whether targeted training of human (social)cognitive and affective skills would alter 
intrinsic functional and structural organizational axes in a systematic and domain- specific manner. 
We evaluated longitudinal changes in MRI- derived cortical functional gradients and qT1 profiles as 
well as their interrelationship in the context of the 9- month ReSource study (Singer et al., 2016). We 
demonstrated intrinsic functional and microstructural plasticity that varied as a function of distinct 
social mental trainings, and that can predict training- related behavioral change. In particular, training 
attention/mindfulness, emotion/motivation, and socio- cognitive skills led to differential changes in 
a- priori network integration/segregation anchored in the secondary gradient differentiating sensory 
modalities. Moreover, functional changes showed correspondence to microstructural changes as a 
function of cortical depth and content of training. In sum, here we provide longitudinal evidence 
of a relationship between human social behaviors and intrinsic cortical function and depth- varying 
microstructure.

Analyzing meta- analytical fMRI networks involved in social and attentional processes at the base-
line time point (i.e. before the ReSource training started), we demonstrated that networks associated 
with social processing were differentially positioned in a coordinate system spanned by the first three 
functional gradients. Echoing a mounting literature (Margulies et al., 2016; Bernhardt et al., 2022; 
Hong et al., 2019; Bijsterbosch et al., 2021), the principal gradient ran from unimodal to trans-
modal systems with as apex the DMN. This axis aligns with classic notions of the primate cortical 
hierarchy (Mesulam, 1998; Markov and Kennedy, 2013), axes of microstructural differentiation 

Figure 3. Changes in depth- varying microstructure as a function of TM. (A). Change in cortical microstructure, per TM, red indicates positive change 
in qT1, blue negative change. FDRq <0.05 findings are outlined in black on top of t- values per parcel; (B) TM specific change in cortical microstructure. 
Red indicates positive change in qT1, blue negative change. FDRq <0.05 findings are outlined in black in combination with semi- transparent trends 
(p<0.01).

The online version of this article includes the following figure supplement(s) for figure 3:

Figure supplement 1. Training- specific change in qT1 from baseline to T3 as a function superficial (1:4) mid (5:8) and deep (8:12) depth compartment.

Figure supplement 2. Cohort- specific change in qT1 from baseline to T1 as a function superficial (1:4) mid (5:8) and deep (8:12) depth compartment.

https://doi.org/10.7554/eLife.85188
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Figure 4. Dissociable microstructural alterations following mental training. (A).TM- specific changes in cortical microstructure; qT1 in regions showing 
eccentricity change (y- axis: depth, x- axis: qT1 change); (B) Network- specific change in cortical microstructure as a function of depth, mean change 
per TM, pFDR <0.05 have black outline (y- axis: depth, x- axis: qT1 change). The boxes on the right of each plot display the statistics (t- values) of the 

Figure 4 continued on next page

https://doi.org/10.7554/eLife.85188
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(Paquola et al., 2019b; Huntenburg et al., 2017; Paquola et al., 2020) and cortical evolution, with 
heteromodal regions undergoing recent expansions in the human lineage (Goulas et al., 2018; Xu 
et al., 2020; Valk et al., 2020; Changeux et al., 2021). Conversely, the second gradient dissoci-
ates visual and sensory systems and the tertiary gradient dissociates the task- positive, attention and 
control, networks from rest of the brain (Margulies et al., 2016). Unlike the DMN, the task- positive 
network, including frontal and parietal regions, engages preferentially in externally- oriented tasks 
(Buckner et  al., 2008; Fox et  al., 2005; Duncan, 2010). This axis may differentiate but between 
DMN- related socio- episodic memory processing from task- focused processing associated with the 
multiple demand network (Turnbull et al., 2020; Turnbull et al., 2019). Together, the three gradi-
ents describe a processing organization, with primary systems and DMN regions showing functional 
segregation and saliency network functional integration (Park et al., 2021a; Bethlehem et al., 2020; 
Smallwood et al., 2021). Indeed, along its axes, we found a- priori networks associated with ToM and 

respective difference between TM, with the contrast color coded as upper minus lower TM (defined by color); (C) Correspondence of functional versus 
microstructural change; i. Spatial correlation of mean alterations in each TM, black outline indicates pspin <0.05, as a function of cortical depth.

The online version of this article includes the following figure supplement(s) for figure 4:

Figure supplement 1. TM- specific change in superficial (1:4) mid (5:8) and deep (8:12) depth compartment microstructure as a function of training 
cohort and a- priori network.

Figure supplement 2. TM- specific change in qT1 as a function superficial (1:4) mid (5:8) and deep (8:12) depth compartment.

