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Abstract Chemoarchitecture, the heterogeneous distribution of neurotransmitter transporter and 
receptor molecules, is a relevant component of structure–function relationships in the human brain. 
Here, we studied the organization of the receptome, a measure of interareal chemoarchitectural 
similarity, derived from positron- emission tomography imaging studies of 19 different neurotrans-
mitter transporters and receptors. Nonlinear dimensionality reduction revealed three main spatial 
gradients of cortical chemoarchitectural similarity – a centro- temporal gradient, an occipito- frontal 
gradient, and a temporo- occipital gradient. In subcortical nuclei, chemoarchitectural similarity distin-
guished functional communities and delineated a striato- thalamic axis. Overall, the cortical recep-
tome shared key organizational traits with functional and structural brain anatomy, with node- level 
correspondence to functional, microstructural, and diffusion MRI- based measures decreasing along 
a primary- to- transmodal axis. Relative to primary and paralimbic regions, unimodal and heteromodal 
regions showed higher receptomic diversification, possibly supporting functional flexibility.

Editor's evaluation
This work provides a valuable structural and functional characterization of the neurotransmitter's 
spatial distribution heterogeneity in cortical and subcortical regions. The authors report a systematic 
description and annotation of a new ‘layer’ of brain organization that has been relatively poorly inte-
grated with the wider neuroimaging literature to date. In sum, this article has the potential to be of 
great interest to a wide audience in neurosciences.

Introduction
Uncovering how the anatomy of the human brain supports its function is a long- standing goal of 
neuroscientific research (Suárez et al., 2020). Histological mapping studies found that brain areas 
vary substantially in cellular composition and established a link between cytoarchitectural and func-
tional diversity (Brodmann, 1909; von Koskinas and Koskinas, 1925; Vogt and Vogt, 1919). Next 
to cellular composition, the brain’s chemoarchitecture, the distribution of neurotransmitter receptor 
and transporter molecules (NTRM) across the cortical mantle, is a similarly important mode of brain 
neurobiology. Neurotransmitter receptors show a heterogeneous distribution throughout the cortex, 
closely related to both vertical (laminar) and horizontal cyto- and myeloarchitectural composition, 
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as shown using postmortem autoradiographical receptor labeling (Eickhoff et al., 2007; Zilles and 
Amunts, 2009). Receptor distributions recapitulate histology- defined cortical areas, but also organize 
different cortical areas into neurochemical families and further subdivide homogeneous cytoarchitec-
tural regions (Zilles and Amunts, 2009; Zilles and Palomero- Gallagher, 2001). Changes in localized 
brain function are reflected by changes in receptor distributions, as demonstrated in the changes of 
multiple receptor densities at the border between primary (V1) and secondary (V2) visual cortex (Eick-
hoff et al., 2008; Zilles et al., 2004). Crucially, brain areas sharing similar functionalities also display 
similarities in the density profiles of multiple neurotransmitter receptor types, the so- called receptor 
‘fingerprint’ (Zilles and Amunts, 2009; Zilles et al., 2004; Zilles et al., 2002; Morosan et al., 2005). 
For example, receptor fingerprints delineate sensory from association cortices (Dehaene et al., 2005) 
and provide a common molecular basis of areas involved in language comprehension (Zilles et al., 
2015), strongly indicating receptor fingerprints as key features supporting functional specialization. 
Therefore, dissecting the brain’s chemoarchitectural landscape could be crucial in understanding struc-
ture–function links in the human brain. Comprehensive analysis of receptor fingerprints has mostly 
been limited to autoradiography experiments in postmortem brain slices. Recently, multisite efforts 
agglomerated large- scale open- access datasets of whole- brain NTRM density distributions derived 
from positron- emission tomography studies, enabling the in vivo study of chemoarchitecture (Hansen 
et al., 2022; Dukart et al., 2021). Using this resource, Hansen et al. delineated associations between 
NTRM density profiles and oscillatory neural dynamics, meta- analytical studies of functional activation, 
as well as disease- associated cortical abnormality maps. Importantly, they showed that brain regions 
in the same resting- state functional connectivity (FC) networks as well as structurally connected brain 
regions display increased chemoarchitectural similarities (Hansen et al., 2022), replicating structure–
function relationships evident from autoradiography studies (Zilles and Amunts, 2009).

