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The analysis strategy for Paper I was conceived by Prof. Dr. Nikolaos Koutsouleris and 

myself. Specifically, it was the inspiration of Prof. Koutsouleris to implement the Sparse 

Partial Least Squares (SPLS) algorithm by Monteiro et al. into a MATLAB-based toolbox 

and then to use this toolbox as the analysis tool for this study. Therefore, the SPLS 

Toolbox was incepted, developed, and upgraded during the various analyses for Paper I. 

As the analyses for Paper I progressed, so did the toolbox. Therefore, the analysis for 

Paper I can be regarded both as a research article on the neuroanatomical correlates of 

childhood trauma and as a method paper for the SPLS Toolbox. Hence, I was involved in 

all aspects of Paper I, ranging from conception of the scientific idea, creating the analysis 

tool with which to conduct the analysis, visualization of the results, interpreting the 

results, and the writing of the manuscript. While the conception of the study idea was 

equally undertaken by Prof. Koutsouleris and me, the other parts that I mentioned were 

my main responsibility and driven by me.  

 

The section ‘Acknowledgments and Disclosures’ of Paper I gives an even more detailed 

overview of the individual contributions (DP, David Popovic; NK, Nikolaos 

Koutsouleris; the other initials reflect the author line):  

DP and NK had full access to all the data in the study and take responsibility for the 

integrity of the data and the accuracy of the data analysis. DP, NK, LK-I, SR, JK, PF, RU, 

EM, SJW, PB, SB, and CP were involved in concept and design. DP, NK, LK-I, SR, AR, 

DBD, RS, MSD, JE, MP, KC, JK, TH, FS-L, GB, AB, RU, CP, SJW, PB, and SB were 

involved in acquisition, analysis, or interpretation of data. DP, AR, DBD, LAA, and NK 

were involved in drafting of the manuscript. DP, NK, LK-I, SR, AR, DBD, LAA, RS, 

OFO, RP, MP, KC, JK, TH, FS-L, PF, RU, GP, AB, RKRS, CP, EM, SJW, PB, and SB 

were involved in critical revision of the manuscript for important intellectual content. DP, 

https://doi.org/10.1016/j.biopsych.2020.05.020
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and SJW were involved in obtaining funding. NK, AR, MP, KC, TH, DH, RU, EM, AB, 

PB, and SB were involved in administrative, technical, or material support. NK, SR, FS-

L, PF, SJW, PB, AB, RL, RU, SB, UD, and CP were involved in supervision. PRONIA 

consortium members listed here performed the screening, recruitment, rating, 

examination, and follow-up of the study participants and were involved in implementing 

the examination protocols of the study, setting up its information technological 

infrastructure, and organizing the flow and quality control of the data analyzed in this 

article between the local study sites and the central study database. 

 

1.2 Contribution to Paper II 
Haidl, T. K., Hedderich, D. M., Rosen, M., Kaiser, N., Seves, M., Lichtenstein, T., Penzel, 

N., Wenzel, J., Kambeitz-Ilankovic, L., Ruef, A., Popovic, D., Schultze-Lutter, F., 

Chisholm, K., Upthegrove, R., Salokangas, R. K. R., Pantelis, C., Meisenzahl, E., Wood, 

S. J., Brambilla, P., … Koutsouleris, N. (2021). The non-specific nature of mental health 

and structural brain outcomes following childhood trauma. Psychological Medicine, 1–

10. https://doi.org/10.1017/S0033291721002439 

 

My contribution to Paper II included clinical discussion and conceptualization, 

methodological supervision, and manuscript writing. First, I was involved in the clinical 

discussion about this analysis. Specifically, the study was conceptualized to investigate 

the role of childhood trauma as a transdiagnostic risk factor, increasing the likelihood of 

various affective, psychotic, and other disorders through subtle, distributed, overarching 

brain changes. This clinical discussion influenced the methodological approach we took 

for this study. Hence, I participated in creating the different prediction sets (HC vs. PAT, 

HC vs. ROD, HC vs. CHR, HC vs. ROP) to investigate the predictive utility of childhood 

trauma signatures in either delineating transdiagnostic or diagnosis-specific disease 

patterns. Furthermore, I was involved in the critical revision of the manuscript, regarding 

machine learning strategies and interpretation of the findings, specifically concerning the 

transdiagnostic nature of childhood trauma and the impact of emotional trauma on clinical 

phenotypes.  

https://doi.org/10.1017/S0033291721002439
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2. Introductory Summary  
2.1 Childhood Trauma 
2.1.1 Conceptualization & Operationalization of Childhood Trauma 

The terms ‘childhood trauma’, ‘childhood maltreatment’, and ‘adverse childhood 

experiences’ are often used synonymously (1,2). In line with Papers I and II, the term 

childhood trauma (CT) will be used throughout this thesis, encompassing the 

nomenclature of childhood maltreatment and adverse childhood experiences. The most 

serious acts of CT, which are directly committed against a child such as physical, 

emotional, and sexual abuse or neglect, occur most frequently within the nuclear family 

(1). In fact, in about 80% of abuse or neglect cases, the perpetrator is the child’s parent 

or family member (3,4). Furthermore, there are peer- or community-based forms of CT, 

such as bullying and discrimination (1). Beyond this, CT also refers to events that are not 

directly committed against children but to incidents that can still severely affect a child’s 

mental and physical health. Among these, community deprivation and violence, disasters, 

witnessing intimate partner violence between caregivers, separation from caregivers, and 

refugee or migration experience are the most common ones (3). In psychiatric research, 

many instruments evaluate CT in an operationalized manner (5). Among self-reports, the 

Childhood Trauma Questionnaire (6) is one of the most frequently used and investigated 

(7). It is also the measure used in Papers I and II (8,9). The Childhood Trauma 

Questionnaire consists of 28 items and assesses CT along the domains of physical abuse 

and neglect, emotional abuse, and neglect, as well as sexual abuse. However, there are 

many other self-reports with varying types of CT assessment, such as the Early Trauma 

Inventory Self-Report (10,11), the Child Sexual Assaults Scale (12,13), and the 

Traumatic Life Events Questionnaire (14). Although self-reports are more common, they 

may suffer from validity issues (15). Hence, observer ratings might be a viable alternative. 

A very commonly used observer rating is the Early Trauma Inventory, which examines 

physical, emotional, and sexual abuse, as well as general trauma (16).  

 

2.1.2 The individual and socioeconomic impact of childhood trauma 

Decades of research have established CT as a risk factor for physical and mental health 

(3,17). CT increases the risk of a large array of disorders, such as respiratory diseases, 

diabetes, obesity, ischemic heart disease, gastrointestinal diseases, chronic pain, 

headaches, hypertension, stroke, and cancer, thereby heavily afflicting public health. 

Regarding lifestyle patterns, CT leads to an increased risk of tobacco, alcohol, and illicit 



2 Introductory Summary 12 

drug abuse, risky sexual behavior, decreased quality of life, behavioral problems, and 

victimization through violence (18). Therefore, CT is a predictor of psychosis (5,19), 

affective disorders (20,21), substance abuse (22–25) and borderline personality disorder 

(26–28) as well as post-traumatic stress disorder (29,30), generalized anxiety disorder 

(31), obsessive-compulsory disorder (32) and phobias (31).  

CT not only disrupts the path of life of the affected individual but is also found very 

frequently in our societies. In North America, the pooled prevalence for at least one form 

or instance of CT was calculated at 58.4%, and for two or more it was 35.0% (33). 

Furthermore, 37.7% of all individuals in 28 European countries reported at least one form 

or instance of CT, while 15.2% reported two or more (34). The burden of CT can be 

assessed using the disability-adjusted life-year measure (DALY) (35). DALY is the loss 

of the equivalent of one year of full health due to mortality, disability, or other disease-

related reasons. As Papers I and II investigated the PRONIA cohort (36), which recruited 

individuals in Germany, Switzerland, Italy, Finland, and the UK, Table 1 (adapted from 

34) highlights the individual and socioeconomic impact of CT in the these countries.  

Table 1: Annual CT-attributable DALY and costs in PRONIA recruiting countries 

Country CT-attributable DALY 
(thousands) 

CT-attributable costs (US$ 
billion) 

Equivalent % of 
GDP 

Germany 2,796.6 129.4 3.4 
Switzerland 250.5 20.5 2.9 

Italy 916.2 30.4 1.5 
Finland 225.2 11.0 4.1 

UK 1,858.7 78.6 2.8 
 

2.1.3 Neurobiological effects of childhood trauma 

Considering these profound individual and societal consequences, great efforts have been 

made to better understand CT and its impact on affected individuals, specifically on a 

neurobiological level. The neurobiology of CT is related to stress mechanisms (37). 

Through the cortical pathway, the signal from a perceived stressor first passes the 

thalamus before entering higher-order cortical structures for further processing. However, 

there is also an additional subcortical pathway, in which the stimulus directly conveys 

information to the amygdala and other subcortical structures, eliciting a stress response 

without apparent awareness by activating the hypothalamic-pituitary-adrenal axis (HPA) 

(38–40). This cascade is vital to survive critical situations; however, in prolonged critical 

situations, such as CT, these mechanisms can have a detrimental effect (41). An allostatic 

overload of the HPA axis, specifically during sensitive periods of development such as 
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childhood, can lead to long-term maladaptive stress responses through epigenetic 

alterations and neural adaptations in stress-responsive brain regions (42) and ultimately 

contribute to the development of mental disorders (37). 

For years, neuroimaging studies have employed a region-of-interest (ROI) approach, 

while whole brain analyses have only recently emerged (37). ROI analyses focused on 

the hippocampus, which is known to be vulnerable to the effects of stress (43), and the 

amygdala, which plays a major role in emotion processing, regulation and awareness (44–

46). Therefore, the most well-established CT-related functional brain alterations have 

been found in the amygdala, the hippocampus/parahippocampal gyrus, and associated 

structures such as the insula and the dorsolateral prefrontal cortex (47–49). Furthermore, 

CT has been associated with reduced fractional anisotropy in the fornix and in the anterior 

and posterior thalamic radiations (50,51). The fornix is the main output tract of the 

hippocampus, while anterior and posterior thalamic radiations link the frontal and 

occipital lobes to the thalamus (51,52). Grey matter volume (GMV) studies have most 

consistently established a link between CT and reduced hippocampal GMV (53–55). 

Beyond that, however, the findings have been heterogeneous. The relationship between 

CT and amygdala GMV remains elusive; some studies reported decreased GMV and 

others reported unchanged GMV (56,57). Moreover, of the seven available meta-

analyses, only two integrated data from whole brain analyses (54,58), while the others 

relied on ROI studies (53,56,57,59,60). These whole brain meta-analyses reported 

varying degrees of reduced GMV in prefronto-temporo-limbic regions, including the 

hippocampus, the dorsolateral prefrontal cortex, the postcentral gyrus, the superior 

temporal gyrus, the amygdala, the insula, and the parahippocampal gyrus (54,58).  

 

2.1.4 Rationale for the investigation of childhood trauma by machine learning 

Taking into account the current body of evidence on CT and GMV, there are several 

issues to be addressed (61). First, future analyses must adequately consider the most 

important moderators of CT. Age is one of the strongest factors that influence GMV 

throughout life (62). Furthermore, psychiatric disorders are influenced by age, such as the 

age of onset (100), the duration of the untreated illness (63,64) and the accelerated ageing 

of the brain in disease progression (65). GMV also shows distinct sexual dimorphisms 

(66–69), while most mental disorders display sexual differences with respect to the 

severity, symptomatology, and outcome of the disease (70). There is also some evidence 

that stress response pathways may be sensitive to sexual differences (47,71,72). However, 
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the vast majority of studies to date have not examined the effects of age or sex in the 

context of CT and neuroimaging (53,54,56–60,73). Although CT is a well-established 

transdiagnostic risk factor, most CT studies have restricted their analyses to on one or two 

diagnoses, separately investigating populations of major depressive disorder, post-

traumatic stress disorder, or schizophrenia (5,19,37,74). Thus, a continued struggle to 

disentangle the effects of disease from CT-related effects is evident in most studies, which 

is further exacerbated by more chronically ill and often medicated study cohorts (57,75). 

Furthermore, most neuroimaging studies still investigate CT using voxel-wise mass-

univariate analysis, which assumes highly localized functional specialization and 

statistical independence of voxels (76). This approach does not reflect the state-of-the-art 

understanding of neuroanatomical signatures encoded along distributed, interrelated and 

interdependent clusters of voxels, cortical regions, and brain systems (61,77,78). 

Considering the clinical complexity of CT and the heterogeneity of neurobiological 

evidence, this appears to be specifically the case for CT, whose neuroanatomical 

representations are most likely subtle, distributed, and multifaceted (79).  

Therefore, in Papers I and II we investigated the relationship between structural brain data 

and CT 1) using the large multi-center PRONIA cohort, comprising young, minimally 

medicated individuals, 2) following a comprehensive, transdiagnostic approach, 

including important cofactors such as age, sex and diagnoses (80–83), and 3) employing 

advanced machine learning (ML), which are better suited to capture the complexity of 

CT and potentially associated structural brain surrogates (84).  

 

2.2 Introduction to Machine Learning 
2.2.1 General Principles 

In contrast to other medical specialties, psychiatry faces the problem that the diagnostic 

catalog and psychiatric thinking itself are based on normative definitions, some of which 

were defined several decades ago and have changed only marginally since then (85). This 

is the starting point for modern ML methods, which can integrate different qualities of 

information and high-dimensional data sets to reveal new clinical and neurobiological 

insights and break up old structures. In ML, a cohort is called a sample, an individual is 

called a case, variables are called features, and the target that the algorithm is supposed 

to predict is called the label (86). ML algorithms can be separated into supervised 

techniques where the cases are labeled (e.g., diagnostic groups), unsupervised techniques 

where the goal is to divide an unlabeled sample into groups of related cases, and semi-
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supervised techniques, containing labeled and unlabeled cases (86,87). Semi-supervised 

learning requires advanced knowledge of ML and is beyond the scope of this thesis (88).  

The goal of ML studies is to train an algorithm so that the resulting model is as good as 

possible at performing a certain task. Assuming that a binary classification is performed, 

where the positive label (1) reflects a disease case and the negative label (0) an unaffected 

healthy case, sensitivity defines the proportion of affected cases with a true positive test 

result with reference to all affected cases. Specificity defines the proportion of 

nonaffected cases with a true negative test result in reference to all nonaffected cases. 

However, the most important ML metric is balanced accuracy (BAC) (86,89). BAC is the 

mean of sensitivity and specificity and reflects the accuracy in terms of true positive and 

negative cases according to the sample size of the positive and negative groups. BAC is 

a robust measure, as it accurately reflects the performance of an algorithm in balanced 

and unbalanced label distributions (86).  

The optimization of a learning algorithm usually takes place within k-fold cross-

validation (CV) structures (90). These structures serve two purposes: 1) to maximize the 

number of cases the algorithm learns from, and 2) to assess the generalizability of the 

resulting models by applying them to previously unseen cases. Training of the algorithm, 

i.e., optimization of its hyperparameters, is conducted on the inner folds of the CV 

structure, the CV1 level. Testing of the generalizability of the model takes place in the 

outer folds of the CV structure, the CV2 level (see Paper I Supplementary Methods – 

Machine Learning Framework). In k-fold CV, the sample is divided into k subsets of 

individuals called folds on the CV1 and CV2 level. An entire CV2 fold is left out, while 

the algorithm learns on the CV1 training folds. The resulting model is then tested on the 

left-out CV2 fold. This process is repeated k times until all CV2 folds have been held out 

at least once for testing. This results in more stable estimates of generalizability, since 

training groups are more variable and more individuals are used in the CV2 test folds 

(86,90,91). The most common CV structures are (repeated) nested CV, leave-one-site-

out CV, and out-of-sample CV. In nested CV, the cases are assigned to the folds based 

on a certain stratification, e.g., diagnosis, sex, or sites, so that each fold is representative 

of the entire sample, thus avoiding batch effects (92). Nested CV ensures that all cases 

are drawn into the folds without replacement, so that there is no double assignment of 

cases in the CV2 folds. This procedure can be further augmented when, after all iterations 

have finished, the cases are re-allocated to the folds via a new distribution, and then the 

training process is repeated. This approach is called repeated nested CV and is among the 
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most robust CV setups (93). If the folds are created based on site distribution, then this 

procedure is called leave-one-site-out CV, as in each iteration, an entire site is left out for 

testing, while the algorithm is trained on the remaining sites (94,95). In out-of-sample 

CV, also called external validation, the final model is applied to a new sample from a 

different cohort, which assesses generalizability even better (96).  

 

2.2.2 Supervised Machine Learning 

In supervised learning, classification models predict a discrete outcome (e.g., healthy 

group vs. patient group) (97), while regression models predict a continuous outcome (e.g., 

disease severity) (98). It is beyond the scope of this thesis to cover all supervised learning 

algorithms, however, L2-regularized logistic regression is a simple and frequently used 

classification method (99–101) and the main statistical tool of Paper II (9,102). In logistic 

regression, the labels are categorical or binary. This is accomplished by introducing the 

step function, fitting a smoothed sigmoid curve to the data, which does not incrementally 

in- or decrease depending on the features but outputs the value 1 above the decision 

boundary and 0 below the decision boundary (103). Since the step function does not 

differentiate between more extreme observations, it is robust against outliers. Logistic 

regression predicts labels using a linear combination of regression parameters and 

features. Therefore, logistic regression is an ‘open book’ algorithm with a high degree of 

transparency and interpretability.  

Multicollinearity among features is a challenge in logistic regression. When faced with 

highly correlated features, optimization of the regression parameters becomes unstable 

since multiple linear combinations of features can predict the label. Thus, the algorithm 

is no longer able to converge on a unique linear combination of weighted features. The 

resulting model suffers from two main issues: 1) the regression parameters of the collinear 

features tend to be very high in absolute value and 2) these regression parameters tend to 

show a very high variance (103,104). While issue 1) leads to overfitting, that is, fitting 

the model too tightly to the dataset, thereby sacrificing generalizability, issue 2) leads to 

unstable models. To combat this issue, the L2-regularization, or Tikhonov regularization, 

is employed in the regression model (104,105). When L2-regularization is introduced into 

the model, the optimization function is updated by adding a shrinkage penalty. This 

penalty ensures that features that are not relevant to the prediction will become very low, 

while relevant features will retain moderate to high values, so that their predictive power 

is indicated. Hence, L2-regularization 1) increases generalizability, and 2) ensures stable 
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models, even when faced with multicollinearity (104,106). In summary, L2-regularized 

logistic regression produces robust results in an easy-to-understand and computationally 

efficient manner, even when faced with high-dimensional and multicollinear features, 

which is frequent in neuroscience (107,108).  

 

2.2.3 Unsupervised Machine Learning  

Unsupervised learning techniques are used to analyze and group unlabeled data sets. 

These algorithms discover hidden patterns or data groupings without or with minimal 

human intervention (86). This ability makes them very suitable for exploratory data 

analysis, segmentation of (sub)populations or patient cohorts, as well as image 

recognition (109). Among the most used unsupervised learning techniques is clustering. 

Clustering algorithms group unlabeled data based on their similarities or differences 

(110). Another important aspect of unsupervised learning is dimensionality reduction, 

which is used to gain a better understanding of the most relevant or principal features or 

components of high-dimensional and complex datasets by decomposing them into lower-

dimensional components, while preserving the integrity of the dataset (111). A prominent 

example of such a dimensionality reduction technique is principal component analysis 

(PCA). PCA reduces redundancies and compresses data sets through feature extraction, 

thus leading to a set of 'principal components', which maximize the explained variance 

(111). Linked to PCA is an approach called singular value decomposition, which is the 

starting point of an unsupervised learning algorithm called Partial Least Squares 

(PLS)(112). PLS and its sparse version are at the center of my Ph.D. and feature 

prominently in Paper I.  

 

2.3 Sparse Partial Least Squares Toolbox 
2.3.1 Background: Sparse Partial Least Squares 

PLS was developed in 1982 by Herman Wold (1908 – 1992) primarily for econometric 

purposes (113), while his son Svante Wold (1941 – 2022) adapted it for processes in the 

chemical industry (114). Since then, PLS has been used to investigate neuroanatomical 

correlates of observable clinical phenotypes (115). The first major application of PLS was 

in PET data and face recognition tasks (116). More recently, it has been used to assess 

the relationship between inflammation and treatment resistance in major depressive 

disorder (117) and clinical-anatomical dimensions of schizophrenia (118).  
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In general, PLS takes two different data matrices from a cohort (e.g., clinical and 

neuroimaging data) and then tries to extract as many multivariate associative effects as 

possible from these two matrices. These associative effects are called latent variables 

(LV); and each LV contains a pair of weight vectors, which place weights on every feature 

in the respective matrix, so that covariance between the two matrices is maximized. 

Hence, PLS examines which features in the matrices are covarying with each other, as 

well as the direction and the strength of that covariation. After computing such a weight 

vector pair, the effect explained by these vectors is removed from the data matrices via 

matrix deflation, before PLS tries to find the next associative effect (119). This allows the 

detection of multiple layers of associative effects within a dataset, possibly unmasking 

otherwise hidden associations (119). In a second step, the weight vectors of each LV can 

be projected back onto their respective data matrix, resulting in two new vectors, called 

latent scores. These latent scores represent the loading of each individual onto the 

respective LV. Correlating the latent scores with each other allows for the computation 

of their correlation coefficient, as well as R2, reflecting the explained covariance of this 

LV (115,119). Those latent scores can also be used for post hoc analyses (119).  

One challenge of PLS applications can arise in high-dimensional datasets. In such 

situations, the interpretability of the resulting PLS models can be difficult, as PLS outputs 

pairs of non-sparse weight vectors (119). Considering that, for example, a vectorized 3 

mm resliced T1-weighted MR image can have anywhere between 40,000 and 60,000 

features, the weight vector can be challenging to interpret. To overcome this issue and to 

remove noisy features, a sparse variant of PLS, called sparse PLS (SPLS), has emerged 

(119,120). SPLS selects a subset of only the most key features to be used in the model. 

The number of features that are included in the model, i.e., the sparsity of the model, is 

controlled by a pair of hyperparameters (one for each weight vector) (119). Thus, SPLS 

combines the power of PLS to deconstruct complex multimodal data sets while providing 

a built-in feature selection that increases clarity and interpretability. The details of the 

algorithm can be found in the main text of Paper I (Methods and Materials - SPLS Analysis 

& Assessment of Generalizability and Significance) and its Supplement (Supplementary 

Methods - Sparse partial least squares algorithm & Machine learning framework).  

Regarding the main ML programming languages (MATLAB, R, Python), there is no (free 

or proprietary) toolbox available that performs SPLS analysis. Therefore, a substantial 

part of my Ph.D. project was dedicated to creating an open source, user-friendly, and 

state-of-the-art SPLS toolbox in MATLAB. From its inception in October 2017 and its 
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first deployment in March 2020 to its current version, the SPLS toolbox has undergone 

many changes. The latest version is available free of charge at: 

https://github.molgen.mpg.de/DavidPopovic/SPLS_Toolbox_2022/tree/main/SPLS_To

olbox_Dev_2022. 

 

2.3.2 Software architecture 

The SPLS Toolbox is coded in MATLAB 2020b (The MathWorks, Inc., Natick, MA, 

USA) and consists of the master module running the main analysis pipeline 

(dp_spls_standalone) as well as the three slave modules feeding into the master module: 

hyperopt (hyperparameter optimization), permutation (permutation testing of the LV) and 

bootstrapping (bootstrapping the features of the LV). All modules are compiled using the 

built-in compiling application of MATLAB to run on the Sun Grid Engine batch queueing 

system (Oracle Corporation, Santa Clara, California, USA). The four modules are 

deployed using adaptive Bash scripts (Bourne-again shell, General Public License, 

https://www.gnu.org/software/bash/). The main module dp_spls_standalone executes 

overarching computation steps, deploys the slave modules, and integrates their results. 

The slave modules are computed as job arrays, so that their high-computation tasks are 

divided into smaller parallel jobs, usually between 40 and 60. The SPLS Toolbox consists 

of 85 functions, of which 44 were coded by me, 33 functions were taken from MATLAB 

built-in functions or third-party sources, and 8 were adapted from the NeuroMiner 

Software of Nikolaos Koutsouleris (http://proniapredictors.eu/neurominer/index.html). 

  

2.3.3 Machine Learning Framework 

The ML framework of the SPLS Toolbox includes fully cross-validated pre-processing, 

hyperparameter optimization, permutation testing, and bootstrap sampling.  

Cross-Validation: The user can choose between (repeated) nested CV, random holdout 

CV, leave-one-site-out CV, and random split-half CV (86). In addition, the user can 

define the number of CV1 and CV2 folds and add permutation steps at both levels. 

Furthermore, the toolbox also allows for the extraction of a separate validation set. Thus, 

a percentage of individuals (e.g., 10%, 25%) does not enter the CV sequence and is kept 

only for application of the final model. The stratification of cases into CV folds can be 

specified based on diagnoses, sites, sex, or any other criterion.  

Pre-processing: The pre-processing of the features, including scaling and covariate 

correction, is carried out separately in the CV1 training and test folds, thus avoiding data 

https://github.molgen.mpg.de/DavidPopovic/SPLS_Toolbox_2022/tree/main/SPLS_Toolbox_Dev_2022
https://github.molgen.mpg.de/DavidPopovic/SPLS_Toolbox_2022/tree/main/SPLS_Toolbox_Dev_2022
https://www.gnu.org/software/bash/
http://proniapredictors.eu/neurominer/index.html
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leakage (121). For scaling, mean centering or rescaling between 0 and 1 can be chosen. 

The user can choose whether to remove covariate effects from none, one, or both data 

matrices. The user can also define whether to correct across all individuals in the sample 

or to correct based on the covariate effect in a certain subpopulation. If the latter is chosen, 

the covariate effects are calculated in a chosen subpopulation and then removed from the 

entire sample, including the subpopulation. For example, the effect of ageing on MR 

images can be calculated only within the healthy control population, and, afterwards, this 

'healthy' ageing effect is removed from the entire sample. This avoids deleting effects that 

might be collinear with age, but which shall be retained after age correction. The 

correction is based on univariate partial correlation analysis (122,123). 

Hyperparameter Optimization: This module performs a grid search of all possible 

hyperparameter combinations. The lower and upper limits of the grid can be adapted to 

search for particularly dense or sparse solutions; however, it is recommended to use the 

entire grid by default. The number of data points within this grid can be defined by the user; 

most commonly, 20 or 40 data points are chosen for each hyperparameter, leading to 400 

or 1600 hyperparameter combinations, respectively.  

Permutation Testing: The performance of the optimal model on the CV2 level is 

compared against a certain number of models, retrained with the optimal hyperparameter 

combinations on distorted, permuted datasets. The number of permutations can be chosen 

by the user; the default setting is 5000. In the next step, the P value of the final model can 

be calculated in two ways: 1) counting, 2) area under the curve (AUC). The counting 

method counts how often the models trained on the permuted CV1 datasets performed 

better than the optimal model, divided by the number of permutations. The AUC method 

creates a null distribution of the performances of the models trained on the permuted CV1 

datasets and then computes the AUC for the optimal model.  

LV Selection: The P-values of all CV2 models are adjusted for multiple tests. The options 

for this are as follows: Bonferroni, Sidak, Holm-Bonferroni, Benjamini-Hochberg, 

Benjamini-Yekutieli, Storey, Fisher (124). The model with the lowest adjusted P value is 

chosen as the winning model and becomes the LV of this iteration. If the adjusted P-value 

of this model is below the significance threshold, then, according to the omnibus 

hypothesis, the LV is significant (119,125).  

Bootstrapping: Bootstrap samples are drawn from the pooled CV1 folds and used to 

retrain the model a certain number of times using the optimal hyperparameter 

combination (115). Bootstrap ratios and confidence intervals are then calculated for each 



2 Introductory Summary 21 

feature weight, giving the user two different measures of feature weight stability. These 

can be used to prune the model post hoc. The default setting is 500 bootstrap samples; 

however, the user is free to choose any number of bootstrap samples.  

Deflation/Iteration: If the LV is significant, its effect is removed from the matrices by 

projection deflation. The user can set the limit of how many nonsignificant LV are 

allowed. The default setting is one, meaning that as soon as one nonsignificant LV is 

detected, the SPLS analysis ends. If an LV is not significant, it represents a random effect. 

Continuing the analysis would mean deflating the matrices by this random effect and 

therefore arbitrarily changing them and compromising all the following LV. However, 

another perspective is that these non-significant LV are not 'random' effects, but noise 

within the data. Deflating the data matrices from these nonsignificant LV would be like 

removing noise from the dataset. Therefore, this kind of noise reduction could enable the 

detection of further significant LV. Thus, the stop criterion can be chosen individually. 

  

2.3.4 Model Visualization 

The final model with all its significant LV can be visualized in a visualization module. 

The module is a noncompiled MATLAB function that contains 190 other functions. 

Among these, 56 functions were taken from the SPM12 toolbox 

(https://www.fil.ion.ucl.ac.uk/spm/software/spm12/), 18 functions were coded by me and 

13 stemmed from the NeuroMiner Software. The rest of the functions came from third-

party sources. Phenotypic vectors or other types of vector data can be automatically 

exported as bar plots or sunburst charts. The coloring is adaptive and can be changed 

according to the MATLAB color maps or external color palettes. 3D brain images are 

reconstructed from brain vectors and written as NIFTI files (126). These files can then be 

imported into MRI visualization tools such as the Connectome Workbench 

(https://humanconnectome.org/software/connectome-workbench). The module can also 

overlay brain vectors onto atlases, calculate the percentage of positive and negative 

weights assigned to each individual brain region or brain network, and visualize them as 

spider plots. Currently, the Brainnetome (127) and Diedrichsen atlas (128) are used for 

parcellation of GMV regions in the cerebrum and cerebellum, respectively. The Yeo 

(129) and Buckner atlas (130) are used for parcellation of functional brain networks in 

the cerebrum and cerebellum, respectively.  

 

https://www.fil.ion.ucl.ac.uk/spm/software/spm12/
https://humanconnectome.org/software/connectome-workbench
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ABSTRACT
BACKGROUND: Childhood trauma (CT) is a major yet elusive psychiatric risk factor, whose multidimensional
conceptualization and heterogeneous effects on brain morphology might demand advanced mathematical modeling.
Therefore, we present an unsupervised machine learning approach to characterize the clinical and neuroanatomical
complexity of CT in a larger, transdiagnostic context.
METHODS: We used a multicenter European cohort of 1076 female and male individuals (discovery: n = 649;
replication: n = 427) comprising young, minimally medicated patients with clinical high-risk states for psychosis;
patients with recent-onset depression or psychosis; and healthy volunteers. We employed multivariate sparse
partial least squares analysis to detect parsimonious associations between combinations of items from the
Childhood Trauma Questionnaire and gray matter volume and tested their generalizability via nested cross-
validation as well as via external validation. We investigated the associations of these CT signatures with state
(functioning, depressivity, quality of life), trait (personality), and sociodemographic levels.
RESULTS:We discovered signatures of age-dependent sexual abuse and sex-dependent physical and sexual abuse,
as well as emotional trauma, which projected onto gray matter volume patterns in prefronto-cerebellar, limbic, and
sensory networks. These signatures were associated with predominantly impaired clinical state- and trait-level
phenotypes, while pointing toward an interaction between sexual abuse, age, urbanicity, and education. We
validated the clinical profiles for all three CT signatures in the replication sample.
CONCLUSIONS: Our results suggest distinct multilayered associations between partially age- and sex-dependent
patterns of CT, distributed neuroanatomical networks, and clinical profiles. Hence, our study highlights how
machine learning approaches can shape future, more fine-grained CT research.

Keywords: Childhood trauma, Machine learning, Morphometry, MRI, Sparse partial least squares, Transdiagnostic
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Childhood trauma (CT) is defined as any act that results in
harm, potential harm, or threat of harm to a child (1) and is
generally operationalized along the dimensions of physical
abuse or neglect, sexual abuse, and emotional abuse or
neglect (2). CT acts as a transdiagnostic risk factor for a variety
of psychiatric disorders (3–5), reduces an individual’s quality of
life (6), impairs levels of functioning (7), and is associated with
dysfunctional personality development (8,9). Furthermore,
neuroimaging studies have suggested associations between
CT and gray matter volume (GMV), reporting alterations in the
subcortical, temporal, and frontal regions (10–13). Yet, these
findings have been highly heterogeneous, and so far, neither a
N: 0006-3223
distinct correlate of CT (14–19) nor a link between CT-related
brain changes and observable clinical phenotypes has been
established (20,21).

A better neurobiological understanding of CT is important,
as it could mitigate the long-term adverse effects of CT
through early recognition and targeted multimodal intervention
programs (22,23). Still, most studies investigating CT use
voxelwise mass-univariate strategies, which assume highly
localized functional specialization and statistical independence
of voxels (24). This approach does not reflect the state-of-the-
art understanding of neuroanatomical variation being encoded
along distributed clusters of voxels, cortical regions, and brain
ª 2020 Society of Biological Psychiatry. 1
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systems (25–27), potentially leading to subtle and distributed
effects of CT on brain morphology (28). The diverse effects of
CT might be better understood in a larger context by investi-
gating the more generalized, transdiagnostic effects of CT, and
CT’s important interactions with age and sex (29–32).
Therefore, advanced methods are needed to capture the
complexity of CT and potentially associated structural brain
surrogates (33).

We took an in-depth approach to better characterize the
complex neuroanatomy of CT by investigating the relationship
between structural brain data and CT in the multicenter, Eu-
ropean PRONIA (Personalized Prognostic Tools for Early
Psychosis Management) study cohort (https://www.pronia.eu/).
Following a transdiagnostic, data-driven study design, we
applied the multivariate sparse partial least squares (SPLS)
algorithm to identify parsimonious and interpretable phenotype-
brain signatures (34). Specifically, we used the strength of SPLS
to model complex patterns of interactions between CT-related
phenotypic features and brain voxels, possibly yielding new
and distinct CT signatures. Finally, we wanted to examine the
clinical and sociodemographic implications of these novel CT
dimensions by performing correlation analyses between par-
ticipants’ loadings onto the CT signatures and measures of
functioning, depressivity, quality of life, personality, and socio-
demographic information. We expected to find transdiagnostic
CT signatures linked to clinical and sociodemographic charac-
teristics, providing further insights into the multidimensional
fingerprints of CT.

METHODS AND MATERIALS

Study Participants

The PRONIA study cohort includes healthy control (HC) sub-
jects, participants with recent-onset depression (ROD) or
recent-onset psychosis (ROP), and patients with clinical high-
risk states for psychosis (CHR). The cohort is divided into a
discovery sample for model generation and a replication
sample for model validation [Supplemental Methods and
Koutsouleris et al. (35)]. Data from 649 participants from the
discovery sample (264 HC subjects, 129 participants with
ROD, 132 participants with ROP, 124 patients with CHR)
(Table 1) and 427 individuals from the replication sample (135
HC subjects, 96 participants with ROD, 92 participants with
ROP, 104 patients with CHR) (Table S6) were obtained for the
analysis.

