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A B S T R A C T   

Many animal species show comparable abilities to detect basic rhythms and produce rhythmic behavior. Yet, the 
capacities to process complex rhythms and synchronize rhythmic behavior appear to be species-specific: vocal 
learning animals can, but some primates might not. This discrepancy is of high interest as there is a putative link 
between rhythm processing and the development of sophisticated sensorimotor behavior in humans. Do our 
closest ancestors show comparable endogenous dispositions to sample the acoustic environment in the absence of 
task instructions and training? We recorded EEG from macaque monkeys and humans while they passively 
listened to isochronous equitone sequences. Individual- and trial-level analyses showed that macaque monkeys’ 
and humans’ delta-band neural oscillations encoded and tracked the timing of auditory events. Further, mu- 
(8–15 Hz) and beta-band (12–20 Hz) oscillations revealed the superimposition of varied accentuation patterns on 
a subset of trials. These observations suggest convergence in the encoding and dynamic attending of temporal 
regularities in the acoustic environment, bridging a gap in the phylogenesis of rhythm cognition.   

1. Introduction 

“The perception, if not the enjoyment, of musical cadences and of 
rhythm is probably common to all animals and no doubt depends on 
the common physiological nature of their nervous system” – Charles 
Darwin. 

Research in non-human animal species is considered a test case for 
unravelling the evolutionary origin(s) of human rhythm cognition 
(Honing, 2018; Kotz et al., 2018; Ravignani et al., 2019; Patel, 2014). 
Here, we conceptualize ‘rhythm’ as any pattern of events re-occurring 
over time. The temporal regularity of an acoustic event sequence (from 
isochronous tones to music) and complex behavior (e.g., walking and 
speaking) can, thus, be seen as a form of rhythm. 

What makes us capable of detecting temporal regularities in the 
environment? And in turn, what allows us to produce rhythmic behaviors 
and synchronize our movements to an external rhythm? Detection re
quires the encoding of a rhythm, i.e., the neurophysiological processing 

of temporal regularity. In turn, this allows producing and synchronizing 
with external rhythms. However, are the capacities to detect, produce, 
and synchronize rhythms (from now on, ‘DPS’) innate and shared across 
species? 

Comparative studies have shown that DPS is found in vocal learning 
animals (e.g., parrots; (Patel et al., 2009)), but only partially in others 
(Schachner et al., 2009). Macaque monkeys performed similarly to 
humans in tapping tasks (Zarco et al., 2009), showed sensitivity to 
temporal (ir-)regularities in auditory sequences (Selezneva et al., 2013), 
and chimpanzees spontaneously aligned their tapping to task-irrelevant 
auditory rhythms (Hattori et al., 2013). However, the macaque monkey 
seems unable to detect and synchronize with salient periodicities from 
complex rhythms such as human-made (musical) stimuli (Honing et al., 
2012, 2018). Such results partially supported the notion that many 
species share a basic capacity for detecting temporal regularities, but 
some cognitive processes underlying DPS might be species-specific 
(Patel, 2008, 2006; Fitch, 2013), and further dependent upon neuro
anatomical differences (Merchant and Honing, 2014; Patel and Iversen, 
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2014). 
However, other studies have shown that the capacity to process and 

synchronize behavior with rhythms also depends on voluntary control, 
cognitive state, attention, and motivation, beyond the actual capacity to 
control behavior (Wilson and Cook, 2016). When exposed to music, 
children do not automatically synchronize with the musical beat, but do 
so in a social context (in presence of adults; (Kirschner and Tomasello, 
2009)). Similarly, macaque monkeys spontaneously synchronize 
behavioral displays (Nagasaka et al., 2012), and bonobos tend to 
spontaneously synchronize rhythmic behavior with a human experi
menter (Large and Gray, 2015). 

Thus, a more fundamental question in comparative rhythm cognition 
is: do nonhuman animals have the neurophysiological predisposition to 
encode temporal regularities in the environment? Once we have 
addressed this question we can probe their ability for rhythmic displays, 
which, in isolation, do not necessarily inform about their sensory ca
pacities to process temporal regularities (Wilson and Cook, 2016). 

Accumulating evidence shows that premotor cortex cells in macaque 
monkeys resemble a ‘neural chronometer’ encoding time intervals 
(Merchant et al., 2011, 2013a) with a dynamic time-varying represen
tation (Crowe et al., 2014). These cells predict regularly timed stimuli 
(Bartolo and Merchant, 2015) and allow predictive tapping to tempo 
changes (Gámez et al., 2018). Macaque monkeys’ neural activity in
dicates the encoding and synchronization with temporal regularities in 
the sensory environment (Lakatos et al., 2008) and dynamic attending 
(Large and Jones, 1999) to sensory streams, similarly to humans (for 
overviews: Obleser and Kayser, 2019; Schroeder and Lakatos, 2009). 

In the auditory as well as in other sensory domains, fluctuations of 
neural activity instantiate a ‘rhythmic mode’ of sensing (Lakatos et al., 
2013) and attending (Large and Jones, 1999) the environment that can 
bias subjective perception (Iemi and Busch, 2018; Zoefel and VanRullen, 
2017). Thus, the alternation of high- and low-salience may influence 
how we perceive sensory input and further shape behavioral perfor
mance (e.g., perceptual tasks). For instance, humans show a disposition 
to perceive subjective accentuations (the tic-toc illusion) when listening to 
isochronous equitone sequences (Brochard et al., 2003). Even though all 
tones are physically identical, the human brain tends to accentuate two 
or three equidistant tones according to a binary (on-/off-beat; or 
strong-weak (S-w)) or ternary (S-w-w) pattern (Brochard et al., 2003; 
Abecasis et al., 2005; Schmidt-Kassow et al., 2011; Poudrier, 2020; 
Baath, 2015). As the phenomenon emerges during passive listening, the 
superimposition of accentuations may represent a spontaneous tendency 
to sample (or attend) the acoustic environment beyond the encoding of 
single event onsets or time-intervals. As such, subjective accentuation 
may represent an unbiased marker of endogenous rhythm processing in 
a quasi-naturalistic context as it does not depend on training nor task 
demands. 

