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Abstract  
 
Structural variation along a sensorimotor-association (S-A) axis is thought to scaffold intrinsic 
functional differentiation and, ultimately, cognition. Using structural equation modeling and 
a multivariate twin design, we reveal that group-level associations in the S-A axis can mask 
pervasive inter-individual differences. Despite theoretical models and group-level 
relationships between cortical microstructure and intrinsic function, we find instead 
individual-level differences in regional cortical network geometry of genetic and 
environmental origins to support the intrinsic functional organization of the human cortex.  
 
Main 
 
The human brain supports perception, action, as well as abstract cognition that is decoupled 
from immediate environmental input 1,2. This diversity of functions is supported by the 
structural organization of the cortical mantle, reflected by the gradual dissociation between 
primary unimodal sensory and transmodal association cortical regions (S-A axis 3) as a 
function of a vast array of neurobiological properties, including microstructural variation 
(myelination and cytoarchitecture) and inter-areal connectivity distance 3,4. Here sensory areas 
show high microstructural differentiation, high myelination, and short-range connections, 
whereas association areas show less differentiated microstructural profiles, reduced 
myelination, and a combination of short-and long-range connectivity profiles 5–7. As such, the 
structural organization along the S-A axis 1,8–10, provides a scaffold for functional 
differentiation 11,12, which in turn supports cognitive and behavioural flexibility 1,11.  
 
Recent work enhanced our understanding of the link between group average macroscopic 
structural features, from microarchitectonic differentiation 13 to cortical geometry 14, and 
intrinsic functional features of the cortical mantle 11,15. Notwithstanding well-documented 
associations at the group-level 3,4,8,16, whether inter-individual differences follow parallel 
trends is still poorly understood. To address this issue, we decomposed the deceptively 
straightforward question of whether the S-A axis's structural and functional properties 
correlate. First, we confirmed that the group average structural S-A axis's properties correlate 
with the group-level functional hierarchy. We then asked whether widely reported group 
averages can mask S-A axis associations at the level of the individual. Specifically, we tested 
whether individual regional cortical microstructure 8 and intrinsic network topology, 
captured by the geodesic distance of inter-connected regions across the cortical mantle 1, 
constrain the well-known functional dissociations between sensory and transmodal areas.  
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We combined microstructural and resting-state functional MRI data from the Human 
Connectome Project (HCP 17; n=591 adults; 295 women, mean age 28 y; 22-37 y) and computed 
two structural metrics indexing S-A; microstructural profiles and cortical network geometry. 
First, in line with Burt et al. 8, we quantified regional microstructural profiles indexing the 
differentiation between sensory and transmodal areas using the individuals’ mean intensity 
of regional T1w/T2w (T1w/T2wmi) in 400 parcels 18. Second, we quantified regional cortical 
network geometry by computing the geodesic distance (GD) between every cortical region 
and its corresponding functional network, averaged within each region to get parcel-wise 
estimates 1. Last, we quantified individuals’ functional S-A axis by obtaining the first 
component of the individual Functional Connectomes (FC) using diffusion map embedding 
(FCG1, see methods) 1,19,20. 
 