CT and Clinical and Sociodemographic Features
Assessment

CT was measured using the Childhood Trauma Question-
naire (CTQ) (36,37). The CTQ is a 28-item self-report ques-
tionnaire that assesses 5 types of maltreatment—emotional,
physical, and sexual abuse as well as emotional and physical
neglect—and contains an additional denial measure. A 5-
point Likert-type scale is used to record responses ranging
from 1 (“Never True”) to 5 (“Very Often True”). Internal con-
sistency scores of the CTQ subscales range from 0.66
(physical neglect) to 0.94 (sexual abuse), while the test-
retest coefficient over a 3.5-month period was calculated
at 0.80 (36–38).
2 Biological Psychiatry - -, 2020; -:-–- www.sobp.org/journal
Functioning was evaluated using the Global Assessment
of Functioning Symptom Scale (GAF:S) and Global
Assessment of Functioning Disability/Impairment Scale
(GAF:D/I) (39) and the Global Functioning: Social Scale
(GF:S) and Global Functioning: Role Scale (GF:R) (40), while
depressive symptoms were quantified using the Beck
Depression Inventory (BDI) (41). The World Health Organi-
zation Quality of Life Short Version (WHOQOL-BREF) was
applied to measure individual perception of quality of life
(42). Personality domains were assessed using the
Neuroticism-Extraversion-Openness Five-Factor Inventory
(NEO-FFI), quantifying personality traits along 5 domains:
openness, conscientiousness, extraversion, agreeableness,
and neuroticism (43).

Sociodemographic features were assessed along the do-
mains of the participant’s ethnicity, urbanicity, religion,
parental education background, family and relationship status,
and education level and employment status.

Magnetic Resonance Imaging Data Acquisition and
Preprocessing

T1-weighted structural magnetic resonance imaging data were
acquired from the study participants (Supplemental Methods).
All images were examined for artifacts, gross anatomical ab-
normalities, and signs of neurological disease by trained clinical
neuroradiologists. Structural magnetic resonance imaging data
were preprocessed using the CAT12 toolbox (version 1206;
http://www.neuro.uni-jena.de/cat/), an extension of the SPM12
software (http://www.fil.ion.ucl.ac.uk/spm/software/spm12/),
and final GMVs were corrected for total intracranial volume.

SPLS Analysis

We used phenotypic and brain data as input for the SPLS al-
gorithm. Our phenotypic dataset contained all 28 CTQ items,
age and sex as well-established modulators of CT
(31,32,44,45), and study group. The brain dataset consisted of
vectorized whole-brain GMV (resliced to 3 mm) for all in-
dividuals. Given these two datasets, SPLS uses a singular
value decomposition to compute a latent variable (LV)
capturing a specific associative effect between phenotypic and
brain data. For each dataset, the LV contains a vector with
feature weights (values ranging from 21 to 1) measuring the
covariance between the two datasets. Therefore, the LV con-
sists of paired multivariate profiles measuring how the
phenotypic features (phenotypic pattern) relate to the brain
features (brain pattern) (Supplemental Methods). Another
characteristic of SPLS is the enforcement of sparsity, whereby
weights of zero are assigned to features that did not yield any
relevant association. The process of weighting and selecting
features according to their covariance is accomplished via l1-
and l2-norm constraints, similar to elastic net regularization
(46), and is controlled by a pair of hyperparameters. Addi-
tionally, every participant can be assigned a pair of latent
phenotypic and brain scores. These latent phenotypic and
brain scores indicate how strong a participant loads on the
phenotypic and brain patterns of the LV, respectively, with
greater latent score values reflecting higher individual loading
and vice versa. We used these latent scores for post hoc
correlation analyses to investigate clinical and sociodemo-
graphic aspects of the LV signatures (34).
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Table 1. Clinical and Demographic Characteristics of the Discovery Sample

All HC Group ROD Group CHR Group ROP Group H/c2 (df) p Value

Age, Years 28.39 (6.00) 28.50 (6.45) 29.09 (6.21) 27.02 (4.84) 28.73 (5.63) 8.98 (2)a .011b

Sex, Female % 53% 62% 54% 48% 38% 7.41 (1)c .024b

Education, Years 14.77 (3.25) 15.69 (3.17) 14.70 (3.16) 13.78 (3.03) 13.93 (3.15) 5.56 (2)a .062

GAF:S 65.15 (21.12) 86.52 (6.51) 55.76 (12.48) 54.95 (11.00) 41.13 (13.22) 86.63 (2)a 1.55 3 10219b

GAF:D/I 65.57 (20.1) 85.16 (5.86) 56.36 (14.42) 55.93 (13.94) 44.44 (12.23) 59.82 (2)a 1.02 3 10213b

GF:S 7.15 (1.67) 8.51 (0.84) 6.47 (1.34) 6.51 (1.36) 5.68 (1.47) 28.11 (2)a 7.86 3 10207b

GF:R 6.97 (1.90) 8.56 (0.75) 6.23 (1.69) 6.18 (1.44) 5.24 (1.65) 29.66 (2)a 3.62 3 10207b

Right-Handed, % 91% 94% 90% 88% 90% 0.41 (1)c .82

PANSS Total 55.97 (18.83) NA 47.55 (10.91) 50.57 (13.23) 69.29 (21.92) 87.93 (2)a 8.07 3 10220b

PANSS Positive 11.92 (6.00) NA 7.67 (1.24) 10.23 (2.96) 17.68 (6.50) 204.19 (2)a 4.59 3 10245b

PANSS Negative 13.77 (6.40) NA 12.56 (4.98) 12.53 (5.88) 16.14 (7.37) 21.62 (2)a 2.02 3 10205b

PANSS General 30.25 (9.38) NA 27.31 (6.73) 27.78 (6.90) 35.47 (11.23) 50.54 (2)a 1.06 3 10211b

BDI 15.78 (14.62) 3.73 (5.27) 26.23 (13.82) 25.49 (12.24) 21.05 (12.49) 11.05 (2)a .004b

Study Center, n 149.87 (6)c 8.23 3 10230b

Munich 181 58 44 38 41

Basel 84 37 15 17 15

Cologne 131 59 24 20 28

Birmingham 80 43 14 13 10

Milan 37 13 6 7 11

Turku 74 23 12 17 22

Udine 62 31 14 12 5

Total 649 264 129 124 132

Values are mean (SD), except where noted. The p values are stated after false discovery rate correction for multiple testing.
BDI, Beck Depression Inventory; CHR, clinical high-risk states for psychosis; GAF:D/I, Global Assessment of Functioning Disability/Impairment

Scale; GAF:S, Global Assessment of Functioning Social Scale; GF:R, Global Functioning: Role Scale; GF:S, Global Functioning: Social Scale; HC,
healthy control; NA, not available; PANSS, Positive and Negative Syndrome Scale; ROD, recent-onset depression; ROP, recent-onset psychosis.

aKruskal-Wallis test (H test).
bSignificant value.
cc2 test.
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Assessment of Generalizability and Significance

We implemented a nested cross-validation framework, which
robustly prevents information leakage between participants
used for training and validating the models (47,48) (see
Figure S2). We used 10 inner folds for hyperparameter opti-
mization of the l1- and l2-norm constraints and 10 outer folds
to test the optimized model against a previously held-out
dataset. Before entering the SPLS analysis, z-transformation
models were generated in the training data and then applied to
the test data within the nested cross-validation structure.
Significance testing of each LV was done by comparing the
performance of the optimized model against 5000 permuta-
tions of the dataset. If an LV proved significant, the respective
covariance component was removed from the two datasets via
projection deflation, and the next LV was computed on the
deflated datasets. This process was repeated until an LV failed
to reach significance, thus generating several layers of signif-
icant, associative effects. LVs are labeled according to the
order of their computation (Supplemental Methods). The
generalizability of the CT model was further validated by
applying data from the replication sample onto the phenotypic
and neuroanatomic patterns of all its LVs, thus generating
latent phenotypic and brain scores in the replication sample.
These latent scores were correlated to our predefined set of
clinical and sociodemographic parameters. Univariate partial
correlation analysis between the 7 study sites and the input
B

datasets was used within the nested cross-validation scheme
to correct for site effects (49,50).

Univariate Analysis

Group-level sociodemographic and clinical differences were
assessed using nonparametric tests (Kruskal-Wallis H test,
Wilcoxon-Mann-Whitney test, Dunn’s post hoc multiple com-
parison test, c2 test). Latent trauma and brain scores were
correlated to clinical and sociodemographic features using
Spearman’s correlation coefficient (r). Analyses were false
discovery rate–corrected for multiple testing at a significance
threshold of q , .05 (51).
RESULTS

Group-Level Differences at Baseline

The clinical study populations (ROD, CHR, and ROP partici-
pants) revealed significant differences with respect to age, sex,
GAF, GF, Positive and Negative Syndrome Scale, and BDI
(Table 1, Tables S7 and S8). Furthermore, a significant differ-
ence for the recruitment of study groups across sites was
found (Table 1, Table S9). The clinical study populations also
displayed significant differences in antidepressant, antipsy-
chotic, and sedative treatment (Tables S10 and S11). More-
over, the clinical study populations of the discovery and
replication samples did not reveal any significant differences
iological Psychiatry - -, 2020; -:-–- www.sobp.org/journal 3
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with regard to CTQ total or subscale scores (Table 2,
Table S12).
SPLS Results: Association Between Phenotypic and
Brain Data

SPLS analysis of all 649 discovery sample subjects yielded 5
significant LVs (LV1–LV5), representing different layers of as-
sociation between phenotypic and brain patterns (see
Tables S13 and S14 for CTQ item list and atlas readouts
and Figure S20 for visualization of phenotype-brain
correlations).

LV1: Age (p value = 1.9 3 10204). Phenotypic pattern
(Figure S6A): Age received the strongest positive weight,
whereas further positive weights were assigned to male sex
and ROP status and to the subscales of sexual abuse (5 items),
physical abuse (4 items), emotional abuse (1 item), and phys-
ical neglect (1 item). Smaller negative weights were distributed
to emotional abuse (1 item), denial (1 item), and female sex.
Brain pattern (Figure S6B): GMV was widely negatively
weighted across the frontal, temporal, parietal, and occipital
regions as well as across the subcortical areas. Positive GMV
weights were sparsely found in the thalamic region.

LV2: Sexual Abuse and Age (p = 1.9 3
10204). Phenotypic pattern (Figure 1A): Two questions from
the sexual abuse subscale were positively weighted, while age
was negatively weighted. Brain pattern (Figure 1B): GMV was
Table 2. Group-Level Statistics for CTQ Differences Between th

CTQ Scale Sample All HC Group R

Total Discovery 37.0 (12.1) 30.8 (5.8) 4

Replication 38.3 (13.1) 31.0 (6.9) 4

p .50b .91b

Emotional Abuse Discovery 8.4 (4.0) 6.5 (2.4)

Replication 9.0 (4.5) 6.4 (2.0)

p .50b .71b

Physical Abuse Discovery 6.0 (2.5) 5.4 (1.0)

Replication 6.2 (2.6) 5.5 (1.5)

p .56b .77b

Sexual Abuse Discovery 5.7 (2.4) 5.2 (0.9)

Replication 5.8 (2.6) 5.1 (0.9)

p .95b .71b

Emotional Neglect Discovery 10.0 (4.4) 7.9 (3.0) 1

Replication 10.4 (4.6) 8.0 (3.2) 1

p .54b .95b

Physical Neglect Discovery 6.8 (2.4) 5.8 (1.4)

Replication 6.9 (2.5) 5.9 (1.6)

p .63b .74b

Denial Discovery 0.6 (0.9) 0.7 (1.0)

Replication 0.6 (0.9) 0.8 (1.1)

p .85b .65b

Values are mean (SD). The p values are stated after false discovery rate
CHR, clinical high-risk states for psychosis; CTQ, Childhood Trauma Qu

onset depression; ROP, recent-onset psychosis.
aKruskal-Wallis test (H test).
bWilcoxon-Mann-Whitney test.
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assigned negative weights bilaterally in the prefrontal cortex
(PFC), particularly in the dorsolateral PFC (DLPFC) and medial
PFC regions. Further negative weights were found bilaterally in
the superior and middle temporal gyrus as well as unilaterally in
the left angular gyrus. Positive weighting was detected bilat-
erally in the cerebellum, premotor cortex, cuneus, lingual gy-
rus, and the ganglia.

LV3: Sex (p = 1.9 3 10204). Phenotypic pattern
(Figure S7A): The strongest positive and negative weights were
detected for male and female sex, respectively. Moreover,
positive weights were assigned to emotional abuse (1 item),
physical abuse (2 items), sexual abuse (3 items), emotional
neglect (1 item), and physical neglect (2 items), while smaller
negative weights were distributed to age, sexual abuse (1
item), and denial (1 item). Brain pattern (Figure S7B): GMV was
positively weighted in the occipital, parietal, and frontal areas,
particularly in the precuneus region, and negatively bilaterally
weighted in the prefrontal, hippocampal, and parietal areas.

LV4: Physical/Sexual Abuse and Sex (p = 1.2 3
10203). Phenotypic pattern (Figure 2A): Physical (3 items) and
sexual abuse (4 items) received positive weights, while male
and female sex were weighted inversely. Brain pattern
(Figure 2B): The most profound effect was detected in bilateral
positive weighting of GMV in the primary somatosensory cor-
tex, basal ganglia, and cuneus as well as in unilaterally reduced
GMV in the left fusiform gyrus and right DLPFC. GMV was also
positively weighted bilaterally in the occipital gyrus, angular
e Discovery and Replication Samples

OD Group CHR Group ROP Group H (df) p

0.0 (14.6) 41.8 (13.1) 41.9 (12.5) 5.08 (2) .55a

0.6 (11.9) 42.6 (13.7) 41.8 (15.8) 1.20 (2) .76a

.59b .84b .61b

9.2 (4.5) 10.2 (4.4) 9.8 (4.4) 5.20 (2) .52a

9.4 (4.1) 10.8 (4.9) 10.1 (5.2) 3.70 (2) .50a

.69b .72b .97b

6.5 (3.3) 6.5 (3.1) 6.5 (2.9) 1.33 (2) .95a

6.3 (2.4) 6.6 (3.0) 6.6 (3.3) 0.25 (2) .98a

.64b .72b .89b

5.9 (2.8) 6.0 (2.8) 6.3 (3.1) 2.84 (2) .50a

5.9 (2.9) 6.1 (2.9) 6.3 (3.2) 2.39 (2) .60a

.76b .92b .87b

1.3 (5.1) 11.8 (4.5) 11.4 (4.4) 1.73 (2) .80a

1.8 (4.8) 11.7 (4.4) 11.1 (5.0) 1.46 (2) .72a

.61b .86b .70b

7.1 (2.9) 7.3 (2.6) 7.8 (2.8) 9.70 (2) .05a

7.1 (2.3) 7.4 (2.6) 7.6 (3.1) 0.19 (2) .99a

.62b .99b .51b

0.4 (0.8) 0.4 (0.8) 0.5 (0.9) 1.22 (2) .99a

0.4 (0.8) 0.3 (0.8) 0.6 (0.9) 7.73 (2) .15a

.88b .82b .51b

correction for multiple testing.
estionnaire; df, degrees of freedom; HC, healthy control; ROD, recent-
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Figure 1. Age-dependent sexual abuse signature
of latent variable 2 (LV2). (A) The barplot visualizes
the direction and values of the weights included in
the phenotypic pattern of LV2. Two questions from
the Childhood Trauma Questionnaire (CTQ) sexual
abuse subscale (CTQ21, CTQ24) received a positive
weight, while age received a negative weight. (B)
Depicted is the brain pattern of LV2, with positive
weighting of voxels displayed in the red color scale
and negative weighting displayed in the blue color
scale. CHR, clinical high-risk states for psychosis;
HC, healthy control; ROD, recent-onset depression;
ROP, recent-onset psychosis.
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and supramarginal gyrus, and thalamus. Smaller clusters of
negative GMV weights were discovered bilaterally in the su-
perior and middle temporal gyrus, cingulate gyrus, (para)hip-
pocampus, precuneus, and right PFC.

LV5: Emotional Abuse/Neglect (p = 1.9 3
10204). Phenotypic pattern (Figure 3A): Emotional abuse (3
items) and neglect (3 items) were weighted positively. Brain
pattern (Figure 3B): The largest effects were found in bilateral
positive GMV weights in in the cuneus and left primary so-
matosensory cortex as well as in bilateral negative weights in
the cingulate. Smaller positive weights were found in the right
occipital region and left DLPFC, whereas negative weighting
was detected in the left insula, right caudate nucleus, left
supramarginal gyrus, right hippocampus, and bilaterally in the
fusiform gyrus.

In summary, LV1 and LV3 represented mostly patterns
of age- and sex-related brain maturation processes,
B

respectively, whereas the other 3 LVs were more trauma spe-
cific, with LV2 reflecting an age-informed sexual abuse pattern,
LV4 displaying a sex-dependent signature of physical and
sexual abuse, and LV5 containing an emotional trauma pattern.
SPLS Results: Correlation Between Latent Scores
and Clinical Domains

In the discovery sample, correlation analyses between clinical
domains and latent scores yielded several significant results
for all 3 CT-specific LVs (Tables 3 and 4) and for LV1 and LV3
as well (Tables S15 and S16).

LV2: Sexual Abuse and Age. Phenotypic scores: Negative
correlations were observed for GF:S, GF:R, GAF:S, GAF:D/I,
and WHOQOL-BREF, as well as for the NEO-FFI agreeable-
ness and conscientiousness domains (r = 2.09 to 2.17,
p = .04 to 1.3 3 10205). Positive correlations were detected for
iological Psychiatry - -, 2020; -:-–- www.sobp.org/journal 5
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Figure 2. Sex-dependent sexual and physical
abuse signature of latent variable 4 (LV4). (A) The
barplot visualizes the direction and values of the
weights included in the phenotypic pattern of LV4.
Three questions from the Childhood Trauma Ques-
tionnaire (CTQ) physical abuse subscale (CTQ09,
CTQ12, CTQ15) and 4 questions from the sexual
abuse subscale (CTQ20, CTQ23, CTQ24, CTQ27)
received positive weights. Male sex received a
negative weight, and female sex received a positive
weight. (B) Depicted is the brain pattern of LV4, with
positive weighting of voxels displayed in the red
color scale and negative weighting displayed in the
blue color scale. CHR, clinical high-risk states for
psychosis; HC, healthy control; ROD, recent-onset
depression; ROP, recent-onset psychosis.

Neuroanatomical Signatures of Childhood Adversity
Biological
Psychiatry
NEO-FFI neuroticism and BDI scores (r = .11 to .15, p = .01 to
3.3 3 10204). Brain scores: No significant associations were
detected.

LV4: Sexual/Physical Abuse and Sex. Phenotypic
scores: We detected negative correlations for most GAF, GF,
and WHOQOL-BREF domains as well as for the NEO-FFI do-
mains of extraversion and conscientiousness (r = 2.08 to 2.20,
p = .04 to 4.5 3 10207). Positive associations were found for
NEO-FFI neuroticism and BDI total scores (r = .18 to .21, p = 3.0
3 10206 to 1.2 3 10207). Brain scores: Negative correlations
were detected for GAF:S and WHOQOL-BREF (r = 2.11
to 2.17), p = .05 to 2.4 3 10205). We observed a
positive association with the NEO-FFI neuroticism domain
(r = .11, p = .05).

LV5: Emotional Abuse/Neglect. Phenotypic scores:
Negative correlations were detected for all GAF, GF, and
6 Biological Psychiatry - -, 2020; -:-–- www.sobp.org/journal
WHOQOL-BREF domains as well as for the NEO-FFI extraver-
sion, agreeableness, and conscientiousness domains (r = 2.22
to2.47, p = .05 to 1.23 10229). Positive correlations were found
for theBDI andNEO-FFI neuroticismdomain levels (r= .44 to .48,
p = 1.63 10225 to 1.0 3 10230). Brain scores: Negative correla-
tions were found for GAF, GF, and WHOQOL-BREF domains as
well as for the NEO-FFI extraversion and conscientiousness do-
mains (r = 2.09 to2.18, p = .04 to 4.83 10206). Positive corre-
lations were observed for the BDI and NEO-FFI neuroticism
domain (r = .13 to .19, p = 2.13 10203 to 3.73 10206).

External Clinical Validation of the SPLS Trauma
Model

Fifty-nine of 84 (70%) significant clinical associations from the
discovery sample were successfully validated in the replication
sample, whereby 48 of 61 (79%) phenotype-level correlations
and 11 of 23 (48%) brain-level correlations were replicated.
Two phenotypic and 18 brain-level associations were
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Figure 3. Emotional trauma signature of latent
variable 5 (LV5). (A) The barplot visualizes the di-
rection and values of the weights included in the
phenotypic pattern of LV5. Three questions each
from the Childhood Trauma Questionnaire (CTQ)
subscales of emotional abuse (CTQ03, CTQ14,
CTQ18) and emotional neglect (CTQ07, CTQ13,
CTQ28) received positive weights. (B) Depicted is
the brain pattern of LV5, with positive weighting of
voxels displayed in the red color scale and negative
weighting displayed in the blue color scale. CHR,
clinical high-risk states for psychosis; HC, healthy
control; ROD, recent-onset depression; ROP, recent-
onset psychosis.
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additionally detected, amounting to a total of 79 significant
clinical associations (50 phenotypic, 29 brain-level) in the
replication sample. Moreover, none of the significant correla-
tions changed their orientation (Tables 3 and 4).

LV2: Sexual Abuse and Age. Phenotypic scores: A total of
12 of 18 (67%) associations were replicated. Additional sig-
nificant associations were found for the GAF:S past month
(r = 2.19, p = 1.0 3 10203) and NEO-FFI extraversion
(r = 2.18, p = 1.1 3 10203) domains. Brain scores: Additional
significant, positive associations were detected for 8 GAF and
GF measures (r = .13 to .20, p = .03 to 2.4 3 10204).

LV4: Sexual/Physical Abuse and Sex. Phenotypic
scores: A total of 13 of 20 (65%) associations were replicated,
whereas additional correlations were not found. Brain scores: A
total of 3 of 3 (100%) correlations were replicated, while further
B

correlations were found for the GAF and GF, NEO-FFI extraver-
sion domain, and WHOQOL-BREF physical domain (r = 2.12
to2.19, p = .04 to 7.53 10203) as well as for the BDI (r = .18, p =
1.1 3 10203).

LV5: Emotional Abuse/Neglect. Phenotypic scores: A
total of 23 of 23 (100%) associations were replicated, and no
additional correlations were detected. Brain scores: A total of 8
of 20 (40%) associations were replicated, and 1 additional
correlation was detected for the GAF:S lifetime domain
(r = 2.15, p = .01).

Sociodemographic Exploration of the SPLS Trauma
Model

Correlation analyses between individual latent scores of LV2,
LV4, and LV5 and sociodemographic features yielded several
significant results (Tables S17–S24).
iological Psychiatry - -, 2020; -:-–- www.sobp.org/journal 7
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Table 3. Spearman’s Correlation Analyses Between Latent Scores and Clinical Domains of Functioning in the Discovery and Replication Samples

Clinical Domain Sample

LV2 LV4 LV5

Sexual Abuse and Age Sexual/Physical Abuse and Sex Emotional Abuse/Neglect

Phenotypic
Score

Brain
Score

Phenotypic
Score

Brain
Score

Phenotypic
Score

Brain
Score

GAF:S

Lifetime Discovery 2.17 (3.7 3 10205)a .01 (.99) 2.15 (1.4 3 10204)a 2.13 (.01)a 2.24 (4.6 3 10203)a 2.05 (.32)

Replication 2.20 (2.4 3 10204)a .07 (.52) 2.17 (2.7 3 10203)a 2.24 (1.4 3 10205)a 2.29 (5.8 3 10208)a 2.15 (.01)a

Past Year Discovery 2.13 (1.3 3 10203)a .03 (.70) 2.13 (1.5 3 10203)a 2.09 (.18) 2.32 (1.5 3 10210)a 2.09 (.03)a

Replication 2.17 (2.1 3 10203)a .12 (.07) 2.20 (2.6 3 10204)a 2.13 (.03)a 2.38 (2.0 3 10213)a 2.05 (.70)

Past Month Discovery 2.07 (.15) .10 (.33) 2.09 (.03)a 2.02 (.73) 2.36 (9.4 3 10215)a 2.11 (.01)a

Replication 2.19 (1.0 3 10203)a .15 (.01)a 2.19 (9.9 3 10204)a 2.15 (.01)a 2.38 (9.6 3 10214)a 2.12 (.04)a

GAF:D/I

Lifetime Discovery 2.17 (1.3 3 10205)a .02 (.80) 2.14 (4.2 3 10204)a 2.10 (.08) 2.29 (3.4 3 10207)a 2.18 (5.0 3 10206)a

Replication 2.19 (5.2 3 10204)a .05 (.90) 2.14 (.02)a 2.17 (2.3 3 10203)a 2.28 (1.4 3 10207)a 2.16 (.01)a

Past Year Discovery 2.16 (7.5 3 10205)a .04 (.64) 2.14 (2.8 3 10204)a 2.08 (.30) 2.35 (4.9 3 10213)a 2.16 (5.4 3 10205)a

Replication 2.14 (.02)a .13 (.03)a 2.14 (.02)a 2.08 (.32) 2.36 (3.5 3 10212)a 2.07 (.44)

Past Month Discovery 2.09 (.05) .08 (.75) 2.10 (.01)a 2.05 (.55) 2.38 (1.9 3 10216)a 2.15 (2.0 3 10203)a

Replication 2.10 (.14) .16 (4.2 3 10203)a 2.11 (.11) 2.09 (.19) 2.35 (2 3 10211)a 2.13 (.03)a

GF:S

Current Discovery 2.11 (.01)a .10 (.30) 2.12 (3.5 3 10203)a .01 (.99) 2.35 (8.4 3 10214)a 2.12 (4.0 3 10203)a

Replication 2.10 (.17) .16 (.01)a 2.13 (.04)a 2.10 (.12) 2.37 (8.5 3 10213)a 2.10 (.12)

Low Past Year Discovery 2.10 (.02)a .07 (.52) 2.12 (3.8 3 10203)a .02 (.83) 2.34 (2.5 3 10212)a 2.11 (.01)a

Replication 2.08 (.31) .17 (3.6 3 10203)a 2.11 (.09) 2.06 (.68) 2.38 (1 3 10213)a 2.07 (.37)

High Past Year Discovery 2.15 (2.2 3 10204)a .04 (.64) 2.15 (1.4 3 10204)a 2.04 (.62) 2.31 (4.1 3 10209)a 2.09 (.04)a

Replication 2.10 (.14) .11 (.11) 2.11 (.09) 2.14 (.02)a 2.31 (3.2 3 10209)a 2.09 (.19)

High Lifetime Discovery 2.15 (1.6 3 10204)a .06 (.55) 2.14 (5.5 3 10204)a 2.08 (.43) 2.30 (1 3 10207)a 2.15 (3.4 3 10204)a

Replication 2.13 (.03)a .02 (.76) 2.09 (.18) 2.14 (.02)a 2.22 (6 3 10205)a 2.1 (.16)

GF:R

Current Discovery 2.09 (.04)a .11 (.09) 2.08 (.05) .01 (.99) 2.38 (4.1 3 10217)a 2.18 (4.8 3 10206)a

Replication 2.11 (.08) .19 (8.0 3 10204)a 2.11 (.09) 2.11 (.08) 2.30 (1.7 3 10208)a 2.15 (.01)a

Low Past Year Discovery 2.07 (.13) .10 (.25) 2.07 (.08) .02 (.75) 2.37 (6.6 3 10216)a 2.18 (7.6 3 10206)a

Replication 2.09 (.22) .20 (2.4 3 10204)a 2.10 (.15) 2.08 (.28) 2.32 (1.5 3 10209)a 2.14 (.01)a

High Past Year Discovery 2.14 (7.3 3 10204)a .08 (.50) 2.09 (.02)a 2.02 (.79) 2.30 (6.9 3 10208)a 2.15 (2.5 3 10204)a

Replication 2.13 (.04)a .15 (.01)a 2.09 (.22) 2.04 (.50) 2.25 (2.3 3 10206)a 2.08 (.30)

High Lifetime Discovery 2.13 (1.0 3 10203)a .10 (.21) 2.08 (.05)a 2.05 (.53) 2.22 (.05)a 2.14 (8.1 3 10204)a

Replication 2.19 (1.0 3 10203)a .04 (.52) 2.11 (.12) 2.12 (.05)a 2.16 (.01)a 2.12 (.04)a

Values are r (p). All p values were false discovery rate–corrected for multiple testing (family of tests with Table 4).
GAF:D/I, Global Assessment of Functioning Disability/Impairment Scale; GAF:S, Global Assessment of Functioning Social Scale; GF:R, Global Functioning: Role Scale; GF:S, Global

Functioning: Social Scale; LV, latent variable.
aSignificant value.
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Table 4. Spearman’s Correlation Analyses Between Latent Scores and Clinical Domains of Depressivity, Personality, and Quality of Life in the Discovery and
Replication Samples

Sample

LV2 LV4 LV5

Sexual Abuse and Age Sexual/Physical Abuse and Sex Emotional Abuse/Neglect

Phenotypic
Score

Brain
Score

Phenotypic
Score

Brain
Score

Phenotypic
Score

Brain
Score

BDI

Total score Discovery .11 (.01)a 2.08 (.84) .18 (3.0 3 10206)a .09 (.25) .48 (1.0 3 10230)a .19 (3.7 3 10206)a

Replication .21 (1.2 3 10204)a 2.08 (.32) .3 (1.6 3 10208)a .18 (1.1 3 10203)a .48 (1.0 3 10230)a .14 (.02)a

NEO-FFI

Neuroticism Discovery .15 (3.3 3 10204)a 2.01 (.90) .21 (1.2 3 10207)a .11 (.05)a .44 (1.6 3 10225)a .13 (2.1 3 10203)a

Replication .17 (2.2 3 10203)a .01 (.99) .29 (7.2 3 10208)a .23 (1.9 3 10205)a .43 (1.5 3 10225)a .05 (.86)

Extraversion Discovery 2.04 (.45) .05 (.58) 2.08 (.05)a .01 (.84) 2.3 (4.0 3 10208)a 2.12 (.01)a

Replication 2.18 (1.1 3 10203)a 2.01 (.98) 2.21 (1.8 3 10 204)a 2.17 (3.9 3 10203)a 2.33 (4.6 3 10210)a 2.06 (.63)

Openness Discovery 2.08 (.07) 2.02 (.81) 2.06 (.19) 2.04 (.61) .02 (.50) .06 (.27)

Replication .01 (.92) 2.02 (.69) .01 (.98) .01 (.88) 2.07 (.47) .07 (.46)

Agreeableness Discovery 2.16 (1.3 3 10204)a 2.07 (.51) 2.07 (.11) .06 (.50) 2.23 (.01)a .02 (.50)

Replication 2.11 (.11) .02 (.73) .02 (.84) .01 (.99) 2.15 (.01)a .01 (.99)

Conscientiousness Discovery 2.17 (2.8 3 10205)a 2.05 (.59) 2.10 (.01)a .03 (.71) 2.33 (5.6 3 10211)a 2.10 (.02)a

Replication 2.30 (2.7 3 10208)a 2.07 (.47) 2.2 (4.9 3 10204)a 2.07 (.51) 2.32 (1.9 3 10209)a 2.01 (.50)

WHOQOL-BREF

Physical Discovery 2.09 (.04)a .03 (.68) 2.15 (1.2 3 10204)a 2.07 (.54) 2.44 (1.7 3 10225)a 2.12 (.01)a

Replication 2.12 (.05)a .10 (.18) 2.22 (8.4 3 10205)a 2.15 (.01)a 2.45 (1.3 3 10225)a 2.13 (.03)a

Psychosocial Discovery 2.13 (2.0 3 10203)a .03 (.71) 2.20 (4.5 3 10207)a 2.11 (.05)a 2.47 (1.2 3 10229)a 2.12 (3.4 3 10203)a

Replication 2.21 (1.1 3 10204)a .05 (.80) 2.30 (2.9 3 10208)a 2.19 (7.5 3 10203)a 2.45 (1.3 3 10229)a 2.11 (.09)

Social Relationships Discovery 2.11 (.01)a .07 (.52) 2.11 (.01)a 2.01 (.85) 2.41 (3.2 3 10220)a 2.11 (.01)a

Replication 2.09 (.18) .07 (.41) 2.15 (.01)a 2.07 (.55) 2.41 (1.0 3 10215)a 2.10 (.15)

Environment Discovery 2.08 (.08) .01 (.92) 2.05 (.54) 2.17 (2.4 3 10205)a 2.45 (3.6 3 10226)a 2.06 (.28)

Replication 2.04 (.50) .11 (.10) 2.06 (.68) 2.10 (.12) 2.36 (2.7 3 10212)a 2.06 (.66)

Values are r (p). All p values were false discovery rate–corrected for multiple testing (family of tests with Table 3).
BDI, Beck Depression Inventory; LV, latent variable; NEO-FFI, Neuroticism-Extraversion-Openness Five-Factor Inventory; WHOQOL-BREF, World Health Organization Quality of Life Short

Version.
aSignificant value.
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Discovery Sample. LV2: Sexual Abuse and Age. Positive
associations were found between brain scores and population
size at place of living (r = .28, p = .01), whereas negative
correlations were detected between phenotypic scores and
number of offspring, marital status, and years of education
(r = 2.29 to 2.32, p = .01 to 1.78 3 10203).

LV4: Physical/Sexual Abuse and Sex. Phenotypic
scores were negatively associated with years of education
(r = 2.29, p = .04).

LV5: Emotional Abuse/Neglect. Brain scores were
negatively correlated with population at place of living
(r = 2.26, p = .04), while phenotypic scores were positively
associated with lower education of the mother (r = .27, p =
.03).

Replication Sample. No significant correlations were
detected.

DISCUSSION

The goal of this study was a novel, comprehensive investiga-
tion of CT using a naturalistic and transdiagnostic machine
learning approach. We performed SPLS analysis of CT-related
phenotypic data and GMV in order to generate a trans-
diagnostic and multilayered CT model. We explored the clinical
validity and sociodemographic ramifications of this CT model
and confirmed the majority of our findings in a prospectively
acquired replication sample.