Human event-related potentials (ERPs) mirror these subjective 
accentuation patterns, showing amplitude differences for tones in S-w 
positions (Brochard et al., 2003; Abecasis et al., 2005). Neural oscilla
tions in the alpha- and beta-band (8–20 Hz) not only coincide with but 
precede the onset of expected tones (Fujioka et al., 2012; Arnal, 2012; 
Fujioka et al., 2009; Snyder and Large, 2005), and their amplitude can 
be modulated by trial-level accentuation patterns (Criscuolo et al., 
2023). These oscillatory brain dynamics likely reflect the active gener
ation of temporal predictions, whereby the first element in a series of 
two or three might be more salient (S) than others (w). 

Does our closest ancestor show a comparable endogenous disposition 
to sample the acoustic environment in the absence of task instructions 
and/or training? 

In the current study, we recorded EEG in two macaque monkeys who 
passively listened to isochronous equitone sequences. Similar to a recent 
study with human participants (Criscuolo et al., 2023), we investigated 
the monkey’s endogenous tendencies to (i) internalize the timing of 
external sound events, (ii) track tone onsets, and (iii) parse equitonal 
sequences with superimposed binary accentuation . Lastly, we directly 

compared human and macaque monkey EEG to (iv) test for (dis-)simi
larities in basic rhythm processing. 

The current findings suggest that macaque monkeys have an 
adequate neural outfit to go beyond simple isochrony processing. The 
unexplored parallels between macaque monkeys and humans bridge a 
critical gap in the phylogenesis of rhythm cognition, potentially lending 
support to Darwin’s notion of a shared neurophysiological predisposi
tion for rhythm processing in non-human primates. 

2. Materials and methods 

2.1. Experimental procedure 

We tested two macaque monkeys. Monkey 1 (M1) is a 12-year-old 
male, Monkey 2 (M2) a 9-year-old female. Both monkeys had normal 
hearing and were previously trained in spatial and temporal categori
zation tasks (M1) (Mendoza et al., 2018) and a synchronization tapping 
task (M2) (Gámez et al., 2019). Both monkeys were awake (i.e., were not 
sedated) while EEG was recorded, sitting in a quiet room [3 (l) × 2 (d) ×
2.5 (h) m] with dimmed lighting and two loudspeakers placed at a ~50 
cm from their ears. The animals were seated comfortably in a monkey 
chair, where they could freely move their head, hands, and feet. No head 
fixation was used and the EEG electrodes were attached to the monkey’s 
scalp using tape (see EEG data acquisition below). To ease the fixation of 
the electrodes, the monkey’s hair on the scalp and reference ear was 
shaved. Detailed information about human participants, EEG data 
collection, and analysis procedures can be found elsewhere (Criscuolo 
et al., 2023). Briefly, we randomly selected 4 human participants from a 
dataset of 20 individuals (21–29 years of age, mean age 26.2 years). EEG 
was recorded from 59 Ag/AgCl scalp electrodes (Electrocap Interna
tional), amplified using a PORTI-32/MREFA amplifier (DC to 135 Hz), 
and digitized at 500 Hz. 

2.2. Ethics statement 

Animal care and experimental procedures were approved by the 
National University of Mexico Institutional Animal Care and Use Com
mittee and conformed to the principles outlined in the Guide for Care 
and Use of Laboratory Animals (NIH, publication number 85–23, revised 
1985). The Mexican standards on research ethical protocols with non- 
human primates (NHP) are in the ‘NORMA Oficial Mexicana NOM- 
062-ZOO-1999’, and are in line with regulations from 13 other countries 
(Hartig et al., 2023). 

2.3. Audiogram 

The animal’s hearing capacity was recorded with a scalp-recorded 
audiogram in partially sedated states. Sedation was induced and main
tained with Ketamine (Aranada, Mexico). 

2.3.1. Stimuli materials 
For the audiogram, click sounds were produced trough TTL pulses 

generated with a TDT-RZ6 signal processor (Tucker-Davis Technologies, 
system 3, Florida, USA) at a digitization rate of 97656.24 Hz. Clicks 
lasted 0.5 ms and were delivered at a rate of 15.1 Hz, in random po
larities and sound intensities (from 20 to 90, steps of 10 dB SPL). Twenty 
blocks of 4000 stimuli were presented in a single recording session to 
collect 1000 repetitions per click intensity. Clicks were binaurally 
delivered through open-field speakers (KRK 5-G3, USA) located 85 cm 
from the animal’s ears. Sound intensity was calibrated using a free-field 
condenser microphone (426B03), a sensor signal conditioner (480C02, 
PCB Piezotronics, NY USA), and the TDT RPvdsEx circuits. 

2.3.2. EEG recording 
For the audiogram, continuous EEG was recorded from three Grass 

gold-plated electrodes (Natus Neurology, #FS-E5GH-60; Fig. 1) located 
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at Fz, Cz, and Pz according to the 10/20 system. A reference electrode 
was located on the right earlobe, while the ground electrode was located 
on the central forehead. Scalps were shaved and cleaned with a mild 
abrasive gel (Nuprep, Weaver and Company, USA) before the recording 
session to reduce scalp impedances. The signal was amplified by means 
of a medusa preamplifier (RA16PA, TDT systems) and digitized at 
24414.06 Hz with an on-line filter from 3 Hz to 6000 Hz. Additionally, a 
notch filter at 60 Hz was applied to remove the line frequency. 