Figure 4 continued

Figure 5. Behavioral change prediction. (A).Attention change; from left to right: attention task, behavioral change, predicting weights, nMAE and 
holdout r distribution; (B). Compassion change; from left to right: compassion task, behavioral change, predicting weights, nMAE and holdout r 
distribution; (C). Perspective- taking change; from left to right: perspective- taking task, behavioral change, predicting weights, nMAE and holdout r 
distribution (left side; within TM, right side; other TM (yellow: Presence; red: Affect; Green: Perspective) or RCC (grey)).

https://doi.org/10.7554/eLife.85188
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attention to be most segregated, indicating that their functional architecture is distinct from other 
transmodal networks. Conversely, emotion- related, and to a, lesser extent empathy and interocep-
tive processing, a- priori networks were found to be relatively integrated with all other networks. This 
positioning may be reflective of a regulative role of functional activity of task- positive and -negative 
networks (Menon and Uddin, 2010). As such, we could show that the meta- analytical functional acti-
vations associated with social cognition each were placed at unique locations along cardinal axes of 
functional organization, showing varying levels of functional integration and segregation.

Studying functional network plasticity following ReSource training, we found that regions associ-
ated with attention and interoception showed functional integration following Perspective training, 
whereas they segregated following Presence. In the context of social cognition, integrated states 
might reflect active thought processes such as those required when engaging in ToM, while more 
segregated states may reflect automation and domain- specific function (Finc et al., 2020). Indeed, 
attention- based mindfulness, as cultivated during Presence, may reduce habitual thought patterns 
and enhance momentary awareness (Lutz et al., 2019) – possibly captured by functional network 
segregation. Moreover, our observations in the domain of social skill training align well with a previous 
observation that working memory task performance is associated with decreased modularity and 
increased integration, whereas automation following working memory training was associated with 
increased modularity and segregation of multiple demand network and DMN (Finc et  al., 2020). 
Second, 8- week simultaneous training of compassion, mindfulness and perspective taking has been 
reported to result in reduced intra- network connectivity in the DMN, VAN, and somatomotor networks, 
reflecting integration (Cotier et al., 2017). Interestingly, overall changes in functional integration and 
segregation seemed to be most strongly related to loadings of the secondary gradient. This could 
imply a putative role of sensory- motor integration or shift in sensory- association patterning between 
sensory modalities as a function of mental training (Kerr et  al., 2013). Moreover, the secondary 
gradient has been implicated in guiding task- activation changes linked on- and off- task thought over 
time (Turnbull et al., 2020). More generally, our findings may be in line with the Global Workspace 
Theory of cognition, which poses that automated tasks, such as interoception and awareness, can be 
performed within segregated clusters of regions, whereas those that are challenging, for example 
perspective- taking, require integration (Dehaene et al., 1998). Of note, we did not observe changes 
in eccentricity following the Affect TM, relative to the other TMs. Rather, Affect seemed to stabilize 
changes in eccentricity observed following the other trainings. It is possible that the lack of change 
in eccentricity following socio- affective training reflects a coordinating role of socio- affect relative to 
alterations associated with attention- mindfulness and socio- cognition. Such an interpretation aligns 
with theories of emotional allostasis, suggesting that affective processing may balance integration 
and segregation of brain function to regulate resources dynamically (Chun et  al., 2011; Barrett, 
2017). Notably, though the current work focused on cortical networks, subcortical regions are known 
to be core constituents of the functional organization of the social brain (Shine, 2021; Kanske et al., 
2015; Adolphs, 2009). Follow- up work that studies plasticity of subcortical function and structure in 
the context of the social brain may provide additional system- level insights.

To further evaluate potential neurobiological substrates of cortical functional reorganization, we 
leveraged intra- cortical microstructure profiling using equidistant probes perpendicular to the cortical 
mantle (Paquola et al., 2019a; Waehnert et al., 2014). This targeted changes in cortical myeloar-
chitecture, to expand upon recent reports of experience- dependent myelin plasticity (Mount and 
Monje, 2017; de Faria et  al., 2021) as well as our previous finding of macrostructural change in 
cortical morphology the same cohort (Valk et  al., 2017b). Evaluating functional eccentricity alter-
ations in attention and interoception networks observed between Presence and Perspective, we found 
that these changes could be particularly recapitulated by microstructural alterations in superficial 
cortical depths. Whereas socio- cognitive training resulted in increased myelination proxy (reflected by 
decreases in qT1) values, attention- based mindfulness training resulted in decreased myelination of 
these regions. Similar patterns were observed in empathy and Theory of Mind networks. Contrasting 
attention- mindfulness and social affective training, we observed similar patterns of changes in micro-
structure in superficial compartments, which extended to middle compartments for attention, intero-
ception and empathy- related meta- analytical a- priori functional networks. Conversely, we found 
differential alterations of qT1 comparing socio- cognitive with affective training in deep compartments 
of interoceptive and emotion- related functional networks, where socio- affective training resulted in 
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relative increase in myelin as compared to socio- cognitive training. Various studies have reported 
training- induced changes in microstructure in humans, often measured using diffusion MRI derivative 
measures, such as fractional anisotropy (Taubert et al., 2010; Takeuchi et al., 2010; Scholz et al., 
2009). Work in mice has shown that social isolation during development resulted in changes in mPFC 
myelination, correlating with working memory and social behaviors (Makinodan et al., 2012). The 
observed alterations in qT1 in our study may reflect changes in oligodendrites as well as supporting 
glial cells (Bonetto et al., 2020; Chorghay et al., 2018). Indeed, myelin- plasticity has been suggested 
to be a key biological marker of learning and memory in adulthood (de Faria et al., 2021; Xin and 
Chan, 2020). Due to an overall lower myelination of association regions, conduction velocities may 
still be adjusted dynamically in adulthood, as a function of changing environmental demands (Mount 
and Monje, 2017). Interestingly, alterations persisted above and beyond cortical thickness change 
alone (Valk et al., 2017b). As structural plasticity includes both synaptic and myelin- related processes, 
further study on the plasticity of multiple microstructural markers in vivo may help to disentangle the 
different biological processes that underlie adaptive cognition in adulthood.

