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The emergence of chiral anomaly entails various fascinating phenomena such as anomalous quan-
tum Hall effect and chiral magnetic effect in different branches of (non-)Hermitian physics. While in
the single-particle picture, anomalous currents merely appear due to the coupling of massless parti-
cles with background fields, many-body interactions can also be responsible for anomalous transport
in interacting systems. In this Letter, we study anomalous chiral currents in systems where inter-
acting massless fermions with complex Fermi velocities are coupled to complex gauge fields. Our
results reveal that incorporating non-Hermiticity and many-body interactions gives rise to addi-
tional terms in anomalous relations beyond their Hermitian counterparts. We further present that
many-body corrections in the subsequent non-Hermitian chiral magnetic field or anomalous Hall
effect are nonvanishing in nonequilibrium or inhomogeneous systems. Our results advance efforts in
understanding the anomalous transport in interacting non-Hermitian systems.

Introduction. The chiral anomaly emerges due to
the violation of classical chiral symmetry by quantum
fluctuations in odd spatial dimensions. This quantum
anomaly has given rise to a plethora of exotic phenom-
ena, including anomalous decay of neutral pion in high-
energy physics [1–5], anomaly-induced charges in baryons
in quantum chromodynamics [6], anomalous transport in
condensed matter physics [7–13], and the magnetic helic-
ity transfer in the early universe due to chiral asymme-
try in cosmology [14, 15]. Aside from deepening our un-
derstanding and their experimental realizations [16–20],
chiral anomalies are proposed to be used in advancing
quantum computing, e.g., as chiral qubits [21, 22].

While chiral anomaly in condensed matter physics usu-
ally describes noninteracting massless fermions under
electromagnetic fields, generalizations of this theory al-
low incorporatingWeyl node-mixing terms [23] and treat-
ing short-range interactions between fermions [24–26].
The latter unveils novel contributions to the anomaly
equations through its nonperturbative formulation. This
differs from the traditional convention of perturbative
treatment of interactions in high-energy physics to ex-
plore the chiral anomaly [3]. These perturbative stud-
ies reported the cancellation of higher-order corrections
upon respecting Lorentz and chiral symmetries [27] and
concluded the universality of chiral anomaly. As Lorentz
and chiral symmetries are usually broken in interacting
condensed matter systems [23, 25, 27], violating the chi-
ral symmetry by many-body interactions in the absence
of background fields opens new directions to explore chi-
ral anomaly in interacting lattice models [28].

Condensed matter systems with different constituent
particles, e.g., electrons and phonons, can be studied as
closed or open quantum systems. While in the framework
of closed systems, all degrees of freedom are treated self-
consistently, the formulation of open quantum systems
takes advantage of tracing out some degrees of freedom
with the expense of losing unitarity. It has been shown
that the path-integral formulations for open or closed sys-

tems can provide an effective non-Hermitian description
for these systems [29–35]. Here non-Hermiticity origi-
nates from the dissipative nature of open quantum sys-
tems or the imaginary parts of self-energies accounting
for interactions between different subsystems in closed
quantum systems.

Upon constructing non-Hermitian models, the un-
derlying physics of open/closed systems can be unrav-
eled using methods in non-Hermitian physics and their
unique properties with no counterparts in Hermitian
physics [36–40]. The emergence of defective [41–43] and
non-defective [44–46] degeneracies and the occurrence of
exotic boundaries modes [47] exemplify the fascinating
features of non-Hermitian models. While most studies
focus on exploring noninteracting systems, investigating
non-Hermitian many-body physics and their dynamics
have gained momentum in recent years [48–55]. Despite
these studies, the rich transport properties of interacting
non-Hermitian models are mainly unexplored. Address-
ing the anomalous chiral response of interacting Dirac
fermions in non-Hermitian models is the primary goal of
this work.