Group-level averaged maps of T1w/T2wmi, GD, and FCG1 (Fig. 1A-C) resembled previously 
published results 1,3,8,11. T1w/T2wmi, GD, and FCG1 were moderately to strongly correlated 
with each other and mapped inversely to Yeo-Krienen 7 resting-state functional networks 
(Spearman ϼ=-.61 and ϼ=.75 between T1w/T2wmi and FCG1, and GD  and FCG1, respectively; 
all p<.001; Fig. 1D-E; see Fig. S1). However, group-level maps masked widespread individual 
regional variability (Fig. 1F), which, in contrast to other neurobiological properties 3, covaried 
weakly, yet significantly, with the S-A axis itself (Spearman ϼ=-.18, p<.001, ϼ=.13, p=.01, and 
ϼ=.37, p<.001, for σ2FCG1, σ2MP and σ2GD, respectively). Crucially, group-level associations 
did not align with regional individual-level associations (Fig. 1G). Indeed, when focusing on 
individual regional S-A axis variability (Fig. 1H), only less than 4% of regional associations 
between T1w/T2wmi and FCG1 survived significance testing, in contrast with 58% of regional 
associations between GD  and FCG1 (all passing Bonferroni corrected p; similar trends were 
observed with unaligned individual FCG1, see Fig. S2). These results suggest that, when 
shifting the focus from group-level to individual-level associations, regional cortical network 
geometry, rather than microstructure, predominantly explains functional S-A axis variability.  
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Figure 1. Group-level trends in structural and functional S-A axis mask individual-level differences. A Z-scores 
of the mean microstructural intensity (T1w/T2wmi) averaged intra-individually across profiles and 
inter-individually across parcels. B Z-score of the Geodesic Distances (GD) averaged inter-individually 
across parcels. C Z-scored sensorimotor-association axis (S-A) functional gradient (FCG1) extracted from 
the averaged Functional Connectome across individuals. D Scatter plots show the relationship between 
Z-scored parcel-wise values of structural S-A axes (x-axis) and FCG1 (y-axis). Each dot represents one 
parcel. The colours represent Yeo-Krienen 7 network. E Representation of group-level analytical 
dimensions. Both regional and individual differences are lost in favour of average trends. F Group-
level (black contour) and individual-level (white contour) standardised FCG1 parcel-wise estimate. G 
Boxplots of the ß-values extracted by linear models in which regional zT1w/T2wmi (left) and GD (right) 
are regressed from zFCG1 and stratified per Yeo-Krienen 7 network; the light grey dots represent the ρ 
coefficients reflecting the structure-function group-level association depicted in panel D. H 
Representation of inter-individual-level analytical dimensions. Each colour-coded slice represents a 
scatter plot (not shown) depicting the inter-individual relationship between S-A axis propriety (e.g., 
GD) and FCG1 for one parcel. The distribution of estimates for such relationships is depicted in panel G. 
T1w/T2wmi: T1w/T2w mean intensity; GD: Geodesic Distance; FCG1: Functional Connectome 1st 
Gradient.  
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We next aimed to solidify the robustness and unpack the sources of the observed associations. 
To do so, we further exploited the strength of the HCP design and sample, which emphasises 
multiple resting-state fMRI sessions (total of four sessions, ~15 min each) and includes both 
monozygotic (MZ) and dizygotic (DZ) twins (257 MZ, 150 women, and 153 DZ individual 
twins, 92 women, mean age 29 y, range=22-36 y). This allowed us to discard non-repeatable 
intra-individual (i.e., variance due to non-repeatable individual-level residual variance across 
sessions) from inter-individual differences (i.e., stable variance across sessions) and to 
replicate our results in a partially independent sample. Furthermore, it allowed us to 
differentiate amongst different sources of variability and further understand the origins of 
such associations. To simultaneously handle T1w/T2wmi, GD, and FCG1 without sacrificing 
interpretability for predictability 21–24, we used a Structural Equation Modeling (SEM) 
approach informed by the Classical Twin Design (CTD).  
 
First, following and adapting recent advances in measurement error modelling of fMRI data 
25,26, we estimated inter-individual parcel-wise variance in FCG1i by SEM (which we refer to as 
σinter

2FCG1i). This was crucial, as large intra-individual variability can severely bias effect sizes, 
reduce statistical power, and increase reproducibility issues (see 21 for details). Measurement 
models were fitted only to one twin per pair. Estimates were obtained directly from the most 
likely model (Fig. 2A, see methods, see Fig. S3-S8 27; results replicated in models fit the other 
twins). Results indicate that when using individual FCG1 extracted from four averaged ~15 
min sessions (totalling ~60 min), the overall σ2 FCFCG1i still contained ~33% of parcel-wise intra-
individual across-sessions variability (Fig. 2B), which we were later able to partition out 
thanks to our approach. In contrast, the uncorrected σ2FCFCG1i from a single session, which is 
still longer than an average rs-fMRI session included in large cohorts (e.g., UKBiobank, ~6 
min 28), contained, on average, ~61% of parcel-wise intra-individual variability. These results 
further illustrate the benefit of deep phenotyping strategies 21,29, implemented in the HCP as 
longer resting-state sessions.  
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Figure 2. Acknowledging substantial intra-individual differences in the functional S-A axis: measurement model 
of individual functional gradients. A Conceptual and formal Structural Equation Modeling representation 
of the measurement model used to partition parcel-wise observed variance in individual functional 
gradients (σ2FCG1i) into intra- (σintra

2FCG1i) and inter- (σinter
2FCG1i) individual variance. Squares represent 

the two FCG1i values for a parcel i, obtained from individual Functional Connectomes (FC) averaged 
within a day (FCG1i1 and FCG1i2, respectively).  The big circle represents the latent construct capturing 
stable parcel-wise FCG1i value. The small circles represent the day-specific FCG1i values (here modelled 
as residuals). Double-headed arrows represent the respective variances. Single-headed arrows 
represent paths (all path coefficients are set to 1, and variances are directly estimated.) B Averaged 
proportion of σ2FCG1 accounted for by σinter

2FCG1 across Yeo-Krienen functional networks and across 
overall parcels (overall). Colours represent averages obtained for the estimates relative to the duration 
of the rs-fMRI from which the FCG1 were obtained. FCG1: Functional Connectome 1st Gradient. 
 