Co- alterations of function and structure following different types of mental TMs were further 
evidenced by TM specific analyses, including behavioral predictions. Together, they suggest co- alter-
ations of function and microstructure to occur in a manifold fashion, with differential change occur-
ring both in spatially divergent functional networks and as a function of different functional axes and 
cortical depts. By integrating functional organization with intra- cortical microstructure in the context 
of a longitudinal study involving social and cognitive mental training in adults, the current study inte-
grates perspectives on structure and functional organization of the human cortex and its relation 
to cognition. The layered structure of the human cortex is a key element supporting its function, 
leading up to different functional organizational dimensions (Turnbull et  al., 2020; Goulas et  al., 
2018; Turnbull et al., 2019). In particular, the layered structure of the cortex enables feedforward and 
feedback information transfer between regions in a hierarchical manner (Felleman and Van Essen, 
1991). Whereas ascending connections have been associated with middle cortical layers (origin: layer 
3, termination: layer 4), descending connectivity links to superficial and deeper layers (origin: layer 2, 
3 A and 6, termination: layer 1 and 6) (Bastos et al., 2012; Rockland, 2019; Rockland and Pandya, 
1979). Importantly, there may be key differences between layer- wise connectivity in primary and 
transmodal areas (Rockland, 2019; Finn et al., 2021). Functionally, it has been suggested that, in 
humans, superficial layers of the transmodal cortex have been implicated in manipulating information, 
whereas deeper layers may have a more controlling function (Bastos et al., 2018; Finn et al., 2019). 
Interestingly, using high- resolution data it has been shown that frontal regions dominate feedback 
processes, whereas parietal regions support feedforward functions (Huber et al., 2021). Such differ-
ences may relate to the differential pattern in anterior regions associated with emotion processing, 
showing somewhat distinct patterning relative to posterior regions across mental- training content. 
Moreover, various studies in non- human mammals have indicated differential mechanisms of plasticity 
correspond to different layer- depths (Verhoog et al., 2016; Goel and Lee, 2007; Yang et al., 2004), 
underscoring the relevance of depth- dependent variation in cortical microstructure over time. It is of 
note that the current study used a proxy of layer- depth that does not correspond to actual cortical 
layers, but rather creates depth- varying profiles of 1 mm resolution quantitative qT1 though interpo-
lation. However, depth- variations in such profiles have been used to quantify individual differences 
in both histological sections (Amunts et al., 1999) and in vivo during development (Paquola et al., 
2019a). Our work highlighted depth- dependent changes in cortical microstructure, with associations 
to intrinsic functional and behavioral change that go above and beyond cortical thickness alterations. 
Yet, we cannot exclude that part of the effects also include partial volume averaging, given the reso-
lution of the data and study set- up. Further work will benefit from including longitudinal paradigms 
with sub- millimeter microstructural and intrinsic functional markers to further understand the interplay 
between depth- varying microstructure, its plasticity, and intrinsic brain function.

In sum, combining a longitudinal mental training study with multi- modal imaging, we could 
show that mental TMs focusing on attention, socio- emotional and socio- cognitive skills resulted in 
differentiable change in intrinsic functional and microstructural organization. In line with prior work 
revealing differential changes in grey matter morphology after each of the three ReSource TMs in the 
same sample (Valk et al., 2017b), the current work differentiates processes related to our ability of 
understanding the thoughts and feelings of ourselves and others within the intrinsic functional and 
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microstructural organization of the human brain, as such, our findings are compatible with previous 
work suggesting a link between anatomical and functional hierarchies and global workspace theories 
of cognition (Dehaene et al., 1998; Baars, 2002; Deco et al., 2021). Although our work focused on 
healthy adults ranging from 20 to 55 years of age, our findings overall support the possibility that 
targeted mental training can enhance social skills and lead to co- occurring reconfigurations of cortical 
function and microstructure, providing evidence for experience- dependent plasticity.

Materials and methods
Experimental design
The specifics on the experimental design are the similar to related works in the same sample (Valk 
et al., 2017b; Trautwein et al., 2020). They are provided again here for completeness.