In this letter, we explore the chiral anomaly in (1 + 1)
and (3+1) dimensions for non-Hermitian Dirac fermions
with complex Fermi velocities coupled to complex back-
ground gauge fields. By introducing a unified notation,
we bring the non-Hermitian model and its symmetrized
version under the same umbrella, enabling us to identify
purely non-Hermitian contributions in anomalous cur-
rents. We further present the physical consequences of
the non-Hermitian chiral anomaly in non-Hermitian sys-
tems and discuss plausible platforms to realize them.

Non-Hermitian chiral anomaly in many-body systems.

We consider a non-Hermitian model of interacting mass-
less fermions Ψ, with complex Fermi velocities, in the
presence of non-Hermitian gauge fields (V,W ) in even d
dimensions. To facilitate later comparison of our non-
Hermitian results with previous Hermitian calculations,
we employ a notation, shown by a tilde, which unifies
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S̃ fν

µ Ãµ F̃2 F̃4

Sh Re[Mν

µ ] Re[Mν

µAν ] 4π|Re[vf ]| 32π2|det[Re[M ]]|

Snh Mν

µ Mν

µAν 4π
√

det[B] 32π2
√

det[B]

Table I. Mapping f , Ã and F̃ from the unified notation into
Hermitianized and non-Hermitian notation. A stands for
gauge fields V and W . F̃ is presented for 2 and 4 dimensions.
The matrix B for non-Hermitian models is given in Eq. (11).
The elements of the diagonal matrix M are complex-valued
Fermi velocities.

non-Hermitian (nh) and its symmetrized form, a.k.a.,
Hermitionized (h), models [56].
In this notation, the partition function (Z), the

Euclidean-space action (S) and the Dirac operator D for
our model in the units where c = e = ~ = 1 read

Z̃ ∝

∫

DΨDΨeS̃ , with S̃ = S̃0 + S̃int, (1)

S̃0 = i

∫

ddxΨγµ
D̃µΨ, (2)

S̃int =

∫

ddx

(

−
λ2
µν

2
jµjν −

λ2
5,µν

2
j5,µj5,ν

)

, (3)

/̃D = γµ
D̃µ = γµd̃µ − i γ

µṼµ − i γ
µγ5W̃µ, (4)

with d̃µ = fν
µ∂ν . The mapping between elements of

the unified notation and their counterparts in the Her-
mitionized and non-Hermitian models is introduced in
Table I. The gamma matrices γµ satisfy the Clifford al-
gebra {γµ, γν} = 2gµν with the Euclidean metric being
gµν = −δµν and Greek indices run from 1 to d. The
Hermitian fifth gamma matrix reads γ5 = −

∏

µ γ
µ and

γ0 = i γd used in obtaining the Dirac adjoint Ψ = Ψ†γ0.
The Fermi velocities are elements of the rank d diagonal
matrix M = diag[v1, . . . , vd] with vd = 1 and vi6=d are in
general complex-valued Fermi velocities.
The interacting action S̃int consists of short-range four-

fermion interactions between currents (jµ = ΨγµΨ) and
chiral currents (j5,µ = Ψγµγ5Ψ) with real-valued inter-
action strengths λ2

µν = λµαλ
α
ν and λ2

5,µν = λ5,µαλ
α
5,ν ,

respectively [57]. The current-current interaction with
interaction strengths λ2

µν = λ2gµdgνd describes a density-
density interaction. Similarly, the interaction between
chiral currents with λ2

5,µν = λ2
5gµdgνd in d = 4 di-

mensions embed the spin-spin interaction in its spatial
part [26].
The action S̃ respects UA(1)×UV (1) symmetry classi-

cally [25, 26], where UA(V )(1) denotes the chiral (vector)
symmetry. However, this classical symmetry does not
hold in the presence of quantum fluctuations resulting
in the emergence of the chiral anomaly. In the follow-
ing, we present the covariant form of this anomaly using
Fujikawa’s path integral approach [58–62].

