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Abstract  44 
The topological differentiation of sensorimotor and association cortical regions along a sensorimotor-45 
association (S-A) axis has undergone profound evolutionary change along the mammalian lineage. In 46 
humans, patterns of gene expression, microstructure, and functional connectivity have been shown to 47 
vary systematically along such S-A axis. Despite robust spatial relationships between these different 48 
neurobiological traits, whether common genetic pressures shape the S-A axis across traits remains 49 
poorly understood. In this study, we exploit observed pervasive inter-individual variation in the S-A axis 50 
to capture its genetic architecture and to study shared common genetic sources of structure-function 51 
relationships. To do so, we applied a structural equation modeling framework, which reduced the issue 52 
of measurement error heterogeneity across the cortex and its impact on structure-function relationship 53 
estimates. We then used genetic relatedness across pairs of twins and removed intra-individual 54 
differences to focus on the reliable inter-individual differences along the S-A functional axis. 55 
Notwithstanding robust spatial relationships and highly heritable inter-individual differences in S-A axis 56 
microstructure and functional organisation, and contrary to group-level findings, our results indicate 57 
distinct genetic effects across the different S-A axis properties. Together, our observations challenge 58 
the notion of a common genetic cause for the association between S-A axis structural and functional 59 
properties. Our approach highlights the diversity of genetic origins of brain features that co-vary along 60 
the S-A axis, which is key to interrogating inter-individual variability in brain organisation and its 61 
consequences on cognition.  62 
 63 
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Introduction 81 
The human brain supports perception and action but also abstract cognition (1, 2). This diversity of 82 
functions is thought to be reflected by the gradual dissociation between unimodal sensory and 83 
transmodal association cortical areas along a sensorimotor-association (S-A) axis (3). The S-A axis 84 
spans a vast array of neuroanatomical properties, including microstructural variation (myelination and 85 
cytoarchitecture) and inter-areal connectivity distance (1, 3–6). Here, sensory areas show increased 86 
microstructural differentiation, myelination, and, predominantly, short-range connections. In contrast, 87 
association areas show less differentiated microstructural profiles, reduced myelination, and a 88 
combination of short- and long-range connectivity profiles (5, 7, 8). The S-A axis underwent profound 89 
evolutionary changes (3), with an expansion of cortical association areas paralleled by a marked 90 
laminarisation of sensory areas in human primates (9, 10). Such structural re-organisation and 91 
evolutionary changes along the S-A axis (1, 6, 11, 12) may have provided the scaffold for functional 92 
differentiation (13, 14), allowing in turn for human-specific cognitive and behavioural flexibility (1, 13).  93 
 94 
In recent years, several discoveries have enhanced our understanding of the link between structural 95 
and functional features of the S-A axis. These findings have highlighted spatial associations between 96 
microarchitectonic differentiation (15) and cortical geometry (16) with intrinsic functional organisation 97 
(13, 17). For example, T1w/T2w maps derived from non-invasive Magnetic Resonance Imaging (MRI)—98 
indexing cortical microstructural differences—have been shown to relate strongly to gene transcriptional 99 
profiles and functional dissociation along the S-A axis. This suggests that a canonical genetic 100 
architecture may shape S-A axis structural organisation, in turn allowing for the differentiation of cortical 101 
function (6). However, despite well-documented strong associations at the group-level (3, 4, 6, 18), it is 102 
still unclear whether common genetic pressure across different structural and functional features 103 
influences S-A axis variability between individuals. Therefore, here we asked whether common genetic 104 
effects are expected to shape structural and functional properties of the S-A axis similarly or whether, 105 
alternatively, genetic sources on S-A properties are distinct. 106 
 107 
To answer our question, we first studied whether the S-A axis's structural and functional properties 108 
correlate. To do so, we shifted the focus of the analysis from the group to the individual level. First, we 109 
asked: do individual differences in structural properties of the S-A axis relate to differences in functional 110 
properties? In other words, we studied whether previously widely reported group averages can inform 111 
S-A axis associations at the individual level. Answering this question is a crucial step towards 112 
understanding the genetic architecture of the S-A axis, as individual differences can be further used as 113 
a window into the genetic basis of a trait (19). Specifically, we tested whether individual regional cortical 114 
microstructure (6) and structural cortico-cortical network proximity (20), captured by the geodesic 115 
distance of inter-connected regions across the cortical mantle (1, 20), relate to the well-known functional 116 
dissociations between sensory and transmodal association areas (1, 3). To account for the known issue 117 
of measurement error heterogeneity across the cortex (21) and its impact on association estimates (22), 118 
we applied and adapted measurement error models in the form of structural equation models (23, 24). 119 
This allowed us to tease apart unreliable intra-individual from reliable inter-individual variation in the 120 
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functional organisation of the S-A axis. We then moved to answer our main question: Are genetic effects 121 
on the S-A axis shared across structural and functional properties? Here, we analysed a genetic 122 
informative sample and quantified the extent of overlap across genetic effects on structural and 123 
functional properties of the S-A axis. Specifically, we used a twin-informed design to tease genetic 124 
overlaps between the S-A axis's structural and functional properties. Last, we evaluated the robustness 125 
of our results, both across subsamples, between regional and global cortical metrics, and between and 126 
within individuals' S-A axis properties. 127 
 128 
In summary, our study describes the specificity of genetic effects underlying the brain's different 129 
structural and functional properties. This can inform further studies on the genetic origins of fundamental 130 
principles of brain organisation and pave the way for research on the relationship between individual 131 
variability in brain organisation principles and cognitive-behavioural differences. 132 
 133 
Results 134 
To quantify structural and functional S-A axis properties, we combined microstructural and resting-state 135 
functional MRI (rsfMRI) data from the Human Connectome Project (HCP (25); N=992 adults; 529 136 
women, mean age 28 y; 22-37 y). We computed two structural metrics and one functional metric 137 
indexing the S-A axis:  138 
 139 