Participants
A total of 332 healthy adults (197 women, mean ± SD = 40.7±9.2 years, 20–55 years), recruited in 
2012–2014 participated in the study, see Table 1 for more details. More than 95% of our sample was 
Caucasian, with catchment areas balanced across two German municipalities (Berlin and Leipzig). 
Participant eligibility was determined through a multi- stage procedure that involved several screening 
and mental health questionnaires, together with a phone interview (for details, see Singer et  al., 
2016). Next, a face- to- face mental health diagnostic interview with a trained clinical psychologist was 
scheduled. The interview included a computer- assisted German version of the Structured Clinical Inter-
view for DSM- IV Axis- I disorders, SCID- I DIA- X (Wittchen and Pfister, 1997) and a personal interview, 
SCID- II, for Axis- II disorders (Weissman et al., 1997; First et al., 1997). Participants were excluded 
if they fulfilled criteria for: (i) an Axis- I disorder within the past two years; (ii) Schizophrenia, psychotic 
disorders, bipolar disorder, substance dependency, or an Axis- II disorder at any time in their life. No 
participant had a history of neurological disorders or head trauma, based on an in- house self- report 
questionnaire used to screen all volunteers prior to imaging investigations. In addition, participants 
underwent a diagnostic radiological evaluation to rule out the presence of mass lesions (e.g., tumors, 
vascular malformations). All participants gave written informed consent and the study was approved 
by the Research Ethics Committees of the University of Leipzig (#376/12- ff) and Humboldt University 
in Berlin (#2013–02, 2013–29, 2014–10). The study was registered at ClinicalTrials.gov under the title 
‘Plasticity of the Compassionate Brain’ (#NCT01833104). For details on recruitment and sample selec-
tion, see the full cohort and study descriptor (Singer et al., 2016).

Sample size estimation and group allocation
Overall, 2595 people signed up for the ReSource study in winter 2012/2013. Of these individuals, 311 
potential participants met all eligibility criteria. From the latter group, 198 were randomly selected 
as the final sample. Participants were selected from the larger pool of potential participants and 
assigned to cohorts using bootstrapping without replacement, creating cohorts that did not differ 
(omnibus test P<0.1) in demographics (age, gender, marital status, income, and IQ) or self- reported 
traits (depression, empathy, interoceptive awareness, stress level, compassion for self and others, 
alexithymia, general mental health, anxiety, agreeableness, conscientiousness, extraversion, neurot-
icism, and openness). Seven participants dropped out of the study after assignment but before data 
collection began, leaving 30 participants in RCC1, 80 in TC1, and 81 in TC2.

A total of 2144 people applied for the second wave of the study in winter 2013/2014. Of these 
people, 248 potential participants met all the eligibility criteria. From the latter pool, 164 were then 
randomly selected as the final sample. Participants were selected from the larger pool of poten-
tial participants and assigned to cohorts using bootstrapping without replacement, creating cohorts 
that did not differ significantly (omnibus test, p>0.1) from the Winter 2012/2013 cohorts or from 
one another in demographics (age, gender, marital status, income, and IQ) or self- reported traits 
(depression, empathy, interoceptive awareness, stress level, compassion for self and others, alex-
ithymia, general mental health, anxiety, agreeableness, conscientiousness, neuroticism, and open-
ness). The control cohorts (RCC1, RCC2, and RCC1&2) were significantly lower in extraversion than 
TC3; participants in the control cohorts were also more likely to have children than participants in 
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TC3. Twenty- three participants dropped out of the study after assignment but before data collection 
began, leaving 81 participants in TC3 and 60 in RCC2. See further (Singer et al., 2016).

Study design
Our study focused on two training groups: training cohort 1 (TC1, n=80 at enrolment) and training 
cohort 2 (TC2, n=81 at enrolment), as well as a retest control cohort (RCC) that was partly measured 
prior to (n=30 at enrolment) and partly after (n=60 at enrolment) TC1 and TC2. A third training cohort 
(TC3, n=81 at enrolment) underwent an independent training program, and was included as an addi-
tional active control for the Presence TM. Participants were selected from a larger pool of potential 
volunteers by bootstrapping without replacement, creating cohorts not differing significantly with 
respect to several demographic and self- report traits (Singer et al., 2016). Total training duration of 
TC1 and TC2 was 39 weeks (~nine months), divided into three TMs: Presence, Affect, and Perspective 
(see below, for details), each lasting for 13 weeks (Figure 1). TC3 only participated in one 13 week 
Affect training, and is only included in supplementary robustness analyses, so that the main analysis of 
functional plasticity focusses on TC1 and TC2. Our main cohorts of interest, TC1 and TC2, underwent 
Affect and Perspective TMs in different order to act as active control cohorts for each other. Specifi-
cally, TC1 underwent ‘Presence- Affect- Perspective’, whereas TC2 underwent ‘Presence- Perspective- 
Affect’. TC1, TC2, and RCC underwent four testing phases. The baseline- testing phase is called T0; 
testing phases at the end of the xth TM are called Tx (i.e., T1, T2, T3). In RCC, testing was carried 
out at similarly spaced intervals. The study had a slightly time- shifted design, where different groups 
started at different time points to simultaneously accommodate scanner and teacher availability. As 
we focused on training- related effects, we did not include analysis of a follow- up measurement T4 
that was carried out 4, 5, or 10 months after the official training had ended. For details on training and 
practice set- up, timeline, and measures, see Singer et al., 2016.