We start with introducing two auxiliary field a and
s which brings the interaction action S̃ in Eq. (1) into a
free-fermion action S̃a,s through a Hubbard-Stratonovich
transformation such that
∫

DΨDΨeS̃ =

∫

DΨDΨDaDs eS̃a,s ≡ Z̃a,s, (5)

S̃a,s =

∫

ddx

[

iΨγµ
D̃a,s,µΨ+

1

2
aµa

µ +
1

2
sµs

µ

]

, (6)

D̃a,s,µ = d̃µ − i Ṽµ − i γ5W̃µ − iλµνa
ν − iλ5µνγ

5sν . (7)

Integration over a and s fields in the above equations
reproduces S̃ in Eq. (1). Performing an infinitesimal
chiral transformation wth angle β on the spinor Ψrot =
exp[− i γ5β(x)]Ψ, keeps the action invariant but gives rise
to an anomalous term due to a change in the Jacobian of
the path integral measure such that

DΨrotDΨrot = ei
∫
ddxβ(x)Ã5

a,sDΨDΨ. (8)

To evaluate this anomalous contribution, we express Ψ
and Ψ in terms of eigenbasis of the Hermitian Laplacian

operators /̃Da,s /̃D
†

a,s and /̃D
†

a,s
/̃Da,s [24, 25] and employ the

Heat-kernel method [61–63] to regularize the divergent
sum in the exponent of the Jacobian; see Ref. [56] for
further details on a similar approach. Introducing V µ =

Ṽµ + λµνa
ν and Wµ = W̃µ + λ5µνs

ν , Ã5
a,s in d = 2

dimensions and up to the first order in fields casts

Ã5
a,s =

−εµν

F̃2

[

i(F̃µν [V
†
]− F̃ †

µν [V ])
]

. (9)

In d = 4 dimensions and up to the second-order in the
fields, Ã5

a,s reads

Ã5
a,s =

εµνηζ

F̃4

[

F̃µν [V
†
]F̃ηζ [V

†
] + F̃ †

µν [V ]F̃ †
ηζ [V ]

+F̃ †
µν [W ]F̃ †

ηζ [W ] + F̃µν [W
†
]F̃ηζ [W

†
]
]

. (10)

Here, F̃µν [A] = d̃µAν− d̃νAµ, and F̃ †
µν [A] = d̃†µAν− d̃†νAµ

with d̃†µ = −f∗ν
µ ∂ν . F̃d for Hermitionized and non-

Hermitian models in d = 2, 4 dimensions are presented
in Table. I, where it is written in terms of the determi-
nant of a matrix B given in Euclidean space, with matrix
elements

Bαβ = δµνf∗α
µ fβ

ν −
1

2
[γµ, γν]

f∗α
µ fβ

ν − fα
µ f

∗β
ν

2
. (11)

Carrying out the same steps for an infinitesimal
vector transformation Ψrot = exp[− iκ(x)]Ψ with

DΨrotDΨ̄rot = exp
[

i
∫

ddxκ(x)Ãa,s

]

DΨDΨ̄ in d = 2 di-

mensions and up to the first order in the fields, results
in

Ãa,s =
−εµν

F̃2

[

i
(

F̃ †
µν [W ]− F̃µν [W

†
]
)

]

, (12)
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and in d = 4 dimensions and up to the second order in
fields, Ãa,s reads

Ãa,s =
−εµνηζ

F̃4

[

F̃µν [V
†
]F̃ηζ [W

†
] + F̃ †

µν [V ]F̃ †
ηζ [W ]

]

.

(13)

When λµν and λ5µν are zero, Ãa,s and Ã5
a,s reproduce

the results of Ref. [56].
Combining all results, the rotated generalized action in

Eq. (6) under the vector and chiral transformation casts

S̃rot
a,s − S̃a,s =−

∫

d2x
[

− β(x)d̃µj
5,µ
a,s − κ(x)d̃µj

µ
a,s

]

.

(14)

Enforcing the invariance of the partition function Z̃a,s in
Eq. (5) under the vector and chiral transformations, re-
sults in satisfying Ã5

a,s = − i d̃µj
5,µ
a,s and Ãa,s = − i d̃µj

µ
a,s.