To additionally get a lower bound estimate for σinter

2  in S-A structural metrics, which lack test-
retest sessions, we exploited the pedigree structure of the HCP and partitioned stable genetic 
(σ2

A|D) and unsystematic environmental sources (σ2
E) of variability in structural S-A 

(T1w/T2wmi, GD) axes. This made it possible to discard further residual sources of variance 
in structural metrics. Moreover, it allowed us to unpack the observed association into genetic 
and environmental sources of structural and functional S-A axis variation, for which we also 
extended the analysis to σinter

2FCG1i. We informed SEM specification of MZ and DZ twin 
variance-covariances of structural and functional metrics using the CTD (Fig. 3A-C). SEMs of 
FCG1 data were informed by the best-retained measurement models outlined above. 
Phenotypic correlations extracted by the saturated model (controlled for sex and age) of MZ 
and DZ pairs indicated strong genetic effects over individual variability across all metrics (Fig. 
3B). Averaged MZ phenotypic correlations across parcels were all higher than DZ pair 
correlations (all p<.001), suggesting either ACE or ADE specification to be the most 
appropriate to the observed covariances. Excluding Heywood cases, we selected only models 
including A and E components (Fig. 3C, see methods, see Fig. S9 for power calculation). 
Selected models did not significantly worsen the saturated model fit (Likelihood-Ratio Test 
[LRT], pX2>.05), were better than purely environmental E models (LRT, pX2>.05), and were all 
within acceptable fit (CFI>.90, RMSEA <.08). This resulted in a total of 374, 289, and 305 good 
fitting AE parcel-wise models for T1w/T2wmi, GD, and FCG1, respectively. On average, genetic 
sources could account for 42%, 34%, and 56% of σ2T1w/T2wmi, σ2GD, and σinter

2FCG1, 
respectively (twin-h2

mp=.42 [sd=0.13], twin-h2
GD=.34  [sd=0.09] and twin-h2

interFCG1=.56 [sd=0.09], 
Fig. 3D).  
 
 

 
 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted July 13, 2023. ; https://doi.org/10.1101/2023.07.13.548817doi: bioRxiv preprint 

https://doi.org/10.1101/2023.07.13.548817
http://creativecommons.org/licenses/by-nc-nd/4.0/


Bignardi et al. 

Figure 3. Unpacking sources of individual differences in structural and functional principles of human brain 
organization. A Graphic representation of the statistics of interest: Monozygotic (MZ) and Dyzigotic 
(DZ) twin variances and covariances in regional S-A axis properties. The double-headed arrow 
represents the covariances between MZ and DZ pairs. B Raincloud plots 30 of MZ and DZ twin pair 
phenotypic correlations extracted by the saturated model; From left to right T1w/T2wmi, GD, and FCG1. 
Each dot represents correlations per one parcel i, stratified by zygosity. Lines connect the same parcel. 
C Path diagram representing the univariate biometric Structural Equation Model (SEM) for GD, parcel 
i values, for both twins; Circles represent the additive (A) and environmental (E; which also contains 
measurement error) latent variance components. Double-edged arrows within circles represent 
variances; Double-edged arrows across circles represent within twin pairs covariances. All paths’ 
coefficients (one-headed arrows) are fixed to 1. D Parcel-wise twin heritabilities (twin-h2) for 
T1w/T2wmi; GD, and FCG1. Left, in light grey box-plots of the twin-h2 for σ2FCG1; in yellow, twin-h2 
σinter

2FCG1; Top shows the fold increase in twin-h2 when accounting for σintra
2FCG1. Right, box-plots of the 

twin-h2 for different S-A axis metrics; dashed lines represent the means across the entire cortex per 
variance type (left, intra+inter and inter only) and S-A axis (right). T1w/T2wmi: T1w/T2w mean 
intensity; GD: Geodesic Distance; FCG1: Functional Connectome 1st Gradient; A: Additive Genetic effect; 
E: Unique Environmental effect. 
  