• Regional microstructure: we quantified regional microstructure indexing the differentiation 140 
between sensorimotor and association areas using the individuals’ mean intensity of regional 141 
T1w/T2w (T1w/T2wmi) in 400 parcels (6, 26) 142 

• Geodesic distance: we quantified regional cortico-cortical network proximity (20) by computing 143 
the Geodesic Distance (GD) between every cortical region and its corresponding functional 144 
network, averaging within each region to get parcel-wise estimates (27)  145 

• Functional gradient loadings: we quantified individuals’ functional S-A axis by obtaining the first 146 
component of the individual functional connectomes (FCG1) using diffusion map embedding (1) 147 
 148 

We started our analysis by testing whether associations between group-level averaged maps of 149 
structural S-A axis properties correlated with the functional S-A axis (Fig. 1A-C). By using a subsample 150 
of n = 482 adults (229 women, mean age 28 y; 22-37 y; a subsample obtained by excluding respective 151 
all twins included in the full HCP sample), we were able to replicate group-level findings between 152 
averaged T1w/T2wmi and FCG1, extending the results to GD and FCG1 (Fig. 1D-E).  153 
 154 

[Fig. 1 here] 155 
 156 
Pervasive inter-individual differences in the S-A axis of cortical organisation. Having estimated 157 
the extent of overlap between structural and functional S-A axis properties at the group-level, we shifted 158 
the focus to the individual level. Since group-level S-A axis can mask substantial individual variability 159 
(Fig. 2A), we asked: does individual variability in structural S-A axis properties relate to variability in S-160 
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A functional properties, as for group-level analysis (Fig. 2B)? By shifting analysis from group-level 161 
summary statistics to individual variability, we harnessed the fundamental distinction between intra- and 162 
inter-individual differences (28). The first is known to index unreliable and fluctuating variability within 163 
individuals over time, while the second indexes the reliable and stable part of the overall variability 164 
between individuals (Fig. 2C) (28). This distinction is crucial, as intra-individual variability can downward 165 
bias effect sizes, reduce statistical power (28), additionally downward biasing genetic estimates (29), 166 
all of the above heterogeneously across the whole cortex (21), and can, therefore, increase 167 
reproducibility issues (see (22) for details). We were able to make such a distinction by exploiting one 168 
of the strengths of the HCP design, which emphasises multiple resting-state fMRI sessions (across two 169 
days of scanning sessions, ~30 min each). This feature of the HCP design allowed us to discard 170 
unreliable intra-individual fluctuations in rsfMRI data from reliable inter-individual differences in the 171 
functional gradient. Precisely, we partition the inter-individual variance (σinter2FCG1i) from the overall 172 
observed variance in the functional gradient (σ2FCG1i for any parcel i) by applying a measurement error 173 
model ((23, 24) Fig. 2D, see Methods).  174 
 175 
Estimates obtained from the measurement error model indicate that 33% of the total variability in the 176 
functional gradient was, on average, accounted for by intra-individual variance (Fig. 2E) even when 177 
using individual functional gradients extracted from functional connectomes averaged across two days 178 
of rsfMRI sessions (totalling ~60 min of scanning session). In other words, estimates for the association 179 
between the functional gradient and other S-A axis properties (or any other variable) would be, on 180 
average, biased downward by a factor of bias(r-observed, r-true) = 0.82 (a lower bound calculated 181 
assuming perfect reliability for the other S-A axis property (22)). Second, we observed systematic 182 
differences in estimates obtained from the measurement models across functional cortical networks, 183 
F(6, 393) = 33.21, p < .001; η2 = 0.34, 95% CI [0.27, 1.00]), with estimates for parcel-wise inter-individual 184 
variances ranging from σinter-1142 = .39  to σinter-2942 = .89 (Figure 2D, SI Appendix, Fig. S1). In other 185 
words, bias is heterogeneous and expected to influence estimates across the cortex systematically. 186 

 187 
[Fig. 2 here] 188 

 189 
Individual differences in regional cortico-cortical network proximity, rather than microstructure, 190 
relate to the functional gradient of the S-A axis of cortical organisation. To simultaneously de-191 
attenuate the heterogenous downward biases and handle structural and functional S-A metrics, we 192 
used a Structural Equation Modeling (SEM) approach. Precisely, we specified a model in which the 193 
inter-individual differences in the functional gradient estimated via the measurement error model were 194 
directly tested for associations with microstructural profiles and geodesic distances parcel-wise data 195 
(Fig. 3A). Here, we note that we avoided making assumptions about the causal structure generating 196 
the possible correlations between structural and functional metrics. We simply limited ourselves to 197 
estimating the association between regional properties of the S-A axis. On the one end, conversely to 198 
group-level topographies, we found less than 2% of the 400 parcels to display a significant association 199 
between individuals' microstructural profiles and functional gradient loadings (Fig. 3B). These significant 200 
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associations were all negative, weak (-.20 > r > -.27), and spread across both hemispheres and the 201 
dorsal, ventral, and default-mode functional networks. Conversely, we found large overlaps between 202 
individual geodesic distances and functional gradient loadings (Fig. 3C), with 57% of the 400 parcels 203 
showing significant associations after Bonferroni correction. The directionality of the estimates for the 204 
association between individual regional geodesic distances and functional gradient loadings highlighted 205 
systematic differences across functional networks. Significant positive associations were preferentially 206 
clustered within the visual and the default mode (one sample t-test, two-sided,  t(21) = 5.82, p < .001, 207 
average r = .51, and t(53) = 4.04, p = .001, average r = .25), while negative associations where 208 
preferentially clustered within the somatomotor and ventral attention networks (one sample t-test, two-209 
sided, t(59) = -13.32, p < .001, average r = -.48, and t(27) = -8.14, p < .001, average r = -.40, 210 
respectively, all test corrected for Bonferroni). Estimates obtained from standard correlation analysis 211 
further confirmed that the SEM approach successfully de-attenuated measurement error bias (SI 212 
Appendix, Fig. S2). 213 
 214 