Final sample
We excluded individuals with missing structural and/or functional MRI data and/or a framewise- 
displacement of >0.3 mm (<5%) (Power et al., 2012). Further details of sample size per time- point 
and exclusion criteria are in Tables 1–3.

Neuroimaging acquisition and analysis
MRI acquisition
MRI data were acquired on a 3T Siemens Magnetom Verio (Siemens Healthcare, Erlangen, Germany) 
using a 32- channel head coil. We recorded task- free functional MRI using a T2*-weighted gradient 
2D- EPI sequence (repetition time [TR]=2000ms, echo time [TE]=27ms, flip angle = 90°; 37 slices tilted 
at approximately 30° with 3 mm slice thickness, field of view [FOV]=210 × 210mm2, matrix = 70 × 70, 
3×3 × 3 mm3 voxels, 1 mm gap; 210 volumes per session). We also acquired a T1- weighted 3D- M-
PRAGE sequence (176 sagittal slices, TR = 2300ms, TE = 2.98ms, inversion time [TI]=900ms, flip angle 
= 7°, FOV = 240 × 256 mm2, matrix = 240 × 256, 1×1 × 1 mm3 voxels). Throughout the duration of 
our longitudinal study, imaging hardware and console software (Syngo B17) were held constant. For 
qT1 mapping, we used the recently introduced 3D MP2RAGE sequence (Marques et al., 2010), which 
combines two MPRAGE datasets acquired at different inversion times to provide intrinsic bias field 
cancellation and estimation of T1 TR = 5000ms, TE = 2.89ms, TI = 700/2500ms, flip angle = 4/5°, FOV 
= 256 × 256 mm2, 1×1 × 1–mm3 voxels.

Task-free functional MRI analysis
Processing was based on DPARSF/REST for Matlab [http://www.restfmri.net (Song et  al., 2011)]. 
We discarded the first 5 volumes to ensure steady- state magnetization, performed slice- time correc-
tion, motion correction and realignment, and co- registered functional time series of a given subject 
to the corresponding T1- weighted MRI. Images underwent unified segmentation and registration 
to MNI152, followed by nuisance covariate regression to remove effects of average WM and CSF 
signal, as well as 6 motion parameters (3 translations, 3 rotations). We included a scrubbing (Power 
et al., 2012) that modelled time points with a frame- wise displacement of ≥0.5 mm, together with the 
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preceding and subsequent time points as separate regressors during nuisance covariate correction. 
Volume- based timeseries were mapped to the fsaverage5 surface using bbregister.

Gradient construction
In line with previous studies evaluating functional gradients (Paquola et al., 2019b; Margulies et al., 
2016; de Wael et al., 2020; Hong et al., 2019; Bethlehem et al., 2020; Vos de Wael et al., 2018) 
the functional connectivity matrix was proportionally thresholded at 90% per row and converted into 
a normalised angle matrix using the BrainSpace toolbox for MATLAB (de Wael et al., 2020). Diffusion 
map embedding, a nonlinear manifold learning technique (Coifman et al., 2005), identified principal 
gradient components, explaining functional connectivity variance in descending order. In brief, the 
algorithm estimates a low- dimensional embedding from a high- dimensional affinity matrix. In this 
space, cortical regions that are strongly interconnected by either many suprathreshold edges or few 
very strong edges are closer together, whereas nodes with little or no functional connectivity are 
farther apart. The name of this approach, which belongs to the family of graph Laplacians, derives 
from the equivalence of the Euclidean distance between points in the embedded space and the 
diffusion distance between probability distributions centred at those points. It is controlled by the 
parameter α, which controls the influence of the density of sampling points on the manifold (α=0, 
maximal influence; α=1, no influence). Based on previous work (Margulies et al., 2016), α was set 
at 0.5, this retains the global relations between data points in the embedded space and has been 
suggested to be relatively robust to noise in the functional connectivity matrix. The diffusion time (t), 
which controls the scale of eigenvalues of the diffusion operator was set at t=0 (default). Individual 
embedding solutions were aligned to the group- level embedding based on the Human Connectome 
Project S1200 sample (Van Essen et al., 2013) via Procrustes rotations (de Wael et al., 2020). The 
Procrustes alignment enables comparison across individual embedding solutions, provided the orig-
inal data is equivalent enough to produce comparable Euclidean spaces.

3D gradient metric: eccentricity
To construct the combined gradient, we computed the Euclidean distance to the individual center for 
gradient 1–3. Next, to evaluate change within and between individuals, we computed the difference 
between gradient scores between different time- points.