2.3.3. Signal processing 
Channel Cz was selected for the analyses of the audiogram based on 

the known higher signal-to-noise ratio of the vertex signal. The signal 
was further band-pass filtered (150–3000 Hz, Butterworth 4th-order 
filter) and epoched relative to stimulus onset (− 10 to 66 ms). EEG 
epochs were sorted into positive and negative polarity click pre
sentations and sub-averages were computed for each polarity condition. 
An added polarity grand average was obtained and used for further 
analysis to avoid any transduction stimulus artifact and to minimize the 
cochlear and microphonic potentials. ABR waves of similar latency as 
those reported in anesthetized or sedated animals (Laughlin et al., 1999) 
were observed (Suppl. Fig. 1). A significant evoked response (2-tailed 
t-test, 10 ms window size) was observed at 60- and 50-dB SPL for 
monkey 1 and 2, respectively. A previous study in fuscata macaques 
reported that at a level of 60 dB SPL level, the monkeys were able to hear 
tones in a 28 Hz to 37 kHz range (Jackson et al., 1999), frequencies that 
are elicited by the click broad-band stimulus. Three ABR components 
were clearly identified at 90 dB SPL in both monkeys. These components 
with positive peaks had latencies of ≈ 3, 4.6, and 8 ms. The shape and 
latency of the first two waves agrees with previous reports (Suppl. Fig. 1, 
(Lasky et al., 1995)). The likely neural generators of the observed waves 
are the cochlear nucleus, lateral lemniscus, and inferior colliculus (Lasky 
et al., 1995; Uno et al., 1993, 1991). The observed peak amplitudes 
(≈3–14 µV) were larger than those reported in awake head-fixed 
Macaca fuscata (Uno et al., 1993) (tenths of µV) using similar level 
and rate parameters but close-field and monaural stimulation. Although 
it is known that anaesthesia or sedation might considerably diminish or 
even abolish evoked responses (Uno et al., 1993), the audiogram 
ensured that both monkeys could perceive the tones employed in the 
experimental paradigm as both standard (STD) tones and 
amplitude-deviant (DEV) tones were above the individual hearing 
threshold in both monkeys. 

2.4. Experimental paradigm 

Monkeys listened to 13-tone (440 Hz, 85 dB, 50 ms duration) 
isochronous equitone sequences (Fig. 1, right). On < 5% of the trials, 
amplitude-deviant tones (DEV; 66 dB) could fall on the 8–9–10–11th 
position (Fig. 1, bottom row). The inter-stimulus-interval between tones 
was fixed at 0.6 s, corresponding to a constant stimulus rate of 

(1.6667 Hz). The entire trial sequence lasted 7.8 s and was followed by a 
random inter-trial silent period between 3.5 and 5.5 s. Critically, no 
accentuation pattern (strong-weak sounds) was imposed on the auditory 
sequence. M1 underwent 21 recording sessions and M2 25 sessions 
during which both animals listened to 100 13-tone sequences each. Out 
of 1300 total events, 1240 were STD tones (>95%) and 60 were DEV 
(4,6%). The stimulus materials in use were nearly identical for humans 
and monkeys (Criscuolo et al., 2023). 

2.4.1. EEG data acquisition 
The EEG was recorded from electrodes (Grass gold-plated electrodes) 

attached to five scalp positions (Fz, Cz, Pz, F3, F4) according to the 
10–20 system (Fig. 1). Both monkeys previously underwent surgery 
procedures where the head fixation posts were implanted during aseptic 
surgery and under gas anesthesia. Importantly, the temporal maxillary 
muscles of the two monkeys were retracted during the surgery, thus 
leaving the upper skull surface free of muscular or eye-induced artifacts. 
A second surgery was performed and head holding devices were 
removed prior to data collection. All electrodes were attached to the 
scalp using Ten20 Conductive EEG paste and medical tape and were 
referenced to the right ear (fleshy part of the pinna). The electrodes were 
connected to a Tucker-Davis Technologies (TDT) head stage (#RA16LI) 
for low impedance electrodes. This head stage was connected to a TDT 
RA16PA preamplifier, which in turn was connected to a TDT RZ2 pro
cessor. RZ2 was programmed to acquire the EEG signals with a sampling 
rate of 610.35 Hz and the bandpass filters were set at 0.01–100 Hz. 

2.4.2. Data analysis 

2.4.2.1. Preprocessing. Data were pre-processed with a combination of 
custom Matlab scripts/functions and the Matlab-based FieldTrip toolbox 
(Oostenveld et al., 2011). Data were band-pass filtered with a 4th order 
Butterworth filter in the frequency range of 0.5–50 Hz (ft_preprocessing). 
Next, data segmentation was conducted separately for ‘rhythm-track
ing’, event-related potentials (ERP) and time-frequency representation 
(TFR) analyses. 

2.4.2.2. Rhythm tracking analyses. Rhythm-tracking analyses were 
time-locked to encompass the whole equitone sequence. 100 sequences 
(per experimental session) were created, starting from the third tone 
onset and including up to the 13th tone (6.6 s). Next, we computed a 
fronto-central channel cluster encompassing ‘Fz’, ‘F3’, ‘F4’, ‘Cz’. Data 
from this front-central cluster were used for Fast-Fourier transform 
(FFT) and phase-locking analyses. 

2.4.2.3. Fast-Fourier transform. Single-trial data from the fronto-central 
cluster were submitted to a FFT (“FFT data”) with an output frequency 
resolution of 0.15 Hz (1/6.6 s = 0.15 Hz). Spectral power was 

Fig. 1. Electrode positions and stimulus sequence. Electrode positions on the macaque monkey scalp (left) and the 13-tone isochronous equitone sequence (right). 
The hypothesized superimposition of binary accentuations would parse the auditory sequence in alternating "strong" (S) and "weak" (w) accents. Deviant tones (DEV) 
occurred from the 8th position onward. Accordingly, they could occur on S and w accentuated positions with equal probability. 
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calculated as the squared absolute value of the complex Fourier output. 
Data in each frequency bin were normalized by the frequency-specific 
standard deviation across trials. Lastly, we averaged the frequency- 
domain data across channels and trials. For illustration purposes, we 
restricted the Fourier spectrum to 1–7 Hz in Fig. 2 A, top for M1 and 
bottom for M2. 

2.4.2.4. Phase-locking analyses. A time-resolved phase-locking analysis 
was performed to estimate the phase relationship between neural ac
tivity at the stimulation frequency and the sequential tone onsets. 
Sequence-level data from the fronto-central cluster were bandpass- 
filtered with a 4th order Butterworth filter around the stimulation fre
quency (1.1–2.1 Hz, considering a 1.67 Hz center frequency; ft_prepro
cessing) and underwent Hilbert transform to extract the analytic signal. 
Next, we plotted the time-course of the real part of the analytic signal 
(Fig. 2B, top for M1 and bottom for M2) as a function of the onsets of STD 
tones preceding (blue) and following (red) the DEV (green; this plot is 
for illustrative purposes only). Phase-locking analyses were performed 
at sequence- and channel-levels by means of circular statistics (circular 
toolbox in Matlab (Berens, 2009)) based on the circular mean 
phase-angles estimated in the 60 ms (proportional to the stimulation 
frequency: 1/1.67 Hz/10) preceding individual tone onsets. Next, the 
sequence- and channel-levels mean vector length (MVL; (Berens, 2009)) 
were calculated for pre-DEV STD tones and the values averaged across 

channels. MVL for pre-DEV STD tones were statistically assessed against 
the MVL from a random distribution (random uniform distribution of 
phase-angles) by means of 1000 permutation tests. A p-value lower than 
.05 was considered statistically significant. In Suppl. Fig. 2, we also 
provide session-, channel-, and sequence-level ‘relative phase angles. 
These were expressed as the absolute phase difference between 
phase-angles for each tone position (e.g., three to eight) and the most 
common phase-angle in the sequence (the one with the highest proba
bility, as obtained from the histogram function in MATLAB, with ‘prob
ability’ as input). The pooling over sessions and channels is displayed in  
Figs. 2D and 3D. 