[Fig. 3 here] 215 
 216 
Genetic effects on regional S-A axis variability are substantial yet mostly distinct.  After having 217 
related inter-individual differences in structural and functional S-A axis properties, we asked whether 218 
genetic effects were mostly common or distinct across S-A axis properties. Here, we further exploited 219 
the HCP's family structure to partition the relationship between structural and functional properties of 220 
the S-A axis in common and distinct genetic sources. Precisely, by applying a multivariate twin design, 221 
we were able to partition genetic (σ2A;  A: additive) and unsystematic environmental (σ2E; E: Unique-222 
Environmental) sources of variability in microstructure, geodesic distances, and functional gradients 223 
loadings. (Here, we note that since intra-individual variability is partitioned in the E component of the 224 
model (30), this strategy made it also possible to discard further intra-individual sources of variance in 225 
structural metrics, even in the absence of repeated measures (29)). To do so, we focused our analysis 226 
on the twin HCP subsample, which includes both monozygotic (MZ) and dizygotic (DZ) twins (n = 328, 227 
195 MZ and 133 DZ individual twins, 124 and 88 women, respectively; mean age 29 y, range=22-35 y; 228 
see Methods for details on inclusion criteria). 229 
 230 
To partition sample variability (σ2p; p: S-A axis phenotypic property) within S-A modalities in σ2A and σ2E 231 
sources and further unpack genetic and environmental structure-function associations, we specified a 232 
multigroup multivariate model with only A and E components (Fig. 4A). Microstructural profiles, 233 
geodesic distances, and functional gradients loadings all displayed substantial heritability (h2twin), with 234 
mean h2twin =.43, sd =.11, mean h2twin =.34, sd =.11, and mean h2twin =.57, sd =.14, respectively. 235 
Consistent with previous work (24), a comparison of univariate models fitted to functional gradient 236 
loadings not accounting for measurement error confirmed that the inclusion of the measurement error 237 
model substantially boosted h2twin estimates of 54% relative to h2twin not accounting for intra-individual 238 
variance (univariate h2twin = .37, sd =.11 when not including a measurement error model, see SI 239 
Appendix, Fig. S3). However, notwithstanding such relatively high h2twin for both microstructural profiles 240 
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and functional gradient loadings, we found no significant additive genetic correlation between the two 241 
(all p > .05, Bonferroni corrected; Fig. 4B). This suggested little room for possible common genetic 242 
causes between microstructural intensity and functional gradient loadings S-A axis properties. 243 
Conversely, 14% of the parcels displayed significant additive genetic correlations between geodesic 244 
distances and functional gradient loadings (7% negative and 6% positive in directionality, respectively 245 
p < .05, Bonferroni corrected, Fig. 4C). The average magnitude of the genetic correlation (rA) was rA = 246 
-0.67, sd = .16, and rA = .64, sd = .16, for the negative and positive association, respectively. 247 
Furthermore, we found that for 30% of the parcels, complementary environmental effects mostly 248 
correlated between geodesic distances and functional gradient loadings.  249 
 250 

[Fig. 4 here] 251 
 252 
Associations between structural and functional properties of the S-A axis are robust across 253 
samples. To test for the robustness of the results discussed so far, we estimated the overlap of the 254 
significant regional genetic or environmental association in the genetically informative subsample with 255 
the significant regional associations obtained from the first subsample. Of the 104 parcels that displayed 256 
either or both significant genetic and environmental correlations between geodesic distances and 257 
functional gradient loadings in the genetically informative sample, 99 also displayed a significant 258 
correlation in the first subsample. In other words, we found a 95% overlap between subsamples. These 259 
results show that regional results were robust across two subsamples drawn from the HCP.  260 
 261 
Genetic and environmental associations extend beyond regional S-A axis variability. As a final 262 
analysis, we asked whether associations between geodesic distances and functional gradients were 263 
generalisable beyond regional differences. First, we quantified global S-A axis properties variability as 264 
the overall Median Absolute Deviation (MAD) across all parcels within individuals. Within an individual, 265 
higher MAD scores indicate a larger dispersion in S-A axis values across the cortex. Once more, we 266 
found no significant genetic or environmental associations between microstructural profile intensity and 267 
functional gradients. Yet, we found a substantial negative genetic correlation between the geodesic 268 
distances and functional gradient between individuals’ S-A axis MAD scores (rA = -.78, 95% CI [-1.19, 269 
-.34], CFI = .93, RMSEA = 0.04; Fig. 5A). Additionally, to get a complementary estimate of global S-A 270 
axis variability, we quantified microstructural profile intensity, geodesic distance, and functional gradient 271 
ϼ similarity indices. These indices assessed how similar S-A axis properties in one individual are 272 
compared to the average. Consistent with regional and global variances differences, ϼ similarity indices 273 
in geodesic distance, rather than microstructure, showed strong and positive genetic correlations with 274 
global differences in the functional gradient (rA = .61, 95% CI [.43, .79], CFI = .95, RMSEA = 0.04; Fig. 275 
5B). Findings were robust to ICV as a possible common cause of S-A axis structure-function covariance 276 
(SI Appendix, Fig. S4)  277 
 278 