Processing of microstructural data
The details on the processing are identical to previous work (Paquola et  al., 2019b; Valk et  al., 
2022). We have provided the information here again for clarity. T1- weighted MRIs were processed 
using FreeSurfer (http://surfer.nmr.mgh.harvard.edu) version 5.1.0 to generate cortical surface models 
for measurements of cortical thickness and surface area. FreeSurfer has been validated against histo-
logical analysis (Rosas et al., 2002) and manual measurements (Kuperberg et al., 2003). We chose 
the most general cross- sectional image processing procedure to enable the longitudinal as well as 
cross- sectional study goals of the ReSource Project see for example (Valk et al., 2017a). Since data 
acquisition spanned more than 2 years, a non- specific imaging procedure enabled baseline data anal-
ysis before the completion of latter time points, without compromising comparability. Quantitative 
T1 maps were aligned and mapped to the T1- weighted MRI using a boundary- based registration 
(Greve and Fischl, 2009), by maximizing the intensity gradient across tissues boundaries and using 
the surfaces that separate brain structure and tissue types of the T1- weighted reference image, and 
the tissue intensity of the quantitative T1 map. Following we computed a dept- dependent microstruc-
ture proxy. Depth- dependent cortical microstructure analysis has a long tradition in neuroanatomy 
(Schleicher et al., 1999; Zilles et al., 2002), and depth- dependent shift in cellular and myelin char-
acteristics have been shown to reflect architectural complexity (Zilles et al., 2002) and cortical hier-
archy (Mesulam, 1998). We generated 12 equivolumetric surfaces between outer and inner cortical 
surfaces. The equivolumetric model adjusts for cortical folding by varying the Euclidean distance 
ρ between pairs of intracortical surfaces throughout the cortex to preserve the fractional volume 
between surfaces. ρ was calculated for each surface (Ochsner and Lieberman, 2001):

 
ρ = 1

Aout − Ain
· (−Ain +

√
αA2

out + (1 − α)A2
in)
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in which α represents a fraction of the total volume of the segment accounted for by the surface, 
while Aout and Ain represents the surface area of outer and inner cortical surfaces, respectively. We 
systematically sampled qT1 values for each of the 20,484 linked vertices from the outer to the inner 
surface across the cortex. Following, we computed the average value of qT1 in each of the 400 parcels 
(Schaefer et al., 2018).

Meta-analytical a-priori networks
We used the NeuroSynth meta- analytic database (http://www.neurosynth.org) (Yarkoni et al., 2011) 
to assess topic terms associated with the training (‘attention’, ‘interoception’, ‘emotion’, ‘empathy’, 
‘Theory of Mind’).

Behavioral markers
We assessed a battery of behavioral markers developed and adapted to target the main aims of 
the Presence, Perspective, and Affect TMs: selective attention, compassion, and ToM. Behavioral 
changes of these markers elicited by the different TMs are reported elsewhere (Trautwein et  al., 
2020). The measure for compassion was based on the EmpaToM task, a developed and validated 
naturalistic video paradigm in the current subjects (Kanske et al., 2015; Tholen et al., 2020). Videos 
showed people recounting autobiographical episodes that were either emotionally negative (e.g. 
loss of a loved one) or neutral (e.g. commuting to work), followed by Likert- scale ratings of experi-
enced valence and compassion. Since the conceptual understanding of compassion might change 
due to the training, we ensured a consistent understanding by defining it prior to each measurement 
as experiencing feelings of care, warmth, and benevolence. Compassion was quantified as mean of 
compassion ratings across all experimental conditions. The EmpaToM task (Kanske et al., 2015) also 
allowed for measurement of ToM performance. After the ratings, multiple- choice questions requiring 
inference of mental states (thoughts, intentions, beliefs) of the person in the video or factual reasoning 
on the video’s content (control condition) were asked. Questions had three response options and only 
one correct answer, which had been validated during pre- study piloting (Kanske et al., 2015). Here, 
we calculated participants’ error rates during the ToM questions after the video, collapsed across 
neutral and negative conditions.

Statistical analysis
Analysis was performed using SurfStat for Matlab (Worsley et al., 2009). We employed linear mixed- 
effects models, a flexible statistical technique that allows for inclusion of multiple measurements per 
subjects and irregular measurement intervals (Pinheiro and Bates, 2000). In all models, we controlled 
for age and sex, and random effect of subject. Inference was performed on subject- specific eccen-
tricity/gradient change maps, Δeccentricity/gradient, which were generated by subtracting parcel- 
wise eccentricity/gradient maps of subsequent time points for a given participant. Main analysis 
contrasts the TMs in TC1 and TC2 against each other to account for possible training general effects 
whilst controlling for subject as random effect in the linear model, and age and sex. In follow- up anal-
yses, we compared TMs against retest control cohorts, active control cohort (TC3), and for training 
cohorts independently.

a) Assessing TM- specific change. To compare two TMs, we compared one TM against another (for 
example Affect versus Perspective). To compare a given TM against RCC, we estimated contrasts for 
TM change relative to RCC (Presence, Perspective, Affect).