These findings, along with the implications of receptor fingerprints in functional specialization, 
warrant the study of whole- brain, in vivo imaging- derived chemoarchitectural anatomy of the brain. 
An improved understanding of organizational principles of the neurotransmission landscape could 
prove critical for basic neuroscience, but also benefit clinical medicine. NTRMs are highly relevant 
in mental health care, as an extensive body of research links alterations in NTRM expression and 
distribution patterns to psychiatric diseases (Nautiyal and Hen, 2017; Seeman, 2013; Quah et al., 
2020; Lydiard, 2003). Additionally, most psychotropic drugs manipulate the brain’s neurotransmis-
sion landscape and are effective and reliable pillars in the treatment of psychiatric diseases (Cipriani 
et al., 2018; Huhn et al., 2019; Soomro et al., 2008; Geddes and Miklowitz, 2013), although their 
mechanisms of action are often incompletely understood. Complementary, clinical phenotypes are 
associated with alterations in multiple neurotransmitter systems (Moncrieff et al., 2022; Kaltenboeck 
and Harmer, 2018; Kesby et al., 2018). Characterizing the spatial organization of chemoarchitectural 
features could therefore provide novel avenues toward understanding the neurobiology of psychiatric 
diseases (Dean and Keshavan, 2017; Harrison et al., 2018; Luvsannyam et al., 2022; Pauls et al., 
2014).

We furthermore aim to study the anatomy of subcortical chemoarchitecture as the question stands 
if the relationship between receptor fingerprints and functional specialization observed in the cortex 
could be generalized to subcortical nuclei (Zilles and Amunts, 2009; Zilles et al., 2015). Since cortical 
disparities between functional and structural connectivity could be partly explained by subcortical 
ascending neuromodulatory projections (Bell and Shine, 2016; Shine, 2019), a clearer understanding 
of subcortical chemoarchitecture and its relationship to cortical chemoarchitecture could provide a 
novel perspective on whole- brain structure–function relationships (Forstmann et al., 2017).

Here, we leverage the aforementioned resource published by Hansen et al. to generate and char-
acterize the ‘receptome,’ a neuroanatomical measure that reflects the interregional similarities of 
brain regions based on their NTRM fingerprints. To study the spatial organization of chemoarchi-
tectural similarity, we employ an unsupervised dimensionality reduction technique to generate prin-
cipal gradients, which are low- dimensional representations of the organizational axes in the cortical 
and subcortical receptome. Using these gradients, we identify NTRM distributions that drive regional 
receptor (dis)similarity. Several follow- up analyses shed light upon the relationship to organizational 
axes in structural connectivity (SC), as measured using diffusion MRI (Yeh et al., 2021), microstruc-
tural profile covariance (MPC) (Paquola et al., 2019), and resting- state functional connectivity (rsFC)
(Logothetis, 2008). Finally, we performed meta- analytic decoding of chemoarchitectural gradients to 
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assess their relations to topic- based functional brain activation (Yarkoni et al., 2011) and investigated 
their relationship to radiological markers of disease (Thompson et al., 2014). We performed various 
analyses to evaluate the robustness of our observations.

Results
Organization of the cortical receptome (Figure 1)
To assess cortical chemoarchitecture, we leveraged a large publicly available dataset of PET- derived 
NTRM densities, containing 19 different NTRM from a total of over 1200 subjects (Hansen et al., 
2022). After parcellating the receptor maps into 100 parcels according to the Schaefer atlas (Schaefer 
et al., 2018), we calculated a Spearman rank correlation matrix of parcel- level NTRM densities, the 
receptome. The receptome represents node- level interregional similarities in NTRM fingerprints. Next, 
we employed nonlinear dimensionality reduction techniques by leveraging diffusion map embedding 
to delineate the main organizational axes of cortical chemoarchitectural similarity. A schematic intro-
ducing the different NTRM and the workflow is outlined in Figure 1A. See Table S1 for a detailed 
overview of the PET NTRM density maps.