[Fig. 5 here] 279 
 280 
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Discussion 281 
Notwithstanding the relatively high heritability of the S-A axis properties as shown in this study, 282 
theoretical models of S-A axis development and evolution (3), and group-level relationships between 283 
patterns of gene expression, cortical microstructure, and functional differentiation of sensorimotor to 284 
transmodal-association areas (6), we found little evidence for shared genetic effects between 285 
microstructural and functional S-A axis similarities. Precisely, we found little evidence of phenotypic and 286 
an absence of evidence for genetic or environmental associations between cortical microstructure (as 287 
measured by T1w/T2w) and S-A function (as measured by the principal gradient of functional 288 
connectivity) of the cortex. These results, which accounted for measurement error and held across 289 
regional and global cortical metrics and between and within individuals, do not support the hypothesis 290 
of substantial common genetic pressure on S-A axis microstructural and functional similarities.  291 
 292 
At the same time, our results showed substantial genetic and environmental associations between 293 
individual-level differences in regional and global cortico-cortical network proximity (as measured by the 294 
geodesic distance of inter-connected regions across the cortical mantle) and function. These latter 295 
results align with theories emphasising geometric constraints of brain function yet do not fully align with 296 
previous and current group-level estimates. While group-level associations indicate a positive 297 
relationship between cortico-cortical network proximity, our results indicate a mixture of positive and 298 
negative relationships at the individual level of analysis (the former preferentially clustered within the 299 
visual and default mode network, the latter with the somatomotor and the ventral attention network). 300 
Moreover, we found negative, not positive, genetic correlations when shifting from local to global 301 
association, as we did when analysing overall within-individual S-A axis dispersion. This suggests that 302 
genetic differences between people that tend to co-occur with decreased variation in geodesic distances 303 
across the cortex also tend to co-occur with more dispersed functional gradients. These results, in line 304 
with the results obtained by analysing microstructural differences between individuals, collectively 305 
reveal that group-level estimates, such as the ones previously reported in the literature, might mask 306 
pervasive inter-individual differences. These inter-individual differences, in turn, might display different 307 
patterns of associations to the one depicted at the group level. 308 
 309 
Based on group-level associations, previous work suggested that cortical maturation of diverse 310 
neurobiological properties proceeds along a conformed evolutionarily and developmentally rooted S-A 311 
axis of cortical organisation (3, 4). However, our results indicate that genetic variants within a population 312 
are selectively associated with some properties (e.g., function and cortico-cortical network proximity) 313 
but not others (e.g., microstructure). This selective distinctness of the genetic correlates of structural 314 
and functional properties of the S-A axis might indicate that common genetic pressures influencing the 315 
development of the S-A axis across cortical properties reached fixation in the population and, therefore, 316 
are not detectable using analysis at the level of the individuals. Another possible explanation for our 317 
results may lie in the physiological and cognitive implication of the resting state signal and downstream 318 
effects on its functional gradient. It is possible that, although generally resting state networks are 319 
topologically organised along the S-A axes, their individual fluctuations reflect physiological variability 320 
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not captured by its microstructural scaffold (31). Indeed, various works have reported network 321 
integration and segregation to align with neural gain, which could be explained by alterations in 322 
neuromodulatory systems (32, 33). 323 
 324 
While these findings may provide little information on the shared genetic pressure that gives rise to the 325 
development of the S-A axis at the group level, they could be particularly relevant for studies on the 326 
origin of differences between individuals, such as in various neuropsychiatric disorders or work on brain-327 
behaviour associations in general. For example, recent studies noted a compression of the S-A 328 
functional axis in individuals with autism (27), schizophrenia (34), and depression (35), highlighting an 329 
association between atypical cortical functional segregation and psychiatric conditions. Complementing 330 
the latter studies with informative genetic models of structural and functional S-A axis variability would 331 
allow us to see whether and which genetic effects on S-A variability might partially explain psychiatric 332 
conditions, facilitating mechanistic insights in notoriously complex phenotypes. We also note that these 333 
models can be easily applied to many neurobiological properties (e.g., resting-state fMRI, see (24)) to 334 
enhance current brain-behaviour mapping efforts (36). To facilitate such endeavours, we have made 335 
all the code available and provided all SEM functions in R and lavaan syntax to apply multivariate twin 336 
and measurement error modelling. 337 
 338 
The measurement error modeling approach can successfully tease apart unstable intra-individual 339 
differences from stable inter-individual differences, and this effect can have a substantial downstream 340 
impact on estimates. For example, applying the measurement error modeling approach, in line with 341 
previous results, resulted in a nearly 1.5-fold increase in heritability. We foresee that this approach 342 
could have further direct application in the undergoing research on the origins of psychiatric disorders 343 
and brain-behaviour studies and in the analysis of the genomic architecture of principles of brain 344 
organisation, for example, by mitigating the impact of measurement error heterogeneity on estimates. 345 
Indeed, when individual variability in the S-A axis is the predictor of interest, such as in brain-behaviour 346 
studies, applying any measurement error model is expected to deattenuate downwardly biased 347 
estimates (22, 28, 37, 38). Moreover, genome-wide association studies could easily implement 348 
genome-wide or genomic structural equation modeling (39, 40) extension of our approach to discard 349 
unstable and unreliable variance, overcoming attenuation biases in single nucleotide polymorphism to 350 
phenotype association (e.g., similarly to what has been done for polygenic indices based analyses (38)). 351 
However, even when these tools are applied to overcome attenuation biases in brain-behaviour 352 
association studies, associations should still be expected to be small (36). Therefore, caution should 353 
still be applied when designing a study.  354 
 355 
It is worth noting that our study comes with the limitation of an absence of repeated measures for 356 
structural metrics. Although applying a measurement error model allowed us to disentangle intra- to 357 
inter-individual variability in functional gradient loadings, we could not account for the differences in 358 
structural properties within individuals. This limitation may have attenuated the estimated relationship 359 
between structure and function. However, the nature of the metrics and the twin design employed to 360 
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elucidate differences between individuals should mitigate the impact of such a lack of repeated 361 
structural metrics (29). By applying the classical twin design, we were able to further partition unstable 362 
measurement error in the environmental (E) component of the model, which minimised any possible 363 
bias introduced by hypothetical measurement error, at least for the additive genetic (A) correlations (rA) 364 
estimates.  365 
 366 
In sum, our findings reveal that group-level results can overshadow substantial inter-individual 367 
differences within and between different neurobiological properties. Focusing on these previously 368 
underappreciated differences, we could highlight selective associations of individual variation in S-A 369 
axis cortical structure and function. These inter-individual differences and associations open a window 370 
into genetic sources of S-A axis structure and function, which we reveal to be selectively distinct. These 371 
results underscore the complex interplay between the S-A axis's structural and intrinsic functional 372 
properties, providing the readers with a set of tools that can be used to test their potential differential 373 
roles in shaping cognition. 374 
 375 
Materials and Methods 376 
Sample. We used data from the Human Connectome Project (HCP) S1200 release. The HCP includes 377 
data from 1206 individuals (656 women) that comprise 298 Monozygotic (MZ) twins, 188 Dizygotic (DZ) 378 
twins, and 720 singletons, with mean age ± sd = 28.8 ± 3.7 years (age range = 22-37 years). Informed 379 
consent for all individuals was obtained by HCP, and our data usage was approved by HCP and 380 
complied with all relevant ethical regulations for working with human participants (see (13, 25, 41)). The 381 
primary participant pool comes from individuals born in Missouri to families that include twins, sampled 382 
as healthy representatives of ethnic and socioeconomic diversity of US individuals, based on data from 383 
the Missouri Department of Health and Senior Services Bureau of Vital Records. We followed standard 384 
guidelines for inclusion criteria as described elsewhere (13). Our sample, in line with Valk et al., (13) 385 
comprised 992 (529 women) individuals. The first subsample of n = 482 (229 women) was created by 386 
excluding all individual twins. The second genetically informative subsample of n = 328 (212 women) 387 
was created by including only individual twins with genotyped zygosity matching self-reported zygosity 388 
(195 MZ and 133 DZ; 124 women and 88 women, respectively). 389 
 390 
Functional imaging. Functional connectivity matrices were based on four 14 min 33 s of functional 391 
Magnetic Resonance Imaging (fMRI) data acquired over two sessions, spaced two days apart, through 392 
the HCP, which underwent HCP’s minimal preprocessing. For each individual, four functional 393 
connectivity matrices were computed using the minimally preprocessed, spatially normalised resting-394 
state fMRI (rsfMRI) scans, which were co-registered using MSMAll to template HCP 32k_LR surface 395 
space. 32k_LR surface space consists of 32,492 total nodes per hemisphere (59,412 excluding the 396 
medial wall). We computed four functional connectivity matrices per individual from the average time 397 
series extracted in each of the 400 Schaefer cortical parcels. The individual functional connectomes 398 
were generated by averaging preprocessed time series within nodes, Pearson correlating nodal time 399 
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series and converting them to Fisher-z scores. The average functional connectomes were obtained by 400 
averaging functional connectomes within individuals (i.e., between sessions) and between individuals.   401 