To obtain the anomalous relations for the interacting
model, we should shift the auxiliary fields by their on-
shell values as aµ → aµ − λµαj

α and sµ → sµ − λ5µαj
5,α

and integrate over Hubbard-Stratonovich fields a and
s [26]. The subsequent anomalous equation in the Eu-
clidean space in d = 2 dimensions is

d̃µj
5,µ =

εµν

F̃2

(

F̃µν [Ṽ
†]− F̃ †

µν [Ṽ ]− 4Re[fη
µ ]∂η[λ

2
ναj

α]
)

,

(15)
and in d = 4 dimensions reads

d̃µj
5,µ =

εµνηζ

F̃4

(

F̃µν [Ṽ
†]F̃ηζ [Ṽ

†] + F̃ †
µν [Ṽ ]F̃ †

ηζ [Ṽ ]

+ F̃ †
µν [W̃ ]F̃ †

ηζ [W̃ ] + F̃µν [W̃
†]F̃ηζ [W̃

†]

− 4d̃η[λ
2
ζξj

ξ] F̃µν [Ṽ
†]− 4d̃†η[λ

2
ζξj

ξ] F̃ †
µν [Ṽ ]

− 4d̃η[λ
2
5,ζξj

5,ξ] F̃µν [W̃
†]− 4d̃†η[λ

2
5,ζξj

5,ξ] F̃ †
µν [W̃ ]

+ 8Re[fκ
µf

ι
η]∂κ[λ

2
ναj

α]∂ι[λ
2
ζαj

α]

+8Re[fκ
µf

ι
η]∂κ[λ

2
5,ναj

5,α]∂ι[λ
2
5,ζαj

5,α]
)

. (16)

When the gauge field V is real, W is absent and M =
1d×d, the above d̃µj

5,µ are in agreement with the Hermi-
tian results [25, 26]. We note that in the absence of inter-
actions, the above relations reproduce results of Ref. [56].
In the Minkowski space, the divergence of chiral cur-

rents in Eqs. (15) and (16) read

d̃µj
5,µ =

2

F̃2

(

Ẽ†
1 + Ẽ1

− 4Re[vµ]δ
µη∂η[λ

2
ναj

α]
)

in d = 1 + 1, (17)

d̃µj
5,µ =

8

F̃4

(

E
†
·B

†
+E

5†
·B

5†

+E ·B +E
5
·B

5
)

in d = 3 + 1. (18)

Here, the generalized electric and magnetic fields cast

Eµ = v∗µδ
µιẼι −

(

∂0λ
2
µα − v∗µδ

µι∂ιλ
2
0α

)

jα, (19)

E
5

µ = v∗µδ
µιẼ5

ι −
(

∂0λ
2
5,µα − v∗µδ

µι∂ιλ
2
5,0α

)

j5,α, (20)

Bξζ =v∗ξv
∗
ζ δ

ξιδζκB̃ικ

−
1

2

(

v∗ξδ
ξι∂ιλ

2
ζα − v∗ζ δ

ζκ∂κλ
2
ξα

)

jα, (21)

B
5

ξζ =v∗ξv
∗
ζ δ

ξιδζκB̃5
ικ

−
1

2

(

v∗ξδ
ξι∂ιλ

2
5,ζα − v∗ζδ

ζκ∂κλ
2
5,ξα

)

j5,α. (22)

The complex electric fields are also given by Ẽj =

(exp[2 iφj ]∂tVj − ∂jV0), Ẽ
5
j = (exp[2 iφj ]∂tWj − ∂jW0)

with i, j, k 6= t. Similarly, the complex magnetic
fields cast B̃i = εijkB̃jk and B̃5,i = εijkB̃5

jk with

B̃jk = exp[2 iφk]∂jVk − exp[2 iφj ]∂kVj and B̃5
jk =

exp[2 iφk]∂jWk − exp[2 iφj ]∂kWj . The phase φj with j
being a spatial index satisfies exp[iφj ] = vj/|vj |.
Our main results in Eqs. (17) and (18) retain the gen-