Diffusion embedding- derived gradients showed high correspondence to axes derived by linear 
dimensionality reduction techniques (Figure  1—figure supplement 1A). The first 11 components 
explained significantly more variance compared to gradients decomposed from receptomes gener-
ated from randomized NTRM density maps (Figure 1—figure supplement 1B). We chose to focus 
on the first three gradients, which explained 15, 14, and 13% of relative variance, respectively, due to 
a marked drop in variance explained after these three components (Figure 1A). The first receptome 
gradient (RC G1) described an axis stretching between somato- motor regions and inferior temporal 
and occipital lobe. The second receptome gradient (RC G2) spanned between a temporo- occipital 
and a frontal anchor. Finally, the third receptome gradient (RC G3) was differentiated between the 
occipital cortex and the temporal lobe (Figure 1B).

To determine which NTRM distributions drive the main axes of cortical chemoarchitectural simi-
larity, we performed Spearman rank correlations between a parcel’s associated gradient value and 
its NTRM fingerprint, meaning density profiles of all NTRM in that parcel (Figure 1C). Note that the 
gradient value of a parcel is a measure of where on the gradient axis the parcel is located, from which 
similarity to parcels with similar values, and dissimilarity to parcels with dissimilar values, is inferred. 
Thus, a receptor with higher density in parcels with negative values and lower density in parcels with 
positive values will be negatively correlated to the gradient. RC G1 was primarily driven by the anticor-
relation between distributions of 5- HTT, 5- HT4, 5- HT2a, and GABAa with the distributions of VAChT, 
H3, NAT, and Α4Β2. RC G2 separated 5- HTT, DAT, NMDA, D1, and GABA distributions from α4β2, 
5- HT1b, CB1, H3, and MU. RC G3 showed significant negative correlations to GABAa distributions 
and significant positive correlations to D1, 5- HT1a, CB1, MU, 5- HT4, and VAChT.

Organization of the subcortical receptome (Figure 2)
Following our analysis of cortical NTRM similarity, we investigated the chemoarchitecture of subcor-
tical nuclei. We selected the caudate nucleus, putamen, nucleus accumbens, pallidal globe, thalamus, 
and amygdala as regions of interest (ROIs). To gain an understanding of how different the cerebral 
cortex and subcortical nuclei are in their chemoarchitectural composition, we performed a multidi-
mensional scaling projection of cortical and subcortical NTRM density profiles that were z- scored 
across both compartments (Figure  2—figure supplement 1A). Subcortical nuclei were shown to 
be largely separate from cortical structures, with the exception of amygdala. NTRM density profiles 
z- scored only within subcortical nuclei were used in subsequent analyses.

First, to investigate whether NTRM fingerprints in subcortical nuclei were associated with func-
tional specialization, as observed in cortical areas, we performed agglomerative hierarchical clustering 
on the z- scored mean NTRM density profiles of subcortical ROIs per hemisphere (Figure 2A). Subcor-
tical chemoarchitecture was largely symmetrical between hemispheres, as indicated by the imme-
diate clustering of structures with their counterpart from the other hemisphere. The main hierarchical 
branch separated putamen, accumbens nucleus, caudate nucleus (the striatum), and pallidum from 
amygdala and thalamus. Thalamus and striatum had considerable differences in NTRM co- expression 
patterns. α4β2, NAT, 5- HTT, and NMDA showed strong co- expression in thalamus but not in striatum, 
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Figure 1. Organization of the cortical receptome. (A) Analytic workflow of receptome generation and gradient decomposition. Node- level 
neurotransmitter receptor and transporter molecule (NTRM) fingerprints are derived from PET images of 19 different NTRM (in the top left, italic 
font denotes transporters). The fingerprints are then Spearman rank correlated to capture node- level similarity in chemoarchitectural composition, 
generating the receptome matrix. Next, to determine similarity between all rows of the receptome matrix, we used a normalized angle similarity 
kernel to generate an affinity matrix. Finally, we employ diffusion embedding, a nonlinear dimensionality reduction technique, to derive gradients 
of receptomic organization. (B) Receptome (RC) gradients projected on the cortical surface. Top: first receptome gradient (RC G1); middle: second 
receptome gradient (RC G2); bottom: third receptome gradient (RC G3). (C) Spearman rank correlations of cortical receptome gradients with individual 
NTRM densities. Top: first receptome gradient; middle: second receptome gradient; bottom: third receptome gradient. Saturated blue coloring 
corresponds to statistically significant correlations at p < 0.05.