Structural imaging. MRI protocols of the HCP have been previously described (25, 41). MRI data were 402 
acquired originally on the same day on the HCP’s custom 3T Siemens Skyra equipped with a 32-403 
channel head coil. T1w images with identical parameters were acquired using a 3D-MP-RAGE 404 
sequence over 7 min 40 s (0.7 mm isovoxels, matrix = 320 × 320, 256 sagittal slices; TR = 2400 ms, 405 
TE = 2.14 ms, TI = 1000 ms, flip angle = 8°; iPAT = 2). T2w images were acquired using a 3D T2-406 
SPACE sequence with identical geometry over 8 min and 24 s (TR = 3200 ms, TE = 565 ms, variable 407 
flip angle; iPAT = 2). We followed the preprocessing steps outlined in Valk et al. (13). 408 

Parcellation and functional networks. We used the Schaefer group-level hard-parcellation, originally 409 
obtained by a gradient-weighted Markov random field model integrating local gradient and global 410 
similarity approaches (26). To stratify results within established cortical functionally coupled networks, 411 
we used the seven Yeo-Krienen networks (42). 412 

Microstructural profiles (T1w/T2wmi). We used T1w/T2w imaging myelin-sensitive contrast from the 413 
HCP minimal processing pipeline, which uses the T2w to correct for inhomogeneities in the T1w image 414 
to estimate mean intensity T1w/T2w microstructural profiles (T1w/T2wmi). T1w/T2wmi has been shown 415 
to map to model-based tract-tracing histological data in macaque, estimate intracortical myelin content, 416 
and thus approximate architectural complexity and cortical hierarchy (6).  417 

Geodesic distance (GD). Individual Geodesic Distances (GD) were computed using the Micapipe 418 
toolbox (20). Briefly, we computed GD between each region and their top 10% of maximally functionally 419 
connected regions along each individual native cortical midsurface. We further averaged within regions 420 
to obtain a parcel-wise value and improve computation performance. Micapipe implements the Dijkstra 421 
algorithm (43) (further details can be found in (20)). 422 