Having finally quantified both inter-individual genetic and environmental univariate sources 
of variability, we replicated our primary analysis (Fig. 4A). We specified a multigroup 
multivariate multimodal (MMM) Cholesky SEM with only A and E components (Fig. 4B). This 
allowed us to simultaneously discard intra-individual variability and to unpack structure-
function S-A axis relationships into genetic or environmental sources. Notwithstanding 
relatively high twin-h2 for both T1w/T2wmi and FCG1, in the multivariate model specified on 
T1w/T2wmi data (352 parcels with satisfactory fit indices CFI>.90, RMSEA <.08), we found no 
significant paths between AT1w/T2wmi and FCG1, with only less than 1% of the remaining 
environmental paths influencing inter-individual differences in FCG1. Conversely, for the 
MMM specified on GD data, (325 parcels with satisfactory fit indices, CFI>.90, RMSEA <.08), 
we found 46% regional GD effects over inter-individual differences in FCG1, of which 32 
indicated shared genetic effects, and 111 indicated shared environmental effects (all p<.05, 
Bonferroni corrected, Fig. 4C-D). Crucially, 94% of these regional effects overlapped with 
associations discovered in our primary analysis.   Moreover, also in line with Cheverud’s 
conjecture, which proposes that genetic correlations can approximate phenotypic ones 31–33,  
genetic effects over stable FCG1 regional variability observed in the twin sample partially 
resembled observed phenotypic association in the primary sample, with a Spearman-rank 
between genetic paths and phenotypic ß of ϼ=.82, p<.001 (see Fig. S10). Thus, consistent with 
the main findings, these results show that regional structure-function relationships in the S-A 
axis of cortical organization between individuals can follow different trends from group-level 
ones.  
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Figure 4. Robust replication: regional differences in geodesic connectivity distances, rather than microstructure, 
influence inter-individual differences in the S-A cortical axis of functional connectivity. A Graphic 
representation of the replication effort: inter-individual differences in the functional S-A axis follow 
cortical network geometry, as indexed by GD, S-A axis alterations. B Simplified representation of the 
Multivariate Multimodal Multigroup (MMM) Cholesky twin Model. MMM are fit to T1w/T2wmi values 
independently. To aid interpretability, estimated paths and variance components of interest are colour 
coded. Black paths are set to 1, and variances are directly estimated. C Significance of the genetic 
(upper) and environmental (lower) path coefficients, stratified per Yeo-Krienen network. On the top, 
the model fits to T1w/T2wmi twin data; on the bottom, the models fit to GD twin data. The dashed grey 
lines represent nominal significance (α=.05); The dashed black lines represent the threshold for 
Bonferroni-corrected significance. X-axis upper limit is set to the lavaan default, p=1*10-16. D Bar-plots 
representing the averaged parcel-wise proportion of inter-FC G1 variance (σinter

2FCG1) explained by the 
A component (Additive genetic; i.e., twin-h2), and the E component (Environmental), after accounting 
for the genetic and environmental paths originating from the structural metrics (e.g., A_GD_FCG1, 
A_GD_FCG1, for the model fit to GD data), stratified per functional network. Upper panel, the models 
fit to T1w/T2wmi twin data; lower panel, the models fit to GD twin data. Error bars represent the 95% 
Confidence Intervals of the mean values.; T1w/T2wmi: T1w/T2w mean intensity; GD: Geodesic 
Distance; FCG1: Functional Connectome 1st Gradient; A: Additive Genetic effect; E: Unique 
Environmental effect. 
 
Finally, since regional inter-individual differences can mask global differences driving 
variability in the S-A axis, we extended our analysis to brain-wide estimates. We quantify 
T1w/T2wmi, GD, and FCG1  Similarity Indices (SI, Fig. 5A, see methods). We then fit an 
identically specified MMM SEM to the one fitted to parcel-wise data (i.e., Fig 4B) to the SI 
data. Source of brain-wide differences in GD accounted for by 45% of the total twin-h2 (twin-
h2-inter-SIFCG1=.66) and 78% of the residual brain-wide σinterFCG1

2 (Fig. 5B). Similarly to parcel-
wise estimates, brain-wide results indicated substantial overlap between genetic and 
environmental sources in SI of network geometry and functional organization, rather than 
microstructural differences, further strengthening our previous findings. These results were 
not explained by Intra-Cranial Volume (ICV) as a possible common cause of GD and FCG1 SI 
variability (CFI<.90, RMSEA>.08; all p>.05, uncorrected, Fig. 5C-D). 
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Figure 5. Sensitivity analyses extend conclusions to brain-wide metrics and discount the effects of intra-cranial 
volume as a possible common cause. A Graphic representation of the Similarity Index (SI) as a proposed 
metric to explore brain-wide inter-individual differences in the S-A axis. B Bar-plots representing the 
brain-wide proportion of σinterFCG1