eral forms of chiral anomaly, namely d̃µj
5,µ ∝ E in (1+1)

dimensions and d̃µj
5,µ ∝ E.B in (3 + 1) dimensions, in

Hermitian systems [25, 26, 58, 61]. We emphasize that
anomalous relations carry additional terms originating
from complex Fermi velocities and complex gauge fields
not present in Hermitionized anomalous equations. Note
also that the terms proportional to interaction strengths
can be written as total derivatives of physical quantities.
The prefactors of F̃d in non-Hermitian systems with com-
plex Fermi velocities also differ from their counterparts
in Hermitionized models.
The complex generalized fields in Eqs. (19, 20, 21, 22)

can be viewed as complex background fields screened by
interactions between currents and densities of spinors.
These screened fields are then responsible for breaking
the chiral symmetry and giving rise to the chiral anomaly.
In other words, anomalous relations in Eqs. (17) and (18)
account for violating the chiral symmetry by the gauge
fields (V,W ) and also by the induced contributions from
interactions between different constituent of our systems.
Considering (1 + 1)-dimensional systems with real

Fermi velocities and λµν = λ2δµν with λ being a con-
stant, we rewrite Eq. (17) as

d̃µj
5,µ =

1

1 + 4λ2/F̃2

2

F̃2

(

Ẽ†
1 + Ẽ1

)

, (23)

where we use the relation between the chiral and vector
currents j5,µ = ǫµνjν to obtain the above relation. In
the absence of the axial W field in (3 + 1) dimensions,
keeping M ∈ R, λµν = λ2δµν and setting E = Ez ẑ and
B = Bz ẑ results in

d̃µj
5,µ =

1

1 + 8λ2(B̃z+B̃
†
z)

F̃4

8

F̃4

(

Ẽ†
zB̃

†
z + ẼzB̃z

)

, (24)

with the relation ε12µνjν = j5,µ. We note that the
current-current contributions, e.g., the last two terms in
Eq. (16), do not appear in the above relation. This is
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due to the translational and rotational symmetry on the
x − y plane, with fields along the z directions. We can
interpret our results in Eqs. (23) and (24) as renormal-
ization of (E,B) fields by interactions. These equations
coincide with the Hermitian results in (1+1) [26, 64] and
(3 + 1) [25, 26] dimensions upon imposing (E,B) to be
real fields.
Physical consequences in non-Hermitian Weyl

semimetals. To obtain physical phenomena stemming
from the non-Hermitian chiral anomaly in interacting
systems, we proceed with presenting the Chern-Simons
description of our (3 + 1) dimensional model in the
absence of the axial field W and without interactions
between chiral currents. In this case, the change of
action S̃ under an infinitesimal rotation β reads

S̃rot − S̃ =

∫

dtd3xβ(t, x)[d̃µj
5,µ − Ã5], (25)

where the first term in the r.h.s. of the above relation is
due to the classical shift of the action and the anomalous
second term (S̃5) accounts for the change of measure and
should satisfy Ã5 = d̃µj

5,µ as we discussed in the previ-
ous section. The anomaly-induced action after perform-
ing integration by parts and neglecting a total derivative
term can be rewritten as the Chern-Simons action in the
Minkowski spacetime as

S̃5[β] =−

∫

dtd3x
8εµνηζ

F̃4

[

d̃η j̃ζ d̃µβṼ
†
ν + d̃†η j̃ζ d̃

†
µβṼν

]

+

∫

dtd3x
8εµνηζ

F̃4

Re[fκ
µf

ι
η]∂κβj̃ν∂ιj̃ζ

+

∫

dtd3x
4εµνηζ

F̃4

d̃µβṼ
†
ν d̃ηṼ

†
ζ

+

∫

dtd3x
4εµνηζ

F̃4

d̃†µβṼν d̃
†
ηṼζ , (26)

where j̃µ = λ2
µαj

α. The associated currents for the
above action are then evaluated by summing the func-
tional derivatives of S̃5 with respect to V and V †. These
currents are given by