Functional gradient loadings (FCG1). We sequentially averaged FCs, first within days, resulting in two 423 
FCs per individual, and then between days, resulting in one FC per individual. We then extracted the 424 
three first components from the two sequentially averaged and one averaged FCs, using the Python 425 
package BrainSpace (44). Extraction of the first eigenvector followed standard procedures, with the 426 
original individual FCs set at a connection density of 10% (i.e., the FCs were made sparse by setting a 427 
sparsity threshold of 90%). The first ten eigenvectors were then obtained by decomposing the FCs by 428 
diffusion map embedding, a robust non-linear manifold learning technique (1). To aid comparability 429 
across individuals, we aligned individual eigenvectors to the template eigenvector by Procrustes 430 
rotation (45). The template functional gradient was directly extracted from the overall mean FC matrix. 431 

Group-level associations analysis. We computed Spearman rank-order correlations (ϼ) between the 432 
structural (T1w/T2wmi and GD) and functional (FCG1) S-A axis group-level properties. Group-level 433 
properties were obtained from the average of the individual structural S-A properties (i.e., average 434 
T1w/T2wmi and GD), and from the decomposition of the average FC (i.e., principal gradient obtained 435 
via diffusion map embedding of the average FC).  436 
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Measurement model of error in individual variability of the functional S-A axis. To partition stable 437 
inter-individual variability in functional gradient loading, we adapted previous measurement error 438 
models to rsfMRI to gradients (23, 24). The intuition behind such a modeling strategy is simple. Suppose 439 
parcel-wise values are measured without error and are stable over a reasonable period of time (e.g., 440 
one day). In that case, the correlations across individuals between the values obtained across two time 441 
points will equal 1. If the correlations deviate from 1 instead, regional values will be measured with 442 
some error, with bigger deviations corresponding to higher error or fluctuation over time. When errors, 443 
or changes over time, are present, we can use the measurement error model to estimate what stays 444 
constant across time, indexing the “true” regional values. Across the manuscript, for correctness, since 445 
“error” variance can include meaningful, yet unstable, fluctuation in rsfMRI, while “true” variance can 446 
also consist of systematic measurement error across sessions, we refer to the former term as intra-447 
individual and the latter as inter-individual variability (28). First, we fit a measurement model to parcel-448 
wise functional gradient loadings averaged within days. In line with Teeuw et al. (24), we did not 449 
constrain intra-individual variance components to be equal across days of scanning sessions. We 450 
performed model fitting in lavaan (44) after standardising observed variables (i.e., std.ov = T). We then 451 
used model estimates obtained for the variances of the latent and observed components. Using 452 
Spearman-Brown correction, we computed the averaged proportion of stable inter-individual variance 453 
in functional gradient loadings across days as the intra-class correlation (ICC) (46). For each parcel i, 454 
the ICC was calculated as follows: 455 

ICC(2, 𝑘)(") =	
k ∗ ICC(2,1)(")

1 + (𝑘 − 1) ∗ ICC(2,1)(")
 456 

Where k is a constant equal to the number of measures (i.e., k = 2) and the ICC(2,1)(i) is calculated as 457 
follows: 458 

ICC(2,1)(") =	
σ"$%&'(")(

σ"$%&'(")( + (
σ)*"$%'+(")( +	σ(*"$%'+(")(

2 )
 459 

ICC(2,k)(i) estimates the proportion of inter-individual variance over the total variance, σinter2(i), in the 460 
functional loadings as if they were obtained from the average of the two scanning sessions. The 461 
proportion of intra-individual variance for a parcel i, σintra2(i), is obtained simply by subtracting the 462 
ICC(2,k)(i) from 1.  463 

The expected bias for any parcel i was calculated following Tiego et al. (22):   464 

bias(") =	4𝑅,,, ∗ 𝑅./0),./0)(") 465 

Where Rp,p, the reliability for the structural S-A axis property p (e.g., T1w/T2wmi), was set to be equal 466 
to 1 across all parcels, and RFCG1,FCG1(i), the reliability of parcel-wise value for the functional gradient 467 
loading, was calculated as ICC(2,k)(i). 468 
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Structural Measurement Error Equation Modeling. We used Structural Equation Modeling (SEM) to 469 
estimate correlations between structural (i.e., T1w/T2wmi(i) ,GD(i))  and functional (i.e, FCG1(i))  S-A 470 
modalities. Each multivariate model simultaneously accounted for intra-individual variances by including 471 
the measurement error model.  All models were fitted in lavaan (47) after standardising all observed 472 
variables (i.e., std.ov = T). Prior to model fitting, sex and age were regressed from parcel-wise S-A axis 473 
values using the function umx::umx_residualize() (48). Structural equation models were fit to residual 474 
scores. We assumed missing data to be missed at random and followed parameters’ estimation via full-475 
information Maximum Likelihood (i.e., missing = “ML”).  476 

Twin-informed Multivariate Structural Equation Modeling. We used multigroup SEM to partition 477 
parcel-wise variability in structural (σ2T1w/T2wmi(i), σ2GD(i)) and functional (σinter2(i))  S-A modalities into 478 
either additive genetic (σ2A) and unsystematic environmental (σ2E) sources of variance. Structural 479 
equation models were fit to T1w/T2wmii, GDi, and FCG1i1 (day 1) and FCG1i2 (day 2) data, grouped by 480 
zygosity (i.e., two groups). The model specification was informed by the multivariate twin design (49).  481 
Briefly, monozygotic (MZ) twins are ~100 % genetically identical, coming from the same fertilised egg. 482 
In contrast, dizygotic (DZ) twins are, on average, only 50% additively genetically similar regarding allelic 483 
variants coming from two different fertilised eggs. Thus, the correlation between the additive genetic 484 
component (A) is set to be equal to 1 for MZ while .5 for DZ. In contrast, each twin's unique environment 485 
(E) component will be unique; therefore, their correlation will be equal to 0. In total, we fit one 486 
multivariate AE model per parcel. Following the measurement error procedure outlined above and (24), 487 
a common pathway measurement error model was included in the specification of the multigroup SEM. 488 
As such, each multivariate model simultaneously accounted for intra-individual variance. We employed 489 
the direct symmetric approach by estimating variance components directly while setting path 490 
coefficients to 1 (with the exception of the measurement model, for which we fixed the variance to be 491 
equal to 1, and estimated the path coefficients, instead). We chose this approach as it has been shown 492 
to reduce type I errors and produce asymptotically unbiased χ2 (50).  493 