 M = 1 + A + S + TM + random(Subject) + I  

b) Correction for multiple comparisons. Findings were corrected for number of tests within the anal-
ysis step using FDR correction (Benjamini and Hochberg, 1995).

Theoretically, the cross- over design of the study and the inclusion of number of scans since base-
line as covariance controlled for test- retest effects on motion (as participants may become calmer 
in scanner after repeated sessions). Nevertheless, to control for outliers, we removed all individuals 
with >0.3 mm/degree movement (Power et al., 2012).

Behavioral prediction
We adopted a supervised framework with cross- validation to predict behavioral change based on 
change in functional and microstructural organization within five a- priori functional networks. We 
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aimed at predicting attention, compassion, and perspective- taking (Figure 5). Before running our 
model, we regressed out age and sex from the brain markers within the cross- validation loop to 
avoid leakage. We utilized fivefold cross- validation separating training and test data and repeated 
this procedure 100 times with different sets of training and test data to avoid bias for separating 
subjects. Following we performed an elastic net cross- validation procedure with alphas varying from 
0.0001 to 1, ratio 1.0, making it a lasso regression. We used sequential feature selection to determine 
the top 20% of features based on mean absolute error without cross validation. Linear regression 
for predicting behavioral scores was constructed using the selected features as independent vari-
ables within the training data (4/5 segments) and it was applied to the test data (1/5 segment) to 
predict their behavioral scores. The prediction accuracy was assessed by calculating Pearson’s correla-
tion between the actual and predicted behavioral scores as well as their negative mean absolute 
error, nMAE. To further assess specificity of the behavioral prediction models, we evaluated Pear-
son’s correlation between actual and predicted scores based on randomized scores, as well as using 
the model to predict out- of- TM data (e.g. for attention in Presence; compassion in Affect and ToM 
in Perspective; for compassion in Affect, attention in Presence and ToM in Perspective; for ToM in 
Perspective; attention in Presence and compassion in Affect).

