English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Conference Paper

Learning Random Feature Dynamics for Uncertainty Quantification

MPS-Authors

Agudelo-España,  Diego
Dept. Empirical Inference, Max Planck Institute for Intelligent Systems, Max Planck Society;

/persons/resource/persons249618

Nemmour,  Yassine
Dept. Empirical Inference, Max Planck Institute for Intelligent Systems, Max Planck Society;

/persons/resource/persons84193

Schölkopf,  Bernhard       
Dept. Empirical Inference, Max Planck Institute for Intelligent Systems, Max Planck Society;

/persons/resource/persons232844

Zhu,  Jia-Jie
Dept. Empirical Inference, Max Planck Institute for Intelligent Systems, Max Planck Society;

External Resource
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Agudelo-España, D., Nemmour, Y., Schölkopf, B., & Zhu, J.-J. (2023). Learning Random Feature Dynamics for Uncertainty Quantification. In 2022 IEEE 61st Conference on Decision and Control (CDC) (pp. 4937-4944). Piscataway, NJ: IEEE. doi:10.1109/CDC51059.2022.9993152.


Cite as: https://hdl.handle.net/21.11116/0000-000F-E552-2
Abstract
There is no abstract available