All models were fitted in lavaan (47), with standardisation of observed variables before model fitting 494 
(i.e., std.ov = T). Similarly to what was reported above, to control for the effect of age and sex on S-A 495 
axis properties, we residualised parcel-wise variables prior to modeling using the function 496 
umx::umx_residualize() (48). Residuals were used as observed variables in later twin modeling. We 497 
estimated parameters via full-information Maximum Likelihood (i.e., missing = “ML”) and evaluated the 498 
goodness of fit for each parcel by comparative fit index (CFI) and root mean square error of 499 
approximation (RMSEA) scores. Following standard cut-offs (24), we retained only models with a 500 
“satisfactory” CFI>.90 and an RMSEA<.08.  Narrow-sense twin heritability (h2twin) estimates for each 501 
parcel i were defined as the ratio of the additive genetic variance over the sum of the additive genetic 502 
and environmental variances: 503 

h2twin-p(i) = 
1!"($)
&

1!"($)
& 21'"($)

&  504 
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Where 𝜎34(5)(  is the additive genetic variance for the S-A axis parcel-wise value for the given property p 505 

(e.g., GD). For functional gradient loadings, the heritability was calculated as  506 

h2twin-inter(i) = σ6"$%&'(")(    507 

After imposing the equality constrain on the common factor FCG1inter(i) 508 

σ6"$%&'(")( + σ7"$%&'(")( = 1 509 

Genetic correlations (rA) were calculated as: 510 

rA = 
1!"($,!"&$

√	1!"($
& ∗1!"&$

&  511 

Where 𝜎34,34( is the additive genetic covariance between two S-A axis property p1 and p2 (e.g., GD 512 
and T1w/T2wmi). Environmental correlations were calculated similarly to rA but using environmental 513 
variance and covariances estimates.  514 

Generalisation beyond regional associations. For each individual, we obtain two metrics for 515 
structural and functional S-A axis properties (i.e., a total of six measures per individual) : 516 

Overall within-individual Median Absolute Deviation: we quantified the spread of the regional values 517 
across the cortex by computing within-individual Median Absolute Deviation (MAD) of microstructure, 518 
geodesic distances, and functional gradient loadings. MAD is a robust univariate measure of statistical 519 
dispersion and is simply calculated as follows: 520 

𝑀𝐴𝐷4; = 𝑚𝑒𝑑(=𝑝4;5 −𝑚𝑒𝑑?𝑝4;@=) 521 

Where pij is the parcel-wise value for a property p, an individual j, and a parcel I and med is the median.    522 

ϼ similarity index: we obtained the similarity index by estimating the Spearman rank (ϼ) correlations 523 
between each individual microstructure, cortico-cortical network proximity, and functional gradient 524 
loadings with the respective S-A group-level modality vectors. For example, the ϼ similarity index for the 525 
cortico-cortical network proximity for an individual j was obtained by correlating their GD with the group-526 
level GD. Similarly, for the same individual j, the similarity index for their functional gradient loading was 527 
obtained by correlating their FCG1 on day 1 and on day 2 of scanning with the group-level FCG1.  528 

Similar to what is outlined above for regional analysis, we fit two multivariate AE models, one per metric. 529 
Before model fitting, ϼ similarity indices were first Fisher-z transformed. To recapitulate regional analysis 530 
as closely as possible within the multivariate model, we also included the measurement error model to 531 
overall within-individual MAD and ϼ similarity index functional gradient loadings obtained on days 1 and 532 
2 of scanning sessions. Note that standardised coefficients are obtained using the 533 
lavaan::standardizedSolution() function. As a final sensitivity analysis, to discount individuals’ whole 534 
brain volume as a possible confounding effect of the relationship between SA axis structure-function 535 
associations, we additionally included total Intra-Cranial volume (ICV). Precisely, we followed a two-536 
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step procedure to discount ICV as a possible common cause. First, we regressed out ICV from overall 537 
within-individual MAD and Fisher-z transformed ϼ similarity indices for all S-A axis properties. We then 538 
re-fit the exact multivariate twin models to the residuals. 539 

 540 
Data availability 541 
We obtained human data from the open-access Human Connectome Project (HCP) S1200 young 542 
adult sample. HCP Young Adult data are available at https://www.humanconnectome.org/study/hcp-543 
young-adult. Supporting Files 1-5 with summary statistics can be found at 544 
https://github.com/giacomobignardi/h2_SA_axis/tree/main/SI. 545 
 546 
Code availability 547 
All code is available and can be found at https://github.com/giacomobignardi/h2_SA_axis . SEM and 548 
twin-based analysis have been done using the statistical package latent variable analysis (lavaan) 549 
https://lavaan.ugent.be/. The function to apply the measurement error model (meermo) can be found 550 
here https://github.com/giacomobignardi/h2_SA_axis/tree/main/R/functions/meermo. lavaan syntax for 551 
latent variable analysis of twin data (lavaantwda) can be found following the repository 552 
https://github.com/giacomobignardi/h2_SA_axis/tree/main/R/functions/lavaantwda. An introduction to 553 
twin modeling using lavaan can be found at https://rpubs.com/MichelNivard/798608. Code and tutorial 554 
for functional gradient decomposition of functional connectomes are available 555 
at https://brainspace.readthedocs.io/en/latest/pages/install.html. The code and tutorial to generate 556 
geodesic distances can be found at https://micapipe.readthedocs.io/en/latest/.  557 
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Figures 691 
 692 