We found 5 significant LVs, of which 3 (LV2, LV4, LV5) were
more specifically linked to CT, while the other 2 LVs (LV1, LV3)
represented predominantly age- and sex-related effects
(Supplemental Results). Because all 3 CT-specific LVs did not
contain any weighting for study group, they can be regarded as
transdiagnostic signatures.

The highly parsimonious signature of LV2 links sexual abuse
in younger individuals to GMV alterations along the prefronto-
thalamo-cerebellar axis. Further GMV variation associated with
CT involved the temporal and angular gyrus as well as the
basal ganglia and the cuneus region. While the PFC has been
among the most well-established GMV correlates of CT, the
other brain regions in this signature have not yet been
consistently associated with CT (20,52,53). Instead, the
prefronto-thalamo-cerebellar axis has been implicated in
various aspects of (social) cognition (54,55) and associative
learning (56). Additionally, it has been proposed as a key
system involved in psychiatric disorders, including affective
(57,58) and nonaffective psychoses (59–61). Hence, the LV2
signature may point to disease-connected alterations in the
prefronto-thalamo-cerebellar axis associated with sexual
trauma experiences.

In LV4, a pattern of sexual and physical abuse was asso-
ciated with a dense GMV signature involving the postcentral
gyrus, hippocampus, and PFC (20) as well as the limbic brain
regions associated with emotional learning and social cogni-
tive processes (62,63). This signature was inversely expressed
in male and female individuals. This supports previous studies,
which reported contrary volumetric and connectivity changes
in the PFC, hippocampus, amygdala, and anterior cingulate
10 Biological Psychiatry - -, 2020; -:-–- www.sobp.org/journal
cortex for male and female individuals after exposure to CT
(44). Moreover, the LV4 trauma signature aligns with a recent
study reporting an interaction between CT and sex on hippo-
campal volume, which could be predicted by neglect in male
individuals and abuse in female individuals (45). This evidence
emphasizes that the limbic system and key CT-associated
regions are inversely affected by abuse in men and women
and highlights the paramount need for further sex-specific CT
research and sex-tailored therapeutic approaches in trauma-
tized individuals.

The patterns observed in LV2 and LV4 further reflect pre-
vious findings concerning brain development, which showed
differential developmental trajectories for female and male
brains (64,65). The brain signature of LV2 comprises specif-
ically the medial PFC, i.e., a cortical region that fully develops
during adolescence (64), while the LV4 signature covers the
temporal, prefrontal, and occipital lobes—regions in which sex
has been shown to have a nonlinear relationship with age (65).
Thus, sex exerts a modulating influence on cortical develop-
ment from childhood to adulthood. The strong covariation of
the age and sex effects on CT signatures might be explained in
a developmental framework not only in which male and female
individuals react differently to trauma, but also in which male
and female individuals’ brains may develop differentially as a
result of CT.

LV5 links emotional abuse and neglect to a brain pattern
consisting of diverse GMV changes. First, emotional trauma is
connected to brain regions responsible for sensory processing
via the postcentral gyrus and occipital lobe (66,67). Second,
associations with the DLPFC, insula, and cingulate gyrus relate
emotional trauma to key brain systems subserving emotional
processing (68–70), memory formation (71,72), and risk for
psychiatric disorders (73–75). These findings support the hy-
pothesis that trauma experience is connected to sensory and
perceptive dysregulations, which could also be accessed
therapeutically (76–78).

All 3 CT-specific signatures yielded significant correla-
tions with clinical measures, which were largely validated in
the replication sample. The phenotypic scores of the age-
dependent sexual abuse signature (LV2) revealed strong
connections to an impaired clinical phenotype in the dis-
covery and replication samples. The brain scores appeared
dissociated from that in both populations, yielding no sig-
nificant associations in the discovery sample and positive
associations with GAF and GF in the replication sample.
One possible interpretation might be that the signature of
LV2 had been influenced by unaccounted resilience dy-
namics, in which neurobiological adaptations compensate
for the phenomenological trauma load, thus maintaining
levels of functioning (79,80). Additional analyses revealed a
positive correlation between LV2 brain scores and popula-
tion size at the place of living as well as inverse associations
between LV2 phenotypic scores and number of offspring,
marital status, and years of education in the discovery
sample. These findings suggest a possible connection be-
tween resilience-conferring brain adaptations and urban-
icity as well as higher sexual trauma loadings and social
(offspring, marriage) and educational status. Moreover, LV4
and LV5 revealed the most extensive significant associa-
tions with functioning, depressivity, personality domains,
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and quality of life in the discovery and replication samples.
Both trauma and brain scores of LV4 and LV5 were signifi-
cantly correlated with lower levels of social and role func-
tioning, more pronounced symptom severity, increased
impairment, and higher levels of depressivity and reduced
quality of life. Additionally, we found a strong connection
between individual trauma loads and higher levels of
neuroticism as well as between lower levels of extraversion,
conscientiousness, agreeableness, and openness. Finally,
phenotypic loading of LV4 was associated with lower
educational status, whereas LV5 loading was connected to
a less urban environment (phenotypic scores) and lower
maternal educational status (brain scores). These findings
confirm and extend the current body of literature on the
negative clinical implications and complex sociodemo-
graphic constellations of CT. It has been well established
that CT has a broad negative impact on mental health,
including a higher vulnerability for mental disorders, the
presence of maladaptive personality traits, and decreased
psychosocial functioning and quality of life (21). Nonethe-
less, beyond these general associations, very few studies
have investigated more domain-specific aspects of CT
(81–83). Thus, our results provide more extensive evidence
for a differential neurobiological, clinical, and sociodemo-
graphic imprint of CT. Moreover, the connection between
the CT signatures and the presence of vulnerability-
conferring personality domains provides novel neurobio-
logical evidence for the long-standing and still controver-
sially discussed hypothesis that adverse childhood
experiences lead to the development of dysfunctional per-
sonality structures (9,84,85).

Because 70% of these clinical associations were success-
fully validated in the replication sample and 20 additional sig-
nificant clinical correlations (18 on the brain level) emerged, the
multilayered SPLS trauma model appears robustly generaliz-
able at both the phenotypic and neuroanatomical levels.
Furthermore, it emphasizes the validity and paramount clinical
relevance of the multidimensional CT concept across a broad
diagnostic spectrum in two large-scale international samples
of young adults and adolescent individuals.

Potential limitations of the study need to be considered.
Some of the brain variance might be attributed to psycho-
pharmacological treatment. Yet, our transdiagnostic study
design should provide a robust framework against such
confounders. Moreover, some LV signatures were partly
associated with magnetic resonance imaging data quality,
albeit the impact was minimal. Additional SPLS analyses
further supported the main results (Supplemental Results).
Furthermore, the associative nature of our results should not
lead to causal assumptions. Directed network analysis and
supervised machine learning could help elucidate the inner
workings of CT and assess their predictive value for psy-
chiatric disorders.

To our knowledge, this is the first study that investigated
CT in a transdiagnostic sample of young adults using a data-
driven machine learning approach and a comprehensive,
multidimensional framework for CT operationalization. Our
novel approach confirms that CT is composed of distinct
phenotypic-neuroanatomical dimensions that may have
complex ramifications into clinically relevant phenotypes. We
Bio
found CT signatures of sexual, physical, and emotional
trauma with distinct neuroanatomic correlates in the
prefronto-thalamo-cerebellar, limbic, and sensory networks.
Furthermore, sex-dependent combined sexual and physical
abuse as well as emotional trauma appeared to be specif-
ically predictive of relevant clinical state and trait pheno-
types, whereas the age-dependent sexual abuse signature
may have been further influenced by neurobiological resil-
ience pathways and interacted with modulating factors such
as urbanicity, education, and family status. As these results
were largely validated in a large replication sample, our
findings demonstrate that machine learning tools can
generate new and generalizable insights into complex human
phenomena such as CT and might help to develop superior
treatments targeting CT and its psychiatric consequences at
short- to long-term time scales.
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Supplementary Methods 

PRONIA study design 

The entire PRONIA cohort consists of a discovery sample for model generation and a replication sample 

for model validation. The 1076 study participants (discovery sample, n=649, replication sample, n=427) 

analyzed in the present study were recruited following the standardized recruitment and 

ascertainment protocol (Figure S1, Table S1) of the PRONIA study (Personalized Prognostic Tools for 

Early Psychosis Management, https://www.pronia.eu/). The observational study protocol involved 

follow-up examinations every three months after the index ascertainment and was implemented by 

the ten PRONIA sites. As described in the main text, only data from the baseline observation was used 

for our analysis. Upon study enrolment, the participants were pseudonymized twice, locally at each 

site and centrally at the level of the PRONIA portal. The PRONIA portal consists of a multi-user database 

hosting the clinical and neurocognitive information, and defaced MR images obtained from the study 

participants. The data are organized into digital questionnaires, visits, and cases. The portal provides 

the case managers with a controlled web-based interface to enter and upload the different data into 

the respective questionnaires. Furthermore, the PRONIA consortium has implemented a 

PRONIA@home mobile device interface that allows the study participants to securely log into the 

portal and fill out the self-rating questionnaires of given visit. Upon completion of the data entry across 

all questionnaires of a given visit, the data are checked by an automatic quality control procedure 

which executes approximately 1600 data integrity and dependency rules. These rules include 1) basic 

checking of missing data and data ranges, 2) checking of dependency within one questionnaire, 3) 

dependencies between two questionnaires within one visit, and 4) dependencies between two 

consecutive visits (such as consistency of dates). Detected errors are fed back to the respective case 
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managers allowing for a manual correction of the respective issues. This process is re-iterated until the 

quality of the clinical questionnaires in the given visit is sufficient for the entire visit to be locked.  

The clinical data analyzed in the present study consist of the quality-checked and locked information 

of the study participants recruited until the 1st of May 2016, who had 1) received a structural MRI scan 

at baseline (Table S2), and 2) could be assessed using the global functioning scales (GAF, GF) at least 

on one occasion between the month-3 and month-12 follow-up visits (Figure S1). 

A comprehensive battery of ascertainment tools was used within a longitudinal observational study 

design to generate a multi-modal phenotypic profile of each study participant (Figure S1). The clinical 

part of the battery compiled questionnaires that capture sociodemographic, somatic, environmental, 

diagnostic, psychopathological, functional and quality-of-life related variables in the PRONIA study 

population. This battery was complemented by multi-domain neurocognitive and neuroimaging 

examinations as well as blood sampling for later genetic characterization, which were carried out at 

the baseline and 9-month follow-up timepoints (see initial PRONIA publication by Koutsouleris et al. 

(1) for further information on the PRONIA study). 

Detailed sample determination 

From the PRONIA discovery sample, data from 264 healthy controls (HC), 124 patients with clinical 

high-risk states for psychosis (CHR), 132 patients with recent-onset of psychosis (ROP) and 129 patients 

with recent-onset of depression (ROD), recruited at seven sites in five countries (Munich, Basel, 

Cologne, Birmingham, Turku, Udine and Milan), were obtained for this study (Table 1 in Main Text). 

From the PRONIA replication sample, data from 135 healthy controls (HC), 104 patients with clinical 

high-risk states for psychosis (CHR), 92 patients with recent-onset of psychosis (ROP) and 96 patients 

with recent-onset of depression (ROD), recruited at ten sites in five countries (discovery sample sites 

and additionally in Muenster, Duesseldorf and Bari), were obtained for this study (Table S6). All adult 

participants provided their written informed consent prior to study inclusion. Minor participants 

(defined at all sites as those younger than 18 years) provided written informed assent and their 
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guardians, written informed consent. The study was registered at the German Clinical Trials Register 

(DRKS00005042) and approved by the local research ethics committees in each location. General 

inclusion criteria were age between 15 and 40 years, sufficient language skills for participation as well 

as capacity to provide informed consent/assent. General exclusion criteria were an IQ below 70, 

current or past head trauma with loss of consciousness (> 5 minutes), current or past known 

neurological or somatic disorders potentially affecting the structure or functioning of the brain, current 

or past alcohol dependence, or polysubstance dependence within the past six months, and any medical 

indication against MRI. The CHR state was defined by either 1) cognitive disturbances (COGDIS) criteria 

assessed using the Schizophrenia Proneness Instrument (SPI-A, (2)) and/or 2) ultra-high-risk (UHR) 

criteria for psychosis based on the Structured Interview for Prodromal Syndromes (SIPS, (3)). CHR 

exclusion criteria were 1) antipsychotic medication for > 30 days (cumulative number of days) at or 

above minimum dosage of the “1st episode psychosis“ range of DGPPN S3 (“Deutsche Gesellschaft für 

Psychiatrie und Psychotherapie, Psychosomatik und Nervenheilkunde e. V.”, German Association for 

Psychiatry, Psychotherapy and Psychosomatics) guidelines (4) and 2) any intake of antipsychotic 

medication within the past 3 months before clinical baseline assessments at or above minimum dosage 

of the “1st episode psychosis“ range of DGPPN S3 guidelines (4). ROP participants had to meet the 

following criteria: 1) DSM-IV-TR affective or non-affective psychotic episode (lifetime), 2) criteria for 

DSM-IV-TR (Diagnostic and Statistical Manual of Mental Disorders, Text Revision) affective or non-

affective psychotic episode fulfilled within past 3 months and 3) onset of psychosis within past 24 

months. ROP exclusion criterion was antipsychotic medication longer than 90 days (cumulative 

number of days) with a daily dose rate at or above minimum dosage in the “1st episode psychosis” 

range of the DGPPN S3 guideline (4). ROD patients were identified by 1) DSM-IV-TR major depressive 

episode (lifetime), 2) major depressive disorder criteria fulfilled within past three months and 3) 

duration of first depressive episode no longer than 24 months. Specific ROD exclusion criteria were: 1) 

more than 1 major depressive episode, 2) antipsychotic medication for > 30 days (cumulative number 

of days) at or above minimum dosage of the “1st episode psychosis” range of the DGPPN S3 guidelines 

and 3) any intake of antipsychotic medication within the past 3 months before psychopathological 
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baseline assessments at or above minimum dosage of the “1st episode psychosis“ range of the DGPPN 

S3 guidelines (4). 

MRI harmonization and data acquisition 

When setting up the PRONIA study, we decided to generate an MRI database that would represent the 

MR scanner sequence heterogeneity encountered in clinical real-world. The aim of this strategy was 

to strengthen the generalizability and clinical applicability of the predictive models developed by our 

machine learning analyses. Thus, we agreed on a minimal harmonization protocol that required the 

PRONIA sites to only 1) acquire isotropic or nearly isotropic voxel sizes of preferably 1 mm resolution, 

2) set the Field Of View (FOV) parameters accordingly to guarantee the full 3D coverage of the brain 

including all parts of the cerebellum, and 3) define the relaxation time (TR) and echo time (TE) as well 

as other imaging parameters in a way that would maximize the contrast between cortical ribbon and 

the white matter and enhance the signal-to-noise ratio in the images. Table S2 lists the parameters 

defining the structural MR sequences used to examine in the PRONIA discovery sample participants. 

MRI preprocessing pipeline 

The manual of the CAT12 toolbox (http://www.neuro.uni-jena.de/cat12/CAT12-Manual.pdf) details 

the processing steps applied to the structural images. These steps consist of: 

1) A 1st denoising step based on Spatially Adaptive Non-Local Means (SANLM) filtering (5).  

2) An Adaptive Maximum A Posteriori (AMAP) segmentation technique, which models local 

variations of intensity distributions as slowly varying spatial functions and thus achieves a 

homogeneous segmentation across cortical and subcortical structures (6). 

3) A 2nd denoising step using Markov Random Field approach which incorporates spatial prior 

information of adjacent voxels into the segmentation estimation generated by AMAP (6). 

4) A Local Adaptive Segmentation (LAS) step, which adjusts the images for white matter (WM) 

inhomogeneities and varying gray matter (GM) intensities caused by differing iron content in e.g. 

cortical and subcortical structures. The LAS step is carried out before the final AMAP 

segmentation. 
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5) A Partial Volume Segmentation algorithm that is capable of modeling tissues with intensities 

between GM and WM, as well as GM and cerebrospinal fluid (CSF) and is applied to the AMAP-

generated tissue segments. 

6) A high-dimensional DARTEL registration of the image to an MNI-template generated from the MRI 

data of 555 healthy controls in the IXI database (http://www.braindevelopment.org) 

MRI data quality assurance 

To inspect homogeneity of the acquired MRI scans and assure a high standard of MRI data quality, we 

employed the homogeneity check option of the CAT12 toolbox. As part of the preprocessing, CAT12 

writes out several individual quality measures for each MRI scan: NCR (Noise Contrast Ratio), ICR 

(Inhomogeneity Contrast Ratio) and RES (RMS resolution). The resulting ratings are then combined 

into the weighted average image quality rating (IQR). These quality ratings are scaled from 0.5 to 10.5, 

where 0.5 is a “perfect/excellent” score and 10.5 is deemed “unacceptable/failed”. Values around 1 

and 2 describe “(very) good” image quality and values around 5 and higher indicate problematic images 

(7). The data quality features were entered into the CAT12 “check homogeneity” module along with 

modulated (m) normalized (w) GM segments (p1). We then computed the Mahalanobis distance 

between the mean correlation and weighted overall image quality. While mean correlation measures 

the homogeneity of all selected MRI data used for statistical analysis and is therefore a measure of 

image quality after pre-processing, the weighted overall image quality combines measurements of 

noise and spatial resolution of the images before pre-processing. Hence, calculating the Mahalanobis 

distance between these two measurements quantifies image quality both before and after pre-

processing. Following this approach, we only included cases with an overall image quality rating (IQR) 

of “good” to “very good” (Figure S4). This led to the exclusion of four cases, which deviated from the 

rest of the sample (n=649) by more than two standard deviations. This protocol closely follows the 

general recommendation as given in the official CAT12-Manual (http://www.neuro.uni-

jena.de/cat12/CAT12-Manual.pdf). 

http://www.braindevelopment.org/
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As clinical phenotypes and possibly childhood trauma might impact MRI data quality, we extracted the 

main CAT12 data quality measure (IQR) for all 649 cases and investigated it with both univariate and 

multivariate analysis (see Additional Analysis: Investigation of MRI image quality in the main study 

sample).  

Sparse partial least squares algorithm 

The Sparse Partial Least Squares (SPLS) algorithm used in this analysis follows the original publication 

of Monteiro et al. (8). Like Partial Least Squares (PLS), SPLS requires two data matrices 𝑋 and 𝑌 as inputs. 

In our study, 𝑋 contains neuroimaging information (structural MRI data), while 𝑌 contains trauma 

information and related features (trauma questionnaire items, age, sex, diagnoses). 𝑛 is the number of 

samples; 𝑝 is the number of voxels and 𝑞 is the number of trauma features. PLS provides insights into the 

brain’s mechanisms by finding relationships between different measures (i.e. views) from the same 

participants, i.e. between neuroimaging and trauma data, in a clinical population. PLS identifies a 

projection or latent space containing the relevant information in both views by finding pairs of weight 

vectors (generally called 𝑢 and 𝑣) which maximize the covariance between the projections of the two 

views (9): 

1) 𝑚𝑎𝑥𝑖𝑚𝑖𝑧𝑒‖𝑢‖2=‖𝑣‖2=1 𝐶𝑜𝑣(𝑋𝑢, 𝑌𝑣) =  𝑚𝑎𝑥𝑖𝑚𝑖𝑧𝑒‖𝑢‖2=‖𝑣‖2=1 𝑢𝑇𝑋𝑇𝑌𝑣 

The weight vector pair is also called a latent variable (LV) as it explains one specific associative effect 

between the two different views. More specifically, the weight vectors place weights on each feature in 

the trauma and the neuroimaging dataset, thus visualizing which features are associated with each other 

as well as the direction and the strength of this multivariate association. Hence, by studying this latent 

space, one can learn about the underlying relationship between trauma information and brain measures 

(8).  

In contrast to regular PLS, SPLS enforces sparsity on the weight vectors 𝑢 and 𝑣 through hyperparameters 

𝑐𝑢 and 𝑐𝑣. 𝑐𝑢 and 𝑐𝑣 are the regularization hyperparameters that control the 𝑙1-norm constraints of 𝑢 

and 𝑣, respectively. The 𝑙1-norm constraints impose sparsity, which means that the lower the values of 
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𝑐𝑢 and 𝑐𝑣 are, the higher the sparsity in the respective view is (10). This leads to the following 

optimization problem: 

2) 𝑚𝑎𝑥𝑖𝑚𝑖𝑧𝑒𝑢,𝑣 𝑢𝑇𝑋𝑇𝑌𝑣 𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 ‖𝑢‖2
2 ≤ 1, ‖𝑣‖2

2 ≤ 1, ‖𝑢‖1 ≤ 𝑐𝑢, ‖𝑣‖1 ≤ 𝑐𝑣 

Yet, this type of constraint can only select up to 𝑛 features if 𝑝 > 𝑛. Furthermore, it will remove features 

which might be relevant for the model but are correlated with other features which are already included. 

Zou and Hastie addressed this issue by adding the 𝑙2-norm constraints (11). For both 𝑙1-norm and 𝑙2-

norm constraints to be active, the values of the hyperparameters must be between 1 and the square 

root of the number of features in the respective matrices. Therefore, the hyperparameter space is 

updated: 

3) 1 ≤ 𝑐𝑢  ≤  √𝑝 , 1 ≤ 𝑐𝑣 ≤ √𝑞 

Using the hyperparameter space of equation 3) and solving the optimization problem of equation 2) 

according to Witten et al. (10, 12) leads to the following SPLS algorithm steps as described in Monteiro 

et al. (8): 

1. Let 𝐶 ← 𝑋𝑇𝑌  

2. Initialize 𝑣 to have ‖𝑣‖2 = 1 

3. Repeat until convergence:  

a) Update 𝑢:  

i. 𝑢 ← 𝐶𝑣 

ii. 𝑢 ←
𝑆(𝑢, 𝛥𝑢)

‖𝑆(𝑢, 𝛥𝑢)‖2
 , where 𝛥𝑢 = 0 if this results in ‖𝑢‖1 ≤ 𝑐𝑢, otherwise 𝛥𝑢 is set 

to be a positive constant such that ‖𝑢‖1 = 𝑐𝑢 

b) Update 𝑣: 

i. 𝑣 ← 𝐶𝑇𝑢 

ii. 𝑣 ←
𝑆(𝑣, 𝛥𝑣)

‖𝑆(𝑣, 𝛥𝑣)‖2
 , where 𝛥𝑣 = 0 if this results in ‖𝑣‖1 ≤ 𝑐𝑣, otherwise 𝛥𝑣 is set 

to be a positive constant such that ‖𝑣‖1 = 𝑐𝑣 

4. If convergence is not reached after the iteration limit (default: 1000), return non-sparse weight 

vectors 𝑢 and 𝑣 

After a weight vector pair (ℎ) is found by SPLS, its effect needs to be removed from the data, to look for 

the next possible weight vector pair (ℎ + 1). This process is called matrix deflation. In this setup, 

projection deflation is used as it has been shown to outperform the classic Hoteling’s deflation, which is 
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also used in Principal Component Analysis (8, 13, 14). For matrices 𝑋 and 𝑌, the deflation process from 

iteration ℎ to iteration ℎ + 1 is therefore computed as follows:  

𝑋ℎ+1 ← 𝑋ℎ − (𝑋ℎ𝑢ℎ)𝑢ℎ
𝑇   

 𝑌ℎ+1 ← 𝑌ℎ − (𝑌ℎ𝑣ℎ)𝑣ℎ
𝑇 

The algorithm then uses the deflated matrices and looks for the next associative effect, i.e. the next LV. 

This way, SPLS iteratively provides latent variables consisting of sparse weight vector pairs (𝑢, 𝑣), 

uncovering several layers of associative effects within the dataset.  

The second step of the SPLS algorithm involves the creation of latent scores. For every LV, weight vectors 

𝑢 and 𝑣 are projected onto the matrixes 𝑋 and 𝑌, thus generating latent scores ε and ω.  

𝜀ℎ = 𝑋𝑢ℎ  

 𝜔ℎ = 𝑌𝑣ℎ 

These latent scores are finite numerical values, which represent the loading of each individual on these 

weight vectors, i.e. how high a subject scored on specific trauma questions or how high their gray matter 

probability in certain voxels is. Therefore, every individual can be represented within each LV space with 

its latent trauma and brain scores. These specific scores can then be used for post-hoc analyses to 

investigate the meaning and relevance of these individual loadings.  

Machine learning framework 

The models were generated and tested in a nested cross-validation framework with 10 outer (X2, Y2) 

and 10 inner folds (X1, Y1) (Figure S2). Individuals were randomly assigned to the fold structure, while 

a stratification according to diagnoses was maintained. Therefore, all inner and outer loops contained 

an equal distribution of all 4 study groups (HC, ROD, CHR, ROP) in order to avoid training on diagnosis-

related effects or indirectly on site-related effects (as diagnoses were unevenly distributed across sites, 

see Main Text Table 1). Within the inner folds, a 40x40 point grid search of both hyperparameters was 
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conducted covering the entire hyperparameter space, in which both l1- and l2-norm constraints are 

fulfilled: 1 ≤ cu  ≤  √p , 1 ≤ cv ≤ √q (with p features in matrix X and q features in matrix Y). Lower cu 

and cv values lead to a sparser solution, whereas higher cu and cv values amount to a denser solution. 

At the upper limit, the maximum values of hyperparameters are: cu =  √p , cv =  √q. A SPLS analysis 

with cu and cv reaching these maximum values is equal to a regular PLS analysis, where every feature 

receives a weight and no feature is removed, i.e. no zero weights are given. Hence, our hyperparameter 

grid search includes the computation of one regular non-sparse PLS model (with cu and cv at the 

maximum limits) and an array of sparse PLS versions as lower cu and cv values are tested. In order to 

illustrate that the densest hyperparameter combination in our grid search resembles a regular non-

sparse PLS, Supplementary Figure S5 shows an exemplary pair of brain and trauma vectors that was 

trained on our dataset using the maximum values of cu and cv. Therefore, in this framework, the non-

sparse regular PLS solution competes against the sparse PLS solution in the hyperparameter optimization 

process. The weight vector pairs were generated using the training folds in the inner loop (𝑋1𝑡𝑟𝑎𝑖𝑛, 

𝑌1𝑡𝑟𝑎𝑖𝑛):  

(𝒖, 𝒗) = 𝒔𝒑𝒍𝒔(𝑿𝟏𝒕𝒓𝒂𝒊𝒏, 𝒀𝟏𝒕𝒓𝒂𝒊𝒏, 𝒄𝒖, 𝒄𝒗) 

The model fit of the weight vector pair was then assessed by projecting them onto the testing folds 

(𝑿𝟏𝒕𝒆𝒔𝒕, 𝒀𝟏𝒕𝒆𝒔𝒕) in the inner loop and computing Spearman’s correlation coefficient between the 

projections of the weight vectors 𝒖 and 𝒗 onto their respective data matrices 𝑿𝟏𝒕𝒆𝒔𝒕 and 𝒀𝟏𝒕𝒆𝒔𝒕:  

𝝆 = |𝑪𝒐𝒓𝒓(𝑿𝟏𝒕𝒆𝒔𝒕𝒖, 𝒀𝟏𝒕𝒆𝒔𝒕𝒗)| 

This approach delivers a simple and transparent measure of how well the weight vectors align the 

matrices to each other, i.e. how well they can maximize the covariance. The median correlation 

coefficient was computed for each hyperparameter combination in the inner loop. Afterwards, the 

best hyperparameter combinations (𝒄𝒖−𝒕𝒐𝒑, 𝒄𝒗−𝒕𝒐𝒑) with the highest median correlation coefficients 
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(𝝆𝒕𝒐𝒑) were retrained on the entirety of all 10 folds of the inner loop to increase the sample size for 

training once more: 

(𝒖𝒕𝒐𝒑, 𝒗𝒕𝒐𝒑) = 𝒔𝒑𝒍𝒔(𝑿𝟐𝒕𝒓𝒂𝒊𝒏, 𝒀𝟐𝒕𝒓𝒂𝒊𝒏, 𝒄𝒖−𝒕𝒐𝒑, 𝒄𝒗−𝒕𝒐𝒑) 

The generalizability of the weight vector pairs (𝐮𝐭𝐨𝐩, 𝐯𝐭𝐨𝐩) was tested by assessing the fit of their 

projections onto the previously held-out fold in the outer loop and thus computing the corresponding 

correlation coefficients (𝝆𝒎𝒂𝒙). 

𝝆𝒎𝒂𝒙 = |𝑪𝒐𝒓𝒓(𝑿𝟐𝒕𝒆𝒔𝒕𝒖𝒐𝒑𝒕, 𝒀𝟐𝒕𝒆𝒔𝒕𝒗𝒐𝒑𝒕)| 

Significance testing of this weight vector pair was achieved by permutation testing against 𝑩 

permutations. Within the fold structure of the outer loop, 𝑩 permutated datasets were created by 

randomly reshuffling the order of participants in one matrix (𝒀𝒃𝟐) thus destroying relationship between 

the two matrices. The final model with the optimized hyperparameters (𝒄𝒖−𝒐𝒑𝒕, 𝒄𝒗−𝒐𝒑𝒕) was then 

retrained and tested in each of the 𝑩 permuted datasets, thus generating weight vectors 𝒖𝒃, 𝒗𝒃: 

(𝒖𝒃, 𝒗𝒃) = 𝒔𝒑𝒍𝒔(𝑿𝟐𝒕𝒓𝒂𝒊𝒏, 𝒀𝒃𝟐𝒕𝒓𝒂𝒊𝒏, 𝒄𝒖−𝒐𝒑𝒕, 𝒄𝒗−𝒐𝒑𝒕) 

𝝆𝒃 = |𝑪𝒐𝒓𝒓(𝑿𝟐𝒕𝒆𝒔𝒕𝒖𝒃, 𝒀𝟐𝒕𝒆𝒔𝒕𝒗𝒃)| 

Significance testing of the LV was done by assessing how often the model based on the permuted dataset 

performed better or equal to the model trained on the original dataset: 

𝒑 =
𝟏 + ∑ 𝟏𝝆𝒃≥𝝆𝒎𝒂𝒙

𝑩
𝒃=𝟏  

𝑩 + 𝟏
 

As our framework consisted of 10 outer folds, this approach led to 10 different models (i.e. 10 weight 

vector pairs u and v) for each latent variable iteration. Of these 10 different models, we selected the 

one model with the best performance as measured by means of permutation testing, i.e. the model 

that exhibited the lowest P value. If this optimal model passed significance testing against the FDR-

corrected P value for multiple testing (10 models = 10 tests), the latent variable was deemed significant 

and the next latent variable was computed. This concept is known as the omnibus hypothesis, which 

was also applied in the original method paper of the SPLS algorithm (8). The SPLS algorithm is an 
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iterative process, in which based on hyperparameters cu and cv, the weight vectors u and v are 

computed in dependence of each other (Methods – Sparse Partial Least Squares Algorithm). First u 

and v are initialized as non-sparse weight vectors based on regular singular value decomposition. Then 

an iterative process is set in motion, where first an enforcement of sparsity is attempted on weight 

vector u in dependence of weight vector v. Then sparsity is enforced on v, based on the previously 

computed weight vector u. This iterative process is repeated, where u and v are sequentially updated 

based on each other’s previous modification until convergence between the vectors is reached. Hence, 

every hyperparameter setup cu and cv leads to a unique process of finding converging weight vectors 

u and v that were generated in a dialectic manner. Thus, the multivariate information is contained in 

this highly specific combination of weight vectors u and v, with both vectors containing mathematical 

information of the other. This, in turn, makes weight vectors u and v from different models, such as in 

our 10x10 fold nested cross-validation, not suitable for usual merging techniques (weighted 

mean/mean/median merging or majority voting) as every vector u is dependent on the corresponding 

vector v. Therefore, we used the omnibus hypothesis to determine our final LV model out of the 10 

computed within the NCV structure of each LV iteration. Using our 10x10-fold outer and inner cross-

validation loops can lead to high variance in the results. After training on the inner loops and then 

testing on the outer loops, 10 models with 10 P values are obtained. A criterion is then needed to 

determine whether any statistically significant effects were indeed found. For this, we used the 

omnibus hypothesis, where a statistical test is performed j-times to test a null-hypothesis Hj. Following 

the omnibus approach, the combined hypothesis HR over all tests j is: “All the hypothesis Hj are true”. 

This hypothesis will be rejected if any of the Hj hypothesis is rejected (15). In our specific case, the 

omnibus hypothesis states that if any of the 10 p-values (obtained in the 10 outer folds) is statistically 

significant (corrected for multiple testing j-times), then the omnibus hypothesis will be rejected and 

the detected effect will be deemed significant. Therefore, the omnibus hypothesis will be rejected if 

any of the 10 splits generates a P value below .05 (adjusted for multiple testing). Of all significant splits, 

the model with the lowest P value will be determined as the final LV model (8). The computation end 

as soon as none of the 10 splits of the LV iteration did not pass the test for significance, which renders 
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the entire LV not significant. Since deflating the data matrices of non-significant effects would be not 

justified, the analysis pipeline stops after the first non-significant LV was detected. 

External clinical validation of the SPLS trauma model 

In order to assess the clinical real-world validity and generalizability of our trauma model (LV1-LV5), 

we extracted 427 additional individuals from the PRONIA replication sample for external validation 

(Table S6). These 427 individuals were recruited at 10 different sites (PRONIA discovery sites and 

additionally in three new sites: Duesseldorf and Muenster, Germany and Bari, Italy) during the second 

(replication) phase of the PRONIA study. We acquired structural MRI data as well as CTQ, age, sex and 

diagnostic information of these 427 individuals and applied our childhood trauma model onto this 

external validation sample. For each latent variable (LV1-LV5), describing a particular layer of trauma-

brain association, we projected the corresponding weight vectors u (brain vector) and v (trauma 

vector) onto every individual’s brain and trauma information, thus generating their individual loading 

onto these patterns, i.e. their latent brain (epsilon) and trauma scores (omega). We investigated the 

impact of these latent brain and trauma scores on individual clinical phenotypes by correlating them 

to the same set of clinical variables, we already used for the discovery sample: GAF, GF, BDI, NEO-FFI 

and WHOQOL-BREF. Hence, the aim was the assessment of the real-world clinical validity of our multi-

layered trauma model in a temporally and partially geographically separated sample.  

Visualization and atlas mapping of neuroanatomic weight vectors 

The neuroanatomic weight vectors of the LV were visualized as 3D MRI images using the SPM12 

software (Wellcome Department of Cognitive Neurology, London, UK; 

http://www.fil.ion.ucl.ac.uk/spm/software/spm12/) and the Connectome Workbench v1.3.2 

(https://humanconnectome.org/software/connectome-workbench). Readouts of specific atlas 

regions (Table S14) were attained using the Brainnetome atlas 

(http://atlas.brainnetome.org/index.html, (16)) and the cerebellar atlas by Diedrichsen 

(http://www.diedrichsenlab.org/imaging/propatlas.htm, (17)).
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Supplementary Results 

Main Analysis - SPLS results: correlation between latent scores and clinical domains 

Phenotypic and brain scores of LV1 and LV3 were part of the same correlation analysis as the other 

three CT-specific LV (LV2, LV4, LV5). We report the results of the correlation analyses for both the 

discovery and the replication sample of the more age- and sex-dependent signatures of LV1 and LV3 

below (Table S15 and Table S16). 