The online version of this article includes the following figure supplement(s) for figure 1:

Figure supplement 1. Cortical receptome gradients.

Figure supplement 2. Robustness of receptome gradients.

https://doi.org/10.7554/eLife.83843
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while D1, D2, DAT, 5- HT4, 5- HT6, M1, and VAChT were strongly co- expressed in striatum, but not in 
thalamus.

Then, we analyzed chemoarchitectural similarity in subcortical nuclei through constructing a 
receptome by voxel- wise Spearman rank correlations of NTRM density profiles in the subcortical 
ROIs. To discern how subcortical nuclei can be reconstructed based on chemoarchitectural similarity, 
we employed the Leiden community detection method (Traag et  al., 2019), a greedy optimiza-
tion algorithm that opts to minimize variance within and maximize variance between communities. 

Figure 2. Organization of subcortical chemoarchitecture. (A) Hierarchical agglomerative clustering of neurotransmitter receptor and transporter 
molecule (NTRM) densities in subcortical structures. aTHA: anterior thalamus; pTHA: posterior thalamus. (B) Spearman rank correlations of the first 
subcortical receptome gradient with individual NTRM densities. Saturated blue coloring corresponds to statistically significant correlations at p < 0.05. 
(C) Gradient decomposition of the subcortical receptome. Left: percentage of variance explained by components following gradient decomposition. 
Middle: value distribution of the first subcortical receptome gradient across subcortical structures. CAU: caudate nucleus; PUT: putamen; NAc: 
accumbens nucleus; GP: pallidal globe; AMY: amygdala; THA: thalamus. Right: subcortical projection of the first subcortical receptome gradient. (D) 
Gradients of the subcortico- cortical receptome projected to the cortical surface and to subcortical nuclei.

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. Subcortical receptome.

Figure supplement 2. Robustness of agglomerative hierarchical clustering – subcortex.

https://doi.org/10.7554/eLife.83843
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Subcortical receptome clustering exhibited high stability across the resolution parameter sample 
space (Figure 2—figure supplement 1A). Receptomic clustering discerned three dominant commu-
nities, the first mainly capturing the striatal structures (putamen, caudate, NAc) and the pallidal 
globe, the second mainly capturing the thalamus, and the third mainly capturing the amygdala 
(Figure 2—figure supplement 1A). We then used diffusion embedding to derive low- dimensional 
gradient embeddings of the subcortical receptome to discern its main organizational axes. The first 
subcortical receptome gradient (sRC G1), explaining 23% of relative variance, was anchored between 
the striatum and the thalamus (Figure 2C). Note that proximity of structures was not a major deter-
minant of sRC G1 values, demonstrated by voxels of the caudate nucleus and thalamus that were 
proximal to each other but showed diverging sRC G1 values. The second gradient, explaining 17.5% 
of relative variance, and third gradient, explaining 12% of relative variance, described ventral- dorsal 
and medial- lateral trajectories, respectively (Figure 2—figure supplement 1). The first subcortical 
receptome gradient showed significant positive correlations to NAT, α4β2, and 5- HT2a densities, 
and significant negative correlations to 5- HT6, D1, M1, 5- HT4, D2, DAT, VAChT, H3, and mGluR5 
distributions (Figure 2B).

Lastly, we were interested in the relationship between the subcortical and cortical receptomes. We 
created a subcortico- cortical NTRM covariance matrix and applied diffusion embedding to delineate 
the gradients of subcortico- cortical chemoarchitectural similarity (Figure 2D). The first and second 
cortical gradients correlated significantly with all subcortico- cortical receptome gradients, while the 
third cortical gradient only correlated significantly to the third subcortico- cortical gradient (Figure 2—
figure supplement 1D).