 693 
Figure 1. Structural and functional S-A axes strongly correlate at the group-level. Structural (A-694 
B) and functional (C) indices of Sensorimotor-Association (S-A) axes plotted on inflated cortical 695 
surfaces (51). Values represent averages of individual T1w/T2w mean intensity profiles (A; T1w/T2wmi), 696 
averages of individual Geodesic Distances (B; GD), and functional gradients loadings (C; FCG1) 697 
extracted from the average of individual functional connectomes across 400 cortical regions. (D) 698 
Structural indices are strongly associated with functional indices of the S-A axis; Spearman ϼ=-.61 and 699 
ϼ=.75 between T1w/T2wmi and FCG1, and GD and FCG1, respectively; all p<.05). Each dot represents a 700 
regional value; the colour represents Yeo-Krienen 7 network membership. (E) Conceptual 701 
representation of group-level analysis. Note that individual and regional information is lost in favour of 702 
group-level results.  703 
  704 
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 705 
Figure 2. Pervasive inter-individual differences in the S-A axis of functional connectivity. (A) 706 
group-level estimates (black contour) overshadow pervasive individual differences in S-A axis 707 
properties. (B) The shift between levels of analyses: from group-level (grey square) to between-708 
individuals (coloured squares); The gradient square conceptually captures panel A. (C) Conceptual and 709 
formal measurement error model to partition, for any parcel i, variance in the functional gradient loadings 710 
into intra- (σd-intra(i)2, for regional values measured at day 1 or 2 of the testing session, i.e., squares) and 711 
inter- (σinter(i)2, for the latent component, i.e., circle) individual variance. Parameter estimates for any 712 
parcel i can be found in Supporting File 1. (D) The proportion of intra- and inter-individual variance in 713 
the functional network across Yeo-Krienen functional networks: the horizontal line displays the median; 714 
lower and upper hinges correspond to the first and third quartile; the whisker extends from the hinge to 715 
the largest/lower value no further than 1.5 * interquartile range from the hinge. Note that across all 716 
parcels, observed variance includes substantial inter-individual variation. Notes on measurement 717 
model: Squares represent the measured phenotypes; The circle is the latent component; the double-718 
headed arrows within the circle represent the variance associated with the latent components; one-719 
headed arrows are the paths (here all set to 1). 720 
 721 
  722 
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 723 
Figure 3.  Structural and functional S-A axes selectively correlate between individuals. (A) 724 
Simplified structural measurement error model to estimate the correlation between S-A axis properties 725 
considering the distinction between intra- and inter-individual differences in functional gradient loading 726 
variability. Observed parcel-wise values and latent components are standardised before model fitting. 727 
(B-C) Summary for the standardised estimates on the inflated cortical surface (51) from the structural 728 
measurement error model indicates little and weak overlaps between microstructural intensity 729 
(T1w/T2wmi)  and functional gradient loadings (FCG1) inter-individual differences but large and highly 730 
significant (p<.05 corrected for Bonferroni comparisons) overlaps between functional gradient loadings 731 
and geodesic distances (GD). All parameter estimates for any parcel i, including the covariances 732 
between T1w/T2wmi and GD that were not the focus of the current study, can be found in Supporting 733 
File 2. Notes on structural equation models: double-headed arrows between circles represent 734 
covariances; here, path coefficients for the measurement error model are estimated (λ). Other 735 
abbreviations and symbols are as in Figure 2. 736 
  737 
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 738 
 739 

Figure 4.  Genetic sources of the S-A axis' structural and functional properties are selectively 740 
distinct. (A) Simplified graphical representation of the multivariate twin-informed SEM. All parameter 741 
estimates for any parcel i can be found in Supporting File 3. (B-C) simplified summary for the significant 742 
additive genetic correlations (rA) across S-A axis properties on the inflated cortical surface (46) indicates 743 
only significant genetic correlations between cortico-cortical network proximity, as measured by 744 
geodesic distances (GD) and functional gradients loadings (FCG1). Note that since we report here 745 
(average) standardised path coefficient estimates, the double-headed arrow between the two additive 746 
genetic components can now be interpreted as rA. rA estimates can be found in Supporting Files 4-5 (B-747 
C, respectively). Notes on structural equation models: additional circles represent latent additive genetic 748 
and environmental components; Double-headed arrows between circles represent genetic and 749 
environmental covariances. Where not noted, path coefficients are set to 1. Other abbreviations and 750 
symbols are as in Figure 2. 751 

752 
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 753 
Figure 5. Findings extend beyond regional S-A axis associations. (A) Simplified graphical 754 
representation of the multivariate twin-informed SEM for overall within-individual Median Absolute 755 
Deviations (MAD). Note the strong but negative significant associations between the latent additive 756 
genetic components underlying geodesic distances (GD; centre) and functional gradient loadings (FCG1; 757 
right). (B) Simplified graphical representation of the multivariate twin-informed SEM for ϼ similarity 758 
indices (Fisher-z transformed). As for the model reported in panel A, the only significant associations 759 
are found between GD and FCG1. * p < .05. Notes on structural equation models: abbreviations and 760 
symbols are as in Fig.  4. Here, double-headed arrows between latent variables indicate correlations 761 
(since we report standardised solutions). 762 
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