Discovery Sample: 

LV1 (age). Phenotypic scores: Positive, significant associations were detected for measures of 

symptom severity (GAF:S Past Month), disability (GAF:D/I Past Month), social functioning (GF:S 

Current, Low Past Year) and role functioning (GF:R Current, Low Past Year) (ρ-range: 0.11-0.16, P-

range: <10-3-.04). Further positive, significant associations were detected for the WHOQOL-BREF 

physical, social relationships and environment domains (ρ-range: 0.09-0.15, P-range: <10-3-.05). Brain 

scores: No significant associations were found. 

LV3 (sex). Phenotypic scores: Significant, negative correlations were detected for all domains of GAF:S, 

GAF:D/I and GF:S, whereas further negative correlations were also found for several dimensions of 

GF:R, NEO-FFI (extraversion, openness, conscientiousness, agreeableness) and quality of life 

(WHOQOL-BREF: physical, psychosocial, social relationships, environment)(ρ: -0.11-(-0.29, P: <10-3-

.04). Significant, positive associations were observed for BDI and NEO-FFI neuroticism levels (ρ: 0.18-

0.20, P: <10-3). Brain scores: We detected significant, negative associations for GAF:D/I Lifetime and 

two NEO-FFI domains (agreeableness, conscientiousness) (ρ: -0.13-0.19, P: <10-3-.04). 

Replication Sample: 

LV1 (age). Phenotypic scores: Negative, significant correlations were observed for GF:S Low Past Year 

and WHOQOL-BREF environment (ρ-range: -0.14-(-0.16), P-range: .03-.01). Positive, significant 

correlations were detected for NEO-FFI conscientiousness (ρ = 0.15, P=.01). Brain scores: Significant, 
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negative correlations were detected for several GAF:S, GAF:D/I, GF:R and GF:S domains as well as 

WHOQOL-BREF environment (ρ: -0.13-(-0.21), P: <10-3-.04). 

LV3 (sex). Phenotypic scores: Significant, negative correlations were detected for all domains of GAF:S, 

GAF:D/I and GF:S, whereas further negative correlations were also found for several dimensions of 

GF:R, NEO-FFI (extraversion, conscientiousness, agreeableness) and quality of life (WHOQOL-BREF: 

psychosocial, social relationships)(ρ: -0.11-(-0.33, P: <10-3-.04). A significant, positive association was 

observed for BDI (ρ=0.17, P=.01). Brain scores: We detected one significant, negative association for 

NEO-FFI conscientiousness (ρ=-0.13, P=.05). 

Main Analysis – Discussion of LV1 and LV3 

For a thorough overview of the SPLS analysis results, all significant LV, which were not discussed in 

detail in the main text, are now mentioned with regards to their trauma and brain patterns (Table S15 

and Table S16). 

LV1 contained a phenotypic pattern, which was heavily dominated by age (Figure S6A). The associated 

brain pattern consisted of negatively weighted grey matter volume (GMV) across various cortical and 

subcortical brain areas (Figure S6B). These findings are in line with the normal development in young 

adults, mainly stemming from a microglia-induced pruning processes (18). Furthermore, the latent 

trauma and brain scores of LV1 did not yield any significant correlations with our predefined clinical 

domains (Table S15), thus further indicating that this LV reflects a physiological aging and pruning 

process.  

LV3 yielded a phenotypic pattern (Figure S7A), which contained weights for age and several CTQ 

questions. Nonetheless, it was most strongly informed by sex, thus mainly separating male from 

female participants. The corresponding brain pattern is spread widely across the precuneus, the 

parietal and temporal lobe, the basal ganglia, the insula, the hippocampus, the thalamus and the 

frontal gyrus (Figure S7B). Hence. This signature predominantly reflects the well-established sexual 

GMV dimorphism, including temporal and parietal areas as well as the hippocampus, the planum 
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temporale and the insula (19, 20). The latent trauma and brain scores of LV3 yielded significant 

correlations with lower levels of functioning and maladaptive personality traits (Table S15). This 

association could be heavily informed by certain characteristics of our study sample. The ROP patients 

in our study generally have much lower levels of functioning and are predominantly male, while the 

HC population shows higher levels of functioning and is predominantly female. This might, at least in 

part, explain the association between the mainly sex-informed signature and the functioning measures 

(Table 1 in Main Text and Supplementary Table S6 and Table S7). Nonetheless, further studies should 

follow up these sex-specific effects and explore their association with underlying pathologies and 

diagnostic categories. 

Additional Analysis: random split-half SPLS analysis 

In order to assess other methods for ensuring generalizability and validity of generated machine 

learning models, we conducted a random split-half experiment, where a random selection of one half 

of the main study population was used for training in a nested cross-validation framework and the 

other half was used for testing the models. Following this approach, we detected two significant latent 

variables (LV).  

LV1 (P value = 9x10-4). Phenotypic pattern (Figure S8A): Age received a strong positive weight, far 

outweighing all other features. Further weights were assigned to the subscales of emotional (1 item) 

and physical neglect (1) as well as denial (3). Brain pattern (Figure S8B): GMV was widely negatively 

weighted across the superior and middle frontal and temporal gyrus, the inferior parietal lobe as well 

as in cingulate and orbital regions.  

LV2 (P value = 3x10-4). Phenotypic pattern (Figure S9A): Except for items CTQ08 (emotional abuse) 

and CTQ28 (emotional neglect), the entire feature space was represented in this phenotypic pattern. 

Items from emotional, physical and sexual abuse received consistent positive weighting, while 

emotional neglect yielded several negative weights. Items from the physical neglect subscale received 

both positive and negative weights and the denial items were all positively weighted. Further positive 

weights were assigned to age, male sex and ROP and ROD status, whereas female sex, HC and CHR 
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status were negatively weighted. Brain pattern (Figure S9B): GMV was widely negatively weighted 

bilaterally in superior, middle and orbitofrontal brain regions as well as in the superior, middle and 

inferior temporal gyri. Furthermore, strong negative weights were assigned to the cingulate and insular 

cortex as well as the fusiform gyrus. Positive GMV weights were detected in the right anterior superior 

temporal sulcus and bilaterally in the DLPFC. 

Hence, the random split-half approach yielded a similar age-dependent signature as described in our 

main analysis (LV1) and further generated one highly dense, trauma-specific signature. In this 

signature, a pattern of abuse (emotional, physical, sexual) is associated with widespread negative GMV 

weights in pre-/orbitofrontal, temporal and subcortical brain regions as well as positive GMV weights 

mainly located in the anterior superior temporal sulcus. For the neglect items, this brain signature is 

either inversed (emotional neglect) or not precisely attributable due to heterogeneous weighting 

(physical neglect). Moreover, this brain pattern is expressed in older, male individuals from the ROP 

and ROD categories, i.e. the participants that suffer from a full-blown psychiatric disorder. For younger, 

female individuals from the HC or CHR category, this brain pattern is inversed, leading to the 

assumption that the two main dimensions of the CTQ, abuse and neglect, exert a differential effect on 

an individual’s brain along the dichotomies of young vs. old, male vs. female and HC/CHR vs. ROD/ROP. 

LV2 of the RSH approach shows evenly distributed brain and phenotypic overlaps with all LV of the 

main SPLS model (Table S25 for mean squared error comparisons). These findings suggest that the RSH 

model can be interpreted as a condensed version of the main SPLS model. Due to the reduced sample 

size for the training sample (n=325), it can be speculated that the training input was not sufficient for 

the algorithm to further specify and separate the different trauma-brain layers in a more fine-grained 

way. In summary, the RSH approach indeed yielded intriguing results with regards to a differential 

trauma-brain connection of abuse and neglect CTQ dimensions, which should be followed up with 

future analyses. 
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Additional Analysis: Leave-one-site-out cross-validation (LOSOCV) analysis 

To assess further methods for validating our model’s generalizability to new datasets and populations, 

we conducted a leave-one-site-out cross-validation (LOSOCV) analysis. Age, sex and diagnoses were 

still included in the analysis pipeline, while site correction was now omitted due to the LOSOCV 

approach. Following this strategy, we detected five significant latent variables.  

LV1 (P = 9x10-4). Phenotypic pattern (Figure S10A): Positive weights were assigned most strongly to 

age as well as to items from the CTQ subscales of emotional abuse (1 item), physical abuse (1), sexual 

abuse (5) and inversely to male and female sex. Brain pattern (Figure S10B): GMV was globally and 

bilaterally negatively weighted across mostly frontal, temporal and parietal regions. Positive GMV 

weights were highly sparse and only found in the thalamus region. 

LV2 (P = 3x10-3). Phenotypic pattern (Figure S11A): All five questions from the CTQ sexual abuse 

subscale received positive weights, whereas age was negatively and sex inversely weighted. Brain 

pattern (Figure S11B): Positive GMV weights were found extensively bilaterally in the pre- and 

postcentral gyrus, the superior and middle frontal gyrus as well as in the inferior parietal lobule and 

the subcortical areas (basal ganglia, thalamus). Negative GMV weights were detected predominantly 

in the left hippocampus and parahippocampus, the left fusiform gyrus and bilaterally in the superior 

and middle frontal gyrus as well as the middle temporal gyrus. 

LV3 (P = 9x10-4). Phenotypic pattern (Figure S12A): Questions from the sexual abuse (2 items) received 

a positive weight, while sex was strongly and inversely weighted. Brain pattern (Figure S12B): We 

detected positive GMV weights mostly bilaterally in the precuneus as well as the superior and middle 

frontal gyrus, the inferior parietal lobule and further in the cingulate and subcortical areas (mostly 

basal ganglia). Negative GMV weights were found sparsely in bilateral reductions in the hippocampus 

and the DLPFC.  

LV4 (P = 9x10-4). Phenotypic pattern (Figure S13A): Questions from the emotional abuse subscale (2 

items) were negatively weighted and questions from the sexual abuse (4) were mostly positively 
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weighted. Age received a strong positive and sex a strong inverse weighting. Brain pattern (Figure 

S13B): Positive GMV weights were mainly localized bilaterally in temporal regions and orbitofrontal 

regions as well as precuneus and the basal ganglia. Negative GMV weights were detected sparsely in 

bilateral reductions in the DLPFC as well as in the precentral gyrus and the thalamus. 

LV5 (P = 9x10-4). Phenotypic pattern (Figure S14A): Questions from the emotional abuse subscale (2 

items) were negatively weighted and one question from the sexual abuse (1) was positively weighted. 

Age received a positive and sex a strong inverse weighting. Brain pattern (Figure S14B): Positive GMV 

weights were mainly localized bilaterally in the inferior parietal lobule, the superior temporal sulcus 

and the cerebellum as well as the orbitofrontal and precuneus regions. Negative GMV weights were 

detected sparsely in the postcentral gyrus, the superior frontal gyrus and the thalamus bilaterally. 

Hence, the LOSOCV approach yielded a highly similar age-dependent signature as described in our 

main analysis (Table S26 for mean squared error comparisons). Furthermore, it yielded two signatures 

(LV3, LV5) that display high phenotypic similarities with the sex-dependent LV3 signatures of our main 

model. On a neuroanatomic level, these two signatures were most similar to LV1 (age) and LV3 (sex) 

of our main model. It should be noted, that all LOSOCV LV showed similarity to LV1 (age) of the main 

model, since this pattern covers most of the brain and therefore always leads to a certain kind of 

overlap. Thus, it can be stated that apart from the global LV1 main model signatures, LV3 and LV5 of 

the LOSOCV model most closely resemble the sex-dependent LV3 signature of the main model, both 

phenotypically and neuroanatomically. Taking a similar approach, the LOSOCV pattern of LV4 bore the 

highest phenotype- and brain-level similarities to LV1 (age) and LV4 (combined sexual/physical abuse 

& sex) of the main model. Hence, the LOSOCV approach yielded a multi-layered model, that closely 

resembled LV1-LV4 of the main model. While LV1 of the LOSOCV model corresponded tightly to LV1 

of the main model, LV3 and LV5 showed high similarities to LV3 and LV4 contained similar phenotypic 

and neuroanatomic patterns as LV1 and LV4 of the main model. Solely the emotional trauma signature 

of LV5 from the main model could not be specifically found with the LOSOCV approach and featured 

only very sparsely across all LV. Furthermore, it does appear that in the LOSOCV approach the sex 



Popovic et al.  Supplement 

19 

signature, contained in a single LV in the main model, was split up into two sparser signatures (LV3, 

LV5). This might indeed be an effect of the severe imbalances of male and female individuals across 

sites, so that the algorithm was not able to uncover a more global sex signature, but rather detected 

it in subsequent steps. Yet, it should be further investigated whether an added value can be obtained 

from these sparser signatures as well.  

In summary, the LOSOCV approach yielded results, which were quite comparable to our main study. 

The most apparent difference arose from the missing emotional trauma signature and the split-up sex 

signature of the LOSOCV approach. In summary, we believe that the LOSOCV approach mostly 

confirmed our main results and offers intriguing options for further analyses.  

Additional Analysis: Investigation of MRI image quality in the main study sample 

To investigate MRI image quality in in our main study sample, we conducted univariate and 

multivariate analysis using the image quality rating (IQR) as our main measure for overall image quality.  

Group-level statistics 

Considering IQR as a possible additional phenotypic input feature, we performed group-level statistical 

tests and did not find any significant differences across study groups (Table S3). Furthermore, the 

overall distribution of IQR scores revealed “good” to “very good” MRI data quality for the entire sample 

(Figure S4).  

Linear regression analysis 

Aiming to assess the specific association between the clinical characteristics of our study sample and 

overall MRI data quality, we undertook linear regression analysis. We used the entire phenotypic 

input feature dataset containing all CTQ items as well as age, sex and study group and predicted 

individual IQR scores. The overall linear model proved significant, while the R-squared value showed 

that only 5.6% of the IQR variance could be explained by the phenotypic input features ( 

Table S4, adjusted R-Squared: 0.0558, F-statistic vs. constant model: 2.16, P Value = 2.3x10-4). 

Furthermore, we found that three CTQ items belonging to emotional abuse (CTQ08) and emotional 
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neglect (CTQ13, 19) (P Value range: 1.95x10-2-4.09x10-2) as well as age (P=1.55x10-4) and sex 

(P=1.08x10-5) were significantly associated with IQR in the linear model.  

In a second step, we investigated the association between IQR scores and the five CT signatures as 

detected in our main analysis (LV1-LV5). We conducted linear regression analyses using IQR scores to 

predict latent phenotypic and brain scores independently for each subject (Table S5). We detected 

significant associations between IQR scores and the phenotypic scores of LV1-LV3 (P Value range: 

3.28x10-2-1.01x10-5) as well as the brain scores of LV4-LV5 (P Value range: 2.20x10-2-2.30x10-3). Yet, we 

did not detect a significant association between IQR scores and both layers (neuroanatomic, 

phenotypic) of an LV signature. Thus, the quality measure was never connected to the entire signature, 

but rather to isolated domains of it. Aiming to quantify the impact of these IQR measures on the latent 

scores, we additionally computed R-squared values and found that the IQR scores explained between 

0.2-3.6% of the latent score variance.  

In summary, these results suggest a significant association between the phenotypic input feature 

dataset–especially for three emotional trauma CTQ items, age and sex–and MRI data quality (IQR). 

Furthermore, we found a significant association between the IQR scores and isolated parts of the SPLS 

CT signatures. Yet, this significance might be attributed to the large sample size (n=649), while the 

effect sizes appear to be minimal. The phenotypic input features explain only about 5% of the IQR 

variance, while the IQR scores explain 0.2-3.6% of the variance of the latent phenotypic and brain 

scores. Hence, it can be assumed that the impact of our phenotypic input features on MRI data quality 

and in turn the influence of MRI data quality on our SPLS results is very limited.  

SPLS analysis: IQR as additional phenotypic input feature 

We performed an SPLS analysis within the same nested cross-validation framework as the main 

analysis and added the IQR scores as an additional phenotypic input feature. Following this strategy, 

we detected nine significant latent variables.  



Popovic et al.  Supplement 

21 

LV1 (P = 9x10-4). Phenotypic pattern (Figure S15, LV1-A): Positive weights were assigned to sexual 

abuse (4 items) and age. Brain pattern (Figure S15, LV1-B): GMV was globally and bilaterally negatively 

weighted across mostly frontal, temporal, parietal and orbital regions. Positive GMV weights were only 

found in the thalamus region. 

LV2 (P = 9x10-4). Phenotypic pattern (Figure S15, LV2-A): Positive weights were distributed to sexual 

abuse (4 items) and female sex. Negative weights were found for emotional abuse (1), age and male 

sex. Brain pattern (Figure S15, LV2-B): Positive GMV weights were found bilaterally in the inferior 

parietal, postcentral and occipital gyrus as well as the cerebellum. Further positive GMV weighting was 

detected in the precentral gyrus, the basal ganglia and the orbital gyrus. Negative GMV weights were 

detected mostly bilaterally in the DLPFC, left fusiform gyrus and the right cingulate gyrus. 

LV3 (P = 9x10-4). Phenotypic pattern (Figure S16 LV3-A): Positive weights were assigned to sexual 

abuse (3 items), emotional (1) and physical neglect (1) as well as male sex and IQR. Negative weighting 

was found for female sex. Brain pattern (Figure S16 LV3-B): We detected positive GMV weights 

predominantly bilaterally in the superior and medial frontal gyrus, the precuneus, the cingulate gyrus, 

the cerebellum and the occipital cortex. Negative GMV weights were found bilaterally in the DLPFC, 

the hippocampus and the left thalamus.  

LV4 (P = 9x10-4). Phenotypic pattern (Figure S16 LV4-A): Age and female sex received positive weights, 

whereas male sex was negatively weighted. Brain pattern (Figure S16 LV4-B): Positive GMV weights 

were sparsely localized in the DLPFC. Negative GMV weights were detected in the right caudate 

nucleus and the right thalamus. 

LV5 (P = 3x10-3). Phenotypic pattern (Figure S17 LV5-A): Emotional (4 items), physical (5) and sexual 

abuse (2) as well as physical neglect (4), age, male sex, ROP and ROD status were positively weighted. 

Negative weights were assigned to sexual abuse (1), emotional neglect (1), female sex, HC status and 

IQR. Brain pattern (Figure S17 LV5-B): Positive GMV weights were mainly localized bilaterally in the 

DLPFC, the basal ganglia and the thalamus. Negative GMV weights were detected widely in the inferior 
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parietal lobule, the orbital gyrus, the medial frontal gyrus, the cerebellum and the superior and middle 

temporal gyrus. 

LV6 (P = 2.4x10-2). Phenotypic pattern (Figure S17 LV6-A): Age and male sex were positively weighted, 

while sexual abuse (1 item) and female sex received a negative weighting. Brain pattern (Figure S17 

LV6-B): Positive GMV weights were densely distributed across the inferior parietal lobule, the fusiform 

gyrus, the cingulate gyrus, the superior frontal and temporal gyrus as well as the cerebellum, 

precuneus and the orbital gyrus. Negative GMV weights were detected mostly in the anterior temporal 

sulcus, the DLPFC, the cerebellum and further superior frontal and temporal regions as well as orbital, 

cingulate and fusiform gyrus. 

LV7 (P = 2x10-3). Phenotypic pattern (Figure S18 LV7-A): Positive weights were found for emotional (2 

items) and sexual abuse (1) as well as age. Brain pattern (Figure S18 LV7-B): Positive GMV weights 

were sparsely localized in the left cuneus and the left precentral gyrus. Negative GMV weights were 

detected similarly sparsely in the orbital gyrus and the cingulate gyrus. 

LV8 (P = 9x10-4). Phenotypic pattern (Figure S18 LV8-A): Positive weights were found for emotional (5 

items), physical (3) and sexual abuse (3), emotional (5) and physical neglect (5) as well as male sex, 

ROP, CHR status and IQR. Negative weights were assigned to physical (2) and sexual abuse (2), denial 

(3), age, female sex, HC and ROD status. Brain pattern (Figure S18 LV8-B): Dense, positive GMV weights 

were localized bilaterally in the DLPFC, the precuneus, the anterior temporal sulcus, the fusiform, 

orbital and superior frontal gyrus as well as the cerebellum. Negative GMV weights were detected in 

the precuneus, cuneus and lingual gyrus, the cerebellum, the DLPFC, the polar cortex and further 

frontal and parietal regions. 

LV9 (P = 2x10-2). Phenotypic pattern (Figure S19A): Positive weights were distributed to emotional 

neglect (4 items), age and female sex, while negative weights were found for emotional (2) and sexual 

abuse (1) as well as male sex and IQR. Brain pattern (Figure S19B): Positive GMV weights were located 

in the right DLPFC. Negative GMV weights were detected in the right thalamus. 
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LV1 and LV4 of the IQR-addition SPLS model closely resembled the age-dependent signature of LV1 

from the main analysis, both on a brain and on a phenotypic level (Table S27 for mean squared error 

comparisons). Furthermore, LV2 contained a sexual abuse signature, dependent on age and sex, which 

mostly resembled the sex-dependent physical and sexual abuse signature of LV4 (phenotype- and 

brain-level) as well as the age-dependent sexual abuse signature of LV2 of the main model (phenotype-

level). LV3 yielded a sex-dependent signature, which showed a high neuroanatomic and phenotypic 

similarity to the strongly sex-informed physical and sexual abuse signature of LV3 of the main model. 

LV5 contained a dense age-, sex-, study-group and IQR-informed signature of predominantly 

emotional, sexual and physical abuse. It bore a close resemblance to LV3 of the main model. Moreover, 

LV6 featured age and sex almost exclusively and thus was highly similar to the aging signature of LV1 

and the heavily sex-informed signature of LV3 of the main model. LV7 represented a highly sparse 

signature of emotional trauma and age, which, due to the strong age influence, was most similar to 

the aging pattern of LV1 of the main model. LV8 contained a highly dense pattern, which included 

weights for all phenotypic input features, but was most strongly dominated by emotional trauma. Due 

to its very dense nature, both on a neuroanatomic and phenotypic level, it yielded high similarities to 

LV1, LV3, LV4 and LV5 of the main model, while it was particularly closely associated to the emotional 

trauma signature of LV5 of the main model (phenotype-level). LV9 was dominated by IQR weighting, 

but further contained weighting for emotional trauma, age and sex. It mostly resembled LV1, LV3 and 

LV4 of the main model, presumably due to the age and sex weighting of these LV.  

Conclusively, all five signatures from the main model were detected in the IQR-addition SPLS model. 

The aging signature of LV1 and the sex signature of LV3 of the main model were contained in five new 

LV (LV1, LV3, LV4, LV5 and LV6). Furthermore, the age-dependent sexual abuse signature of LV2 was 

found partly in the new LV2. The sex-dependent physical and sexual abuse signature of LV4 was mostly 

detected in the new LV2 and LV8 signatures, whereas the emotional trauma signature of LV5 was partly 

replicated in the new LV7 and LV8 signatures. Specifically, LV8 represented a new finding as it 

contained a very global CT signature, which featured the entire phenotypic input feature dataset. This 
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signature linked predominantly emotional trauma and, to a lesser degree, physical and sexual trauma 

to a widely distributed GMV pattern across cortical and subcortical areas. It contained a negative 

weighting of age as well as an inverse weighting of male and female sex. Additionally, it was inversely 

expressed between the HC/ROD population and the ROP/CHR population. Hence, LV8 can be 

summarized as a global CT signature (predominantly emotional trauma), which was inversely 

expressed in the study population along the following lines: psychosis spectrum (CHR/ROP) vs. 

healthy/affective spectrum (HC/ROD), young vs. old and male vs. female. LV9 featured IQR as the most 

strongly weighted feature and contained further weightings for emotional and sexual trauma as well 

as age and sex. The phenotypic pattern corresponded to a highly sparse brain pattern, which featured 

mostly the right DLPFC and the right thalamus. These findings suggest that a very particular subset of 

phenotype-brain association, which was strongly confounded by IQR, was extracted as a single LV.  

Further regarding the impact of data quality, a total of four LV were partly influenced by IQR scores 

(LV3, LV5, LV8, LV9). In LV3, IQR received only a minimal weighting, so that a relevant influence of data 

quality cannot be assumed. In LV5 (IQR ranked 10th out of 25 weighted features) and LV8 (21st out of 

36) IQR was moderately weighted within highly dense phenotypic patterns that contained weights for 

69% (25/36) and 100% (36/36) of the phenotypic input feature dataset.  

Within the LV5 signature, IQR scores were weighted congruently to female sex and HC status and 

inversely to most of the CTQ features, as well as age, male sex and ROP/ROD status. Contrary to these 

findings, in LV8, IQR scores were weighted in the same direction as most CTQ items, male sex and 

CHR/ROP status, and inversely to female sex and HC/ROD status. In LV9, IQR weights were oriented 

congruently to emotional and sexual abuse and male sex. The weighting was inverse for emotional 

neglect, age and female sex. Thus, in our multivariate setup, the relationship between IQR and CT 

loading, sex and study group appeared highly complex, so that a clearly interpretable, linear 

assumption could not be made. This might be due to high-dimensional interactions and non-linear 

effects within the phenotypic input features and the MRI data. Yet, a stable relationship was found 

between age and IQR scores, which was consistent between LV5, LV8 and LV9. It suggested that 
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younger age was associated with higher (“worse”) IQR scores and vice versa, thus reflecting the current 

body of literature (21, 22).  

In summary, the addition of IQR as a phenotypic input feature yielded three main findings: 1) The 

results from our main study were largely replicated as all five LV were found distributed or condensed 

across the newly acquired LV signatures; 2) A dimensional impact of IQR on the dataset does exist, yet 

its contribution to the detected phenotypic and neuroanatomic patterns is very limited. Thus, the 

multivariate SPLS analysis supported the findings of our univariate analysis approach, revealing only 

minimal contributions of IQR scores to the variance of the CT patterns (see Linear regression analysis); 

3) A clear-cut connection between IQR and CT, sex and study group could not be drawn from our SPLS 

analysis as the relationship appeared to be highly complex and possibly driven by non-linear 

interactions between phenotypic and neuroanatomic data. Contrary to that, a consistent, inverse 

relationship was found between age and IQR, thus reflecting current knowledge on MRI data quality 

and supporting the validity of our data quality assessment and assurance protocol.   

Additional Analysis: Visualization of correlation between phenotypic and brain weighting 

To increase the interpretability of the phenotypic and brain patterns, we have conducted a 

visualization experiment between weighted features in the phenotypic and the brain pattern of LV1 in 

the discovery sample. We computed the mean voxel values for the most strongly positively (lateral 

prefrontal thalamus, lPFtha) and negatively weighted voxel clusters (medial superior frontal gyrus, SFG, 

A9m) in LV1 and then correlated these voxel values with age, which was the most strongly (positively) 

weighted feature in LV1 (Table S14, Figure S20). We performed Spearman’s correlation analysis and 

detected an inverse association between age and GMV in the chosen cluster in the left medial superior 

frontal gyrus (ρ=-0.34, P=1.24x10-18) and a positive association between age and the chosen cluster in 

the left lateral prefrontal thalamus (ρ=0.19, P=1.04x10-06).  
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Supplementary Tables 

Table S1: Characteristics of the recruiting institutions in the PRONIA consortium. Shorter version without replication sample 
sites (Muenster, Duesseldorf, Bari) previously published in Koutsouleris et al. (1) and reprinted with permission. 

PRONIA Site Institution Name Country Type of Service 
Catchment 

Population 

Screening 

population / year 

Munich 

Department of Psychiatry 

and Psychotherapy, Ludwig-

Maximilian-University 

Munich 

DE 

Academic outpatient services 

including specialized service for 

early recognition of psychosis; 

tertiary care academic hospital 

1,200,000 700 

Basel 

Department of Psychiatry 

and Psychotherapy, 

University of Basel 

CH 

Academic inpatient and outpatient 

services including specialized 

service for early recognition and 

intervention of psychosis; tertiary 

care academic hospital 

500,000 200 

Milan Niguarda 

Department of 

Pathophysiology and 

Transplantation, University 

of Milan. Four recruitment 

hospitals: Niguarda, 

Policlinico, San Paolo, Villa 

San Benedetto Menni in 

Albese con Cassano 

IT 

Psychiatric outpatient services 

including specialized services for 

early recognition of psychosis and 

persons at high risk; Academic 

hospital, providing psychiatric 

inpatient services, psychiatric 

outpatient services and local 

services 

600,000 1,000 

Cologne 

Department of Psychiatry 

and Psychotherapy, 

University of Cologne 

DE 

Academic outpatient services 

including specialized service for 

early recognition of psychosis; 

tertiary care academic hospital 

1,000,000 600 

Birmingham 
The University of 

Birmingham 
UK 

Academic specialized Early 

Intervention Service for Psychosis 

covering Birmingham and Solihull. 

Community and Inpatient 

1,200,000 800 

Turku 
Department of Psychiatry, 

University of Turku 
FI 

Psychiatric outpatient and hospital 

services responsible for treatment 

of psychiatric patients in their 

catchment areas in the South-

Western Finland 

284,000 2,300 

Udine 
Department of Psychiatry, 

University of Udine 
IT 

Psychiatric outpatient services, 

academic hospital and local 

services. Tertiary care 

neuropsychiatric service 

600,000 500 

Muenster 

Department of Mental 

Health, University of 

Muenster, Muenster, 

Germany 

DE 

Academic in- and outpatient 

services including service for early 

recognition of psychosis; tertiary 

care academic hospital 

300,000 400 

Duesseldorf 

Department of Psychiatry 

and Psychotherapy, 

Heinrich-Heine University 

Duesseldorf 

DE 

Academic outpatient services 

including specialized service for 

early recognition of psychosis; 

tertiary care academic hospital 

650,000 6,500 

Bari 

Department of Basic 

Medical Sciences, 

Neuroscience and Sense 

Organs 

University of Bari 'Aldo 

Moro', Bari 

IT 

Academic inpatient and outpatient 

services including specialized 

service for early recognition of 

psychosis. 

2,123,324 452 
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Table S2: MR scanner systems and structural MRI sequence parameters used at the respective PRONIA sites. Shorter 

version without replication sample sites (Muenster, Duesseldorf, Bari) previously published in Koutsouleris et al. (1) and 

reprinted with permission. 

PRONIA 

Site 
Model 

Field 

Strength 

Coil 

Channels 

Flip 

Angle 
TR [ms] TE [ms] Voxel Size [mm] FOV 

Slice 

Number 

Munich Philips Ingenia 3T 32 8 9.5 5.5 0.97 x 0.97 x 1.0 250 x 250 190 

Milan 

Niguarda 

Philips 

Achieva Intera 
1.5T 8 12 

Shortest 

(8.1) 

Shortest 

(3.7) 
0.93 x 0.93 x 1.0 240 x 240 170 

Basel 
SIEMENS 

Verio 
3T 12 8 2000 3.4 1.0 x 1.0 x 1.0 256 x 256 176 

Cologne 
Philips 

Achieva 
3T 8 8 9.5 5.5 0.97 x 0.97 x 1.0 250 x 250 190 

Birmingham 
Philips 

Achieva 
3T 32 8 8.4 3.8 1.0 x 1.0 x 1.0 288 x 288 175 

Turku 
Philips 

Ingenuity 
3T 32 7 8.1 3.7 1.0 x 1.0 x 1.0 256 x 256 176 

Udine 
Philips 

Achieva 
3T 8 12 

Shortest 

(8.1) 

Shortest 

(3.7) 
0.93 x 0.93 x 1.0 240 x 240 170 

Muenster 

Siemens 

Magnetom 

PRISMA-FIT 

3T 20 8 2130 2,28 1x1x1 256 192 

Duesseldorf 
Siemens 

Prisma 
3T 32 8 2000 3.37 1.0x1.0x1.0 256x256 176 

Bari Philips Ingenia 3T 32 8 8.1 3.7 1.0 x 1.0 x 1.0 256 x 256 180 

 

Table S3: Group-level statistics for IQR differences. Abbreviations: IQR, image quality rating; HC, healthy control; ROD, 
recent-onset of depression; CHR, clinical high-risk state; ROP, recent-onset of psychosis.; LB, Lower Boundary; Diff., 
Difference; UB, Upper Boundary. 

Kruskal-Wallis test statistics 

 All HC ROD CHR ROP χ2 P Value 

IQR, mean 1.93 1.93 1.93 1.92 1.95 1.00 .80 

SD 0.15 0.16 0.14 0.12 0.18   

        

Dunn’s test statistics for multiple comparisons 

 Group 1 Group 2 LB Diff. UB P Value  

 ROD CHR -73.48 -11.44 50.60 .99  

 ROD ROP -82.98 -21.90 39.17 .92  

 ROD HC -69.18 -16.19 36.81 .96  

 CHR ROP -72.15 -10.46 51.23 .99  

 CHR HC -58.45 -4.74 48.96 .99  

 ROP HC -46.87 5.72 58.30 .99  
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Table S4: Linear regression model using the phenotypic input feature dataset to predict IQR (image quality rating). Number 
of observations: 649; Error degrees of freedom: 615; Root Mean Squared Error: 0.145; R-squared: 0.104; Adjusted R-Squared: 
0.0558; F-statistic vs. constant model: 2.16; P Value = 2.3x10-4. Abbreviations: Estimate, Coefficient estimates for each 
corresponding term in the model; SE, Standard error of the coefficients; TS, t-statistic for each coefficient. Significant P values 
are highlighted in bold. 