2.4.2.5. ERP and TFR data. Data were segmented into 4-s-long epochs 
symmetrically time-locked to every tone onset. Next, we employed a 
data-driven channel-by-channel and trial- and monkey-level artifact 
suppression procedure ( (Criscuolo et al., 2023); and similar to the 
method implemented in (Kaneshiro et al., 2020)). Artifact suppression 
focused on time-windows ranging from − 0.4 to 0.4 s relative to each 
stimulus onset. Amplitude values were temporarily normalized by their 
standard deviation across trials and outliers (data points per epoch and 
channel) were defined by means of a threshold criterion (values > mean 
+ 4 *SD). The identified noisy time-windows (with 50 ms symmetrical 
padding) then served to suppress (replace by NaNs) time-points in the 
non-normalized data. The missing values were replaced by means of 

Fig. 2. Rhythm tracking analyses. A: Fourier spectrum of neural activity along the entire auditory sequence. The plot displays the grand-average power in the 
frequency range from 1 to 7 Hz. B: time-course of neural activity at the stimulation frequency. Vertical dotted lines indicate the onsets of STD tones prior- (blue) and 
post-DEV (red). The DEV onset is reported in green. Blue shades represent the standard errors. Light-blue rectangles indicate the pre-stimulus intervals of STD in 
which we performed phase analyses (not scaled). C: the kernel density distribution of mean vector length (MVL) calculated at the single-session and sequence-level 
and averaged across the fronto-central cluster of interest. These MVLs are based on the raw phase-angles for pre-DEV STD tones (blue) and are statistically compared 
to the MVL for random distribution of phase-angles. Single-session statistics are reported in Suppl. Table 2. 
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cubic temporal interpolation (using the ‘pchip’ option for both the 
built-in Matlab and FieldTrip-based interpolation functions) considering 
the time-course of neighboring time-windows (extending up to 500 ms 
when possible, automatically reduced otherwise). The current approach 
is a data-driven procedure developed to minimize data loss. Rather than 
rejecting entire epochs only partly contaminated by artifacts (i.e., 
standard artifact rejection procedure), we opted for an artifact sup
pression approach that allowed keeping all trials. The 
channel-by-channel routine allowed the algorithm to flexibly adapt the 
outlier threshold estimates to the inherent noise varying over channels. 
Lastly, a standard whole-trial rejection procedure based on an amplitude 
criterion (85uV) was applied. Data selected for event-related-potential 
(ERP) analyses (“ERP data”) were segmented including 500 ms prior 
and following each tone onset (1 s in total). Data destined to 
time-frequency representation analyses (“TFR data”) were not further 
segmented at this stage. ERP data were band-pass filtered between 1 and 
30 Hz and TFR data low-pass filtered at 40 Hz. 

TFR data finally underwent time-frequency transformation by means 
of a wavelet-transform (Uno et al., 1993) with a frequency resolution of 

0.25 Hz. The number of fitted cycles ranged from 3 for the low fre
quencies (<5 Hz) to 10 for high frequencies (>5 Hz and up to 40 Hz). 
TFR data were then re-segmented, so to reduce the total length to 2 s, 
symmetrically distributed relative to tone onsets. 

2.4.2.6. Post-processing of ERP and TFR data. Single-trial ERP ampli
tudes were mean-corrected by a global average over epochs and 500 ms 
long (− 0.2 to 0.3 s relative to tone onset). Similarly, single-trial TFR 
amplitudes were normalized by computing relative percent change with 
reference to the global mean amplitude across epochs and 500 ms long. 
This approach has been used elsewhere (Fujioka et al., 2012; Abbasi and 
Gross, 2020) and was preferred over baseline correction as we were 
interested in analyzing amplitude fluctuations in the pre-stimulus in
tervals. Then, we created a fronto-central channel cluster. All following 
analyses were performed exclusively on this channel cluster. 

2.4.2.7. ERP analyses. We averaged evoked responses over trials sepa
rately for STD and DEV tones, and for odd (hypothetical “Strong” po
sition in a binary accent; S, Figs. 3,4) and even (“weak”; w) serial 

Fig. 3. ERPs and TFR data for monkey 1.  
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positions from the 3rd to the 11th tone. The first standard tones were not 
included to avoid increased responses typically observed at the begin
ning of an auditory sequence. Fig. 3 A and 4 A show the respective ERPs 
for the averaged fronto-central channel for STD tones on S-w positions 
(left), and for the comparison of STD and DEV tones averaged over S-w 
positions (right). Statistical analysis was performed by means of paired- 
sample t-tests. An FDR-adjusted p-value lower than .05 was considered 
statistically significant (Benjamini & Hochberg correction). 

2.4.2.8. TFR analyses. We averaged time–frequency representations 
over STD trials, separately for odd and even positions (hypothetical 
strong and weak positions, respectively; Figs. 3B and 4B). Next, we 
quantified mean peak amplitudes in the mu-band (8–15 Hz) in the post- 
stimulus intervals (80 ms (proportional to the center frequency: 1/ 

12 Hz) and compared them for S-w positions (Fig. 3 C and 4 C). 

2.4.2.9. Individual classification of accents. An individual modelling 
approach was developed to identify binary accents. Since other accen
tuation patterns are possible (Abecasis et al., 2005) beyond the binary 
default (Brochard et al., 2003), the model further tested for the presence 
of ternary accents. We focused on single-subject, mu-band peak ampli
tudes for STD tones in the first 8 positions of the auditory sequence in 
80 ms time-windows (proportional to the center frequency of interest; 
mu-band: 1/12 Hz = 83 ms) following the stimulus onset. 