Data and code availability
In line with EU data regulations (General Data Protection Regulation, GDPR), we regret that data 
cannot be shared publicly because we did not obtain explicit participant agreement for data- sharing 
with third parties. Our work is based on personal data (age, sex, and neuroimaging data) that could 
be matched to individuals. The data is therefore pseudonominized rather than anonymized and falls 
under the GDPR. Data are available upon request (contact via  valk@ cbs. mpg. de). Summary data and 
analysis scripts (Matlab and python) to reproduce primary analyses and figures are publicly avail-
able on GitHub (https://github.com/CNG-LAB/social_function_structure_change), and raw data- plots 
are provided for network- level analyses. To construct gradients, we used the brainspace package, 
available at brainspace.readthedocs.io. To construct intra- cortical myelin profiles code is available at  
micapipe.readthedocs.io. Meta- analytical functional MRI maps are downloaded from neurosynth.org 
and available on GitHub.
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Additional files
Supplementary files
•  Supplementary file 1. Complete summary of supplementary tables and analysis. (a). Descriptive 
statistics Presence (b). Descriptive statistics Affect (c). Descriptive statistics Affect, excluding active 
controls (TC3) (d). Descriptive statistics Perspective (e). Descriptive statistics Retest controls. (f). 
Functional eccentricity changes GSR controlled per a- priori network. T- values and p- values below 
P<0.05, * indicates FDRp <0.05. (g). Functional eccentricity changes in training cohort 1 per a- priori 
network. T- values and p- values below P<0.05, * indicates FDRp <0.05. (h). Functional eccentricity 
changes in training cohort 2 per a- priori network. T- values and p- values below P<0.05, * indicates 
FDRp <0.05. (i). Functional eccentricity changes per a- priori network baseline to T1. T- values and 
p- values below P<0.05, * indicates FDRp <0.05. (j). Functional eccentricity changes per a- priori 
network T1 to T3. T- values and p- values below P<0.05, * indicates FDRp <0.05. (k). G1- G3 change 
per a- priori network Presence vs Perspective. T- values and p- values below P<0.05, * indicates 
FDRp <0.05. (l). G1- G3 change per a- priori network Presence vs Affect. T- values and p- values below 
P<0.05, * indicates FDRp <0.05. (m). G1- G3 change per a- priori network Perspective vs Affect. 
T- values and p- values below P<0.05, * indicates FDRp <0.05. (n). Functional eccentricity changes 
per a- priori network controlling for cortical thickness change. T- values and p- values below P<0.05, 
* indicates FDRp <0.05. (o). Functional eccentricity changes per a- priori network from baseline to 
T3. T- values and p- values below P<0.05, * indicates FDRp <0.05. (p). Depth- dependent qT1 change 
per a- priori network Training vs Retest Control. T- values and p- values below P<0.05. * indicates 
FDRp <0.05.(q). Descriptives of retest- control change (mean change over T0- T1; T1- T2; T2- T3) as 
a function of depth- dependent qT1. (r). Descriptive of Presence change (mean change over T0- 
T1) as a function of depth- dependent qT1 (s). Descriptives of Affect change (mean change over 
T0- T1, T1- T2 and T2- T3) as a function of depth- dependent qT1. (t). Descriptives of Affect change 
(mean change over T1- T2 and T2- T3) as a function of depth- dependent qT1. (u). Descriptives of 
Perspective change (mean change over T1- T2 and T2- T3) as a function of depth- dependent qT1. 
(v). Depth- dependent qT1 change per a- priori network Presence vs Perspective. T- values and p- 
values below P<0.05, and Cohen’s D effect size, * indicates FDRp <0.05. (w). Depth- dependent qT1 
change per a- priori network Presence vs Affect. T- values and p- values below P<0.05, and Cohen’s 
D effect size, * indicates FDRp <0.05. (x). Depth- dependent qT1 change per a- priori network 
Perspective vs Affect. T- values and p- values below P<0.05, and Cohen’s D effect size, * indicates 
FDRp <0.05. (y). Depth- dependent qT1 change per a- priori network Presence vs Perspective in TC1. 
T- values and p- values below P<0.05. * indicates FDRp <0.05. (z). Depth- dependent qT1 change 
per a- priori network Presence vs Affect in TC1. T- values and p- values below P<0.05. * indicates 
FDRp <0.05. (za). Depth- dependent qT1 change per a- priori network Perspective vs Affect in TC1. 
T- values and p- values below P<0.05. * indicates FDRp <0.05. (zb). Depth- dependent qT1 change 
per a- priori network Presence vs Perspective in TC2. T- values and p- values below P<0.05. * indicates 
FDRp <0.05. (zc). Depth- dependent qT1 change per a- priori network Presence vs Affect in TC2. 
T- values and p- values below P<0.05. * indicates FDRp <0.05. (zd). Depth- dependent qT1 change 
per a- priori network Perspective vs Affect in TC2. T- values and p- values below P<0.05. * indicates 
FDRp <0.05. (ze). Depth- dependent qT1 change per a- priori network baseline – T1: TC1 (Presence) 
versus Retest Control. T- values and p- values below P<0.05. * indicates FDRp <0.05. (zf). Depth- 
dependent qT1 change per a- priori network baseline – T1: TC2 (Presence) versus Retest Control. 
T- values and p- values below P<0.05. * indicates FDRp <0.05. (zg). Depth- dependent qT1 change 
per a- priori network baseline – T1: Affect TC3 vs Retest Control. T- values and p- values below 
P<0.05. * indicates FDRp <0.05. (zh). Depth- dependent qT1 change per a- priori network baseline 
– T1: Presence TC1 vs Affect TC3. T- values and p- values below P<0.05. * indicates FDRp <0.05. 
(zi). Depth- dependent qT1 change per a- priori network baseline – T1: Presence TC2 vs Affect TC3. 
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T- values and p- values below P<0.05. * indicates FDRp <0.05. (zj). Depth- dependent qT1 change 
per a- priori network T1 – T3: Perspective versus Affect (TC1 +TC2). T- values and p- values below 
P<0.05. * indicates FDRp <0.05. (zk). Depth- dependent qT1 change per a- priori network T1 – T3: 
Affect vs Retest Control. * T- values and p- values below P<0.05. * indicates FDRp <0.05. (zl). Depth- 
dependent qT1 change per a- priori network T1 – T3: Perspective vs Retest Control. T- values and 
p- values below P<0.05. * indicates FDRp <0.05. (zm). Depth- dependent qT1 change per a- priori 
network controlling for CTX: Presence versus Perspective. T- values and p- values below P<0.05. * 
indicates FDRp <0.05.(zn). Depth- dependent qT1 change per a- priori network controlling for CTX: 
Presence versus Affect. T- values and p- values below P<0.05. * indicates FDRp <0.05. (zo). Depth- 
dependent qT1 change per a- priori network controlling for CTX: Perspective versus Affect. T- values 
and p- values below P<0.05. * indicates FDRp <0.05.

•  MDAR checklist 

Data availability
In line with EU data regulations (General Data Protection Regulation, GDPR), we regret that data 
cannot be shared publicly because we did not obtain explicit participant agreement for data- sharing 
with third parties. Our work is based on personal data (age, sex, and neuroimaging data) that could 
be matched to individuals. The data is therefore pseudonominized rather than anonymized and falls 
under the GDPR. Data are available upon request (contact via valk@cbs.mpg.devalk@cbs.mpg.de). 
Summary data and analysis scripts (Matlab and python) to reproduce primary analyses and figures are 
publicly available on GitHub (https://github.com/CNG-LAB/social_function_structure_change copy 
archived at cng- lab, 2023), and raw data- plots are provided for network- level analyses. To construct 
gradients, we used the brainspace package, available at https://brainspace.readthedocs.io/en/latest/. 
To construct intra- cortical myelin profiles code is available at https://micapipe.readthedocs.io/en/ 
latest/. Meta- analytical functional MRI maps are downloaded from https://neurosynth.org/ and avail-
able on GitHub.
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