Mα
ν j

ν =
8εµνηζ∂δβ

F̃4

Re
[

M δ
µM

ι
ηM

ρ
ζM

∗α
ν ∂ιVρ

]

−
16εµνηζ∂δβ

F̃4

Re
[

M ι
ηM

δ
µM

∗α
ν

]

∂ιj̃ζ . (27)

Imposing V field to be real and M = 14×4 in Eq. (27)
recovers the Hermitian chiral magnetic effect when δ = 0
and the Hermitian anomalous Hall effect with δ being a
spatial index [7]. We note that the interaction-induced
terms, second line in Eq. (27), are merely present in
nonequilibrium systems (∂ιjν 6= 0 with ν 6= ι = 0) or in
inhomogeneous systems with ∂ιj0 6= 0 with ι 6= 0. Hence,
in nonequilibrium or inhomogeneous systems, Eq. (27)
describes the interacting non-Hermitian chiral magnetic

effect when the temporal component of β (δ = 0) is
nonzero and when a spatial component of β with δ ∈
{1, 2, 3} is nonvanishing, Eq. (27) results in the interact-
ing non-Hermitian anomalous Hall effect.

∂0β and ∂δβ are related to the complex-valued en-
ergy and spatial separation of the Weyl nodes in non-
Hermitian Weyl semimetals [56]. We emphasize that
these Weyl points should be non-defective degeneracies.
This is because the coalescence of eigenvectors in de-
fective degeneracies prevents introducing a well-defined
basis to express the Laplacian operators for Fujikawa’s
path integral method. As all non-defective degeneracies
are symmetry-protected [45], respecting their underlying
symmetry maintains nodal intersections and offers plat-
forms to realize non-Hermitian chiral anomalies. One ap-
proach for constructing non-Hermitian Weyl semimetals
is the effective non-Hermitian description of open quan-
tum systems. Starting from a Hermitian model for Weyl
semimetals and allowing the coupling of this system with
external environments, e.g., by a Boltzmann factor (see
Ref. [65] for an example), results in an effective Hamil-
tonian whose imaginary part of the spectrum is nonpos-
itive.

Conclusion and outlook. In conclusion, we have pre-
sented how non-Hermitian chiral anomalies for massless
fermions with complex Fermi velocities coupled to com-
plex background fields are modified in the presence of
four-particle interactions. We have shown that anoma-
lous relations cast the same form as the chiral anomaly
in Hermitian (non)interacting systems. Despite the sim-
ilar structure, the embedded terms in the presented non-
Hermitian chiral anomaly exceed those in the Hermition-
ized model. Our results show that nonperturbative inter-
action corrections to chiral anomalies are nonvanishing in
nonequilibrium or inhomogeneous systems. This can be
seen in the presented non-Hermitian chiral magnetic ef-
fect and non-Hermitian anomalous Hall effect.

An experimental study on light-driven anomalous Hall
effect in graphene reported that the Hall conductance is
unquantized, despite the theoretical expectation of quan-
tized conductivity in Hermitian systems [66]. Theoreti-
cal efforts to explain this observation revealed the es-
sential roles played by out-of-equilibrium and dissipa-
tive properties of the experimental system [65, 67]. As
these two factors are well incorporated within our the-
ory and measuring additional, terms proportional to cur-
rents, in Eqs. (15, 16) are experimentally feasible, we
expect to find signatures of our findings in light-driven
Weyl semimetals with a similar experimental setup as
in Ref. [66]. In addition, combining circuits to explore
real-time chiral dynamics [68] with algorithms to simu-
late open quantum systems [69] may also pave the way
to realize our findings digitally.

Finally, extending these results to understand
the parity-like anomaly [70, 71], the axial-torsional
anomaly [72] and axial–gravitational anomaly [73, 74]
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in non-Hermitian interacting systems is also of interest
which we leave for future studies.
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