Single-tone mu-band amplitudes were concatenated to mimic an 8- 
tone auditory sequence (i.e., a trial). Next, single-subject and trial- 
level mu-band fluctuations (8 tones) were entered into a stepwise 
regression model (Fig. 5 A; ‘stepwiselm’ in Matlab) with 3 predictors: 

Fig. 4. ERPs and TFR data for monkey 2. A: On the left, ERP responses for STD tones in S (blue) w (red) positions. On the right, ERP responses for STD (blue) and DEV 
tones. Stars indicate significant time-windows, as assessed by means of paired-sample t-tests (FDR-adjusted p < .05). B: grand-average time-frequency spectrum time- 
locked to STD tones (− 0.2 to 0.4 s). The frequency range spans 1–40 Hz with a frequency resolution of 0.25 Hz. The red rectangle highlights predominant responses 
in the mu (8–15 Hz) frequency range, on which we performed statistical comparisons. C: extracted time-course of mu-band activity in hypothetical S-w positions, 
time-locked to STD tones onsets, in blue for odd-numbered positions (Strong binary accent) and red for even-numbered positions (weak binary accent). Shaded colors 
indicate standard errors. On top, a grey rectangle delineates the time-window in which peak amplitude extraction is performed. 
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binary accents (values: 1, − 1), ternary (1, − 0.5, − 0.5), and a constant 
term (ones). The winning model was chosen based on adjusted Eta- 
squared. Trials for which the winning model involved the binary pre
dictor were labeled “binary”. Similarly, trials for which the winning 
model involved the ternary predictor were labeled “ternary”. The model 
thus allowed the combination of multiple predictors, but no interactions 
between terms. We accordingly interpreted (and labeled) the combina
tion of binary and ternary terms as “combined”. Lastly, trials in which 
grouping could not be clearly identified were labeled as “not classified”. 
Session-level model results are provided in Suppl. Table 2, designated as 
“Preferences for accents” and expressed as the percentage of trials 
relative to the full number of auditory sequences (100 per session, per 
monkey). The session-level goodness of fit of the model is provided in 
the same table. The “Preferences for accents” across sessions and mon
keys are provided in Fig. 5B. 

2.4.2.10. Binary accent analyses. To confirm that the identified “binary” 
trials indeed showed binary accentuation patterns, we performed 
further analyses. First, we concatenated trials classified as “binary” and 
computed a trial-based single-tone pair-wise amplitude difference (its 
lower-triangle 2-D mean is provided in Fig. 5 C). Namely, we calculated 
the amplitude difference between every tone (1–8 positions) along the 
auditory sequence independently for each sequence. Hence, we esti
mated the amplitude difference for the 1st and 2nd position, then to the 
third position, and so forth. Similarly, the amplitude for the 2nd position 
was compared to the 3rd, the 4th position, and so on. The result of this 
computation is a session-level pair-wise amplitude difference matrix, 
whose size is N trials x N positions-1 x N positions-1. Next, we isolated 
the pair-wise amplitude difference for tones in odd-positions (Fig. 5D; 
“odd-pos difference”) and even-positions (“even-pos difference”) and 
statistically compared them by means of 1000 permutations of odd-even 
labels. An FDR-adjusted p-value lower than .05 was considered statis
tically significant (Benjamini & Hochberg correction). These two vari
ables were then combined into a distribution of “binary similarity”. The 
binary similarity thus features the amplitude difference for tones in odd- 
numbered positions (1–3–5–7th) and the amplitude difference for tones 
in even-numbered positions (2–4–6–8th). In contrast, the binary 
dissimilarity was created by extracting the mean difference of tones in 
odd versus even positions (Fig. 5D). Finally, the binary similarity was 
statistically compared to the binary dissimilarity. Statistical testing was 
performed by means of 1000 permutations of odd-even labels, and an 
FDR-adjusted p-value lower than .05 was considered statistically sig
nificant (Benjamini & Hochberg correction). 

2.4.2.11. Comparative analyses. In a prior study (Criscuolo et al., 2023) 
we investigated rhythm processing capacities in humans, using a com
parable experimental paradigm and analyses. Human participants only 
took part in two experimental sessions, hence we only focused on the 
first two experimental sessions of the monkeys for comparative data 
analyses (see (Criscuolo et al., 2023) for further details regarding the 
analysis procedure adopted for the human dataset). 

From the human sample, we randomly selected 4 participants 
(gender-balanced, as for the monkeys). In monkeys as well as in humans, 
we extracted the ‘individual preferences for accents’ as calculated in the 
accent modelling. Next, we isolated ‘binary’ trials, performed ‘binary 
similarity’ and ‘binary dissimilarity’ analyses as described in the ‘Binary 

accent analyses’ section. Lastly, we inspected the time-course of neural 
activity time-locked to STD tones and compared it across monkeys and 
humans (Fig. 6). 