Relationship of the cortical receptome to brain functional processing 
and disease (Figure 3)
After characterizing the cortical and subcortical receptomes, we sought to investigate the relationship 
of chemoarchitectural similarity to hallmarks of brain functional processing and dysfunction. To assess 
brain functional processing, we used topic- based meta- analytical maps of task- based functional brain 
activation. This approach associates data- driven semantic topics with localized brain activity (e.g. 
‘primary somatomotor’ is associated with activation in the precentral gyrus). Using the Neurosynth 
database (Yarkoni et al., 2011), we calculated Spearman rank correlations between normalized activa-
tion maps and receptome gradients while accounting for spatial autocorrelation (Figure 3B). Negative 
correlations imply a relationship between topic- based functional activations mainly located in parcels 
with negative gradient values. RC G1 showed strong positive correlations with meta- analytical topics 
of sensory- motor function (topics 2, 17, and 32) and control (topics 16 and 20). Its strongest negative 
correlations were to topics capturing facial and emotion recognition (topic 40) as well as categorizing 
and abstract functions (topic 38). RC G2 displayed positive correlations to topics of control (topics 16, 
20, and 48) and memory (topic 9), differentiating them from topics of facial and emotion recognition 
(topic 40) and categorizing and abstract functions (topic 38), with which it showed negative correla-
tions. Lastly, RC G3 showed positive correlations of note to topics related to language and speech 
(topics 6 and 46) compared to negative correlations to topics of attention and task performance 
(topics 15 and 47), memory (topic 9), and mental imagery (topic 41).

Secondly, we investigated the association between chemoarchitectural organization and neurode-
velopmental conditions or disorders. We leveraged disease- related cortical thickness alterations, a 
radiological marker of structural abnormalities, derived via a standardized multisite effort (Thompson 
et al., 2014). Cortical thickness was quantified by Cohen’s d case- vs.-control effect size and accessed 
through the ENIGMA toolbox (Larivière et al., 2021). We selected autism spectrum disorder (ASD) 
(van Rooij et  al., 2018), attention- deficit hyperactivity disorder (ADHD) (Hoogman et  al., 2019), 
bipolar disorder (BPD) (Hibar et al., 2018), DiGeorge syndrome (22q11.2 deletion syndrome) (DGS) 
(Sun et al., 2020), epilepsy (EPS) (Whelan et al., 2018), major depressive disorder (MDD) (Schmaal 
et al., 2017), obsessive compulsive disorder (OCD) (Boedhoe et al., 2018), and schizophrenia (SCZ) 
(van Erp et al., 2018) to cover a broad spectrum of diseases (Figure 3C).

Receptome gradients captured disease- specific cortical thickness alteration patterns. RC G1 
showed positive correlations to the cortical thickness profile of OCD, while RC G2 had negative 
correlations to cortical thickness alterations in BPD. Both OCD and BPD were primarily associated 
with cortical thinning, thus, cortical thickness in OCD was reduced where RC G1 values were positive, 
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Figure 3. Cortical receptome gradients in term- based functional activation and disorder. (A) Cortical receptome gradients projected to the cortical 
surface. (B) Functional decoding of cortical receptome gradients. Wordclouds display positive and negative correlations of receptome gradients and 
topic- based functional activation patterns. Word sizes encode absolute correlation strength, word colors are matched to the respective gradient poles. 
Only statistically significant correlations (p<0.05) are displayed. Left: RC G1; middle: RC G2; right: RC G3. (C) Disease decoding of cortical receptome 
gradients. Surface plots: effect size (Cohen’s d) of cortical thickness alterations in central nervous system disorders in patients vs. controls. Bar plots: 
Spearman rank correlations of receptome gradients and cortical thickness alterations. Saturated blue coloring corresponds to statistically significant 
correlations at p < 0.05. Left: RC G1; middle: RC G2; right: RC G3.

https://doi.org/10.7554/eLife.83843
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Figure 4. Multimodal contextualization of the cortical receptome. (A) Correlation strengths of cortical receptome gradients to functional connectivity 
(FC), structural connectivity (SC), microstructural profile covariance (MPC), and BigBrain gradients. Coloring is scaled to absolute values. Surface- 
projected gradients are displayed next to their respective rows and columns. Asterisks indicate statistically significant correlations at p < 0.05. (B) 
Coupling of the cortical receptome to SC, FC, and MPC. Left: surface projection of coupling strengths. Right: coupling strengths across cytoarchitectural 
classes. (C) Surface projection of Mesulam cytoarchitectural classes. (D) Modular stability of receptome clustering in Mesulam cytoarchitectural classes, 
reflecting the heterogeneity of receptomic profile.

The online version of this article includes the following figure supplement(s) for figure 4:

Figure supplement 1. Contextualization of receptome gradients in hierarchical brain organization.