 Estimate SE TS P Value 

(Intercept) 2.12 4.32x10-2 49.1 1.22x10-214 

CTQ_03 -1.20x10-2 7.67x10-3 -1.57 1.17x10-1 

CTQ_08 1.93x10-2 8.90x10-3 2.17 3.04x10-2 

CTQ_14 1.19x10-3 8.04x10-3 1.49x10-1 8.82x10-1 

CTQ_18 -5.50x10-3 8.18x10-3 -6.72x10-1 5.02x10-1 

CTQ_25 -1.42x10-3 7.80x10-3 -1.82x10-1 8.56x10-1 

CTQ_09 6.83x10-3 1.46x10-2 4.68x10-1 6.40x10-1 

CTQ_11 -1.99x10-2 1.15x10-2 -1.73 8.46x10-2 

CTQ_12 1.93x10-2 1.06x10-2 1.82 6.93x10-2 

CTQ_15 1.53x10-2 1.33x10-2 1.15 2.50x10-1 

CTQ_17 -6.01x10-3 1.96x10-2 -3.07x10-1 7.59x10-1 

CTQ_20 1.22x10-2 1.87x10-2 6.55x10-1 5.13x10-1 

CTQ_21 -6.06x10-3 1.97x10-2 -3.08x10-1 7.58x10-1 

CTQ_23 2.21x10-3 1.66x10-2 1.33x10-1 8.94x10-1 

CTQ_24 -1.43x10-3 1.97x10-2 -7.27x10-2 9.42x10-1 

CTQ_27 -2.60x10-2 1.55x10-2 -1.68 9.35x10-2 

CTQ_05 -8.24x10-3 7.39x10-3 -1.12 2.65x10-1 

CTQ_07 1.74x10-3 9.41x10-3 1.85x10-1 8.53x10-1 

CTQ_13 -2.00x10-2 8.55x10-3 -2.34 1.95x10-2 

CTQ_19 1.62x10-2 7.91x10-3 2.05 4.09x10-2 

CTQ_28 -1.04x10-2 9.00x10-3 -1.15 2.49x10-1 

CTQ_01 -1.26x10-2 7.73x10-3 -1.62 1.05x10-1 

CTQ_02 8.51x10-3 8.57x10-3 9.93x10-1 3.21x10-1 

CTQ_04 -2.34x10-3 9.61x10-3 -2.44x10-1 8.08x10-1 

CTQ_06 -1.72x10-3 1.46x10-2 -1.17x10-1 9.07x10-1 

CTQ_26 3.07x10-3 7.27x10-3 4.22x10-1 6.73x10-1 

CTQ_10 1.47x10-2 1.86x10-2 7.92x10-1 4.29x10-1 

CTQ_16 -7.79x10-3 1.92x10-2 -4.05x10-1 6.85x10-1 

CTQ_22 -2.27x10-2 1.87x10-2 -1.21 2.26x10-1 

Age -3.80x10-3 9.98x10-4 -3.81 1.55x10-4 

Male sex 0 0 NaN NaN 

Female sex -5.39x10-2 1.21x10-2 -4.44 1.08x10-5 

HC -1.59x10-2 1.75x10-2 -9.12x10-1 3.62x10-1 

ROP 0 0 NaN NaN 

ROD -2.18x10-2 1.88x10-2 -1.16 2.48x10-1 

CHR -1.62x10-2 1.88x10-2 -8.59x10-1 3.91x10-1 
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Table S5: Linear regression using IQR to predict latent phenotypic and brain scores of the main study model. Depicted are 
the results of the linear regression analysis using the IQR measures of the participants to predict their phenotypic and brain 
scores of all five LV. Abbreviations: R2, adjusted R-squared (percentage of explained variance). Significant P values are 
highlighted in bold font (after FDR-correction for multiple testing). 

 Phenotypic score Brain score 

 R2 P Value R2 P Value 

LV1 1.2% 3.28x10-2 0.4% 8.04x10-1 

LV2 1.2% 3.27x10-2 0.2% 5.21x10-1 

LV3 3.6% 1.01x10-5 1.1% 5.00x10-2 

LV4 0.2% 9.9x10-1 1.3% 2.20x10-2 

LV5 0.3% 5.00x10-1 2.0% 2.30x10-3 
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Table S6: Clinical and demographic characteristics of the replication sample. Abbreviations: HC, healthy control; ROD, 

recent-onset of depression; CHR, clinical high-risk state; ROP, recent-onset of psychosis; SD, standard deviation; NA, not 

available; GAF:S, Global Assessment of Functioning Social Scale; GAF:D/I, GAF Disability/Impairment Scale; GF:S, Global 

Functioning Social Scale; GF:R, GF Role Scale; PANSS, Positive and Negative Symptom Scale; BDI, Beck Depression Inventory. 

Significant P values are highlighted in bold font (after FDR-correction for multiple testing). 

 All HC ROD CHR ROP H/χ2 P Value 

Age, years, mean 24.82 24.74 25.35 23.35 26.03 10.30 a .05 

SD 5.80 5.04 6.19 5.41 6.44   

Sex, women/men, % 46 42 51 43 50 1.43 b .77 

Years of education, years, mean 14.65 15.74 13.90 13.49 15.09 1.02 a .85 

SD 6.24 3.12 2.95 2.37 12.23   

GAF:S Past Month, mean 60.33 87.75 51.07 48.51 42.58 23.06 a 8.47x10-05 

SD 22.02 5.67 13.10 10.45 15.28   

GAF:D/I Past Month, mean 61.29 87.70 52.32 48.27 46.11 14.40 a .01 

SD 21.50 5.33 14.31 10.02 15.65   

GF:S Current, mean 6.76 8.53 6.31 5.88 5.56 13.90 a .01 

SD 1.78 0.77 1.29 1.50 1.57   

GF:R Current, mean 6.41 8.59 5.66 5.40 5.05 5.26 a .62 

SD 2.23 0.66 1.82 1.97 2.01   

Handedness, right-handed, % 87 89 88 87 84 0.42 b .90 

PANSS total, mean 58.34 NaN 51.22 58.32 66.18 31.94 a 9.96x10-07 

SD 16.75 NaN 12.45 15.53 18.61   

PANSS positive, mean 12.85 NaN 8.33 12.27 18.47 140.75 a 2.35x10-30 

SD 5.88 NaN 1.99 3.91 5.99   

PANSS negative, mean 14.74 NaN 13.48 15.15 15.65 3.87 a .52 

SD 6.75 NaN 5.73 7.16 7.10   

PANSS general, mean 30.79 NaN 29.34 30.92 32.23 4.28 a .50 

SD 8.74 NaN 7.87 8.41 9.72   

BDI total, mean 18.64 3.86 28.22 27.33 21.47 14.34 a .01 

SD 15.06 6.03 12.26 12.06 12.91   

Study center      410.65 b 7.30x10-83 

Munich 107 5 25 39 38   

Basel 21 17 4 0 0   

Cologne 33 22 2 6 3   

Birmingham 25 6 5 6 8   

Milan 34 8 8 13 5   

Turku 50 28 3 9 10   

Udine 37 29 2 3 3   

Bari 32 11 5 10 6   

Duesseldorf 26 0 15 6 5   

Muenster 62 9 27 12 14   

Total 427 135 96 104 92   

a Kruskal-Wallis-Test (H test), b χ2-test 
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Table S7: Group-level Dunn’s tests for sociodemographic and clinical differences. Abbreviations ROD, recent-onset of 
depression; CHR, clinical high-risk state; ROP, recent-onset of psychosis; GAF:S, Global Assessment of Functioning Social Scale; 
GAF:D/I, GAF Disability/Impairment Scale; GF:S, Global Functioning Social Scale; GF:R, GF Role Scale; PANSS, Positive and 
Negative Symptom Scale; BDI, Beck Depression Inventory; LB, Lower Boundary; Diff., Difference; UB, Upper Boundary. 
Significant P values are highlighted in bold font (after FDR-correction for multiple testing). 

Group 1 Group 2 LB Diff. UB P Value 

Age      

ROD CHR 4.79 38.14 71.48 .02 
ROD ROP -28.86 3.97 36.80 .99 
CHR ROP -67.33 -34.17 -1.01 .04       

Years of education      

ROD CHR -32.08 0.76 33.59 .99 
ROD ROP -60.66 -27.64 5.38 .13 
CHR ROP -60.96 -28.40 4.17 .11       

GAF:S      

ROD CHR -28.58 4.60 37.78 .98 
ROD ROP 80.37 113.16 145.95 <10-3 
CHR ROP 75.44 108.56 141.68 <10-3 

      
GAF:D/I      

ROD CHR -29.84 3.35 36.55 .99 
ROD ROP 61.05 93.85 126.65 <10-3 
CHR ROP 57.37 90.50 123.63 <10-3       
GF:S      

ROD CHR 32.80 64.92 97.05 <10-3 
ROD ROP -24.84 7.47 39.78 .93 
CHR ROP -89.45 -57.45 -25.46 <10-3 

      
GF:R      

ROD CHR 27.20 59.48 91.77 <10-3 
ROD ROP -39.78 -7.31 25.16 .93 
CHR ROP -98.95 -66.79 -34.64 <10-3       

PANSS total      

ROD CHR -130.95 -98.10 -65.25 <10-3 
ROD ROP -11.02 22.02 55.06 .30 
CHR ROP 87.54 120.12 152.70 <10-3       

PANSS positive      

ROD CHR -140.19 -107.91 -75.63 <10-3 
ROD ROP 51.01 83.48 115.95 <10-3 
CHR ROP 159.31 191.39 223.47 <10-3       

PANSS negative      

ROD CHR -91.41 -58.64 -25.88 <10-3 
ROD ROP -41.21 -8.25 24.71 .91 
CHR ROP 17.82 50.39 82.96 <10-3       

PANSS general      

ROD CHR -113.55 -80.72 -47.89 <10-3 
ROD ROP -26.86 6.16 39.18 .96 
CHR ROP 54.32 86.88 119.44 <10-3       
BDI      

ROD CHR -33.90 -0.88 32.14 .99 
ROD ROP 6.30 38.80 71.29 .01 
CHR ROP 6.84 39.67 72.50 .01 

 

Table S8: Individual χ2-comparisons of differences in sex and handedness. Abbreviations: ROD, recent-onset of depression; 
CHR, clinical high-risk state; ROP, recent-onset of psychosis. Significant P values are highlighted in bold font (after FDR-
correction for multiple testing). 

Group 1 Group 2 χ2 P Value 

Sex    

ROD CHR 0.87 .35 
ROD ROP 7.05 .02 
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CHR ROP 2.88 .13 
    

Handedness    

ROD CHR 0.19 .80 
ROD ROP 0.04 .85 
CHR ROP 0.38 .80 

 

Table S9: Individual χ2-comparisons of recruitment per site. Significant P values are highlighted in bold font (after FDR-
correction for multiple testing). 

Group 1 Group 2 χ2 P Value 

Munich Basel 35.51 <10-3 
Munich Cologne 8.01 <10-3 
Munich Birmingham 39.08 <10-3 
Munich Milan 95.12 <10-3 
Munich Turku 44.90 <10-3 
Munich Udine 58.28 <10-3 

Basel Cologne 10.27 <10-3 
Basel Birmingham 0.10 .75 
Basel Milan 18.26 <10-3 
Basel Turku 0.63 .43 
Basel Udine 3.32 .07 

Cologne Birmingham 12.33 <10-3 
Cologne Milan 52.60 <10-3 
Cologne Turku 15.85 <10-3 
Cologne Udine 24.67 <10-3 

Birmingham Milan 15.80 <10-3 
Birmingham Turku 0.23 .63 
Birmingham Udine 2.28 .13 

Milan Turku 12.33 <10-3 
Milan Udine 6.31 .01 
Turku Udine 1.06 .30 

 

Table S10: Group-level Kruskal-Wallis statistics for psychopharmacological differences. Abbreviations: HC, healthy control; 
ROD, recent-onset of depression; CHR, clinical high-risk state; ROP, recent-onset of psychosis. Depicted is the count of 
members of the respective study population that received at least one substance from the psychopharmacological class. 
Significant P values are highlighted in bold font (after FDR-correction for multiple testing). 

 HC ROP ROD CHR χ2 P Value 

Antidepressants 2 33 95 65 61.97 <10-3 
Antipsychotics 0 99 25 29 104.44 <10-3 

Sedatives 4 54 36 20 19.23 <10-3 
Anticonvulsants 0 5 7 3 1.53 .47 
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Table S11: Group-level Dunn’s tests for psychopharmacological differences. Abbreviations: ROD, recent-onset of 
depression; CHR, clinical high-risk state; ROP, recent-onset of psychosis; LB, Lower Boundary; Diff., Difference; UB, Upper 
Boundary. Significant P values are highlighted in bold font (after FDR-correction for multiple testing). 

Group 1 Group 2 LB Diff. UB P Value 

Antidepressants      

ROP ROD -122.13 -93.64 -65.15 <10-3 
ROP CHR -81.56 -52.78 -24.00 <10-3 
ROD CHR 11.92 40.86 69.80 <10-3 

      

Antipsychotics      

ROP ROD 79.19 107.07 134.95 <10-3 
ROP CHR 71.19 99.36 127.52 <10-3 
ROD CHR -36.04 -7.71 20.61 .89 

      

Sedatives      

ROP ROD -0.71 25.03 50.77 .06 
ROP CHR 21.70 47.70 73.70 <10-3 
ROD CHR -3.48 22.67 48.82 .11 

      

Anticonvulsants      

ROP ROD -14.18 -3.15 7.87 .87 
ROP CHR -8.50 2.63 13.77 .92 
ROD CHR -5.41 5.79 16.99 .52 
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Table S12: Group-level Dunn’s tests for CTQ differences. Abbreviations: ROD, recent-onset of depression; CHR, clinical high-
risk state; ROP, recent-onset of psychosis; LB, Lower Boundary; Diff., Difference; UB, Upper Boundary. Significant P values are 
highlighted in bold font (after FDR-correction for multiple testing). 

Group 1 Group 2 LB Diff. UB P Value 

CTQ emotional abuse      

ROD CHR -58.13 -24.73 8.67 .21 
ROD ROP -61.67 -28.80 4.08 .11 
CHR ROP -37.28 -4.07 29.14 .99       

CTQ physical abuse      

ROD CHR -64.40 -31.17 2.06 .07 
ROD ROP -53.04 -20.33 12.38 .36 
CHR ROP -22.20 10.84 43.88 .82       

CTQ sexual abuse      

ROD CHR -37.50 -8.45 20.59 .86 
ROD ROP -42.28 -13.70 14.89 .58 
CHR ROP -34.12 -5.24 23.64 .96       

CTQ emotional neglect      

ROD CHR -31.52 -6.44 18.64 .90 
ROD ROP -41.93 -17.24 7.45 .26 
CHR ROP -35.75 -10.81 14.13 .66       

CTQ physical neglect      

ROD CHR -51.69 -18.36 14.97 .47 
ROD ROP -41.72 -8.90 23.91 .89 
CHR ROP -23.69 9.46 42.61 .87       

CTQ denial      

ROD CHR -51.71 -18.97 13.76 .42 
ROD ROP -74.18 -41.96 -9.73 .01 
CHR ROP -55.54 -22.99 9.57 .25       

CTQ total      

ROD CHR -16.88 8.55 33.97 .81 
ROD ROP -27.73 -2.70 22.32 .99 
CHR ROP -36.53 -11.25 14.03 .64       
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Table S13: Detailed list of weighted phenotypic features from LV1-LV5. 

LV CT domain CTQ item 

   

LV1 emotional abuse  I thought that my parents wished I hadn't been born.   

  I believe that I was emotionally abused. 

 physical abuse  I got hit so hard by someone in my family that I had to see a doctor or go to the hospital. 

  People in my family hit me so hard that it left me with bruises or marks. 

  I was punished with a belt, a board, a cord, or some other hard object. 

  I believe that I was physically abused. 

 sexual abuse  Someone tried to touch me in a sexual way. Or tried to make me touch them. 

  Someone threatened to hurt me or tell lies about me unless I did something sexual with them. 

  Someone tried to make me do sexual things or watch sexual things. 

  Someone molested me. 

  I believe that I was sexually abused. 

 physical neglect My parents were too drunk or high to take care of the family. 

 denial I had the best family in the world.  

 other Age, Male sex, Female sex, ROP 

   

LV2 sexual abuse  Someone threatened to hurt me or tell lies about me unless I did something sexual with them. 

  Someone molested me. 

 other Age 
   

LV3 emotional abuse  I believe that I was emotionally abused. 

 physical abuse  I got hit so hard by someone in my family that I had to see a doctor or go to the hospital. 

  I was punished with a belt, a board, a cord, or some other hard object. 

 sexual abuse  Someone tried to touch me in a sexual way. Or tried to make me touch them. 

  Someone threatened to hurt me or tell lies about me unless I did something sexual with them. 

  Someone tried to make me do sexual things or watch sexual things. 

  I believe that I was sexually abused. 

 emotional neglect 
There was someone in my family who helped me feel that I was important or special. (inverted 
question) 

  My parents were too drunk or high to take care of the family. 

  There was someone to take me to the doctor if I needed it. (inverted question) 

 denial I had the best family in the world.  

 other Age, Male sex, Female sex 
   

LV4 physical abuse  I got hit so hard by someone in my family that I had to see a doctor or go to the hospital. 

  I was punished with a belt, a board, a cord, or some other hard object. 

  I believe that I was physically abused. 

 sexual abuse  Someone tried to touch me in a sexual way. Or tried to make me touch them. 

  Someone tried to make me do sexual things or watch sexual things. 

  Someone molested me. 

  I believe that I was sexually abused. 

 other Male sex, Female sex 
   

LV5 emotional abuse  People in my family called me things like ''stupid'', ''lazy'' or ''ugly''. 

  People in my family said hurtful or insulting things to me. 

  I felt that someone in my family hated me. 

 emotional neglect I felt loved. (inverted question) 

  People in my family looked out for each other. (inverted question) 

  My family was a source of strength and support. (inverted question) 
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Table S14: Atlas readouts from LV1-LV5. Depicted are the brain patterns of LV1-LV5, read out by the Brainnetome atlas and the cerebellar atlas by Diedrichsen. For each LV, the brain pattern is 
specified by the percentage of total voxels in a certain region (%) in bilateral hemispheres (left/right) being either positively (+) or negatively (-) weighted. For better clarity, blank spaces are 
used to indicate that a region did not receive any weights in this instance. 

Latent variables  LV1 LV2 LV3 LV4 LV5 
 Hemispheres left right left right left right left right left right 
 Weights + - + - + - + - + - + - + - + - + - + - 

Brainnetome atlas regions Percentages (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) 

Superior Frontal Gyrus Total voxels                     

A8m, medial area 8 241  100  97  22  4 2 15 17 12  13  34 1 5  5 
A8dl, dorsolateral area 8 232  99  100  4  2 32 3 14 2 2 11 9 2 2  3  

A9l, lateral area 9 224  100  100  21  24  43 5 16 11  8 8     

A6dl, dorsolateral area 6 184  75  87 3  8  90  96  1  1      

A6m, medial area 6 211  98  84  2   28 7 37 3  11 7 3  17  11 
A9m,medial area 9 230  100  100  43  32 3 31 4 15 4 5 1 47 8 3   

A10m, medial area 10 266  100  100  46  23 7 37 4 15 9 1 1 20     

Middle Frontal Gyrus                      

A9/46d, dorsal area 9/46 301  100  94  8  3 13 8 19 4  9  8 9    

IFJ, inferior frontal junction 196  93  83  1 2 1 40 4 46 2 25 3 14 1 1    

A46, area 46 241  100  100  11  9 1 13 10 7 1 10  9     

A9/46v, ventral area 9/46 279  100  98  8  9 3 15  12 9 1 6  1    

A8vl, ventrolateral area 8 248  100  95  2  1 58  32 3  5 2 1 2    

A6vl, ventrolateral area 6 168  87  88 1  10  95  86    3      

A10l, lateral area10 220  100  100  2  7 20 5  12 4 1 4      

Inferior Frontal Gyrus                      

A44d, dorsal area 44 94  100  98  1 1   5 3 2 54  43  1  1  

IFS, inferior frontal sulcus 101  100  100  3  10  24  31 31   4 2    

A45c, caudal area 45 88  100  98 1  3 1  1 14 7 49  31 3 1    

A45r, rostral area 45 105  100  100  2  4  17  24 11 1 11 6     

A44op, opercular area 44 148  87  100  1  1 49 4 9 7 7 2 4 3  19   

A44v, ventral area 44 84  100  99 24 1 19  5 9 19 4 73  64    1  

Orbital Gyrus                      

A14m, medial area 14 165  100  100  1  6  9  6  6  37    7 
A12/47o, orbital area 12/47 137  100  100    12 11 8 13 38  2 1 1     

A11l, lateral area 11 308  100  100    2 3 18 6 20  3 2 1     

A11m, medial area 11 158  100  99    1  10  8  1 2 11    13 
A13, area 13 236  99  100 2   3 32 2 5 11 6 6  11  16   

A12/47l, lateral area 12/47 153  98  100    6 22 10 28 22 2 1 4 1     

Precentral Gyrus                      

A4hf, area 4(head and face region) 180  71  89  1  3 15 13 13 27 25  42  8   2 
A6cdl, caudal dorsolateral area 6 226  79  95 1  20  53  61  27  20      

A4ul, area 4(upper limb region) 166  91  86  1 1   13 2 33 1  25  10  10  

A4t, area 4(trunk region) 103  70  63   2  50  52  4  14  4  23  

A4tl, area 4(tongue and larynx region) 118  100  97    7 16 4 13 10 28 2 3 5     

A6cvl, caudal ventrolateral area 6 199  98  97 9    45  42  29 1 29      

Paracentral Lobule                      
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A1/2/3ll, area1/2/3 (lower limb region) 106  85  77  2  2  3   2     12  13 
A4ll, area 4, (lower limb region) 153  67  60  4  2 23 3 23 1 22  37 2 1 2  4 

Superior Temporal Gyrus                      

A38m, medial area 38 194  15  26     49  4   34  4    8 
A41/42, area 41/42 123  67  91    1 63  34 2  7 1 1     

TE1.0 and TE1.2 218  79  100 3 9  12 35 15 3 26 8 6 1 8     

A22c, caudal area 22 123  91  92  1  9 32 2 59 2  16  4 1    

A38l, lateral area 38 165  90  94  6  1 38 1 6 1  26  17 2    

A22r, rostral area 22 141  93  96  1   30 1 32 5  6  2 3    

Middle Temporal Gyrus                      

A21c, caudal area 21 164  100  100  14  4 22 9 1 10  1  13     

A21r, rostral area 21 252  81  99    2 66  38   19  35     

A37dl, dorsolateral area37 172  97  97  7  2 7 16 40 2  2  7  3   

aSTS, anterior superior temporal sulcus 286  100  100  8  8 20 13 26 14  10  11 1  1  

Inferior Temporal Gyrus                      

A20iv, intermediate ventral area 20 70  46  33   2    41       16  2 
A37elv, extreme lateroventral area37 68  81  91     23 1 46   9  2 1    

A20r, rostral area 20 129  3  37   1  76  39   24  9    1 
A20il, intermediate lateral area 20 121  91  88    1 78  19 1    8    7 
A37vl, ventrolateral area 37 100  91  85  6  1  15 60   7  8     

A20cl, caudolateral of area 20 124  100  100  1   33 1 1 2 6   1     

A20cv, caudoventral of area 20 148  56  93     24     1  1     

Fusiform Gyrus                      

A20rv, rostroventral area 20 297  33  33     9 1 12  8 52  5  8  11 
A37mv, medioventral area37 235  97  94 2    15  40  9 5 5 2     

A37lv, lateroventral area37 262  86  81  1   37  61   9   1    

Parahippocampal Gyrus                      

A35/36r, rostral area 35/36 46           14   100  2     

A35/36c, caudal area 35/36 48  53  51     4  16 10 11 7 2 2    2 
TL, area TL (lateral PPHC, posterior parahippocampal 
gyrus) 

46  80  75     12 8 10 3 14 4       

A28/34, area 28/34 (EC, entorhinal cortex) 45  2        13  22  77  54     

TI, area TI(temporal agranular insular cortex) 29              85  47    41 
TH, area TH (medial PPHC) 40  100  100   2  13 3   31  12      

Posterior Superior Temporal Sulcus                      

rpSTS, rostroposterior superior temporal sulcus 105  100  100    6 1 46  35  7 16 3     

cpSTS, caudoposterior superior temporal sulcus 91  99  100  1  1 2 30 1 4   27 3     

Superior Parietal Lobule                      

A7r, rostral area 7 135  53  81     25  4    1      

A7c, caudal area 7 135  83  74     35  31  5  3  1    

A5l, lateral area 5 117  70  93      3 5 15 7  3      

A7pc, postcentral area 7 133  58  61     3  4  3  4 2    4 
A7ip, intraparietal area 7(hIP3) 128  74  90    1 24   7 16  12      

Inferior Parietal Lobule                      

A39c, caudal area 39(PGp) 296  83  78  1   9 10 35  9  1 6     

A39rd, rostrodorsal area 39(Hip3) 252  86  87     3 12 6 2 16 1 35      

A40rd, rostrodorsal area 40(PFt) 280  97  96  1   4 8  30 18 1 15   5  1 
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A40c, caudal area 40(PFm) 274  100  100  2   2 10 1 3  1 31   4   

A39rv, rostroventral area 39(PGa) 396  100  99  6  1 16 11 19 2 2 3 18 1   1  

A40rv, rostroventral area 40(PFop) 324  85  86     63   1  1 1   2  1 

Precuneus                      

A7m, medial area 7(PEp) 140  94  100     21 1 19 2         

A5m, medial area 5(PEm) 176  81  75     4 4 3 2        9 
dmPOS, dorsomedial parietooccipital sulcus(PEr) 267  73  70     39  71  1 9 1 11 3  3  

A31, area 31 (Lc1) 228  95  100     94  89   16  21 3    

Postcentral Gyrus                      

A1/2/3ulhf, area 1/2/3(upper limb, head, and face region) 251  94  86  3    37  33 51  54  28    

A1/2/3tonIa, area 1/2/3(tongue and larynx region) 158  99  99 15    39  1 5 59  11   7   

A2, area 2 212  98  88  3    9 5 8 22 2 24  2    

A1/2/3tru, area1/2/3(trunk region) 181  82  68       2 2 6  1  4  11  

Insular Gyrus                      

G, hypergranular insula 85  82  97     34 2  4 4        

vIa, ventral agranular insula 64  100  98  1   4 1 26   1       

dIa, dorsal agranular insula 71  87  100  3  4 73 4 43 3  7 1   13   

vId/vIg, ventral dysgranular and granular insula 78  93  76     12 5  6 28 1       

dIg, dorsal granular insula 84  100  100  1  6  7  4 5 5  2     

dId, dorsal dysgranular insula 96  100  100  1  1 29 9  8 4   1     

Cingulate Gyrus                      

A23d, dorsal area 23 129  99  100     94  66   8  3     

A24rv, rostroventral area 24 61  98  100     7  8  74 2 27 27  17  15 
A32p, pregenual area 32 122  100  100    3 1   15  5 7 9  2  8 
A23v, ventral area 23 88  70  78     92  85   86  57     

A24cd, caudodorsal area 24 92  100  100  1  1  8  10 20 9 34 3  45  54 
A23c, caudal area 23 147  100  100  5  14 1 6  8 1 16  13  51  41 
A32sg, subgenual area 32 157  100  100  1  1 23 5  9  24  9  17  15 

Medioventral Occipital Cortex                      

cLinG, caudal lingual gyrus 156  32  26 3    62  62  21  2 1   7  

rCunG, rostral cuneus gyrus 249  52  42 7  5  50  68  48  29  35  44  

cCunG, caudal cuneus gyrus 166  28  10   2  8  42  59  23  1  46  

rLinG, rostral lingual gyrus 243  64  85 4  2  49  41  15  9      

vmPOS,ventromedial parietooccipital sulcus 268  19  57 10    56  30  28 6   9  3  

Lateral Occipital Cortex                      

mOccG, middle occipital gyrus 211  85  49 8  6  31 2 34  47  32 1   6  

V5/MT+, area V5/MT+ 209  91  73  3   17 4 34  1 7  4     

OPC, occipital polar cortex 221  61  2     4  19  22  5    28  

iOccG, inferior occipital gyrus 259  81  53 1 2   14 1 65  1 5  16   2  

msOccG, medial superior occipital gyrus 161  34  7     2  13  34  29    13  

lsOccG, lateral superior occipital gyrus 182  43  41     1 3 5  24  42  1    

Amygdala                      

mAmyg, medial amygdala 50  7  12        12  7 3 7    3 
lAmyg, lateral amygdala 31   8 8        35  50 3 8     

Hippocampus                      

rHipp, rostral hippocampus 149  3 1 1      34  69 2 39 2 15    10 
cHipp, caudal hippocampus 167  13  19      33 2 40 20  16     2 
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Basal Ganglia                      

vCa, ventral caudate 103  82  83 1    19 6 15 5 62  65      

GP, globus pallidus 60  64  75   2  84  78  56  31    11  

NAC, nucleus accumbens 112  85  87 7  2 1 53 1 27 3 32  15 6     

vmPu, ventromedial putamen 78  92  74     61  81  71  57    9  

dCa, dorsal caudate 128  81  72 5  14  10 1 7 4 100  84   1  11 
dlPu, dorsolateral putamen 132  91  93 6    46  49  34  9 1     

Thalamus                      

mPFtha, medial pre-frontal thalamus 46  100  100      21  7 92  74      

mPMtha, pre-motor thalamus 17   24 24        53   76      

Stha, sensory thalamus 24 33 20 28 25      33  16 80  53   13   

rTtha, rostral temporal thalamus 59  91  98      4  25 92  85    3  

PPtha, posterior parietal thalamus 55  45  75      2  2 91  80      

Otha, occipital thalamus 56  80  95      4   94  78  1 1   

cTtha, caudal temporal thalamus 44  70  78         96  95      

lPFtha, lateral pre-frontal thalamus 69 20 42  66      33  19 87  88   5 3  

                      

Cerebellar atlas regions by Diedrichsen                      

Cerebellum                      

Cerebellum 1-4 263  57  65 15  13  39  47 1       1  

Cerebellum 5 281  78  80 10 1 8 1 36 3 42 4  2  4   1  

Cerebellum 6 318  82  87     13 2 13 1  4  1 1    

Cerebellum 7b 540  94  89       15   11  2     

Cerebellum 8a 400  70  74     36  51   4       

Cerebellum 8b 302         46  55          

Cerebellum 9 331  88  81       29          

Cerebellum 10 127                     

Crus 1 148  73  60 14  4  26  30  41 1 40  1  3  

Crus 2 186  84  83 16  12   3   45  49     1 

 
 medial medial medial medial medial 
 + - + - + - + - + - 

 Total voxels (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) 

Vermis Crus 1 254  75   20 2 16 3   
Vermis Crus 2 272  87 7  1 1 51   1 
Vermis 6 281  57 2  10  5  1  

Vermis 7b 280  88   6  10 2   

Vermis 8a 474  86   9  2 1   

Vermis 8b 162  66   45  3    

Vermis 9 423  82   22  29    

Vermis 10 656  71     86    
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Table S15: Spearman’s correlation analyses between latent scores and clinical domains of functioning in the discovery and 
replication sample. Results are states as correlation coefficient ρ, followed by its P value in brackets: ρ (P value). 
Abbreviations: D, Discovery Sample; R, Replication Sample; GAF:S, Global Assessment of Functioning Social Scale; GAF:D/I, 
GAF Disability/Impairment Scale; GF:S, Global Functioning Social Scale; GF:R, GF Role Scale. Significant P values are highlighted 
in bold font (after FDR-correction for multiple testing). 

  LV1 LV3 

  Age Sex 

  Phenotypic score Brain score Phenotypic score Brain score 

GAF:S      

Lifetime 
D 0.01 (.96) 0.01 (.99) -0.24 (<10-3) -0.06 (.54) 

R 0.04 (.6) -0.1 (.2) -0.2 (<10-3) 0.01 (.99) 

Past Year 
D 0.07 (.2) 0.02 (.75) -0.25 (<10-3) -0.06 (.55) 

R -0.04 (.6) -0.14 (.03) -0.16 (.01) 0.05 (.54) 

Past Month 
D 0.16 (<10-3) 0.08 (.5) -0.19 (<10-3) -0.04 (.7) 

R -0.05 (.57) -0.17 (<10-3) -0.17 (<10-3) 0.06 (.53) 

GAF:D/I      

Lifetime 
D 0.01 (.99) 0.01 (.95) -0.29 (<10-3) -0.13 (.05) 

R 0.03 (.77) -0.08 (.48) -0.24 (<10-3) -0.01 (.93) 

Past Year 
D 0.04 (.77) 0.02 (.77) -0.29 (<10-3) -0.09 (.85) 

R -0.03 (.73) -0.14 (.02) -0.19 (<10-3) 0.05 (.56) 

Past Month 
D 0.15 (<10-3) 0.06 (.54) -0.22 (<10-3) -0.07 (.5) 

R -0.06 (.88) -0.18 (<10-3) -0.14 (.03) 0.06 (.5) 

GF:S      

Current 
D 0.11 (.01) 0.08 (.5) -0.26 (<10-3) -0.06 (.57) 

R -0.11 (.13) -0.16 (.01) -0.13 (.05) 0.08 (.51) 

Low Past Year 
D 0.12 (.01) 0.03 (.68) -0.23 (<10-3) -0.07 (.5) 

R -0.14 (.03) -0.17 (<10-3) -0.13 (.04) 0.1 (.21) 

High Past Year 
D 0.04 (.73) 0.03 (.69) -0.28 (<10-3) -0.06 (.54) 

R -0.08 (.51) -0.14 (.03) -0.14 (.03) 0.06 (.93) 

High Lifetime 
D 0.01 (.84) 0.03 (.69) -0.25 (<10-3) -0.07 (.51) 

R 0.02 (.86) -0.04 (.59) -0.14 (.03) -0.02 (.81) 

GF:R      

Current 
D 0.14 (<10-3) 0.09 (.42) -0.22 (<10-3) -0.04 (.72) 

R -0.02 (.81) -0.19 (<10-3) -0.12 (.11) 0.07 (.69) 

Low Past Year 
D 0.16 (<10-3) 0.08 (.51) -0.21 (<10-3) -0.04 (.66) 

R -0.06 (.5) -0.21 (<10-3) -0.12 (.09) 0.1 (.24) 

High Past Year 
D 0.04 (.5) 0.06 (.55) -0.27 (<10-3) -0.06 (.57) 

R 0 (.99) -0.17 (<10-3) -0.18 (<10-3) 0.08 (.57) 

High Lifetime 
D 0.01 (.91) 0.07 (.51) -0.25 (<10-3) -0.05 (.63) 

R 0.09 (.31) -0.05 (.52) -0.23 (<10-3) -0.02 (.87) 
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Table S16: Spearman’s correlation analyses between latent scores and clinical domains of depressivity, personality and 
quality of life in the discovery and replication sample. Results are states as correlation coefficient ρ, followed by its P value 
in brackets: ρ (P value). Abbreviations: D, Discovery Sample; R, Replication Sample; BDI, Beck Depression Inventory; NEO-FFI, 
Neuroticism-Extraversion-Openness (NEO) Five-Factor Inventory; WHOQOL-BREF, World Health Organization Quality of Life 
Short Version. Significant P values are highlighted in bold font (after FDR-correction for multiple testing). 