2.4.2.12. Ternary accent analyses. Exploratory analyses zoomed in 
ternary trials. While the ‘binary trials’ could only show two accentuation 
patterns (S-w or w-S), ternary trials can show at least three different 
accentuation patterns, i.e., the accent can either fall on the first (S-w-w), 
second (w-S-w), or the third position (w-w-S). To disentangle these three 
accentuation patterns from the distribution of “Ternary trials” identified 
during the “Individual classification of accents”, we ran a second step
wise regression model. This model featured three predictors corre
sponding to the respective accentuation types, implemented as:1, − 0.5, 
− 0.5 (pattern 1), − 0.5, 1, − 0.5 (pattern 2) and − 0.5, − 0.5, 1 (pattern 
3). The model did not allow interaction terms, and the winning model 
was chosen based on adjusted Eta-squared. The output of the model is 
provided in Fig. 5B (bottom right), as the percent distribution of three 
accentuation patterns across sessions and relative to the total number of 
auditory sequences (100 per session). Note that not all trials could be 
classified as pertaining to the three modelled accentuation patterns. 
Other accentuation patterns are possible in the ternary trials, which 
were not modelled here: for instance, a S-w-w pattern could be as well 
represented by a stair-case amplitude change (i.e., 1, − 0.75, − 0.25) or a 
shuffled version of it (i.e., 1, − 0.25, − 0.75). However, given that the 
stimulation rate in use is likely suboptimal to test ternary accentuations 
even in humans (Brochard et al., 2003; Abecasis et al., 2005; Poudrier, 
2020; Baath, 2015; Fujioka et al., 2012), we did not build models to test 
all possible ternary accentuation patterns. Furthermore, it is important 
to note that the model in use here only uses the first 8 tones of the 
auditory sequence. This choice avoids the onset of DEV tones in later 
positions, which may disrupt ongoing accentuations, but inevitably 
leaves only up to two periods of a ternary accent (as compared to 4 
repetitions of a binary accent). Consequently, even two small amplitude 
fluctuations with superimposed noise (inherent in EEG recordings) may 
drive the ‘ternary’ classification, but these trials may not necessarily 
reflect a true ternary accent. In turn, we expected a large proportion of 
‘ternary’ trials to fail to be further classified as strictly reflecting the 
modelled patterns (1,− 0.5,− 0.5 (pattern 1), − 0.5,1,− 0.5 (pattern 2) 
and − 0.5,− 0.5,1 (pattern 3)). The small percentage of trials belonging 
to the three accentuation types (~2%) precluded further analyses due to 
insufficient statistical power to interpret results. 

3. Resources and details 

The datasets supporting the current study will be deposited in a 
public repository but are available from the corresponding author upon 
reasonable request. The code for analyses is available upon request. 
Further information and requests for resources should be directed to the 
Corresponding Author. 

4. Results 

4.1. Rhythm tracking 

Macaque monkeys passively listened to isochronous equitone se
quences presented at a stimulation rate of 1.67 Hz and containing 13-to- 

Fig. 5. Modelling of individual accents and analyses on binary accents. A: The modelling of accents was performed by means of stepwise regression modelling and 
using mu-band post-stimulus responses as the dependent variable. The predictors were a binary (1, − 1), a ternary (1, − 0.5, − 0.5) and a constant term (ones). B: 
preferences for accents, as reported from the modelling. In order, we plot the distribution of trials assigned to binary, ternary, combined (binary-ternary) accents, and 
‘not classified’ (neither binary nor ternary) across the two monkeys. At the bottom, we zoom into binary trials and distinguish S-w accents from w-S accents based on 
trial-level Beta coefficients from the modelling (top for M1, M2 below). C: grand-average pair-wise difference for mu-band peak amplitudes across the first 8 positions 
of the auditory sequence in binary trials. D: on the left, the distribution of amplitude differences across odd-numbered positions (in blue) and even-numbered 
positions (cyan). The average of these two distributions forms the ‘Binary similarity’. On the right, the ‘binary similarity’ (blue) and the mean amplitude differ
ence of the odd- versus even-numbered position (‘binary dissimilarity’; in cyan). Statistical testing was performed by means of 1000 permutations and an FDR- 
adjusted p < .05 was considered as statistically significant. 
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Fig. 6. Monkey-human similarities in rhythm processing. A: distribution of preferences for accents for, from left to right, M1, M2, and 4 human participants selected 
from a separate human dataset (Criscuolo et al., 2023). B: The time-course of time-locked neural dynamics in the mu-band for M1 and M2, and in the low-beta band 
for human participants. In blue, the time-locked responses to STD tones on Strong positions and red for weak positions. C: Binary accent effect quantified by means of 
Binary Similarity and Dissimilarity metrics. While M1 and the four human participants showed comparable binary accentuations from the beginning, M2 showed the 
same pattern later (Fig. 5). Of note, M2 only showed significant binary accentuations after two recording sessions. This observation differentiates the one depicted in 
Fig. 5, where we denoted significant binary accentuations when pooling across data from all recording sessions (>20). Thus, monkeys, similarly to humans, tend to 
vary in how they subjectively employ binary accentuation patterns over time. 
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15 frequent tones (standard; STD) and one amplitude-attenuated 
deviant tone (DEV). We tested whether and how their neural activity 
would show idiosyncratic signatures of rhythm tracking. 

Macaque monkeys’ neural activity encoded the timing of external 
events (Fig. 2 A, B top for M1 and bottom for M2). The Fourier spectrum 
showed a power peak at the stimulation frequency (1.67 Hz; Fig. 2 A), 
indicating that neural activity responded timely to tone onsets. Next, we 
quantified the consistency of pre-stimulus phase in delta-band (centered 
at 1.67 Hz) neural activity during a time-window preceding tone onsets 
(Fig. 2B) by means of mean vector length (MVL) analyses. This phase 
analysis focused on the ~60 ms (proportional to the stimulation fre
quency: 1/1.67 Hz/10) prior to tone onsets. Single-session trial- and 
channel-level MVL of STD tones preceding a DEV (pre-DEV) significantly 
differed from a random distribution (MVLs are plotted as kernel distri
butions in Fig. 2D; pre-DEV in blue; Suppl. Table 1–2 for statistics). 

4.2. Accent processing 

We tested whether participants’ neural activity would sample the 
acoustic environment by superimposing binary accentuation patterns 
(S-w accents in odd-numbered versus even-numbered positions) onto 
the isochronous equitone sequences. Thus, we analyzed event-related 
responses (ERP) to STD tones in S and w positions, and further inspec
ted the time-frequency representation of time-locked responses. 

ERPs to STD tones in S-w positions did not differ statistically 
(Fig. 3 A, 4 A). However, STD tones elicited stronger N100 and P200 
responses as compared to DEV tones (FDR-adjusted p < .05; 
Fig. 3 A,4 A, right), confirming the processing of an unpredicted 
amplitude-attenuated deviant tone. The time-frequency representation 
plots of neural activity in response to STD tones mainly showed one 
event-locked response in the mu-band (8–15 Hz; Fig. 3B for M1 and 4B 
for M2). In this frequency band, we compared event-locked fluctuations 
for STD tones in odd (S) versus even (w) positions along the sequence 
(Fig. 3 C, 4 C), corresponding to hypothetical S-w positions (blue and 
red, respectively). The result of the statistical comparison of S-w posi
tions did not survive FDR correction for multiple comparisons (FDR 
>0.05). 