Figure supplement 2. Robustness of agglomerative hierarchical clustering – cortex.

https://doi.org/10.7554/eLife.83843
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and BPD- associated reductions in cortical thickness were located where RC G2 values were negative. 
RC G3 did not show significant associations with cortical disease profiles. (Figure 3C).

Interrelationship between the cortical receptome and structural, 
functional, and cytoarchitectural organization (Figure 4)
Finally, we investigated the relationship of cortical chemoarchitectural similarity to other measures of 
cortical organization. We first analyzed whether functional brain networks (Thomas Yeo et al., 2011) 
significantly aligned along receptome gradients by comparing gradient value distributions inside func-
tional networks against 1000 random gradient maps generated via variogram matching (Figure 4—
figure supplement 1). RC G1 showed alignment to the somato- motor network that forms its positive 
anchor. RC G2 was aligned to default mode and control networks, which are located in the positively 
anchoring regions, and the visual network, which is located on the opposite side of the gradient. 
Lastly, RC G3 was aligned with limbic and visual networks, which are located at opposite poles of the 
gradient.

Then, we aimed to perform a broad multimodal contextualization of cortical chemoarchitectural 
anatomy. As autoradiography studies connect receptor distributions to cytoarchitectural character-
istics (Zilles and Amunts, 2009), we compared cortical receptomic organization to MPC, an MRI- 
derived proxy measure of cortical microstructure (Foit et al., 2022), and a gradient of cytoarchitectural 
variation from the BigBrain project (Paquola et al., 2019; Amunts et al., 2013) (BB G1). Additionally, 
we explored the relationships of cortical chemoarchitectural similarity to diffusion MRI tractography- 
derived SC, and functional MRI- derived resting- state FC, as previous results linked chemoarchitectural 
similarity to the physical and functional interconnectedness of brain regions (Hansen et al., 2022).

We first aimed to compare gradients between these architectural modalities and focused on the 
first two gradients of SC and FC, and the first gradient of MPC due to the respective amounts of vari-
ances explained. RC G1 showed strongest overlaps to SC G1 and FC G1 as these gradients shared 
either anterior- posterior or visual- to- somatomotor trajectories (Figure 4A). Additional weaker correla-
tions were observed with BB G1 and MPC G1, which represent the main axes of cortical cytoarchi-
tectural similarity (Paquola et  al., 2019), and FC G2, which separates unimodal from association 
cortices (Margulies et al., 2016). Functional network decoding revealed that RC G1 separates visuo- 
limbic from somatomotor cortices (Figure 4—figure supplement 1). Similar to the first receptome 
gradient, RC G2 correlated significantly to SC G1 and FC G1, while separating visuo- limbic from 
control networks (Figure 4—figure supplement 1). RC G3 showed the strongest correlations to SC 
G2, which separated occipital from temporal cortex. Further significant correlations existed with FC 
G1, MPC G1, and BB G1. Functional network decoding placed visual and limbic networks on opposite 
ends of RC G3 (Figure 4—figure supplement 1).

After comparing main anatomical axes, we investigated node- level similarities between the recep-
tome and FC, SC and MPC. We performed row- wise correlations of the receptome matrix to each other 
matrix (Figure 4B). The resulting correlation coefficients expressed the strength of coupling between 
two measures. Generally, coupling strength of the receptome to the other measures decreased along 
a sensory- fugal gradient of laminar differentiation, an influential theoretical framework that attributes 
cognitive processing complexity to cortical areas using cytoarchitectural classes (Mesulam, 1998). 
Average coupling strength across cytoarchitectural classes was significantly different across all metrics. 
RC- SC decoupling along the sensory- fugal gradient (Kruskal–Wallis’ h = 24.43, p<0.001) was driven by 
significantly stronger coupling in idiotypic relative to heteromodal and paralimbic cortices (post hoc 
Dunn’s test with Bonferroni correction p<0.001). RC- FC coupling strengths in idiotypic cortices were 
significantly increased relative to unimodal, heteromodal, and paralimbic cortices (h = 16.68, p<0.001; 
Dunn’s test p<0.02). Last, RC- MPC decoupling across cytoarchitectural classes (h = 9.16, p<0.05) 
was primarily reflected by decreased coupling in heteromodal versus idiotypic regions (Dunn’s test 
p<0.02).