2 explained by the A component (Additive genetic; i.e., twin-h2), and 
the E component (Environmental), after accounting for the genetic and environmental paths originating 
from the SI structural metrics (e.g., A_SI_GD_FCG1, A_SI_GD_FCG1, for the model fit to GD data). 
Error bars represent the 95% Confidence Intervals directly extracted from the structural model. C 
Formal representation of the SEM including a possible confounders, Intra-Cranial Volume (ICV). D 
Observed correlation matrix of the relationship between ICV and all SI of GD and FCG1. SI: Similarity 
Index; MMM: Multivariate Multimodal Multigroup Cholesky decomposition; T1w/T2wmi: T1w/T2w 
mean intensity; GD: Geodesic Distance; FCG1: Functional Connectome 1st Gradient; ICV: Intracranial 
Volume. 
  
Overall, we parsed out intra to inter-individual differences in cortical microstructural, 
network geometry, and intrinsic functional prosperity along the S-A axis and unpacked the 
origins of their associations. By doing so, we revealed that previously reported group-level 
associations in the S-A axis can mask pervasive inter-individual differences. Notwithstanding 
theoretical models and group-level relationships between cortical microstructure 
(T1w/T2wmi) and intrinsic function, we found rather strong evidence that individual-level 
differences in regional cortical network geometry (as measured by the Geodesic Distance of 
inter-connected regions across the cortical mantle: GD) both phenotypically and genetically 
correlated with inter-individual differences in the major axis of functional connectivity (FCG1). 
This observation aligns well with notions on the relationship between cortical connectivity 
distance and intrinsic and task-based functional organization 1,7,10,14,34. In sum, our findings 
provide evidence that substantial inter-individual variations within and between different 
modalities can be overshadowed by group-level findings and emphasize the heterogeneity of 
genetic and environmental origins of individual variation in S-A axis cortical structure and 
intrinsic function. By underscoring the importance of pervasive individual differences and 
their origins, these results highlight the complex interplay between the structural and intrinsic 
functional proprieties of the S-A axis and, ultimately, the potential differential role they may 
play in shaping cognition 19,35–37. 
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Methods  

Sample 

We used data from the Human Connectome Project (HCP) S1200 release. The HCP includes 
data from 1206 individuals (656 women) that comprise 298 Monozygotic (MZ) twins, 188 
Dizygotic (DZ) twins, and 720 singletons, with mean age ± sd=28.8 ± 3.7 years (age range=22-
37 years). Informed consent for all individuals was obtained by HCP, and our data usage was 
approved by HCP and complied with all relevant ethical regulations for working with human 
participants (see 11,17,38 ). The primary participant pool comes from individuals born in 
Missouri to families that include twins, sampled as healthy representatives of ethnic and 
socioeconomic diversity of US individuals, based on data from the Missouri Department of 
Health and Senior Services Bureau of Vital Records. We followed standard guidelines for 
inclusion criteria as described elsewhere11. Our final sample comprised 1001 individuals, 
including 257 MZ, 150 women, and 153 DZ individual twins, 92 women, mean age 29, 
range=22-36 y. We included only twins where we confirmed genotyped zygosity.  

Functional Imaging 

Functional connectivity matrices were based on four 14 min 33 s of functional Magnetic 
Resonance Imaging (fMRI) data acquired over two sessions, spaced two days apart, through 
the HCP, which underwent HCP’s minimal preprocessing. For each individual, four 
functional connectivity matrices were computed using the minimally preprocessed, spatially 
normalised resting-state fMRI (rs-fMRI) scans, which were co-registered using MSMAll to 
template HCP 32k_LR surface space. 32k_LR surface space consists of 32,492 total nodes per 
hemisphere (59,412 excluding the medial wall). We computed four functional connectivity 
(FC) matrices per individual from the average time series extracted in each of the 400 Schaefer 
cortical parcels. The individual functional connectomes were generated by averaging 
preprocessed time series within nodes, Pearson correlating nodal time series and converting 
them to Fisher-z scores. The average FC was obtained by averaging FCs within individuals 
(i.e., between sessions) and between individuals.   