To summarize, neither ERP nor TFR analyses revealed a binary 
accentuation, as STD tones elicited similar responses when they 
occurred in odd- and even-numbered positions along the auditory 
sequence. This result, however, may be associated with inter- and intra- 
individual differences in when and how accentuation patterns are 
superimposed onto the auditory sequences (Brochard et al., 2003). 
These hypotheses required a more adequate method to be tested: the 
novel accent modelling approach below. 

4.3. Accent modelling 

To address the questions of whether (i) monkeys accentuate in a 
similar way, (ii) they always accentuate, and (iii) accentuation patterns 
influence DEV processing (Brochard et al., 2003), we focused on 
trial-level data and modelled various accentuation patterns. We used a 
stepwise regression model to classify session-level, mu-band neural re
sponses as best reflecting a binary, ternary, or absence of accentuation 
patterns. The model predicted tone-by-tone mu-band amplitude changes 
from three predictors: binary, ternary, and constant terms (Fig. 5 A). 
Resulting preferences for accents are reported in Suppl. Table 3 and 
summarized in Fig. 5B. Note that most trials (~60%) did not reflect 
either binary or ternary accents. In the absence of perceptual reports, we 
cannot confirm whether this observation signals lack of sensitivity of our 
method or whether monkeys did indeed not accentuate. 

Next, we zoomed into “binary trials” and disentangled S-w from w-S 
accentuation patterns based on the single-trial β-coefficients obtained 
from the modelling (see methods). The resulting distributions are re
ported in Fig. 5B, bottom left. Similarly, we disentangled three possible 
accentuation patterns in the “ternary trials” (Suppl. Fig. 3). We 

performed a separate stepwise regression modelling using S-w-w, w-S-w 
and w-w-S accents as predictors (see methods). Distributions are re
ported in Suppl. Fig. 3. 

Overall, this approach allowed showing that macaque monkeys’ 
neural activity spontaneously superimposes accentuation patterns on 
identical tones embedded in isochronous equitone sequences. Impor
tantly, the monkeys’ neural activity seems to switch between binary, 
ternary, and other accentuation patterns over trials. Notably, however, 
in the majority of trials no consistent accentuation pattern was 
identified. 

4.4. Binary accents 

After isolating trials showing binary accentuation patterns, we aimed 
to statistically test whether mu-band responses would significantly differ 
in S versus w positions. If so, neural responses to tones falling on odd- 
numbered positions should differ from those on even-numbered posi
tions. However, there should be no differences for neural responses on 
the same positions: namely, tones falling on odd-numbered positions 
should elicit similar (i.e., non-significantly different) neural activity. In 
sum, we assessed whether this modelling approach delivers a mean
ingful classification of binary accents. 

To this end, we isolated the binary trials and calculated the tone-by- 
tone pair-wise amplitude difference for mu-band post-stimulus activity 
across 8 positions in the auditory sequence and preceding the DEV tone. 
For visualization, the resulting matrix was averaged across trials and 
only the lower diagonal matrix is shown (Fig. 5 C). The original matrix 
(all trials) was instead used to calculate metrics of “Binary similarity” 
and “Binary dissimilarity” (Fig. 5D; top for M1 and bottom for M2). The 
Binary similarity features two distributions: the amplitude difference for 
tones in odd-numbered positions (1–3–5–7th; “blue”, labeled as “odd- 
numbered position difference”) and the amplitude difference for tones in 
even-numbered positions (2–4–6–8th; cyan, labeled as “even-numbered 
position difference”). The two distributions did not significantly differ 
from each other. The respective values were then combined to compute 
a “Binary similarity” variable. For the “Binary dissimilarity” analyses, 
we calculated the amplitude difference for tones in odd- versus even- 
numbered positions (corresponding to on-beat versus off-beat “Binary 
difference”) and statistically compared it to the “Binary similarity” 
(Fig. 5D). Statistical testing confirmed a significant difference (FDR- 
adjusted p < .05), indicating that mu-band post-stimulus amplitudes 
were significantly modulated according to a binary accent. The same 
procedure was independently repeated for both monkeys. 

Taken together, these results confirmed that trials classified as ‘bi
nary’ during the modelling did indeed show a consistent binary accen
tuation pattern. Mu-band amplitudes on STD tones in S positions 
significantly differed from those in w positions. 

4.5. Comparative analyses of human and monkey data 

Next, we set out to investigate similarities in rhythm processing be
tween humans and macaque monkeys. We directly compared the two 
macaque monkeys with a subset of 4 datasets of participants taken from 
a prior human study (Criscuolo et al., 2023). Critically, these human 
participants underwent EEG recording while listening to similar stim
ulus material as the monkeys. This allowed us to reproduce the model
ling of accents in use here and to directly compare the two datasets. 

As human participants took part in only two experimental sessions, 
we focused on the first two experimental sessions of the monkeys as 
well. Details on the analysis procedure for the human dataset can be 
found in (Criscuolo et al., 2023). In Fig. 6 A, we show preferences for 
accents for M1, M2, and 4 human participants and below, the distribu
tion of preferences for binary, ternary, and other accents (non-classified 
trials). Like humans, macaque monkeys showed the emergence of binary 
accentuations in 21% of the trials and ternary accentuations in 23% of 
the trials. From the selected binary trials, we then plotted the 
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time-course of event-locked activity in the mu-band for M1 and M2 and 
low-beta for humans, and for STD tones on S-w positions (blue and red 
respectively; Fig. 6B). Comparable to human participants, both monkeys 
showed larger amplitudes in response to STD-S tones than for STD-w 
tones (Fig. 5). However, while in M1 and human participants binary 
accentuations were evidenced by a non-significant Binary Similarity but 
a significant Binary Dissimilarity, M2 showed such an effect later 
(Fig. 6 C). We take this finding as additional evidence for the inter- and 
intra-individual variability across species in the if, when, and how ac
centuations occur. 

5. Discussion 

In this comparative EEG study, we set out to investigate the basic 
rhythm processing capacities of macaque monkeys and humans. All 
participants passively listened to isochronous equitone sequences,and 
we examined spontaneous neurophysiological activity that underlies the 
sampling of temporal regularities in the acoustic environment. We 
intentionally did not choose an active experimental task setting as it 
might enforce unspecific goal-directed behavior and potentially 
confound genuine endogenous rhythm processing. We further suggest 
that the testing of task-independent neural behavior in non-human 
primates might be a quintessential step in understanding the phyloge
netic trajectories of basic rhythm cognition. 