  LV1 LV3 

  Age Sex 

  Phenotypic score Brain score Phenotypic score Brain score 

BDI      

Total score 
D -0.09 (.06) -0.09 (.64) 0.18 (<10-3) 0.02 (.98) 

R 0.03 (.77) 0.1 (.21) 0.17 (.01) -0.04 (.63) 

NEO-FFI      

Neuroticism 
D -0.01 (.89) -0.01 (.88) 0.2 (<10-3) 0.06 (.56) 

R -0.01 (.94) 0.04 (.65) 0.1 (.24) -0.04 (.67) 

Extraversion 
D 0.07 (.24) 0.04 (.64) -0.12 (.04) -0.02 (.99) 

R -0.01 (.91) -0.03 (.71) -0.2 (<10-3) -0.04 (.69) 

Openness 
D -0.07 (.18) -0.02 (.79) -0.11 (.05) -0.06 (.55) 

R -0.09 (.28) 0.03 (.71) -0.04 (.65) -0.07 (.73) 

Agreeableness 
D -0.05 (.61) -0.1 (.28) -0.29 (<10-3) -0.19 (<10-3) 

R -0.03 (.7) -0.05 (.55) -0.17 (.01) -0.04 (.64) 

Conscientiousness 
D -0.05 (.59) -0.04 (.63) -0.29 (<10-3) -0.17 (<10-3) 

R 0.15 (.01) 0.05 (.56) -0.33 (<10-3) -0.13 (.05) 

WHOQOL-BREF      

Physical 
D 0.11 (.02) 0.04 (.65) -0.17 (<10-3) -0.05 (.63) 

R -0.08 (.44) -0.11 (.12) -0.1 (.25) 0.05 (.56) 

Psychosocial 
D 0.06 (.41) 0.04 (.63) -0.17 (<10-3) -0.04 (.67) 

R 0.01 (.93) -0.07 (.68) -0.16 (.01) 0.03 (.73) 

Social Relationships 
D 0.09 (.05) 0.07 (.51) -0.25 (<10-3) -0.06 (.53) 

R -0.1 (.2) -0.08 (.46) -0.17 (.01) -0.02 (.84) 

Environment 
D 0.15 (<10-3) 0.02 (.81) -0.17 (<10-3) -0.04 (.67) 

R -0.16 (.01) -0.13 (.05) -0.09 (.35) 0.07 (.65) 
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Table S17: Spearman's correlation analyses between socioeconomic factors and latent scores in the discovery sample (Ethnicity, Urbanicity, Religion). Abbreviations: PL = Place of Living, PB = 
Place of Birth, Practice = Extent to which religion is actively practiced. All P values FDR-corrected for multiple testing (family of tests: Table S17, Table S18, Table S19, Table S20). 

  Ethnicity Urbanicity Religion 

  Caucasian Asian Mixed Other Population PL Density PL Density PB None Christian Muslim Other Practice 

brain score LV 1 
ρ -0.04 0.04 0.01 0.02 0.30 -0.23 -0.26 0.15 -0.12 -0.09 -0.04 -0.02 

P .83 .80 .98 .92 .01 .20 .05 .52 .55 .62 .82 .91 

phenotypic score LV 1 
ρ -0.07 0.17 -0.11 0.06 0.04 0.06 0.03 -0.01 -0.02 -0.02 0.12 0.06 

P .67 .50 .58 .72 .81 .74 .85 .97 .93 .88 .56 .73 

brain score LV 2 
ρ -0.08 0.05 0.03 0.05 0.28 -0.19 -0.19 0.15 -0.14 -0.04 0.01 -0.01 

P .66 .77 .86 .76 .01 .56 .56 .51 .52 .79 .95 .96 

phenotypic score LV 2 
ρ -0.11 0.17 -0.10 0.11 0.10 -0.04 -0.07 0.00 -0.02 -0.01 0.09 -0.01 

P .57 .50 .59 .57 .59 .80 .70 .99 .90 .96 .64 .97 

brain score LV 3 
ρ 0.01 0.01 -0.02 0.01 0.18 -0.17 -0.21 0.17 -0.14 -0.08 -0.07 -0.13 

P .98 .98 .90 1.00 .50 .51 .49 .51 .53 .65 .71 .54 

phenotypic score LV 3 
ρ -0.10 0.12 -0.04 0.08 0.09 -0.04 -0.09 0.06 -0.08 -0.01 0.07 -0.08 

P .60 .56 .82 .66 .63 .82 .64 .71 .66 .97 .68 .67 

brain score LV 4 
ρ -0.14 0.03 0.07 0.12 -0.20 0.08 -0.01 0.02 -0.07 0.10 0.15 -0.04 

P .54 .87 .71 .56 .50 .68 .94 .92 .69 .60 .53 .84 

phenotypic score LV 4 
ρ -0.20 0.17 -0.06 0.20 0.07 -0.02 -0.05 0.01 -0.04 0.09 0.06 0.01 

P .50 .51 .73 .50 .70 .91 .76 .97 .84 .64 .74 .99 

brain score LV 5 
ρ 0.09 -0.03 -0.15 -0.01 -0.26 0.09 0.03 -0.07 0.03 0.07 0.09 -0.09 

P .61 .87 .52 .97 .04 .63 .87 .70 .85 .70 .61 .61 

phenotypic score LV 5 
ρ -0.04 0.03 0.01 0.04 -0.03 -0.06 -0.09 -0.02 0.03 0.08 -0.09 -0.13 

P .80 .87 .98 .83 .88 .75 .61 .91 .87 .65 .61 .53 
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Table S18: Spearman's correlation analyses between socioeconomic factors and latent scores in the discovery sample (Parental Education Background). Abbreviations: Secondary School = Parent 
finished Secondary School; Primary School = Parent only finished Primary School; Highest Occupation = Highest Occupation every achieved; M = Mother, F = Father. All P values FDR-corrected for 
multiple testing (family of tests: Table S17, Table S18, Table S19, Table S20). 

  Secondary School (M/F) Primary School (M/F) No graduation (M/F) University degree (M/F) Highest Occupation (M/F) 

brain score LV 1 
ρ -0.03 -0.01 0.05 -0.05 -0.07 0.07 -0.05 -0.04 -0.22 -0.10 

P .86 .95 .78 .78 .69 .70 .78 .81 .24 .60 

phenotypic score LV 1 
ρ 0.03 -0.02 0.07 0.10 -0.22 -0.17 0.19 0.07 0.01 0.08 

P .88 .92 .68 .60 .27 .50 .88 .71 .98 .66 

brain score LV 2 
ρ 0.01 -0.03 0.06 0.03 -0.09 -0.03 0.00 -0.07 -0.20 -0.11 

P .95 .86 .73 .85 .61 .85 .99 .70 .45 .58 

phenotypic score LV 2 
ρ -0.01 -0.06 0.12 0.10 -0.18 -0.10 0.12 -0.01 -0.07 -0.01 

P .93 .72 .55 .60 .83 .60 .54 .97 .68 .96 

brain score LV 3 
ρ -0.05 -0.04 0.12 0.06 -0.07 -0.04 -0.06 -0.09 -0.18 -0.13 

P .79 .80 .56 .73 .68 .80 .73 .64 .50 .55 

phenotypic score LV 3 
ρ -0.04 -0.07 0.15 0.11 -0.17 -0.10 0.04 -0.08 -0.05 -0.07 

P .82 .68 .53 .58 .51 .59 .80 .67 .79 .70 

brain score LV 4 
ρ 0.10 -0.02 -0.08 -0.01 -0.10 0.05 0.12 0.01 -0.05 0.01 

P .61 .92 .67 .98 .62 .77 .57 .95 .76 .96 

phenotypic score LV 4 
ρ -0.05 -0.04 0.09 0.03 -0.05 0.05 0.07 -0.01 -0.15 -0.03 

P .78 .82 .62 .85 .76 .79 .70 .94 .53 .87 

brain score LV 5 
ρ 0.05 -0.04 0.11 0.17 -0.20 -0.10 0.06 0.09 0.02 0.10 

P .76 .81 .57 .50 .53 .59 .71 .62 .91 .60 

phenotypic score LV 5 
ρ -0.07 -0.14 0.27 0.20 -0.20 0.01 -0.11 -0.04 -0.18 -0.12 

P .70 .53 .03 .46 .53 .96 .57 .82 .83 .56 
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Table S19: Spearman's correlation analyses between socioeconomic factors and latent scores in the discovery sample (Family & Relationships). Abbreviations: Nr. Sibling = Number of Siblings, 
Nr. Children = Number of own children, Nr. People in household = Number of people living in the same household, Partnership>1yr = has the participant ever been in a partnership over one year. 
All P values FDR-corrected for multiple testing (family of tests: Table S17, Table S18, Table S19, Table S20). 

  Family  Relationship status last 12 months  

  Nr. Siblings Nr. Children Nr. people in household Partnership>1yr Single Married Partnership Separated 

brain score LV 1 
ρ 0.04 -0.05 0.14 0.03 -0.01 0.01 0.05 -0.08 

P .81 .78 .52 .86 .96 .95 .78 .65 

phenotypic score LV 1 
ρ 0.04 -0.33 0.08 -0.15 0.21 -0.33 0.07 -0.14 

P .80 1.18x10-03 .67 .52 .33 1.15x10-03 .67 .53 

brain score LV 2 
ρ -0.06 -0.07 0.09 0.06 0.02 -0.03 0.05 -0.08 

P .74 .68 .62 .74 .89 .86 .75 .64 

phenotypic score LV 2 
ρ 0.11 -0.29 0.12 -0.15 0.23 -0.32 0.03 -0.04 

P .57 .01 .55 .52 .16 1.78x10-03 .84 .79 

brain score LV 3 
ρ 0.12 -0.03 0.14 0.04 -0.07 -0.02 0.12 -0.04 

P .56 .86 .54 .82 .71 .91 .56 .80 

phenotypic score LV 3 
ρ 0.10 -0.20 0.14 -0.16 0.21 -0.27 -0.01 -0.01 

P .61 .85 .53 .51 .50 .05 .95 .94 

brain score LV 4 
ρ -0.12 -0.13 -0.09 -0.06 0.00 -0.07 0.05 0.11 

P .57 .56 .64 .73 .99 .69 .78 .59 

phenotypic score LV 4 
ρ 0.10 -0.28 0.04 -0.10 0.13 -0.25 0.03 0.13 

P .62 .05 .83 .61 .55 .23 .85 .55 

brain score LV 5 
ρ 0.14 -0.09 -0.16 -0.01 0.07 -0.26 0.07 -0.03 

P .53 .62 .50 .97 .67 .05 .67 .87 

phenotypic score LV 5 
ρ 0.15 0.03 0.01 -0.08 0.14 -0.16 -0.09 0.14 

P .52 .88 .94 .67 .53 .50 .62 .52 
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Table S20: Spearman's correlation analyses between socioeconomic factors and latent scores in the discovery sample (Education, Work). Abbreviations: Secondary School = finished Secondary 
School; Primary School = only finished Primary School; Highest Occupation = Highest Occupation every achieved; All P values FDR-corrected for multiple testing (family of tests: Table S17, Table S18, 
Table S19, Table S20). 

  Education Work 

  
Years of  

Education 

Secondary  

School 

Primary  

School 

No  

graduation 

University  

Degree 

Highest  

Occupation 

Full-time  

current 

Part-time  

current 

Full-time last  

12 months 

Part-time last  

12 months 

brain score LV 1 
ρ -0.11 -0.05 0.05 0.08 -0.01 -0.21 -0.04 0.04 -0.01 0.01 

P .58 .78 .79 .65 .96 .32 .82 .82 .94 .94 

phenotypic score LV 1 
ρ -0.23 -0.08 0.01 0.04 -0.08 -0.21 -0.05 0.05 -0.10 0.10 

P .20 .65 .99 .83 .66 .41 .76 .76 .60 .60 

brain score LV 2 
ρ -0.09 0.01 0.01 0.03 0.03 -0.13 -0.01 0.01 0.02 -0.02 

P .61 .98 .99 .84 .87 .54 .96 .96 .93 .93 

phenotypic score LV 2 
ρ -0.30 -0.19 0.12 -0.02 -0.14 -0.25 -0.08 0.08 -0.13 0.13 

P 4.97x10-03 .58 .56 .92 .52 .05 .66 .66 .53 .53 

brain score LV 3 
ρ -0.24 -0.10 0.06 0.00 -0.07 -0.27 0.11 -0.11 0.10 -0.10 

P .19 .60 .72 .99 .68 .04 .59 .59 .61 .61 

phenotypic score LV 3 
ρ -0.33 -0.20 0.14 -0.04 -0.15 -0.29 0.01 -0.01 -0.07 0.07 

P 1.51x10-03 .91 .54 .81 .52 .02 .97 .97 .69 .69 

brain score LV 4 
ρ -0.07 -0.06 -0.06 0.11 0.02 0.08 0.04 -0.04 0.07 -0.07 

P .69 .74 .73 .59 .92 .67 .82 .82 .71 .71 

phenotypic score LV 4 
ρ -0.29 -0.20 0.12 -0.04 -0.13 -0.19 -0.10 0.10 -0.11 0.11 

P .04 .50 .56 .83 .56 .50 .60 .60 .60 .60 

brain score LV 5 
ρ -0.05 -0.09 0.02 -0.04 0.01 0.04 0.16 -0.16 0.13 -0.13 

P .77 .61 .91 .80 .95 .82 .51 .51 .53 .53 

phenotypic score LV 5 
ρ -0.10 -0.15 0.13 -0.08 -0.05 -0.10 0.07 -0.07 0.01 0.01 

P .60 .51 .54 .64 .75 .60 .69 .69 .99 .99 
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Table S21: Spearman's correlation analyses between socioeconomic factors and latent scores in the replication sample (Ethnicity, Urbanicity, Religion). Abbreviations: PL = Place of Living, PB = 
Place of Birth, Practice = Extent to which religion is actively practiced, NaN = Not available due to too few cases. All P values FDR-corrected for multiple testing. All P values FDR-corrected for multiple 
testing (family of tests: Table S21, Table S22, Table S23, Table S24). 

  Ethnicity Urbanicity Religion 

  Caucasian Asian Mixed Other Population PL Density PL Density PB None Christian Muslim Other Practice 

brain score LV 1 
ρ 0.11 NaN NaN -0.11 -0.23 0.28 0.15 -0.30 0.28 NaN 0.07 0.37 

P .67 NaN NaN .67 .51 .58 .59 .38 .73 NaN .78 .05 

phenotypic score LV 1 
ρ -0.09 NaN NaN 0.09 -0.14 0.22 0.02 0.01 -0.02 NaN 0.05 -0.03 

P .73 NaN NaN .73 .61 .52 .96 .99 .94 NaN .86 .93 

brain score LV 2 
ρ -0.18 NaN NaN 0.18 0.31 -0.36 -0.25 0.32 -0.27 NaN -0.14 -0.34 

P .56 NaN NaN .56 .65 .17 .51 .51 .50 NaN .61 .25 

phenotypic score LV 2 
ρ 0.12 NaN NaN -0.12 0.05 -0.15 0.01 0.09 -0.09 NaN 0.01 0.00 

P .66 NaN NaN .66 .83 .59 .97 .72 .71 NaN .97 .99 

brain score LV 3 
ρ -0.10 NaN NaN 0.10 0.25 -0.32 -0.21 0.39 -0.34 NaN -0.14 -0.40 

P .68 NaN NaN .68 .50 .38 .52 .05 .24 NaN .62 .04 

phenotypic score LV 3 
ρ 0.01 NaN NaN -0.01 0.01 -0.09 0.01 0.10 -0.16 NaN 0.17 -0.10 

P .98 NaN NaN .98 .96 .73 .96 .70 .58 NaN .56 .70 

brain score LV 4 
ρ -0.15 NaN NaN 0.15 0.05 -0.05 0.04 -0.15 0.18 NaN -0.07 0.11 

P .60 NaN NaN .60 .85 .85 .88 .59 .56 NaN .76 .68 

phenotypic score LV 4 
ρ 0.16 NaN NaN -0.16 0.00 -0.09 0.05 0.13 -0.16 NaN 0.11 -0.02 

P .58 NaN NaN .58 .99 .73 .84 .63 .58 NaN .68 .92 

brain score LV 5 
ρ 0.01 NaN NaN -0.01 0.01 -0.08 0.02 -0.11 0.14 NaN -0.11 0.09 

P .98 NaN NaN .98 .97 .72 .94 .66 .58 NaN .65 .70 

phenotypic score LV 5 
ρ -0.05 NaN NaN 0.05 0.00 -0.02 -0.06 0.09 -0.10 NaN 0.01 -0.11 

P .81 NaN NaN .81 .99 .93 .80 .69 .68 NaN .95 .65 

              

 

  



Popovic et al.  Supplement 

47 

Table S22: Spearman's correlation analyses between socioeconomic factors and latent scores in the replication sample (Parental Education Background). Abbreviations: Secondary School = 
Parent finished Secondary School; Primary School = Parent only finished Primary School; Highest Occupation = Highest Occupation every achieved; M = Mother, F = Father. All P values FDR-corrected 
for multiple testing (family of tests: Table S21, Table S22, Table S23, Table S24). 

  Secondary School (M/F) Primary School (M/F) No graduation (M/F) University degree (M/F) Highest Occupation (M/F) 

brain score LV 1 
ρ 0.22 -0.04 -0.25 -0.02 0.01 0.03 0.25 0.18 -0.22 0.07 

P .52 .88 .50 .96 .98 .90 .50 .55 .52 .79 

phenotypic score LV 1 
ρ 0.28 -0.08 -0.07 0.05 -0.11 0.08 0.04 -0.03 -0.02 0.06 

P .69 .76 .79 .83 .67 .76 .87 .90 .93 .81 

brain score LV 2 
ρ -0.21 0.02 0.26 0.03 -0.12 0.02 -0.19 -0.16 0.20 -0.11 

P .53 .95 .50 .90 .65 .92 .55 .58 .54 .68 

phenotypic score LV 2 
ρ -0.25 0.14 0.18 -0.11 0.10 -0.07 -0.14 -0.07 0.03 -0.14 

P .50 .61 .55 .67 .70 .76 .61 .77 .92 .62 

brain score LV 3 
ρ -0.07 0.20 0.23 0.00 -0.15 -0.16 -0.11 -0.10 0.05 -0.22 

P .76 .53 .51 .99 .60 .58 .68 .70 .82 .52 

phenotypic score LV 3 
ρ -0.13 0.14 -0.01 -0.08 0.13 -0.02 -0.03 -0.03 -0.05 -0.13 

P .62 .60 .96 .75 .62 .92 .90 .92 .83 .62 

brain score LV 4 
ρ -0.27 -0.08 0.15 0.02 -0.06 0.00 -0.10 -0.04 -0.03 0.09 

P .50 .75 .60 .95 .81 .99 .69 .86 .91 .73 

phenotypic score LV 4 
ρ -0.28 0.00 0.26 -0.05 -0.04 0.17 -0.21 -0.22 0.17 -0.07 

P .50 .99 .51 .83 .87 .57 .53 .52 .58 .77 

brain score LV 5 
ρ 0.13 0.31 -0.10 -0.20 -0.07 -0.18 0.19 0.19 -0.32 -0.17 

P .60 .64 .66 .50 .76 .52 .51 .51 .54 .53 

phenotypic score LV 5 
ρ -0.16 -0.19 0.15 0.12 -0.18 0.10 -0.17 -0.19 0.06 0.12 

P .56 .51 .57 .62 .52 .68 .53 .51 .80 .62 
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Table S23: Spearman's correlation analyses between socioeconomic factors and latent scores in the replication sample (Family & Relationships). Abbreviations: Nr. Sibling = Number of Siblings, 
Nr. Children = Number of own children, Nr. People in household = Number of people living in the same household, Partnership>1yr = has the participant ever been in a partnership over one year. 
All P values FDR-corrected for multiple testing (family of tests: Table S21, Table S22, Table S23, Table S24). 

  Family  Relationship status last 12 months 
  Nr. Siblings Nr. Children Nr. people in household Partnership>1yr Single Married Partnership Separated 

brain score LV 1 
ρ -0.03 0.30 0.13 -0.16 0.20 0.01 0.15 0.12 

P .93 .41 .64 .58 .53 .99 .60 .65 

phenotypic score LV 1 
ρ 0.02 0.40 0.39 -0.35 0.33 0.10 0.20 -0.21 

P .96 .02 .03 .10 .17 .70 .54 .52 

brain score LV 2 
ρ 0.03 -0.38 -0.07 0.12 -0.30 0.08 -0.05 -0.07 

P .90 .09 .78 .66 .84 .76 .83 .78 

phenotypic score LV 2 
ρ 0.00 -0.36 -0.23 0.30 -0.21 -0.14 -0.14 0.08 

P .99 .14 .52 .77 .53 .61 .61 .74 

brain score LV 3 
ρ 0.06 -0.25 -0.08 0.06 -0.17 0.07 -0.14 0.00 

P .80 .50 .75 .80 .57 .77 .61 .99 

phenotypic score LV 3 
ρ -0.12 -0.32 -0.17 0.11 -0.19 0.00 0.03 0.01 

P .65 .43 .56 .67 .54 .99 .91 .97 

brain score LV 4 
ρ 0.02 -0.34 -0.08 0.14 -0.30 0.06 -0.08 0.05 

P .93 .25 .74 .61 .84 .81 .74 .85 

phenotypic score LV 4 
ρ 0.08 -0.27 -0.10 0.19 -0.11 -0.16 0.17 -0.02 

P .76 .50 .70 .55 .67 .58 .56 .95 

brain score LV 5 
ρ -0.03 -0.07 -0.17 0.06 -0.03 0.01 -0.17 0.18 

P .88 .75 .54 .80 .88 .98 .53 .52 

phenotypic score LV 5 
ρ -0.06 0.02 0.13 -0.06 0.03 0.02 0.09 -0.13 

P .78 .93 .61 .80 .90 .94 .69 .61 
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Table S24: Spearman's correlation analyses between socioeconomic factors and latent scores in the replication sample (Education, Work). Abbreviations: Secondary School = finished Secondary 
School; Primary School = only finished Primary School; Highest Occupation = Highest Occupation every achieved. All P values FDR-corrected for multiple testing (family of tests: Table S21, Table S22, 
Table S23, Table S24). 

  Education Work 

  
Years of  

Education 

Secondary  

School 

Primary  

School 

No  

graduation 

University  

Degree 

Highest  

Occupation 

Full-time  

current 

Part-time  

current 

Full-time  

last 12 months 

Part-time  

last 12 months 

brain score LV 1 
ρ 0.14 -0.05 -0.08 0.07 -0.12 0.20 -0.20 -0.19 0.19 -0.20 

P .61 .84 .75 .78 .65 .53 .54 .55 .55 .53 

phenotypic score LV 1 
ρ 0.09 0.06 -0.06 0.08 0.15 0.20 -0.09 0.09 -0.09 -0.02 

P .72 .83 .82 .76 .59 .54 .72 .73 .73 .96 

brain score LV 2 
ρ -0.08 -0.06 0.14 -0.06 0.07 -0.11 0.08 0.09 -0.09 0.19 

P .74 .81 .61 .80 .77 .67 .74 .73 .73 .54 

phenotypic score LV 2 
ρ -0.19 0.10 -0.07 0.04 0.04 -0.31 0.10 -0.10 0.10 0.02 

P .55 .70 .79 .88 .88 .69 .70 .69 .69 .95 

brain score LV 3 
ρ -0.14 -0.05 0.13 -0.13 0.14 -0.09 0.14 0.13 -0.13 0.24 

P .61 .84 .64 .64 .62 .72 .60 .63 .63 .51 

phenotypic score LV 3 
ρ -0.14 0.08 -0.15 0.17 -0.08 -0.25 0.12 0.04 -0.04 0.14 

P .62 .75 .60 .57 .75 .50 .65 .88 .88 .61 

brain score LV 4 
ρ 0.04 0.09 0.05 0.00 -0.12 -0.06 0.04 0.05 -0.05 0.06 

P .87 .72 .84 .99 .65 .81 .86 .83 .83 .81 

phenotypic score LV 4 
ρ -0.10 0.15 -0.06 0.02 0.06 -0.28 0.08 -0.04 0.04 0.03 

P .71 .60 .80 .92 .80 .50 .74 .86 .86 .89 

brain score LV 5 
ρ -0.02 0.10 -0.02 -0.10 -0.08 0.01 0.08 -0.01 0.01 0.06 

P .95 .66 .92 .66 .74 .95 .72 .98 .98 .80 

phenotypic score LV 5 
ρ -0.17 0.14 -0.19 -0.03 0.14 -0.20 0.14 0.06 -0.06 -0.02 

P .54 .58 .51 .88 .58 .50 .58 .79 .79 .92 
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Table S25: Mean squared error (MSE) overlap of main SPLS model and RSH SPLS model. Depicted is the MSE between the 
phenotypic and brain patterns of the main SPLS model and the RSH SPLS model. As LV1 of the main SPLS model contains a 
global brain signature, leading to high overlaps with any other brain signature, the two minimum MSE values for each column 
are highlighted in bold to include similarities with other LV signatures as well.  

Main SPLS Model RSH SPLS Model 

Phenotypic Pattern   

 LV1 LV2 

LV1 4.85x10-3 3.04x10-2 

LV2 3.55x10-1 5.69x10-2 

LV3 1.35x10-1 4.31x10-2 

LV4 1.33x10-1 6.06x10-2 

LV5 1.67x10-1 4.85x10-2 

   

Brain Pattern  

 LV1 LV2 

LV1 2.64x10-5 2.93x10-5 

LV2 1.99x10-4 1.14x10-4 

LV3 1.07x10-4 7.96x10-5 

LV4 1.37x10-4 8.83x10-5 

LV5 2.95x10-4 1.18x10-4 
   

  

Table S26: Mean squared error (MSE) overlap of main SPLS model and LOSOCV SPLS model. Depicted is the MSE between 
the phenotypic and brain patterns of the main SPLS model and the LOSOCV SPLS model. As LV1 of the main SPLS model 
contains a global brain signature, leading to high overlaps with any other brain signature, the two minimum MSE values for 
each column are highlighted in bold to include similarities with other LV signatures as well.   

Main SPLS Model LOSOCV SPLS Model 

Phenotypic Pattern      

 LV1 LV2 LV3 LV4 LV5 

LV1 1.98x10-3 1.43x10-1 9.52x10-2 5.20x10-2 8.58x10-2 

LV2 2.23x10-1 5.88x10-2 2.49x10-1 1.94x10-1 2.47x10-1 

LV3 1.38x10-1 1.52x10-1 2.77x10-2 2.13x10-1 2.33x10-2 

LV4 1.42x10-1 7.72x10-2 3.46x10-1 6.91x10-2 2.71x10-1 

LV5 1.24x10-1 1.43x10-1 2.00x10-1 1.43x10-1 1.82x10-1 

      

Brain Pattern      

 LV1 LV2 LV3 LV4 LV5 

LV1 5.28x10-6 5.47x10-5 5.79x10-5 4.61x10-5 5.39x10-5 

LV2 5.32x10-5 9.34x10-5 3.60x10-4 3.84x10-4 3.67x10-4 

LV3 6.37x10-5 7.76x10-5 6.42x10-5 1.07x10-4 1.10x10-4 

LV4 6.33x10-5 4.86x10-5 1.91x10-4 1.66x10-4 1.44x10-4 

LV5 8.32x10-5 1.37x10-4 4.30x10-4 5.07x10-4 4.23x10-4 
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Table S27: Mean squared error (MSE) overlap of main SPLS model and SPLS model with IQR addition. Depicted is the MSE 
between the phenotypic and brain patterns of the main SPLS model and the SPLS model with added IQR scores. As LV1 of the 
main SPLS model contains a global brain signature, leading to high overlaps with any other brain signature, the two minimum 
MSE values for each column are highlighted in bold to include similarities with other LV signatures as well. 

Main SPLS Model SPLS Model with IQR addition 

Phenotypic Pattern          

 LV1 LV2 LV3 LV4 LV5 LV6 LV7 LV8 LV9 

LV1 2.91x10-3 1.46x10-1 7.86x10-2 9.61x10-3 3.44x10-2 3.86x10-2 1.77x10-2 6.85x10-2 3.68x10-2 

LV2 4.36x10-1 6.40x10-2 1.19x10-1 5.66x10-1 9.87x10-2 4.15x10-1 5.29x10-1 5.29x10-2 2.02x10-1 

LV3 1.51x10-1 1.71x10-1 4.04x10-2 1.89x10-1 2.82x10-2 5.07x10-2 1.33x10-1 3.99x10-2 1.26x10-1 

LV4 1.75x10-1 6.03x10-2 2.42x10-1 1.69x10-1 9.57x10-2 2.97x10-1 1.66x10-1 6.82x10-2 6.72x10-2 

LV5 1.67x10-1 1.33x10-1 1.54x10-1 2.22x10-1 5.48x10-2 2.26x10-1 1.58x10-1 3.13x10-2 1.77x10-1 

          

Brain Pattern  

 LV1 LV2 LV3 LV4 LV5 LV6 LV7 LV8 LV9 

LV1 1.25x10-5 6.08x10-5 5.76x10-5 4.88x10-5 3.60x10-5 5.43x10-5 3.65x10-5 4.71x10-5 4.31x10-5 

LV2 8.29x10-5 1.73x10-4 1.73x10-4 8.90x10-4 1.19x10-4 7.64x10-5 5.58x10-4 6.84x10-5 6.41x10-4 

LV3 8.22x10-5 1.01x10-4 3.84x10-5 1.16x10-4 7.12x10-5 6.88x10-5 8.93x10-5 6.47x10-5 1.02x10-4 

LV4 8.98x10-5 6.46x10-5 1.31x10-4 2.13x10-4 8.51x10-5 9.15x10-5 1.31x10-4 6.17x10-5 1.42x10-4 

LV5 1.42x10-4 2.39x10-4 2.24x10-4 9.35x10-4 1.30x10-4 1.30x10-4 7.01x10-4 1.00x10-4 7.68x10-4 
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Supplementary Figures 

 

 

Figure S1: Observational study design of PRONIA. Colored boxed indicate type of assessment conducted in each of the study 
groups: Healthy controls (HC, green), patients with recent-onset depression (ROD, yellow), persons with a clinical high-risk 
for psychosis (CHR, orange), patients with recent-onset psychosis (ROP, red). Previously published in Koutsouleris et al. (1) 
and reprinted with permission. 
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Figure S2: Nested cross-validation and external validation framework. Depicted is the nested cross-validation (NCV) framework with 10x10 folds on the outer and inner loop as well as the external 
validation of the final LV model. Hyperparameter optimization of cu and cv is performed in the inner loop, whereas testing of the optimized model is done on the outer loop. The best model of all 
10 outer folds iterations is chosen as the LV model (in accordance with the omnibus hypothesis) and then applied on the replication sample for external validation.  
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Figure S3: Autocorrelation Spearman’s coefficients of phenotypic input feature space. The CTQ items are sorted according to the subscales of emotional, physical, and sexual abuse as well as 
emotional and physical neglect and denial. After the CTQ items, the other phenotypic input features (age, male, female sex, HC, ROP, ROD, CHR) are stated. All phenotypic input features are stated 
in the same order as they were entered into the SPLS analysis. Warm colors indicate positive and cold colors indicate negative values. 