Structural imaging 

MRI protocols of the HCP have been previously described 17,38. MRI data were acquired 
originally on the same day on the HCP’s custom 3T Siemens Skyra equipped with a 32-channel 
head coil. T1w images with identical parameters were acquired using a 3D-MP-RAGE 
sequence over 7 min 40 s (0.7 mm isovoxels, matrix = 320 × 320, 256 sagittal slices; TR = 2400 
ms, TE = 2.14 ms, TI = 1000 ms, flip angle = 8°; iPAT = 2). T2w images were acquired using a 
3D T2-SPACE sequence with identical geometry over 8 min and 24 s (TR = 3200 ms, 
TE = 565 ms, variable flip angle; iPAT = 2). We followed preprocessing steps outlined in Valk 
et al. 11. 

Parcellation and Functional Networks 

We used the Schaefer group-level hard-parcellation, originally obtained by a gradient-
weighted Markov random field model integrating local gradient and global similarity 
approaches 18. To stratify results within established cortical functionally coupled networks, 
we used the seven Yeo-Krienen networks 39. 

Microstructural profiles: T1w/T2wmi 

We used T1w/T2w imaging myelin-sensitive contrast from the HCP minimal processing 
pipeline, which uses the T2w to correct for inhomogeneities in the T1w image to estimate 
mean intensity T1w/T2w microstructural profiles (T1w/T2wmi). T1w/T2wmi has been shown 
to map to model-based tract-tracing histological data in macaque, estimate intracortical 
myelin content, and thus approximate architectural complexity and cortical hierarchy 8.  
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Geodesic distance: GD 

Individual Geodesic Distances (GD) were computed using the Micapipe toolbox 40. Briefly, we 
computed GD between each region and their top 10% of maximally functionally connected 
regions along each individual native cortical midsurface. We further averaged within regions 
to obtain a parcel-wise value and improve computation performance. Micapipe implements 
the Dijkstra algorithm 41 (further details can be found in 40). 

S-A functional axis: FCG1 

We sequentially averaged FCs, first within days, resulting in two FCs per individual, and then 
between days, resulting in one FC per individual. We then extracted six first components from 
the four not averaged, two sequentially averaged and one averaged FCs, using the python 
package BrainSpace 42. Extraction of the first eigenvector followed standard procedures, with 
the original individual FCs set at a connection density of 10% (i.e., the FCs were made sparse 
by setting a sparsity threshold of 90%). The first ten eigenvectors were then obtained by 
decomposing the FCs by diffusion map embedding, a robust non-linear manifold learning 
technique. To aid comparability across individuals, we aligned individual eigenvectors to the 
template eigenvector by Procrustes rotation 43 (results with unaligned individual FCG1 can be 
found in Fig. S2). The template functional gradient was directly extracted from the overall 
mean FC matrix. 

Associations analysis 

First, we computed Spearman rank-order correlations between the structural (T1w/T2wmi 
and GD) and functional (FCG1) S-A axis group-level modalities. We then expanded analysis to 
regional individual differences and fit linear models where each parcel-wise FCG1 was 
regressed on either T1w/T2wmi or GD. Signficance was evaluated after Bonferroni correction 
for multiple comparisons. 

Measurement model of error in individual variability of the functional S-A axis 

To partition stable between-individual variability in parcel-wise G1, we applied Structural 
Equation Modeling (SEM), adapting previously retained measurement error models to rs-
fMRI to gradients 25,26. First, we fit two measurement models (test-retest-2) to parcel-wise G1 
data averaged across days, one without restrictions and one with restricted residuals. We then 
fit six measurement models to the parcel-wise G1 obtained from each ~15min rs-fMRI session 
(test-retest-4). Each model is nested compared to the complex unrestricted model. Five out of 
six test-retest-4 models included an additional Session (S) component, capturing a 
hypothetical stable between-individual parcel-wise G1 variance unique to the day of the 
scanning session (see Fig. S4). We then used multimodel rank-based Akaike Information 
Criteria (AIC) inference to compare the relative fit between the two test-retest-2 and the six 
test-retest-4 models across all 400 parcels. We first rank the model across parcels from the 
lowest to the highest AIC; we subtract each AIC from the lowest possible AIC (∆AIC). We 
inspected the histogram of the ∆AIC per model and retained the models that reflected best 
the multimodel inference cutoff of ∆AIC<2 (acceptable) ∆AIC>10 (poor)27. Selected 
measurement models were used for the later Structural Models of genetic and environmental 
variance (see Fig. S5-S6). Further, we used model estimates to compute the parcel-wise 
averaged proportion of stable between-person variance in G1 captured by each single and 
within-day averaged FC following canonical path tracing rules (see Fig. S7). We used 
Spearman-brown correction to estimate the stable between-person G1 variance obtained by 
averaging the 4 FCs. We validate our analysis by comparing estimates extracted by the model 
with Intra-class Correlation Coefficients (ICC) 44, type 2 and 2k, respectively (ICC(2,1) and 
ICC(2,k)) and provide them in the supplementary (see Fig. S8).  