As previous decoding results hinted at a relationship between cortical hierarchy and chemoarchi-
tectural characteristics, we last explored cortical receptomic heterogeneity in the context of cytoar-
chitectural classes (Mesulam, 1998). To this end, we leveraged the Leiden community detection 
algorithm to discover cortical communities of chemoarchitectural similarity. We observed that new 
communities primarily formed in the frontal cortex when sampling the resolution parameter space, 
indicating more unique NTRM fingerprints in the frontal cortex. To capture how stably receptomic 
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communities recapitulate cytoarchitectural classes when increasing the number of receptomic commu-
nities detected, we developed the modular stability score (see ‘Materials and methods’). A cytoar-
chitectural class largely covered by a single receptomic community and not increasingly fracturing 
with an increase in the overall number of communities has a high modular stability score. Overall, 
paralimbic cortices exhibited modular stability similar to idiotypic cortices, while heteromodal and 
unimodal regions were less stable (Figure  4D), suggesting that idiotypic and paralimbic cortices 
contain a more homogeneous receptomic profile, while heteromodal and unimodal cortices have a 
more diverse chemoarchitectural landscape. We made similar observations studying the relationship 
of receptomic communities to networks of resting- state functional connectivity (Thomas Yeo et al., 
2011; Figure 4—figure supplement 1).

Robustness analysis
Owing to the spatial resolution of PET NTRM imaging, we chose to present our main findings in the 
coarse resolution of 100 Schaefer parcels. To assess validity, we replicated our analyses in Schaefer 
parcellations 200–400 (Schaefer et al., 2018). Selecting a finer granularity than 400 parcels was not 
reasonable due to the limited resolution of PET images (Moses, 2011). Receptome gradients showed 
good replicability across parcellations (Figure  1—figure supplement 2), although an increase in 
parcellation granularity shifted one extreme in RC G1 and RC G2 toward the temporal poles. Notably, 
for granularities of 200 and 400 parcels, there is a component ranking switch meaning that the pattern 
captured by RC G1 in the main results is captured by RC G2 in the replication, and vice versa. As 
gradients of rsFC, SC, and MPC also change as a function of parcellation granularity, we repeated 
the correlation analyses across different parcellations. The shift toward the temporal pole in RC G1 
and G2 led to a clearer separation between one receptome gradient that strongly correlated to 
SC G1, and another one that significantly correlated to FC G2 in parcellation granularities 200 and 
300 (Tables S2A–D). We additionally replicated agglomerative hierarchical clustering using different 
linkage methods (Figure 2—figure supplement 2, Figure 4—figure supplement 2).

Discussion
In the present work, we investigated the chemoarchitectural anatomy of the human cerebral cortex 
and subcortex through quantification of interregional chemoarchitectural similarity, leveraging PET 
imaging- derived neurotransmitter transporter and receptor density maps of 19 different molecules. 
Furthermore, we aimed to associate chemoarchitecture with imaging- derived markers of brain func-
tion and dysfunction, as well as other neuroanatomical modes. In sum, we introduce and thoroughly 
characterize chemoarchitectural similarity as an additional layer of macro- scale brain organization and 
present novel structure–function associations in the human brain.