CTQ 03 08 14 18 25 09 11 12 15 17 20 21 23 24 27 05 07 13 19 28 01 02 04 06 26 10 16 22 age male female HC ROP ROD CHR 

03 1.00 0.48 0.65 0.49 0.44 0.15 0.35 0.26 0.35 0.25 0.20 0.13 0.19 0.17 0.18 0.33 0.46 0.35 0.34 0.45 0.12 0.36 0.19 0.22 0.23 -0.17 -0.22 -0.21 -0.05 0.02 -0.02 -0.33 0.15 0.07 0.19 

08 0.48 1.00 0.46 0.56 0.46 0.12 0.37 0.30 0.44 0.24 0.24 0.17 0.24 0.30 0.26 0.33 0.47 0.42 0.38 0.47 0.06 0.45 0.21 0.29 0.35 -0.11 -0.19 -0.16 -0.07 -0.05 0.05 -0.27 0.13 0.05 0.16 

14 0.65 0.46 1.00 0.58 0.52 0.13 0.41 0.34 0.37 0.27 0.23 0.11 0.23 0.25 0.23 0.31 0.48 0.41 0.39 0.51 0.11 0.38 0.23 0.24 0.25 -0.23 -0.27 -0.27 -0.02 -0.06 0.06 -0.32 0.11 0.09 0.20 

18 0.49 0.56 0.58 1.00 0.53 0.20 0.41 0.33 0.51 0.31 0.31 0.22 0.27 0.31 0.33 0.31 0.42 0.46 0.42 0.49 0.14 0.38 0.23 0.29 0.32 -0.17 -0.23 -0.24 -0.04 -0.04 0.04 -0.26 0.10 0.06 0.15 

25 0.44 0.46 0.52 0.53 1.00 0.12 0.35 0.27 0.49 0.31 0.35 0.19 0.34 0.36 0.40 0.34 0.47 0.42 0.38 0.54 0.12 0.40 0.28 0.33 0.32 -0.14 -0.24 -0.25 0.09 0.00 0.00 -0.34 0.20 0.10 0.12 

09 0.15 0.12 0.13 0.20 0.12 1.00 0.42 0.31 0.34 0.51 0.14 0.05 0.15 0.13 0.13 0.05 0.10 0.11 0.12 0.10 0.08 0.13 0.16 0.09 0.07 0.03 -0.05 -0.05 0.05 0.07 -0.07 -0.07 0.03 0.02 0.04 

11 0.35 0.37 0.41 0.41 0.35 0.42 1.00 0.65 0.60 0.57 0.23 0.05 0.21 0.22 0.25 0.22 0.35 0.28 0.28 0.36 0.10 0.29 0.24 0.19 0.23 -0.08 -0.16 -0.18 0.06 0.00 0.00 -0.18 0.06 0.08 0.08 

12 0.26 0.30 0.34 0.33 0.27 0.31 0.65 1.00 0.58 0.53 0.28 0.19 0.29 0.26 0.29 0.18 0.30 0.32 0.29 0.31 0.15 0.26 0.27 0.24 0.18 -0.08 -0.14 -0.13 0.09 -0.02 0.02 -0.20 0.09 0.07 0.08 

15 0.35 0.44 0.37 0.51 0.49 0.34 0.60 0.58 1.00 0.53 0.45 0.32 0.42 0.44 0.48 0.21 0.35 0.33 0.29 0.36 0.17 0.32 0.29 0.43 0.23 -0.05 -0.14 -0.15 0.05 0.01 -0.01 -0.21 0.14 0.06 0.05 

17 0.25 0.24 0.27 0.31 0.31 0.51 0.57 0.53 0.53 1.00 0.25 0.10 0.22 0.13 0.17 0.15 0.26 0.26 0.25 0.27 0.14 0.25 0.32 0.23 0.23 -0.02 -0.09 -0.07 0.03 0.02 -0.02 -0.17 0.04 0.09 0.08 

20 0.20 0.24 0.23 0.31 0.35 0.14 0.23 0.28 0.45 0.25 1.00 0.61 0.72 0.75 0.75 0.18 0.20 0.16 0.17 0.23 0.14 0.24 0.24 0.30 0.19 -0.06 -0.10 -0.12 0.04 -0.10 0.10 -0.17 0.12 0.01 0.08 

21 0.13 0.17 0.11 0.22 0.19 0.05 0.05 0.19 0.32 0.10 0.61 1.00 0.61 0.60 0.53 0.05 0.09 0.12 0.12 0.09 0.08 0.15 0.15 0.26 0.13 -0.05 -0.03 -0.05 0.02 -0.01 0.01 -0.12 0.13 0.01 0.00 

23 0.19 0.24 0.23 0.27 0.34 0.15 0.21 0.29 0.42 0.22 0.72 0.61 1.00 0.73 0.67 0.12 0.21 0.15 0.15 0.20 0.11 0.25 0.15 0.25 0.18 -0.05 -0.05 -0.07 0.05 -0.03 0.03 -0.16 0.10 0.05 0.05 

24 0.17 0.30 0.25 0.31 0.36 0.13 0.22 0.26 0.44 0.13 0.75 0.60 0.73 1.00 0.71 0.15 0.20 0.16 0.15 0.24 0.10 0.29 0.19 0.23 0.16 -0.05 -0.08 -0.08 0.04 -0.10 0.10 -0.18 0.09 0.08 0.06 

27 0.18 0.26 0.23 0.33 0.40 0.13 0.25 0.29 0.48 0.17 0.75 0.53 0.67 0.71 1.00 0.17 0.24 0.21 0.20 0.26 0.17 0.28 0.22 0.34 0.22 -0.04 -0.08 -0.11 0.01 -0.04 0.04 -0.18 0.12 0.03 0.06 

05 0.33 0.33 0.31 0.31 0.34 0.05 0.22 0.18 0.21 0.15 0.18 0.05 0.12 0.15 0.17 1.00 0.65 0.47 0.50 0.57 0.09 0.46 0.22 0.10 0.31 -0.17 -0.26 -0.29 0.00 0.06 -0.06 -0.33 0.17 0.06 0.17 

07 0.46 0.47 0.48 0.42 0.47 0.10 0.35 0.30 0.35 0.26 0.20 0.09 0.21 0.20 0.24 0.65 1.00 0.53 0.57 0.65 0.14 0.62 0.23 0.25 0.35 -0.18 -0.29 -0.35 0.02 0.03 -0.03 -0.35 0.12 0.11 0.21 

13 0.35 0.42 0.41 0.46 0.42 0.11 0.28 0.32 0.33 0.26 0.16 0.12 0.15 0.16 0.21 0.47 0.53 1.00 0.67 0.65 0.17 0.49 0.30 0.29 0.39 -0.22 -0.30 -0.38 0.00 0.01 -0.01 -0.30 0.16 0.08 0.14 

19 0.34 0.38 0.39 0.42 0.38 0.12 0.28 0.29 0.29 0.25 0.17 0.12 0.15 0.15 0.20 0.50 0.57 0.67 1.00 0.65 0.16 0.47 0.30 0.23 0.35 -0.30 -0.38 -0.46 0.03 -0.02 0.02 -0.31 0.11 0.15 0.13 

28 0.45 0.47 0.51 0.49 0.54 0.10 0.36 0.31 0.36 0.27 0.23 0.09 0.20 0.24 0.26 0.57 0.65 0.65 0.65 1.00 0.15 0.58 0.29 0.27 0.43 -0.28 -0.36 -0.42 0.06 0.01 -0.01 -0.33 0.09 0.16 0.16 

01 0.12 0.06 0.11 0.14 0.12 0.08 0.10 0.15 0.17 0.14 0.14 0.08 0.11 0.10 0.17 0.09 0.14 0.17 0.16 0.15 1.00 0.18 0.17 0.28 0.16 -0.07 -0.13 -0.07 0.02 0.04 -0.04 -0.13 0.13 0.05 -0.02 

02 0.36 0.45 0.38 0.38 0.40 0.13 0.29 0.26 0.32 0.25 0.24 0.15 0.25 0.29 0.28 0.46 0.62 0.49 0.47 0.58 0.18 1.00 0.22 0.26 0.41 -0.16 -0.21 -0.26 -0.02 0.05 -0.05 -0.30 0.18 0.05 0.15 

04 0.19 0.21 0.23 0.23 0.28 0.16 0.24 0.27 0.29 0.32 0.24 0.15 0.15 0.19 0.22 0.22 0.23 0.30 0.30 0.29 0.17 0.22 1.00 0.30 0.17 -0.08 -0.13 -0.12 0.12 -0.03 0.03 -0.16 0.12 0.02 0.05 

06 0.22 0.29 0.24 0.29 0.33 0.09 0.19 0.24 0.43 0.23 0.30 0.26 0.25 0.23 0.34 0.10 0.25 0.29 0.23 0.27 0.28 0.26 0.30 1.00 0.23 -0.05 -0.12 -0.11 0.03 0.02 -0.02 -0.17 0.15 0.03 0.02 

26 0.23 0.35 0.25 0.32 0.32 0.07 0.23 0.18 0.23 0.23 0.19 0.13 0.18 0.16 0.22 0.31 0.35 0.39 0.35 0.43 0.16 0.41 0.17 0.23 1.00 -0.11 -0.12 -0.18 -0.03 0.03 -0.03 -0.23 0.12 0.07 0.09 

10 -0.17 -0.11 -0.23 -0.17 -0.14 0.03 -0.08 -0.08 -0.05 -0.02 -0.06 -0.05 -0.05 -0.05 -0.04 -0.17 -0.18 -0.22 -0.30 -0.28 -0.07 -0.16 -0.08 -0.05 -0.11 1.00 0.36 0.41 -0.04 0.04 -0.04 0.12 -0.03 -0.05 -0.07 

16 -0.22 -0.19 -0.27 -0.23 -0.24 -0.05 -0.16 -0.14 -0.14 -0.09 -0.10 -0.03 -0.05 -0.08 -0.08 -0.26 -0.29 -0.30 -0.38 -0.36 -0.13 -0.21 -0.13 -0.12 -0.12 0.36 1.00 0.59 0.00 -0.06 0.06 0.13 -0.05 -0.05 -0.06 

22 -0.21 -0.16 -0.27 -0.24 -0.25 -0.05 -0.18 -0.13 -0.15 -0.07 -0.12 -0.05 -0.07 -0.08 -0.11 -0.29 -0.35 -0.38 -0.46 -0.42 -0.07 -0.26 -0.12 -0.11 -0.18 0.41 0.59 1.00 -0.06 -0.03 0.03 0.16 -0.03 -0.06 -0.11 

age -0.05 -0.07 -0.02 -0.04 0.09 0.05 0.06 0.09 0.05 0.03 0.04 0.02 0.05 0.04 0.01 0.00 0.02 0.00 0.03 0.06 0.02 -0.02 0.12 0.03 -0.03 -0.04 0.00 -0.06 1.00 0.03 -0.03 0.02 0.03 0.06 -0.11 

male 0.02 -0.05 -0.06 -0.04 0.00 0.07 0.00 -0.02 0.01 0.02 -0.10 -0.01 -0.03 -0.10 -0.04 0.06 0.03 0.01 -0.02 0.01 0.04 0.05 -0.03 0.02 0.03 0.04 -0.06 -0.03 0.03 1.00 -1.00 -0.16 0.15 -0.01 0.05 

female -0.02 0.05 0.06 0.04 0.00 -0.07 0.00 0.02 -0.01 -0.02 0.10 0.01 0.03 0.10 0.04 -0.06 -0.03 -0.01 0.02 -0.01 -0.04 -0.05 0.03 -0.02 -0.03 -0.04 0.06 0.03 -0.03 -1.00 1.00 0.16 -0.15 0.01 -0.05 

HC -0.33 -0.27 -0.32 -0.26 -0.34 -0.07 -0.18 -0.20 -0.21 -0.17 -0.17 -0.12 -0.16 -0.18 -0.18 -0.33 -0.35 -0.30 -0.31 -0.33 -0.13 -0.30 -0.16 -0.17 -0.23 0.12 0.13 0.16 0.02 -0.16 0.16 1.00 -0.42 -0.41 -0.40 

ROP 0.15 0.13 0.11 0.10 0.20 0.03 0.06 0.09 0.14 0.04 0.12 0.13 0.10 0.09 0.12 0.17 0.12 0.16 0.11 0.09 0.13 0.18 0.12 0.15 0.12 -0.03 -0.05 -0.03 0.03 0.15 -0.15 -0.42 1.00 -0.25 -0.25 

ROD 0.07 0.05 0.09 0.06 0.10 0.02 0.08 0.07 0.06 0.09 0.01 0.01 0.05 0.08 0.03 0.06 0.11 0.08 0.15 0.16 0.05 0.05 0.02 0.03 0.07 -0.05 -0.05 -0.06 0.06 -0.01 0.01 -0.41 -0.25 1.00 -0.24 

CHR 0.19 0.16 0.20 0.15 0.12 0.04 0.08 0.08 0.05 0.08 0.08 0.00 0.05 0.06 0.06 0.17 0.21 0.14 0.13 0.16 -0.02 0.15 0.05 0.02 0.09 -0.07 -0.06 -0.11 -0.11 0.05 -0.05 -0.40 -0.25 -0.24 1.00 
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Figure S4: Histogram of IQR scores of the main study sample. Depicted are the IQR scores of the main study sample.  
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Figure S5: Exemplary illustration of non-sparse PLS solution with cu and cv at maximum values. This figure illustrates the 
weight vector solution u and v when cu and cv are tested at the maximum values of our predefined hyperparameter grid. It 
resembles a non-sparse, regular PLS analysis, which is therefore part of our SPLS hyperparameter grid search. 
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Figure S6: Predominantly age-informed signature of LV1. A) The barplot visualizes the direction and the values of the weights 
included in the phenotypic pattern of LV1. Positive weights were assigned to questions from the CTQ subscales of emotional 
abuse (CTQ25), physical abuse (CTQ09, CTQ11, CTQ12, CTQ15), sexual abuse (CTQ20, CTQ21, CTQ23, CTQ24, CTQ27) and 
physical neglect (CTQ04) as well as to age, male sex and ROP diagnosis. Negative weights were assigned to questions from 
the CTQ subscales of emotional abuse (CTQ08) and denial (CTQ22) as well as female sex. B) Depicted is the brain pattern of 
LV1, with positive weighting of voxels displayed in red and negative weighting displayed in blue color scale. 
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Figure S7: Predominantly sex-informed signature of LV3. A) The barplot visualizes the direction and the values of the weights 
included in the phenotypic pattern of LV3. One question from emotional abuse (CTQ25), two from physical abuse (CTQ09, 
CTQ12), four from sexual abuse (CTQ20, CTQ21, CTQ23, CTQ27), one from emotional neglect (CTQ05), two from physical 
neglect (CTQ04, CTQ26) and one from denial (CTQ22). Furthermore, age as well as female and male sex were included. B) 
Depicted is the brain pattern of LV3, with positive weighting of voxels displayed in red and negative weighting displayed in 
blue color scale. 
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Figure S8: Random split-half analysis: Predominantly age-informed signature of LV1: A) The barplot visualizes the direction 
and the values of the weights included in the phenotypic pattern of LV1. Age received the strongest positive weighting, while 
further positive weights were assigned to questions from the CTQ subscales of emotional (CTQ19) and physical neglect 
(CTQ04) whereas negative weights were assigned to items from the denial subscale (CTQ10, 16, 22). B) Depicted is the brain 
pattern of LV1, with positive weighting of voxels displayed in red and negative weighting displayed in blue color scale. 
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Figure S9: Random split-half analysis: Highly dense trauma signature of LV2: A) The barplot visualizes the direction and the 
values of the weights included in the phenotypic pattern of LV2. The dense phenotypic pattern featured weighting of most 
of the phenotypic input feature space except for one item each from the emotional abuse (CTQ08) and the emotional neglect 
subscale (CTQ28). B) Depicted is the brain pattern of LV2, with positive weighting of voxels displayed in red and negative 
weighting displayed in blue color scale. 
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Figure S10: Predominantly age-informed LV1 of LOSOCV analysis. A) The barplot visualizes the direction and the values of 
the weights included in the phenotypic pattern of LV1. Positive weights were assigned most strongly to age as well as to 
questions from the CTQ subscales of emotional abuse (CTQ14), physical abuse (CTQ12), sexual abuse (CTQ20, CTQ21, CTQ23, 
CTQ24, CTQ27) and inversely to male and female sex. B) Depicted is the brain pattern of LV1, with positive weighting of voxels 
displayed in red and negative weighting displayed in blue color scale. 
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Figure S11: age- and sex-dependent sexual abuse signature of LV2 of the LOSOCV analysis. A) The barplot visualizes the 
direction and the values of the weights included in the phenotypic pattern of LV2. All five questions from the CTQ sexual 
abuse subscale (CTQ20, CTQ21, CTQ23, CTQ24, CTQ27) received positive weights, whereas age was negatively and sex 
inversely weighted. B) Depicted is the brain pattern of LV2, with positive weighting of voxels displayed in red and negative 
weighting displayed in blue color scale. 
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Figure S12: Predominantly sex-dependent signature of LV3 of LOSOCV analysis. A) The barplot visualizes the direction and 
the values of the weights included in the phenotypic pattern of LV3. Two questions from the sexual abuse (CTQ21, CTQ23) 
received a positive weight, while sex was strongly and inversely weighted. B) Depicted is the brain pattern of LV3, with positive 
weighting of voxels displayed in red and negative weighting displayed in blue color scale. 
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Figure S13: age- and sex-dependent sexual abuse signature of LV4 of the LOSOCV analysis. A) The barplot visualizes the 
direction and the values of the weights included in the phenotypic pattern of LV4. Two questions from the emotional abuse 
subscale (CTQ18, CTQ25) were negatively weighted and four questions from the sexual abuse (CTQ20, CTQ21, CTQ23, CTQ24) 
were mostly positively weighted. Age received a strong positive and sex a strong inverse weighting. B) Depicted is the brain 
pattern of LV4, with positive weighting of voxels displayed in red and negative weighting displayed in blue color scale 
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Figure S14: Predominantly sex-dependent signature of LV5 of the LOSOCV analysis. A) The barplot visualizes the direction 
and the values of the weights included in the phenotypic pattern of LV5. Two questions from the emotional abuse subscale 
(CTQ18, CTQ25) were negatively weighted and four questions from the sexual abuse (CTQ20, CTQ21, CTQ23, CTQ24) were 
mostly positively weighted. Age received a strong positive and sex a strong inverse weighting. B) Depicted is the brain pattern 
of LV5, with positive weighting of voxels displayed in red and negative weighting displayed in blue color scale.
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Figure S15: LV1 and LV2 signatures of SPLS analysis with IQR addition. LV1: A) Phenotypic pattern: Positive weights: sexual abuse (CTQ20, 21, 23, 24) and age. B) Brain pattern: positive voxel 
weights displayed in red and negative weights in blue color scale. LV2: A) Phenotypic pattern: Positive weights: sexual abuse (CTQ20, 21, 23, 24) and female sex. Negative weights: emotional abuse 
(CTQ25), age and male sex. B) Brain pattern: positive voxel weights displayed in red and negative weights in blue color scale. 
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Figure S16: LV3 and LV4 signatures of SPLS analysis with IQR addition. LV3: A) Phenotypic pattern: Positive weights: sexual abuse (CTQ21, 23, 24), emotional (CTQ05) and physical neglect (CTQ26), 
male sex and IQR. Negative weights: female sex. B) Brain pattern: positive weighting of voxels in red and negative weighting in blue color scale. LV4: A) Phenotypic pattern: Positive weights: age and 
female sex; negative weight: male sex. B) Brain pattern: positive weighting of voxels in red and negative weighting in blue color scale. 
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Figure S17: LV5 and LV6 signatures of SPLS analysis with IQR addition. LV5: A) Phenotypic pattern: Positive weights: emotional (CTQ03, 14, 18, 25), physical (CTQ09, 11, 12, 15, 17) and sexual abuse 

(CTQ20, 27), physical neglect (CTQ01, 02, 04, 06), age, male sex, ROP and ROD status. Negative weights: sexual abuse (CTQ24), emotional neglect (CTQ05), denial (CTQ10), female sex, HC status and 

IQR. B) Brain pattern: positive voxel weights displayed in red and negative weights in blue color scale. LV6: A) Phenotypic pattern: Positive weights: age and male sex. Negative weights: emotional 

abuse (CTQ14) and female sex. B) Brain pattern: positive weighting of voxels in red and negative weighting in blue color scale. 
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Figure S18: LV7 and LV8 signatures of SPLS analysis with IQR addition. LV7: A) Phenotypic pattern: Positive weights: emotional abuse (CTQ03, CTQ14), sexual abuse (CTQ24) and age. B) Brain 
pattern: positive voxel weights displayed in red and negative weights in blue color scale. LV8: A) Phenotypic pattern: Positive weights: emotional (CTQ03, 08, 14, 18, 25), physical (CTQ11, 12, 15) 
and sexual abuse (CTQ23, 24, 27), emotional (CTQ05, 07, 13, 19, 28) and physical neglect (CTQ01, 02, 04, 06, 26), male sex, ROP, CHR status and IQR. Negative weights: physical (CTQ09, 17) and 
sexual abuse (CTQ20, 21), denial (CTQ10, 16, 22), age, female sex, HC, and ROD status. B) Brain pattern: positive weighting of voxels in red and negative weighting in blue color scale.
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Figure S19: LV9 signature of SPLS analysis with IQR addition. A) Phenotypic pattern: Positive weights: emotional neglect 
(CTQ05, 07, 19, 28), age and female sex. Negative weights: emotional (CTQ03, 14) and sexual abuse (CTQ24), male sex and 
IQR. B) Brain pattern: positive voxel weights displayed in red and negative weights in blue color scale. 
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Figure S20: Exemplary illustration of phenotypic and brain correlations in LV1 of main SPLS model. A) Depicted is the 
correlation between age and mean grey matter volume (GMV) in the most strongly negatively weighted cluster in the left 
medial superior frontal gyrus (SFG). The left SFG was negatively weighted, whereas age was positively weighted in LV1. B) 
Depicted is the correlation between age and mean GMV in the most strongly positively weighted cluster in the left thalamus. 
Both age and the left lateral pre-frontal thalamus voxels were positively weighted in LV1.
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Abstract

Background. Childhood trauma (CT) is associated with an increased risk of mental health
disorders; however, it is unknown whether this represents a diagnosis-specific risk factor
for specific psychopathology mediated by structural brain changes. Our aim was to explore
whether (i) a predictive CT pattern for transdiagnostic psychopathology exists, and whether
(ii) CT can differentiate between distinct diagnosis-dependent psychopathology.
Furthermore, we aimed to identify the association between CT, psychopathology and brain
structure.
Methods. We used multivariate pattern analysis in data from 643 participants of the
Personalised Prognostic Tools for Early Psychosis Management study (PRONIA), including
healthy controls (HC), recent onset psychosis (ROP), recent onset depression (ROD), and
patients clinically at high-risk for psychosis (CHR). Participants completed structured inter-
views and self-report measures including the Childhood Trauma Questionnaire, SCID diag-
nostic interview, BDI-II, PANSS, Schizophrenia Proneness Instrument, Structured Interview
for Prodromal Symptoms and structural MRI, analyzed by voxel-based morphometry.
Results. (i) Patients and HC could be distinguished by their CT pattern with a reasonable pre-
cision [balanced accuracy of 71.2% (sensitivity = 72.1%, specificity = 70.4%, p≤ 0.001]. (ii)
Subdomains ‘emotional neglect’ and ‘emotional abuse’ were most predictive for CHR and
ROP, while in ROD ‘physical abuse’ and ‘sexual abuse’ were most important. The CT pattern
was significantly associated with the severity of depressive symptoms in ROD, ROP, and CHR,
as well as with the PANSS total and negative domain scores in the CHR patients. No associa-
tions between group-separating CT patterns and brain structure were found.
Conclusions. These results indicate that CT poses a transdiagnostic risk factor for mental
health disorders, possibly related to depressive symptoms. While differences in the quality
of CT exposure exist, diagnostic differentiation was not possible suggesting a multi-factorial
pathogenesis.
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Introduction

Childhood trauma (CT) is a frequent form of maltreatment com-
prising sexual, physical, and emotional dimensions. In Western
countries, 30–40% of the adult population reported experiences
with at least some form of maltreatment during childhood
(Scher, Forde, McQuaid, & Stein, 2004). CT was revealed to influ-
ence the further course of life of the affected individuals, fre-
quently leading to psychological symptoms and impairment in
adulthood (Kessler et al., 2010; Scott, McLaughlin, Smith, &
Ellis, 2012). It has been shown to be associated with an increased
risk for psychiatric disorders such as major depression, anxiety
disorders, addiction, post-traumatic stress disorder and psychosis,
including patients at clinical high-risk for psychosis (CHR)
(Kessler et al., 2010; Palmier-Claus, Berry, Bucci, Mansell, &
Varese, 2016; Sahin et al., 2013; Scott et al., 2012; Varese et al.,
2012). Even in the general population, CT seems to have long-
standing effects on individuals’ social perception (Salokangas,
From, Luutonen, & Hietala, 2018). Due to its high prevalence
and detrimental effects on both, mental health and associated
socioeconomic costs (Fang, Brown, Florence, & Mercy, 2012), a
better understanding of CT as a risk factor is essential.
Furthermore, the fact that CT occurs during a period of important
neurodevelopmental steps underlines the potential for prevention
or better care for CT victims to contribute to lower lifetime bur-
den of psychiatric disorders (Mikton & Butchart, 2009).

The sum of trauma exposure during childhood has been estab-
lished as an important risk factor for mental health disorders.
However, this has not been investigated in detail, although CTQ
covers five different subcategories of different trauma exposure.
These are in detail physical abuse (PA), physical neglect (PN),
emotional abuse (EA), emotional neglect (EN), and sexual
abuse (SA) (Bernstein & Fink, 1998). A promising approach to
investigate the complex granularity of CT as a risk factor is multi-
variate pattern analysis (MVPA) which was previously shown to
identify neuropsychiatric conditions based on, e.g. neuroimaging
data (Kambeitz et al., 2015). The initial publication from the
PRONIA study was on the prediction of functional and treatment
outcomes based on clinical baseline data across multiple sites
(Koutsouleris et al., 2018). Furthermore, two publications from
the PRONIA consortium focused on different aspects of CT:
Popovic et al. (2020) identified distinct volumetric brain patterns
associated with single dimensions of CT (in particular physical
and sexual abuse and emotional trauma) in a transdiagnostic
approach. Salokangas et al. (2021) focused on CT in smaller
patient groups and specifically investigated differences with
respect to frontal lobe and hippocampal-amygdala complex
volumes. In contrast, our study focuses on the potential ability
of separating healthy controls (HC) and patient groups using
machine learning techniques, and to identify potential clinical
and volumetric brain correlates of CT in the entire cohort.

To answer these questions, the present study first investigated
the discriminative value of CT for the individualized identifica-
tion of transdiagnostic and diagnosis-specific psychiatric disor-
ders using MVPA. In a second step, we examined whether the
found CT patterns correlate with the measures of psychopath-
ology and/or altered brain structure. The investigation was carried
out in the PRONIA database (‘Personalized Prognostic Tools
for Early Psychosis Management’; www.pronia.eu), a large, multi-
site European cohort consisting of patients with recent
onset depression (ROD), recent onset psychosis (ROP), CHR,
and HC.

Aims of the study

We aimed to investigate whether (i) a predictive pattern of CT for
transdiagnostic psychopathology exists, and whether (ii) CT can
differentiate between distinct diagnosis-dependent psychopath-
ology. Moreover, our aim was to identify associations between
CT, psychopathology, and brain structure.

Methods

Participants

For the quality assurance of our proceedings, we followed the
‘Transparent reporting of a multivariable prediction model for
individual prognosis or diagnosis’ (TRIPOD) checklist for predic-
tion model development and validation (Collins, Reitsma,
Altman, & Moons, 2015).

All participants were recruited within the PRONIA project
(‘Personalized Prognostic Tools for Early Psychosis Management’).
PRONIA is a multisite observational study funded by the
European Union under the 7th Framework Programme (grant
agreement n° 602152). Seven clinical centers in five European coun-
tries participated in the evaluation of patients with ROD, ROP,
CHR, and HC. Within a longitudinal study design, a comprehensive
battery of clinical assessment tools was used every 3 months over 18
months (see online Supplementary Fig. S1). Neuroimaging exami-
nations were carried out at the baseline and the 9-month follow-up
points. The entire study design has been previously described in
detail by Koutsouleris et al. (2018).

All adult participants provided their written informed consent
prior to study inclusion. Minors provided written informed assent
and guardians written informed consent. The study was registered
at the German Clinical Trials Register (DRKS00005042). The
authors assert that all procedures contributing to this work com-
ply with the ethical standards of the relevant national and institu-
tional committees on human experimentation and with the
Helsinki Declaration of 1975, as revised in 2008. All procedures
involving human subjects/patients were approved by the local
research ethics committees.

Inclusion and exclusion criteria

The included persons were aged between 15 and 40 years and
recruited into the study between 1 February 2014 and 1 May
2016. Patients with CHR were included by Cognitive
Disturbances (COGDIS) criteria, assessed by the Schizophrenia
Proneness Instrument (SPI-A) (Schultze-Lutter, Addington,
Ruhrmann, & Klosterkötter, 2007), and/or UHR criteria
(Phillips, Yung, & McGorry, 2000), assessed using a modified
version of the Structured Interview for Prodromal Syndromes
(SIPS) (McGlashan, Walsh, & Woods, 2010). For ROD, specific
inclusion criteria were having a DSM-IV (American Psychiatric
Association, 2000) Major Depressive Episode that was present
within the past 3 months and did not last longer than 24 months.
ROP fulfilled DSM-IV criteria for affective or non-affective psych-
osis within the last 24 months and not before. General inclusion
and exclusion criteria have been described in detail in
Koutsouleris et al. (2018) and were detailed as depicted in online
Supplementary Table S1.

Procedure and instruments

The data used in this study were all acquired at baseline. As men-
tioned above, psychopathology of CHR patients was assessed
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using SIPS and SPI-A. ROP and ROD were diagnosed by
DSM-IV. Depressive syndrome severity was additionally mea-
sured using the Beck-Depression-Inventory II (BDI-II)
(Hautzinger, Bailer, Worall, & Keller, 1995). Positive and negative
symptoms were assessed by the Positive and Negative Syndrome
Scale (PANSS) (Kay, Fiszbein, & Opler, 1987). For the assessment
of CT, the Childhood Trauma Questionnaire (CTQ), developed
by Bernstein and Fink (1998), was used. The CTQ is a self-
assessment tool for the retrospective recording of mistreatment
and neglect in childhood. It consists of 28 items, whereby three
items (10, 16, 22) are used to determine denial and trivialization.
It includes five subscales; emotional abuse (EA), physical abuse
(PA), sexual abuse (SA), emotional neglect (EN), and physical
neglect (PN). Rating was carried out on a five-point Likert scale
(0 = never to 4 = very often). The convergent and discriminative
validity has been reported as being good (Bernstein & Fink,
1998). In addition, the cumulative sum of the equivalent doses
received until T0 was calculated for SSRIs (Hayasaka et al.,
2015), chlorpromazine (Leucht, Samara, Heres, & Davis, 2016),
olanzapine (Leucht et al., 2016), and benzodiazepines (diazepam)
(Clinical Guidelines on Drug Misuse and Dependence Update
2017 Independent Expert Working Group, 2017).

MRI acquisition, preprocessing, and analysis

Participants underwent a comprehensive imaging protocol at
seven sites respecting a minimal harmonization protocol includ-
ing high-resolution 3D T1-weighted imaging. Detailed scanner
and sequence specifications for all sites can be found in the online
Supplementary Table S2. All images underwent quality control
and were preprocessed using the CAT12 toolbox (version r1155;
http://dbm.neuro.uni-jena.de/cat12/), an extension of SPM 12 as
described previously (Koutsouleris et al., 2018). Images were
smoothed with 10 mm before entering the subsequent analysis
steps. The Quality Assurance framework of CAT12 was used to
empirically check the quality of the GMV maps.

By computing the correlation of each image to all other 592
images, we found 11 (1.9%) images whose correlation exceeded
two standard deviations from the sample mean. These images
were inspected and nine were removed because of MRI artifacts.
Thus, 583 persons could be included in the VBM analysis (109
CHR patients, 115 ROD patients, 110 ROP patients, and 249
HC). Notably, 98.47% of the images achieved a good overall
weighted quality (B), and 83.0% of the data quality was rated
with a B+ as provided by the internal quality assessment of
CAT12 (Gaser & Dahnke, 2016). For analysis of brain structure
and associations with CT, voxel-based morphometry (VBM)
was employed. Preprocessed data entered a full-factorial general
linear model design as implemented in SPM. Sex, site (coded
as dummy regressors), and age were used as covariates of no
interest to correct for potential confounds for VBM analyses.
In order to investigate possible sex differences, male and female
participants were also analyzed separately. Global proportional
scaling for total intracranial volume was used to adjust for differ-
ent global brain volume differences. Contrasts were defined for
main-effects and interaction analyses to assess differences in
mean and slope effects of associations between CTQ-based deci-
sion scores (DS) and local GM. Threshold-free cluster enhance-
ment (TFCE) was used as implemented in the TFCE toolbox
for SPM with 5000 permutations (Smith & Nichols, 2009).
Significance threshold was set at p < 0.05, family-wise error
corrected.

Machine learning strategies

To investigate discriminative patterns of CT experience in HC v.
the combined three patient groups (PAT), we used an
L2-regularized logistic regression (L2-LR) as provided by the
LIBLINEAR library (Fan, Chang, Hsieh, Wang, & Lin, 2008),
which offers methods for classifying individuals instead of
describing statistical group differences.

We used our open-source machine learning toolkit
NeuroMiner (https://github.com/neurominer-git/) to implement
a fully automated machine learning pipeline. We trained different
models to predict psychiatric disorders based on the single CTQ
items;

1. PAT v. HC
2. HC v. CHR; HC v. ROD; HC v. ROP
3. ROD v. CHR; ROD v. ROP; CHR v. ROP

We followed the internal–external validation approach recom-
mended for the assessment of model generalizability in multi-site
studies (Steyerberg & Harrell, 2016) and validated our models
using nested leave-one-site-out cross-validation (LOSOCV) (see
in detail Supplementary Methods).

To compare the multivariate v. univariate methods, we repeated
the HC v. PAT analysis after replacing the L2-LR (Fan et al., 2008)
algorithm with a univariate logistic regression model (uLR) in
NeuroMiner. Algorithm performance was measured using the
balanced accuracy (BAC) of the out-of-training (OOT) group mem-
bership predictions and assessed for significance using 1000 random
label permutations (Golland & Fischl, 2003). Predictive features for
each L2-LR model were compared by their mean weights.

A further validation analysis assessed whether our model gener-
alized across study groups. Therefore, we used LOSOCV to train
and cross-validate three binary L2-LR-based diagnostic classifiers
(HC v. CHR; HC v. ROD; HC v. ROP) using the identical algorith-
mic setup described above. Each trained classification ensemble was
then applied to the CTQ data of the other two clinical study groups
following an out-of-sample cross-validation (OOCV) approach.
Class membership probabilities/DS of the patients in the held-back
study groups were computed for the OOT predictions.

These main analyses were supplemented by an investigation of
univariate associations between measures of current psychopath-
ology and the OOT DS of clinical participants produced by the
L2-LR algorithms, which were trained in the HC v. CHR, HC
v. ROD, and HC v. ROP comparisons. For the ROD, ROP, and
CHR groups, the correlations of the CTQ-based DS with the
BDI-II, SIPS-P, SIPS-N, SIPS-D, SIPS-G, PANSS total, positive,
negative, and general domain scores were examined, respectively.
Furthermore, the relationship between the equivalent doses of the
individual drug classes (neuroleptics, SSRIs, benzodiazepines) and
the CTQ-based DS was calculated for each group. In order to
exclude recall bias in older participants (with longer time spans
between CT and study inclusion), we performed correlation ana-
lyses between CTQ-based DS and age at study inclusion as a con-
trol analysis.

Results

Study group characteristics

In total, 643 subjects (57.2% male, mean age 27.69 ± 5.99 years)
were included in the analysis. These consisted of n = 262
(40.7%) HC, n = 122 (19.0%) CHR, n = 130 (20.2%) ROD, and
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n = 129 (20.1%) ROP. CTQ total scores and subdomain scores
were significantly different between PAT and HC. No group dif-
ferences were found between the PAT groups ROP, ROD, and
CHR regarding the total CTQ score. Please see Table 1 and
online Supplementary Table S3 for details. The online
Supplementary Table S4 shows the mean values of the drug
equivalent doses that have been taken cumulatively so far. As
expected, the highest equivalent doses for antipsychotics were
found in ROP patients (chlorpromazine = 8072.71 mg/d, olanza-
pine = 280.02 mg/d), followed by CHR patients (chlorpromazine
= 1025.06 mg/d, olanzapine = 42.04 mg/d). Surprisingly, the high-
est equivalent doses for SSRIs were found in CHR patients
(3864.95 mg/d), followed by ROD patients (2630.83). We did
not find an association between patient age and DS, making an
age-dependent recall bias unlikely to have influenced our results
(see online Supplementary Table S5).

Childhood trauma profiles predict general psychopathology

The classifier distinguishing HC from PAT performed with a BAC
of 71.2% (sensitivity: 72.1%, specificity: 70.4%). Leave-site-out

validation yielded good generalizability of the CTQ-based dis-
criminative model (see Table 2). In order to deduct a CT profile
predictive of general psychopathology, weights of CTQ single
items from the MVPA were recorded and are depicted in Fig. 1.
It must be emphasized that the resulting values do not allow to
conclude on the direction of the prediction. The highest weights
related to items within the subdomains EN and EA, namely:
CTQ Item 5; ‘There was someone in my family who helped me
feel that I was important or special’, CTQ Item 14; ‘People in
my family said hurtful or insulting things to me’, and CTQ
Item 13; ‘People in my family looked out for each other’. The
uLR analyses for the same classification (HC v. PAT) led to a
BAC of 67.1% (sensitivity: 66.0%, specificity: 68.2%). For detailed
results, please see Table 2.