Twin-based Structural Equation Modeling 

We used multigroup Structural Equation Modeling (SEM) to partition parcel-wise variability 
in structural (σ2T1w/T2wmii , σ2GDi)  and functional (σinter

2FCG1i)  S-A modalities into either 
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additive genetic (σ2
A) or non-additive genetics (σ2

D), common (σ2
C) and unsystematic 

environemntal (σ2
E) sources of variance. SEMs were fit to Individual twins parcel-wise 

σ2T1w/T2wmii, σ2GDi, and σ2FCG1i1 (day1) and σ2FCG1i2 (day 2), and between twins within 
zygosity covariances (See Fig. 3C). The model specification was informed by the Classical 
Twin Design 45.  Briefly, MZ twins are ~100 % genetically identical, coming from the same 
fertilised egg. In contrast, DZ twins are, on average, only 50% additively and 25% non-
additively genetically similar, in regards to allelic variants, coming from two different 
fertilised eggs. Thus, the correlation between the additive genetic component (A) is set to be 
equal to 1 for MZ while .5 for DZ. The correlation between the dominance genetic component 
(D) is set to be equal to 1 for MZ and .25 for DZ. The common environment (C) is set to be 
equally shared across twins and thus equal to 1 within both types of twins. In contrast, the 
unique  environment (E) component will be unique to each twin; therefore, their correlation 
will be equal to 0. In total, we fit five models for each of the five parcel-wise univariate 
multigroup SEM per parcel ([1+3]x1x400 models for Tw1/Tw2mi; [1+3]x1x400 models for GD;  
and [1+3]x5x400 models for FCG1, [saturated model + biometric models] x measurement 
model x parcel, respectively). For each model, we fit a saturated model and, based on the 
pattern of MZ and DZ correlation extracted by the saturated model, an ACE or an ADE, and 
AE, E model, as an ACDE model is under-identified. We fit an ACE model when MZ 
correlations were less than twice DZ correlations and an ADE if correlations were more than 
double. Each model was fit to both measured data without accounting for error variance; the 
two best test-retest-2 measurement models and the two best test-retest-4 measurement models 
were selected from the multimodel inference step outlined above.  We employed the direct 
symmetric approach by estimating variance components directly while setting path 
coefficients to 1. We chose this approach as it has been shown to reduce type I errors and 
produce unbiased χ2 46.  

Narrow-sense twin heritability (twin-h2) estimates were defined as the ratio of the additive 
genetic variance over the total phenotypic variance: 

twin-h2 = !!
"

!!
""!#

" 

All models were fitted in Lavaan 47 without accounting for the mean structure of the data. 
Parameters were estimated via Maximum Likelihood with a Robust (MLR) estimator for 
standard error and fit indices. We validated our analyses by comparing estimates obtained in 
the standard statistical package OpenMx 48, both with and without mean structure, and give 
results for alternative estimators (see Fig. S11).  

We evaluated the goodness for each parcel by both relative and absolute fit indices. First, we 
assessed the relative fit index of the ACE, ADE, and AE, E models, compared to the saturated 
model by -2log-likelihood ratio test (LRT). The LRT is asymptotically χ2 distributed, 
approximately equal to the difference between the χ2 of the most parsimonious subtracted by 
the least parsimonious model. Models with a ∆χ2, with degrees of freedom equal to the 
difference in degrees of freedom between the two models, p<.05, were deemed to worsen the 
model fit and thus not selected. Parcels for which the biometric model fit was worse than the 
saturated model were not considered for further analysis. Given the use of a direct symmetric 
approach, we additionally restricted selected models which were found to be Heywood cases 
(i.e., negative variances or correlations higher than one 46). Selected models were further 
evaluated for their absolute fit by Comparative Fit Index (CFI) and Root Mean Square Error 
of Approximation (RMSEA). Following standard cutoffs, we retained only models with a 
“satisfactory” CFI >.90 and an RMSEA<.08. For G1, the final model across all parcels was 
selected based on two criteria: average fold-increase in twin-h2 estimates compared to the 
model not accounting for measurement error and the overall number of parcels passing the 
relative and absolute fit cutoffs.  