The present results show that the macaque monkey’s neurophysio
logical responses display the encoding of temporal regularities in the 
acoustic environment even during passive listening and confirm prior 
task-active results (Zarco et al., 2009; Honing et al., 2018; Merchant 
et al., 2011; Crowe et al., 2014; Gámez et al., 2018; Ayala et al., 2017; 
Bartolo et al., 2014; Merchant et al., 2013b). We further show that these 
neurophysiological responses go beyond the mere encoding of iso
chrony: neural activity in the mu-band indicated the superimposition of 
binary (strong (S) - weak (w)) accentuations in a subset of trials, mir
roring results in humans (Criscuolo et al., 2023). Even though all tones 
were physically identical, in some trials tone-locked neural responses 
were modulated by a binary (S-w) or ternary (S-w-w) subjective accen
tuation, resembling the well-documented tic-toc phenomenon observed 
in humans (Brochard et al., 2003; Abecasis et al., 2005; Schmidt-Kassow 
et al., 2011; Poudrier, 2020; Baath, 2015). As this phenomenon emerged 
during passive listening, the superimposition of accentuations might 
represent the spontaneous sampling of the acoustic environment beyond 
the encoding of single event onsets or time-intervals. 

Standard ERP and time-frequency analyses, relying on the averaging 
of neural activity over hundreds of trials, failed to show these binary 
accentuation patterns. In comparison, our novel trial-based analysis 
increased sensitivity to such accentuation patterns. These combined 
observations also support earlier human studies that reported large 
inter- and intra-individual differences in if, when, and how participants 
accentuate (Poudrier, 2020; Baath, 2015). Hence, various accentuation 
patterns are possible: individuals may start accentuating at different 
time points (i.e., not necessarily from the beginning of an auditory 
sequence), may alternate accents over time (thus, over trials), or may 
not accentuate at all (if not instructed to do so). Thus, any 
trial-averaging procedure may inevitably overwrite these accentuation 
possibilities and mask out individual tendencies that influence the 
parsing of acoustic environmental rhythms. 

While isochrony may not necessarily represent a (musical) rhythm, 
we propose it to be an ideal test-case for investigating the basic neuro
physiology that underlies the encoding of temporal regularities. We 
further note that isochrony is present in a wide range of daily behavior, 
and its evolutionary advantage might lie in its simplicity: it allows 
generating temporal predictions (Ravignani and Madison, 2017). In 
turn, temporal predictability facilitates adaptive behaviours, rhythmic 
interactions, music, speech, and much more (Greenfield et al., 2021). 

Complementing results from task-active settings (Lakatos et al., 
2008; Schroeder et al., 2010), we show that macaque monkeys can 

encode and track regularly timed event onsets with low-frequency 
neural oscillations, mirroring results in humans ( (Colling et al., 2017; 
Criscuolo et al., 2023; Nozaradan, 2014), see for an overview (Obleser 
and Kayser, 2019)). Along with alpha-/beta-band rhythms, delta-band 
oscillations have been associated with internalised timing and 
motor-to-auditory top-down predictions, even in the absence of overt 
motor tasks (Arnal, 2012; Fujioka et al., 2009; Abbasi and Gross, 2020; 
Bartolo et al., 2014; Saleh et al., 2010; Arnal and Giraud, 2012; Fujioka 
et al., 2015; Biau and Kotz, 2018; Engel and Fries, 2010). Both rhythms 
are prominently found in cortical motor (Keitel and Gross, 2016) and 
subcortical (striatal) brain regions (Bartolo and Merchant, 2015; Bartolo 
et al., 2014), and their functional coupling underlies complex auditory 
processing and temporal predictions in humans (Arnal et al., 2015; 
Morillon et al., 2019; Morillon and Baillet, 2017). Amplitude modula
tions in the alpha-beta frequency bands are associated with the priming 
of auditory brain regions via feedforward anticipation of incoming 
auditory input (Engel and Fries, 2010; Gehrig et al., 2012; Klimesch, 
2012; Bowers et al., 2013; Liljeström, Mar et al., 2015). Thus, recurrent 
information flow between motor and auditory circuitries might underlie 
the emergence of simple to complex rhythm and beat structure in 
audition (Patel and Iversen, 2014). 

Cross-species differences in complex rhythm and beat processing 
have been commonly associated with neuroanatomical and -functional 
differences in the motor system, specifically in cortico-basal-ganglia- 
thalamo-cortical (mCBGT) circuitry, which is more developed in 
humans than in non-human species (Patel and Iversen, 2014; Wilson and 
Cook, 2016; Mendoza and Merchant, 2014). However, the current 
findings might indicate that basic rhythm processing capacities not 
necessarily involve the mCBGT, or that they preceded neuroanatomical 
changes in the evolution of the human brain. However, given the 
absence of information on the neuroanatomical provenance in EEG 
signals, we refrain from speculations but motivate future studies to 
investigate this matter. 

In summary, the current findings confirm that macaque monkeys 
have an adequate neural outfit to sample temporal regularities in the 
environment, and further show a human-like predisposition to parse 
regular acoustic input with accentuation patterns. These observations 
confirm that macaque monkeys have the fundamental building blocks 
that are necessary for DPS. 

These unexplored parallels between humans and macaque monkeys 
motivate further cross-species investigations to advance better under
standing of the phylogenesis of human rhythm cognition. 

6. Conclusion 

While passively listening to isochronous equitone sequences, ma
caque monkeys’ neural oscillatory activity sampled the acoustic envi
ronment at multiple timescales. Delta- and mu-band oscillations 
encoded the temporal regularity in auditory sequences, tracked sound- 
onsets, and parsed them with a superimposed accentuation pattern. 
These observations mirror basic rhythm processing in humans and 
confirm a complementary role of low- (delta) and high- (mu) frequency 
bands. As these basic rhythm processing capacities are linked to the 
development of complex sensorimotor skills in humans (e.g., speech and 
music), these findings highlight a basic and fundamental steppingstone 
in the phylogenetic trajectories of humans’ rhythm cognition. 
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