Childhood trauma profiles for diagnosis-specific
psychopathology

Classifying the three diagnostic groups within the PAT cohort,
namely CHR, ROD, and ROP did not perform above chance
level (CHR v. ROD: BAC = 46.1%, sensitivity = 35.8%, specificity

Table 1. Sociodemographic data and general psychopathology

HC PAT U/χ2a pa CHR ROD ROP

n total (%) 262 (40.7%) 381 (59.3) n.a. n.a. 122 (19.0%) 130 (20.2%) 129 (20.1%)

Age (y), M (S.D.) 27.75 (6.41) 27.64 (5.68) 49 854 0.932 26.26 (4.9) 28.54 (6.14) 28.02 (5.68)

Sex (♀) F (%) 164 (62.6%) 204 (53.5) 16.23 <0.001 58 (47.5%) 70 (53.8%) 49 (38%)

Psychopathology [mean (S.D.)]

BDI-II 3.76 (5.27) 24.12 (13.04) 6273.5 <0.001 24.89 (12.16) 26.71 (13.91) 20.79 (12.30)

CTQ 30.88 (6.4) 40.38 (12.64) 20 806.5 <0.001 41.28 (12.73) 39.33 (13.66) 40.57 (11.42)

PANSS total n.a. 56.32 (18.90) n.a. n.a. 50.74 (13.11) 47.80 (11.33) 70.11 (21.70)

PANSS negative n.a. 13.83 (6.39) n.a. n.a. 12.54 (5.83) 12.60 (5.00) 16.27 (7.38)

PANSS positive n.a. 11.97 (6.05) n.a. n.a. 10.27 (2.95) 7.71 (1.39) 17.84 (6.52)

PANSS general n.a. 30.49 (9.39) n.a. n.a. 27.83 (6.88) 27.48 (6.97) 35.99 (11.07)

Childhood trauma

Emotional abuse 6.56 (2.42) 9.64 (4.37) 24 784.0 <0.001 10.16 (4.43) 9.2 (4.36) 9.62 (4.29)

Physical abuse 5.39 (1.0) 6.52 (3.08) 38 805.5 <0.001 6.56 (3.11) 6.45 (3.21) 6.56 (3.0)

Sexual abuse 5.2 (1.1) 6.04 (2.95) 39 828.5 <0.001 5.97 (2.77) 5.88 (2.84) 6.28 (3.22)

Emotional neglect 7.93 (3.14) 11.47 (4.58) 25 248.5 <0.001 11.78 (4.45) 11.25 (4.88) 11.4 (4.42)

Physical neglect 5.87 (1.51) 7.41 (2.73) 29 420.0 <0.001 7.35 (2.6) 7.08 (2.81) 7.79 (2.76)

Distribution across sites (total/%)

Munich 59 (22.5) 125 (32.8) n.a. n.a. 40 (32.8) 44 (33.8) 41 (31.8)

Basel 44 (16.8) 51 (13.4) n.a. n.a. 18 (14.8) 17 (13.1) 16 (12.4)

Cologne 56 (21.4) 69 (18.1) n.a. n.a. 18 (14.8) 25 (19.2) 26 (20.2)

Birmingham 42 (16.0) 34 (8.9) n.a. n.a. 13 (10.7) 12 (9.2) 9 (7.0)

Turku 19 (7.3) 45 (11.8) n.a. n.a. 14 (11.5) 11 (8.5) 20 (15.5)

Udine 31 (11.8) 31 (8.1) n.a. n.a. 12 (9.8) 14 (10.8) 5 (3.9)

Milan 11 (4.2) 26 (6.8) n.a. n.a. 7 (5.7) 7 (5.4) 12 (9.3)

U, Mann–Whitney U test; χ2, chi-squared test, M, mean; S.D., standard deviation; PAT, patients including ROP, ROD, and CHR; HC, healthy controls; CHR, clinical high-risk state; ROD, recent
onset depression; ROP, recent onset psychosis; CTQ, Childhood Trauma Questionnaire, PANSS, Positive and Negative Syndrom Scale; BDI-II, Beck Depression Inventory II.
Statistical comparisons: sex with χ2 statistics; age, BDI-II, and CTQ with Mann–Whitney U test.
Comparison between healthy controls and patients.
aComparison only between PAT and HC.
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= 56.3%; CHR v. ROP: BAC = 47.1%, sensitivity = 42.5%,
specificity = 51.7%; ROD v. ROP: BAC = 51.9 sensitivity = 58.0%,
specificity = 45.3%). However, classifiers separating between HC
and individual PAT groups performed well (HC v. ROD: BAC
= 67.2%, sensitivity = 75.6%, specificity = 58.9%; HC v. CHR:
BAC = 72.1%, sensitivity = 72.4%, specificity = 71.8%; HC v. ROP:
BAC = 70.8%, sensitivity = 74.4%, specificity = 67.2%; please see
Table 2).

Regarding the differentiation of HC v. CHR, highest weights
belonged to items of the subdomains EA and EN (see Fig. 1);
CTQ Item 14; ‘People in my family said hurtful or insulting
things to me’, CTQ Item 13; ‘People in my family looked out
for each other’, and CTQ Item 28; ‘My family was a source of
strength and support’.

Analyzing the profile of HC v. ROD revealed the highest
weights in items of the subdomains PA, SA, and EA (see
Fig. 1); CTQ Item 17; ‘I got hit or beaten so badly that it was
noticed by someone like a teacher, neighbor, or doctor’, CTQ
Item 24; ‘Someone molested me’, and CTQ Item 14; ‘People in
my family said hurtful or insulting things to me’.

Describing the profile which is distinguishing HC v. ROP,
items of the subdomains EA, EN, and PN were most predictive
(see Fig. 1); CTQ Item 25; ‘I believe that I was emotionally
abused’, CTQ Item 13; ‘People in my family looked out for
each other’, and CTQ Item 2; ‘I knew that there was someone
to take care of me and protect me’.

Correlation between childhood trauma and psychopathology

Across all groups, correlations between the CTQ-based DS and
GAF symptoms (r = 0.388, p≤ 0.01) as well as disability and
impairment (r = 0.412, p≤ 0.01) were moderate to strong. In the
CHR group, there were no associations between the CTQ-based

DS and any SIPS domain, but a weak correlation between the
DS and the BDI total score was observed (r =−0.175, p = 0.028).
Moreover, a weak correlation between the PANSS total
(r =−0.191, p = 0.038) and the PANSS negative domain score
(r =−0.196, p = 0.033) was seen in the CHR patients. Regarding
the ROD group, a moderate association between the CTQ-based
DS and the BDI total score was found (r =−0.278, p = 0.001).
In the ROP group, there was no significant correlation between
the PANSS scores and the CTQ-based DS but a moderate associ-
ation between the BDI total score and the CTQ-based DS
(r = −0.246, p = 0.003). For details, please see Table 3.

Correlation between childhood trauma and medication

Across all groups, weak negative correlations were found between
the CTQ-based DS and all types of medication [chlorpromazine
r = −0.213, p≤ 0.001, olanzapine r =−0.213, p≤ 0.001, SSRI
r = −0.193, p≤ 0.001, benzodiazepine (diazepam) r = −1.28,
p = 0.001]. Interestingly, however, no significant correlations
were found in the individual groups, except for a weak positive
correlation with benzodiazepine in HC individuals. For details,
please see online Supplementary Table S6.

Correlation between childhood trauma and brain structure

Despite several methodological approaches and adjusted statistical
thresholds, we did not find any associations between CTQ-based
DS and brain morphology in our cohort. Additionally, there were
no significant associations between DS and brain morphology
when examining male and female participants separately, also
suggesting no sex-specific brain alterations associated with
CTQ-based DS.

Table 2. Multivariate analyses

Classifier TP TN FP FN Sens Spec BAC PPV NPV PSI AUC p

Leave-site-out performance

HC v. PAT (L2LR) 186 266 112 72 72.1 70.4 71.2 62.4 78.7 41.1 0.77 <0.001

HC v. PAT (GLM) 173 260 121 89 66 68.2 67.1 58.8 74.5 33.3 0.74 <0.001

ROD v. ROP 69 55 65 50 58.0 45.3 51.9 51.5 52.4 3.9 0.49 0.358

CHR v. ROP 51 62 58 69 42.5 51.7 47.1 46.8 47.3 −5.9 0.48 0.866

CHR v. ROD 43 67 52 77 35.8 56.3 46.1 45.3 46.5 −8.2 0.43 0.923

HC v. ROD 198 76 53 64 75.6 58.9 67.2 78.9 54.3 33.2 0.69 <0.001

HC v. CHR 189 84 33 72 72.4 71.8 72.1 85.1 53.8 39.0 0.72 <0.001

HC v. ROP 195 86 42 67 74.4 67.2 70.8 82.3 56.2 38.5 0.75 <0.001

Leave-group-out performance

HC v. CHR OOCV ROP 249 51 78 13 95 39.5 67.3 76.1 79.7 55.8 0.79 <0.001

HC v. CHR OOCV ROD 249 38 92 13 95 29.2 62.1 73.0 74.5 47.5 0.74 <0.001

HC v. ROD OOCV ROP 249 51 78 13 95 39.5 67.3 76.1 79.7 55.8 0.76 <0.001

HC v. ROD OOCV CHR 249 48 74 13 95 39.3 67.2 77.1 78.7 55.8 0.77 <0.001

HC v. ROP OOCV CHR 248 49 73 14 94.7 40.2 67.4 77.3 77.8 55.0 0.79 <0.001

HC v. ROP OOCV ROD 248 45 85 14 94.7 34.6 64.6 74.5 76.3 50.7 0.71 <0.001

TP, true positive; TN, true negative; FP, false positive; FN, false negative; Sens, sensitivity; Spec, specificity; BAC, balanced accuracy; PPV, positive predictive value; NPV, negative predictive
value; PSI, prognostic summary index; AUC, area-under-the-curve; HC, healthy controls; PAT, patients including ROP, ROD, and CHR; ROD, recent onset depression; ROP, recent onset
psychosis; CHR, clinically high-risk; OOCV, out-of-sample cross-validation.
All analyses were single item based.
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Discussion

We investigated CT and psychopathology in a large cohort of HC
and patients with ROD, ROP, and CHR using MVPA. We found
that CT significantly predicted transdiagnostic psychopathology
using MVPA, while separation of diagnosis-specific psychopath-
ology was not achieved. Qualitative analysis of CT patterns
emphasized the importance of EN and EA for ROP and CHR
identification while PA and SA yielded importance in ROD
patients. The CTQ-based DS was significantly associated with
the current severity of depressive symptoms in the ROD, ROP,
and CHR group. Moreover, a correlation between the
CTQ-based DS and the PANSS total and negative domain score
was found in CHR patients. However, no further associations
with psychopathology or structural brain alterations were found.
Weak correlations between CTQ-based DS and medication were
discovered across all groups, while no correlations were observed
in the single groups, except for a weak positive correlation with
benzodiazepine in HC individuals. The latter might reflect nega-
tive consequences of CT at a subthreshold level, resulting in
higher tension and anxiety treated with benzodiazepine.

In order to investigate the association between CT and psycho-
pathology, we tested whether PAT and HC could be separated
based on CTQ information using a machine-learning model.
We found that this distinction could be made with acceptable
accuracy on the individual level and that the highest weights
were assigned to domains pertaining to EA and EN. CT has

been associated with several specific psychiatric disorders such
as psychosis (Varese et al., 2012), unipolar depression (Rubino,
Nanni, Pozzi, & Siracusano, 2009), and bipolar disorder
(Palmier-Claus et al., 2016) and has been posited as a general
risk factor for their development. Recent reviews and
meta-analyses have shown that each subdomain of the CTQ is
by itself significantly associated with the occurrence of psychiatric
illness (Lindert et al., 2014; Nelson, Klumparendt, Doebler, &
Ehring, 2017; Varese et al., 2012). These results agree with our
findings showing that CT is globally associated with early-stage
psychiatric disease phenotypes but predictive of these illnesses
from an individualized transdiagnostic perspective.

In order to test whether CTQ profiles also allow for diagnosis-
specific prediction of early mental health disorders, we applied
the same machine learning model to separate CHR, ROP, and
ROD. In these analyses, we found that it was not possible to dis-
tinguish reliably between the three diagnostic groups based on
trauma exposure patterns. This is in line with studies describing
increased rates of CT in psychiatric patients, irrespective of the
exact diagnosis (Kessler et al., 2010; Palmier-Claus et al., 2016;
Sahin et al., 2013; Scott et al., 2012; Varese et al., 2012).
However, other studies exist describing distinct forms of early
adversity in specific patient groups. Particularly, Bruni et al.
found escape from home, cannabis abuse, psychological abuse,
physical abuse, and loneliness to be more frequent in patients
with schizophrenic spectrum disorder than in patients with

Fig. 1. Predictive pattern of the single CTQ items and related subdomains in the different diagnostic groups.
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major depression or bipolar disorder (Bruni et al., 2018).
Contrary to these results, our findings suggest that CT exposure
is not associated with specific disorders but instead poses a rather
general and transdiagnostic risk factor for early psychiatric disor-
ders, which is also in line with an earlier study of our group
(Popovic et al., 2020).

Regarding the individual CT patterns, we performed a qualita-
tive comparison of the three CTQ questions which were assigned

the highest weights. We identified the subdomains EN and EA
playing the most important role across all groups. On the single
item level, especially items that reflect the family climate showed
the highest predictive power. These results are in line with a recent
structure equation model analysis of Salokangas et al. (2019),
which indicated that subdomains EN and PA had the strongest
association with depression and psychosis. Furthermore, in our
analysis, EN and EA were most predictive in CHR patients,
while PN was additionally predictive in psychosis. In contrast,
an earlier work by Trauelsen et al. (2015) showed beside EA
and EN, PA to be significantly associated with psychotic disor-
ders. Other works revealed specific associations between SA and
psychosis (Bentall, Wickham, Shevlin, & Varese, 2012) and hallu-
cinations (Upthegrove et al., 2015). Interestingly, in ROD patients,
besides EA, SA and PA were particularly predictive for a later
depressive illness. In line with these observations, a meta-analysis
of Lindert et al. (2014) pointed out that especially SA and PA are
strongly associated with later depression and anxiety disorders.
Although this meta-analysis identified SA and PA as the most
important risk factors of depression and anxiety disorder, which
are also common in CHR patients (Albert, Tomassi, Maina, &
Tosato, 2018), we found EN and EA to play the most important
role across all groups. One reason for this discrepancy might be
the lower frequency of SA and PA compared to other CT domains
in our sample that might have led to an underestimation of their
role in our cohort. Thus, our results provide more comprehensive
evidence for a differentiated neurobiological imprint of the CT in
different psychiatric disorders, while at the same time highlighting
emotional trauma as particularly relevant to a person’s clinical
phenotype.

Furthermore, we found evidence that the participants’
CTQ-based DS was significantly associated with the current
severity of depressive symptoms but not with psychotic symptoms
(positive, negative, and general) in the ROD, ROP, and CHR
groups. Moreover, pre-psychotic symptoms measured by the
SIPS were not correlated with the DS in the CHR group but a
weak relationship was detected between the CTQ-based DS and
the PANSS total and negative domain scores. These results
support the hypothesis that CT constitutes a dimension of vulner-
ability that is dependent on the current depressive state of the
patients. This observation is in keeping with previous work of
our group showing that an emotional trauma signature was sig-
nificantly correlated with higher depression scores, lower levels
of functioning, decreased quality of life, and maladaptive person-
ality traits (Popovic et al., 2020). In the past, depressiveness has
also been shown to be a mediating factor in the effect of CT on
alcohol consumption (Salokangas, From, Luutonen, Salokangas,
& Hietala, 2018) and suicidal thoughts (Salokangas et al., 2019).

No associations were found between the CTQ-based DS and
brain structure. It can be assumed that the changes at the single
item level of the CTQ are too subtle for individual prediction of
disease. In a recent publication from our group, we performed a
data-driven analysis of brain structure and phenotypic data
including CT exposure and found three latent signatures specific-
ally associated with CT. In this previous paper, and latent repre-
sentations of brain–phenotype associations, SA was associated
with aberrant volumes in the prefrontal cortex, the hippocampus,
and occipital lobe. EA and EN were associated with volumetric
alterations in the occipital lobe and postcentral regions associated
with sensory processing. No associations between specific diag-
nostic groups and CT exposure were found, which is in line
with the absence of diagnosis-specific associations between CT

Table 3. CTQ-class probabilities associations with psychopathology

rs p

All groups

GAF symptoms 0.388 <0.001a

GAF disability/impairment 0.412 <0.001a

CHR

SIPS-P −0.103 0.259

SIPS-N −0.116 0.206

SIPS-D −0.014 0.882

SIPS-G 0.026 0.777

BDI-II −0.175 0.028b

PANSS total −0.191 0.038b

PANSS positive −0.127 0.168

PANSS negative −0.196 0.033b

PANSS general −0.126 0.174

ROD

SIPS positive 0.018 0.839

SIPS negative 0.010 0.908

SIPS disorganizing −0.124 0.166

SIPS general −0.106 0.236

BDI-II −0.278 0.001a

PANSS total −0.017 0.854

PANSS positive −0.120 0.182

PANSS negative −0.025 0.782

PANSS general −0.008 0.928

ROP

SIPS positive −0.042 0.638

SIPS negative −0.230 0.10

SIPS disorganizing −0.139 0.125

SIPS general −0.050 0.581

BDI-II −0.246 0.003a

PANSS-T −0.107 0.117

PANSS-P −0.097 0.141

PANSS-N −0.115 0.100

PANSS-G −0.083 0.177

CHR, clinical high-risk state; ROD, recent onset depression; ROP, recent onset psychosis;
PANSS, Positive and Negative Syndrom Scale; BDI-II, Beck Depression Inventory II; SIPS,
Structured Interview for Prodromal Symptoms; GAF, Global Assessment of Functioning; rs,
Spearman’s correlation coefficient.
aSignificant at the level of <0.01.
bSignificant at the level of 0.05.
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and early mental health diseases, and in keeping with the current
analysis (Popovic et al., 2020). In another previous mediation ana-
lysis of our group, PA was shown to be associated in particular
with reduced volumes of the gray and white matter of the frontal
lobe and amygdala-hippocampal complex in ROD and CHR
patients (Salokangas et al., 2021). In addition, it was shown that
the effect of PA on social anxiety in CHR patients was mediated
by a reduced volume of gray matter in the frontal lobe. Since this
was methodologically a mediation analysis and not a machine
learning approach, these results should not be regarded as
contradictory.

Limitations

Limitations of our study include the observational, retrospective,
and cross-sectional character of the study. As with most CT
assessments, the CTQ assesses trauma retrospectively, thus, run-
ning the risk of a ‘recall bias’ depending on the individual’s cur-
rent mental health situation, including the influence of depression
severity (Colman et al., 2016). Another possible limitation is the
non-assessment of factors such as the age at onset, the frequency,
and the extent of the suffering associated with exposure to CT. It
must be critically taken into account that despite diverse adverse
experiences, many victims of CT show no or only minor long-
term psychological impairment, suggesting that resilience factors
appear to be important mediating variables as well (Lee, Yu, &
Kim, 2020). Therefore, in the future, suitable methods and longi-
tudinal population data utilizing methods such as structure equa-
tion models could be used to investigate the exact relationship
between CT and functional or school outcome, against the back-
ground of the above-mentioned mediating variables.

Conclusions

In summary, our work has demonstrated that CT constitutes a
discriminative transdiagnostic fingerprint of at-risk mental states
and early-stage mental disorders. Focusing on the most predictive
items of our analyses, we were able to show that a violence-free,
supportive family environment as well as protection are import-
ant aspects for good mental health in later life. Our findings sup-
port the conclusions of a paper by Hudziak (2009) who called for
a routine evaluation of CT history in persons presenting to mental
health services in order to identify those who may need more
intensive support and additional treatment. In line with that,
Marshall, Shannon, Meenagh, Mc Corry, and Mulholland
(2018) emphasized the importance of special preventive measures,
such as therapeutic intervention aimed at sufferers of past abuse,
neglect, and poor parenting to prevent ‘trans-generational pat-
terns’ continuing with their own children. In the future, further
analyses of the longitudinally administered PRONIA sample
should investigate whether there are differences in the course of
the diseases related to CT experiences. Furthermore, suitable
methods, such as structural equation models, should be used to
highlight the exact relationship between CT and mental illness
against the background of mediating variables and resilience
factors.

Supplementary material. The supplementary material for this article can
be found at https://doi.org/10.1017/S0033291721002439.
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Supplement Table 1: Study inclusion / exclusion criteria of the study. 

 

Group Inclusion Criteria Group Exclusion Criteria General Inclusion / Exclusion / 
Drop-out 

Clinical High-Risk Group (CHR) Inclusion Criteria: 
1. Age 15 to 40 years 
2. Language skills sufficient for 

participation 
3. Able to provide to consent / 

assent 

Exclusion Criteria: 
1. IQ below 70  
2. Hearing is not sufficient for 

neuro-cognitive testing 
3. Current or past head 

trauma with loss of 
consciousness (> 5 min) 

4. Current or past known 
neurological disorder of the 
brain 

5. Current or past known 
somatic disorder potentially 
affecting the structure or 
functioning of the brain 

6. Current or past alcohol 
dependence 

7. Current poly-substance 
dependence or within the 
past six months (Note: any 
combination with E.6. led to 
exclusion) 

8. Any contra-indication for 
MRI 

Exclusion criteria for healthy 
controls: 
1. Any current or past DSM-IV 

axis disorder  
2. A positive familial history 

(1st degree relatives) for 
affective or non-affective 
psychoses or major affective 
disorders; and  

3. An intake of psychotropic 
medications or drugs more 
than 5 times/year and in the 
month before study 
inclusion. 

Drop-out criteria: 
1. No follow-up examination 

after the 6-months follow-
up examination (IV6) 

2. Withdrawn consent / assent 

Psychosis-risk syndrome defined:  

EITHER by Attenuated Positive Symptoms (APS), as measured 
by the SIPS (requires 1 of 5 attenuated psychotic symptoms: 
unusual thought content/ delusional ideas, suspicious-
ness/persecutory ideas, grandiosity, perceptual 
abnormalities/hallucinations, and disorganized 
communication) with a moderate to severe, but not 
psychotic, severity (SIPS score 3-5) that (1) began with-in the 
past year or was rated one or more scale points higher 
compared to 12 month ago, AND (2) occurred at an average 
frequency of at least once per week for at least several 
minutes per event in the past month 

1. Any intake of antipsychotic 
medication for more than 30 
cumulative days at or above the 
minimum dosage threshold 
defined by the DGPPN S3 
Guidelines for the treatment of 
first-episode psychosis1 

2. Any intake of antipsychotic 
drugs within the past 3 months 
before psychopathological 
baseline assessments at or 
above the minimum dosage 
threshold. 

3. Occurrence of the CHR 
syndrome is better explained by 
other DSM-IV disorder 

OR: by Brief Intermittent Psychotic Symptoms (BLIPS), as 
measured by the SIPS (as defined by one of the symptoms 
listed above (1) reaching a psychotic level of intensity in each 
of the past 3 months for at least several minutes per day, OR 
(2) reaching a psychotic level of intensity in the past month, 
occurring at an average frequency of at least once per week 
for at least several minutes per event in the past month, or 
occurring at least for a cumulative period of more than one 
hour within the past month, AND (1+2) remitting 
spontaneously within one week (i.e. without antipsychotic 
medication) 

OR: by a Genetic Risk and Functional Decline Psychosis-Risk 
Syndrome (GRFD) defined by a current 30% or greater 
reduction in the functional disability score of  the split version 
of the Global Assessment of Functioning Scale (GAF-F) 
compared with the highest lifetime level of functioning, AND 
(having a first-degree relative with a history of any psychotic 
disorder, OR having a DSM-IV-TR schizotypal personality 
disorder).  

OR: by a Cognitive Disturbance Syndrome (COGDIS) as 
measured by the SPI-A (requires at least 2 of 9 cognitive basic 
symptoms with at least weekly occurrence (score ≥3) during 
the last 3 months) 

 

Recent-Onset Depression (ROD) 

Recent-onset Depression as defined by DSM-IV-TR + ALL of 
the following criteria:  
1. First life-time depressive episode,  
2. Duration of current depressive episode no longer than 24 

months,  
3. Diagnostic criteria fulfilled within past three months  

1. Occurrence of the major 
depressive episode is better 
explained by other DSM-IV 
disorder 

2. See CHR exclusion criteria 

Recent-Onset Psychosis (ROP) 

Recent-onset Psychosis as defined by DSM-IV-TR (affective 
and non-affective) + ALL of the following criteria:  
1. First life-time psychotic episode,  
2. Duration of current psychotic episode no longer than 

24 months,  
3. Diagnostic criteria fulfilled within past three months 

1. Occurrence of the psychotic 
episode is better explained by 
other DSM-IV disorder 

2. Antipsychotic medication for 
more than 90 days at or above 
the minimum dosage defined 
by the DGPPN S3 Guidelines for 
the treatment of first-episode 
psychosis1 

1 Deutsche Gesellschaft für Psychiatrie und Psychotherapie, Psychosomatik und Nervenheilkunde. DGPPN S3 Treatment 

Guideline Schizophrenia / Psychotic Disorders. AWMF 2006.  
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Supplement Table 2: MR scanner systems and structural MRI sequence parameters used at the 

respective PRONIA sites 

 

PRONIA 

Site 

Model Field 

strength 

[3T] 

Coil 

channels 

Flip 

angle 

[deg] 

TR [ms] TE [ms] Voxel 

size 

[mm] 

FOV Slice 

number 

 Munich Philips 

Ingenia 

3 32 8 9.5 5.5 0.97x0.9

7x1.0 

250 x 

250 

190 

 Milan 

Niguarda 

Philips 

Achieva 

Intera 

1.5 8 12 Shortest 

(8.1) 

Shortest 

(3.7) 

0.93x0.9

3x1.0 

240 x 

240 

170 

Basel 

 

Siemens 

Verio 

3 12 8 2000 3.4 1.0x1.0x

1.0 

256 x 

256 

176 

Cologne 

 

Philips 

Achieva 

3 8 8 9.5 5.5 0.97x0.9

7x1.0 

250 x 

250 

190 

Birmingh

am 

Philips 

Achieva 

3 32 8 8.4 3.8 1.0x1.0x

1.0 

288 x 

288 

175 

Turku Philips 

Ingenuity 

3 32 7 8.1 3.7 1.0x1.0x

1.0 

256 x 

256 

176 

Udine Philips 

Achieva 

3 8 12 Shortest 

(8.1) 

Shortest 

(3.7) 

0.93x0.9

3x1.0 

240 x 

240 

170 
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Supplement Table 3: Comparison of CTQ subscales across groups 
 

CTQ Subscale   
Average 

difference 
Standard error p 

Emotional Abuse  

 

HC 

CHR -3.60* 0.41 <.001 

ROD -2.6* 0.4 <.001 

ROP -3.06* 0.4 <.001 

CHR 

HC 3.60* 0.41 <.001 

ROD 0.99 0.47 0.15 

ROP 0.53 0.47 0.67 

ROD 

HC 2.6* 0.4 <.001 

CHR -0.99 0.47 0.15 

ROP -0.46 0.46 0.76 

ROP 

HC 3.06* 0.4 <.001 

CHR -0.53 0.47 0.67 

ROD 0.46 0.46 0.76 

Physical Abuse  

 

HC 

CHR -1.17* 0.27 <.001 

ROD -1.05* 0.27 <.001 

ROP -1.17* 0.27 <.001 

CHR 

HC 1.17* 0.27 <.001 

ROD 0.11 0.31 0.98 

ROP -0.004 0.31 1.00 

ROD 

HC 1.05* 0.27 <.001 

CHR -0.11 0.31 0.98 

ROP -0.12 0.31 0.98 

ROP 

HC 1.17* 0.27 <.001 

CHR 0.004 0.31 1.00 

ROD 0.12 0.31 0.98 

Sexual Abuse  

 

HC 

CHR -0.77* 0.26 0.02 

ROD -0.69* 0.26 0.04 

ROP -1.09* 0.26 <.001 

CHR 

HC 0.77* 0.26 0.02 

ROD 0.08 0.3 0.99 

ROP -0.32 0.3 0.72 

ROD 

HC 0.69* 0.26 0.04 

CHR -0.08 0.3 0.99 

ROP -0.4 0.3 0.53 

ROP 

HC 1.09* 0.26 <.001 

CHR 0.32 0.3 0.72 

ROD 0.4 0.3 0.53 

Emotional Neglect  

 

HC 

CHR -3.85* 0.45 <.001 

ROD -3.31* 0.44 <.001 

ROP -3.47* 0.44 <.001 

CHR 

HC 3.85* 0.45 <.001 

ROD 0.54 0.52 0.73 

ROP 0.39 0.52 0.88 

ROD 

HC 3.31* 0.44 <.001 

CHR -0.54 0.52 0.73 

ROP -0.15 0.51 0.99 

ROP 

HC 3.47* 0.44 <.001 

CHR -0.38 0.52 0.88 

ROD 0.15 0.51 0.99 
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Physical Neglect  

 

HC 

CHR -1.48* 0.26 <.001 

ROD -1.21* 0.25 <.001 

ROP -1.92* 0.25 <.001 

CHR 

HC 1.48* 0.26 <.001 

ROD 0.27 0.29 0.79 

ROP -0.43 0.29 0.45 

ROD 

HC 1.21* 0.25 <.001 

CHR -0.27 0.29 0.79 

ROP -0.71 0.29 0.07 

ROP 

HC 1.92* 0.25 <.001 

CHR 0.43 0.29 0.45 

ROD 0.71 0.29 0.07 

 
Abbreviations: HC, Healthy Controlls; CHR, Clinical High-Risk state; ROD, Recent Onset Depression; ROP, Recent Onset 
Psychosis; CTQ, childhood trauma questionnaire 
*Significant at the level of 0.05 
 

 



Supplement Table 4: Mean values of medication dose equivalents taken cumulatively over 
lifetime (mg/d) 
 

  CHLORPROMAZINE OLANZAPINE SSRI BENZODIAZEPINE 

ALL GROUPS M 1919.98 68.16 1617.69 121.52 

N 623 623 623 623 

SD 8906.37 307.86 6417.95 651.69 

HC M 0 0 0 16.10 

N 250 250 250 250 

SD 0 0 0 232.24 

ROD M 504.47 19.05 2630.83 142.59 

N 129 129 129 129 

SD 2033.96 78.42 6682.12 556.91 

CHR M 1025.06 42.04 3864.95 123.49 

N 119 119 119 119 

SD 5463.24 235.20 8371.53 649.41 

ROP M 8072.71 280.02 1668.10 308.74 

N 125 125 125 125 

SD 17798.21 598.88 9090.62 1114.60 

 
M, mean; SD, standard deviation; HC, Healthy Controlls; CHR, Clinical High-Risk state; ROD, Recent Onset Depression; ROP, 
Recent Onset Psychosis; Chlorpromazine; Chlorpromazine equivalent, Olanzapine; Olanzapine equivalent, SSRI; SSRI 
equivalent, Benzodiazepine; Benzodiazepine (Diazepam) equivalent  
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Supplement Table S5: CTQ-class probabilities associations with age 

 
 rs p 

All groups -.018 .648 

HC .029 .640 

CHR -.157 0.83 

ROD -0.034 .703 

ROP -.002 .986 

CHR, Clinical High-Risk state; ROD, Recent Onset Depression; ROP, Recent Onset Psychosis; rs, Spearmans Correlation 
Coefficient 
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Supplement Table S6: CTQ-class probabilities associations with medication dose equivalents 

taken cumulatively over lifetime 

 
 rs p 

All groups 

Chlorpromazine -.213 <0.001 

Olanzapine -.213 <0.001 

SSRI -.193 <0.001 

Benzodiazepine -.128 0.001 

HC 

Chlorpromazine n.a. n.a. 

Olanzapine n.a. n.a. 

SSRI n.a. n.a. 

Benzodiazepine .141 0.013 

CHR 

Chlorpromazine -0.045 0.314 

Olanzapine -0.043 0.319 

SSRI 0.015 0.437 

Benzodiazepine -0.038 0.341 

ROD 

Chlorpromazine 0.058 0.255 

Olanzapine 0.059 0.254 

SSRI 0.047 0.298 

Benzodiazepine 0.058 0.258 

ROP 

Chlorpromazine -0.002 .491 

Olanzapine -0.006 .472 

SSRI 0.004 .481 

Benzodiazepine 0.029 .374 

CHR, Clinical High-Risk state; ROD, Recent Onset Depression; ROP, Recent Onset Psychosis; rs, Spearmans Correlation 
Coefficient, Chlorpromazine; Chlorpromazine equivalent, Olanzapine; Olanzapine equivalent, SSRI; SSRI equivalent, 
Benzodiazepine; Benzodiazepine (Diazepam) equivalent 
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Supplement Method: Nested leave-site-out cross-validation 

On the outer LOSOCV cycle (CV2), the entire population was split into the seven sites. Each of these 

samples was iteratively held back as validation data, while the six remaining samples entered the inner 

CV loop. Hence, this outer CV loop provided a robust and unbiased estimate of the classification 

generalizability because all validation samples were strictly separated from the entire training process 

taking place at the inner loop (CV1). A 10-fold CV with 10 repetitions was used at this inner loop, to 

generate classifier ensembles and the outer loop was repeated 5 times to further increase robustness 

of the generalizability assessments. 

Specifically, in each of these training partitions, the CTQ-items were scaled feature-wise to a range of 

[0, 1]. Because of missing values (3.8% missing), we used a nearest neighbor-based imputation 

approach employing the Hamming distance1 suitable for ordinal data. Then, the scaled and imputed 

data matrix was z-normalized to the training sample’s means and standard deviations before it entered 

sequential backward elimination (SBE) algorithm that employed L2-regularized logistic regression (L2-

LR)2 as provided by the LIBLINEAR library2 in NeuroMiner. The SBE algorithm iteratively removed CTQ 

items from the item pool that decreased average model performance in the CV1 training and CV1 test 

data. An early stopping criterion at 50% of the variables remaining in the pool was introduced to avoid 

an overfitting of the algorithm. To further increase feature extraction stability, a probabilistic feature 

extraction step identified those CTQ items that were selected by at least 90% of the CV1 models in the 

given CV2 training partition. CTQ items not meeting this criterion were pruned from the feature pool 

and models were retrained with the remaining features using the entire CV1 data partition.  

To predict the group membership of unknown individuals in the CV2 validation partitions, the scaling, 

imputation and z-normalization models developed in the training sample were first applied to these 

cases, followed by the computation of class membership probabilities by means of the trained L2-LR 

models. The class membership predictions produced by these CV1 models for the unseen validation 

cases in each held-back site were bagged into an classification ensemble by means of averaging and 

majority voting3. Thus, an average CTQ-based class probability / decision score (DS) was calculated 

for each individual, predicting its out-of-training (OOT) group membership. 
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