The final models were then re-run on the residualised T1w/T2wmii, GDi, and FCG1i controlled 
for the sex and the age of the individuals. The averaged MZ and DZ correlations were 
obtained by Fisher z-transforming the extracted phenotypic correlations from such best-

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted July 13, 2023. ; https://doi.org/10.1101/2023.07.13.548817doi: bioRxiv preprint 

https://doi.org/10.1101/2023.07.13.548817
http://creativecommons.org/licenses/by-nc-nd/4.0/


Bignardi et al. 

selected saturated model and transforming the z back to r. Similarly, the operations computed 
on the phenotypic correlations were carried out on the z-transformed values.  

Multivariate Multimodal Multigroup Cholesky Structural Equation Modelling 

We specified a Multivariate Multimodal Multigroup (MMM) Cholesky SEM of MZ and DZ 
parcel-wise T1w/T2wmi, GD, and FCG1 data. After the procedures described above, the 
measurement model accounting for intra-individual variability in FCG1 was selected 
(multimodal ranked AIC inference, LRT, CFI and RMSEA). We estimated variance 
components directly and set all path coefficients to 1, except for the ones originating from 
structural modalities to FCG1. This allowed us to freely estimate the contribution of genetic and 
environmental effects over variability in T1w/T2wmi to variability in parcel-wise error-free 
estimates for inter-FCG1. As a consequence of the model specification, the A  and E components 
for the inter-FCG1 now reflect genetic and non-genetic effects over variability in parcel-wise 
inter-individual unsystematic error-free FCG1 estimates after accounting for genetic and not 
genetic-effects shared with T1w/T2wmi or GD. For example, for the model including GD and 
FCG1, the total amount of repeatable variance in any parcel FCG1i is now decomposed into: 

𝜎#$%&'()*+#, =	𝜎-()*+#, 	+ 	𝜎.()*+#, 	+ 	𝛾-*/_()*+#, ∗ 	𝜎-*/#, 	+ 	𝛾.*/#_()*+#, ∗ 	𝜎.*/#,  

The direct relative contribution of each additive and genetic source can be calculated, 
following the pathway tracing rule, as follows: 

𝐴()*+# 		=
𝜎-()*+#, 	
𝜎#$%&'()*+#,  

𝐸()*+# 	=
𝜎.()*+#, 	
𝜎#$%&'()*+#,  

𝐴*/_()*+# 	=
𝛾-*/_()*+#, ∗ 	𝜎-*/#, 	

𝜎#$%&'()*+#,  

𝐸*/_()*+# 	=
𝛾.*/_()*+#, ∗ 	𝜎.*/#, 	

𝜎#$%&'()*+#,  

Similar to what was reported above, models were fitted in Lavaan using the MLR estimator. 
To improve interpretability, we standardized parcel-wise values before model fitting. 

Sensitivity analysis 

We quantified T1w/T2wmi, GD, and FCG1  Similarity Indices (SI). We obtained the SI by 
correlating each individual T1w/T2wmi , GD or FCG1 vector with respective S-A group-level 
modality vectors. For example, SIGDj for an individual j was obtained by correlating their GD 
with the group-level GD. Similarly, for the same individual j, SIFCG1j, was obtained by 
correlating their FCG1 at day 1 and at day 2 of scanning with the group-level FCG1. Similar to 
what is outline above for parcel-wise analysis, we went on to fit a measurement model to 
each SI FCG1i1 and FCG1i2 value. We then specified the same MMM Cholesky model and fit it 
to FCG1i1, FCG1i2,  and either T1w/T2wmi or GD SI data. To discount for possible whole brain 
volumetric confounding effects, we specified a SEM where variation in Intracranial Volume 
was assumed to act as a common cause of GD and FCG1 differences and fit it accordingly to 
GD, FCG1i1, and FCG1i2 SI data. 

Data availability 
 
We obtained human data from the open-access Human Connectome Project HCP S1200 
young adult sample. Data are available upon request 
at http://www.humanconnectome.org/. 
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Code availability 
 
All code will be available upon publication, including Lavaan scripts to compute 
measurement models and carry out univariate and multivariate twin analyses. Code and 
tutorial for functional gradient decomposition are available 
at https://brainspace.readthedocs.io/en/latest/pages/install.html. 
The code and tutorial to generate Geodesic Distance can be found 
at https://micapipe.readthedocs.io/en/latest/. 
Structural equation modelling and twin-based analysis have been done using the statistical 
package https://lavaan.ugent.be/. Comparison with standard statistical packages, 
OpenMx https://openmx.ssri.psu.edu/, to analyze twin data have been carried out thanks 
to the available scripts at https://hermine-maes.squarespace.com/. 
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