A cornerstone technique of our study was the use of a nonlinear dimensionality reduction tech-
nique to derive gradients of the receptome, a matrix of interregional chemoarchitectural similarity. 
For the cortex, we characterized three receptome gradients, which together explain 42% of relative 
variance in cortical chemoarchitectural similarity, allowing for an insight into the main anatomical axes 
that account for nearly half of the cortical receptome’s differentiation. The first receptome gradient, 
RC G1, described an axis stretching between somato- motor regions, where it aligned significantly 
with the functional somato- motor network, and inferior temporal and occipital lobe. RC G1 combined 
key features of structural and functional organization, and established similar relationships between 
cortices as the organization of structural connections, captured by SC G1, which is likely driven by 
the distance- dependent nature of cortical wiring (Markov et al., 2013). It also captured meaningful 
variations in cytoarchitecture and functional organization, although these correlations were inconsis-
tent across parcellation granularities. Anchoring cortices of RC G1 on the one end were involved in 
somato- motor and control functions, and facial recognition and abstraction functions on the other 
end, as revealed by topic- based functional activation decoding. Finally, RC G1 correlated significantly 
with cortical thickness alterations patterns associated with OCD. Taken together, the first receptome 
gradient captures the differences in chemoarchitectural composition between the somatomotor 
regions and the remaining cortex, with the most pronounced divergence outlined against visual and 
limbic cortices. This chemoarchitectural divide is most apparent in the NTRM distribution patterns 
of 5- HTT, 5- HT4, 5- HT2a, GABAa and M1 on the one side, which show high density in the temporal 
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and occipital cortices, and NAT, α4β2, H3 and VAChT on the other site, which have high pericentral 
and in the frontal densities. RC G1 furthermore connects NTRM density profiles to morphological 
changes in OCD, where the relationship to serotonin signaling is particularly interesting. Selective 
serotonin reuptake inhibitors (SSRIs) target 5- HTT and are the preferred pharmacological intervention 
to treat OCD (Soomro et al., 2008; Lissemore et al., 2018). Genetically, 5- HT2a and 5- HTT variants 
have been identified as risk factors for the development of OCD (Taylor, 2013), and OCD patients 
showed aberrant peripheral 5- HTT and 5- HT2a functionality (Delorme et al., 2005). In addition, there 
is emerging evidence that GABA signaling abnormalities are related to the development of OCD 
(Pauls et al., 2014), although conclusive evidence is lacking.

The second receptome gradient, RC G2, spanned between temporo- occipital and frontal anchors, 
separating the chemoarchitectural composition of visual and limbic networks from attention and 
control networks. This gradient separated 5- HTT, DAT, NMDA, D1, and GABAa from MU, H3, CB1, 
5- HT1b, and α4β2. It correlated significantly to FC G1 and SC G1. Topic- based functional activa-
tion decoding revealed that RC G2 spanned between regions linked to abstraction as well as facial 
and emotion recognition on the one end and regions involved in control and memory on the other 
end. Moreover, it associated cortical morphological alterations in BPD with features of NTRM finger-
prints, where 5- HTT, DAT, and NMDA co- expression is of note. These NTRM have been implicated 
in genesis and treatment of BPD (Ghasemi et al., 2014; Ashok et al., 2017; Pinsonneault et al., 
2011; Rao et al., 2019). Lastly, the third receptome gradient, RC G3, was anchored between occip-
ital and temporal cortices. It separated GABAa density distribution patterns from D2, 5- HT1a, CB1, 
MU, 5- HT4, and VAChT. It correlated significantly to SC G2, FC G1, and gradients of cytoarchitectural 
differentiation. Functional topic- based decoding revealed that it separated regions involved in audi-
tory and language processing from regions involved in attention, memory, and mental imagery. The 
separation of visual from limbic cortices distinguished RC G3 from the other two receptome gradients, 
where limbic and visual cortices were closely aligned.

As both RC G1 and RC G2 outline meaningful relationships between NTRM density profiles and 
disease morphology, chemoarchitectural similarity could provide novel perspectives in the under-
standing of the neurobiological basis underlying psychiatric diseases. Investigating NTRM finger-
prints rather than focusing on single molecules could shed light on the enigmatic mechanism of 
actions of psychotropic drugs, especially when taking into account that most take effect through 
binding multiple types and classes of receptor molecules (Sullivan et al., 2015; Moraczewski and 
Aedma, 2022; Thase, 2008). However, our results also replicate associations between OCD and 
BPD and 5- HTT density patterns uncovered using different methodology on the same dataset, 
further indicating a relevance of this singular molecule in these diseases (Hansen et  al., 2022). 
Moreover, both RC G1 and RC G2 capture variations in chemoarchitectural similarity between 
unimodal and transmodal regions. A separation of sensory from association cortices using their 
architectural features is possible in multiple modes of architecture (Paquola et al., 2019; Margu-
lies et al., 2016). The relevance of receptor fingerprints in differentiating sensory from association 
areas is in line with recent work that employed component analysis to autoradiography- derived 
receptor densities (Goulas et al., 2021). This correspondence across methodological approaches is 
important as PET imaging is of considerably lower resolution and cannot pick up on cortical layering 
as an important determinant of NTRM density (Zilles and Amunts, 2009). Gradient- based analysis 
indicated that visual and limbic cortices are relevant anchors in cortical chemoarchitectural similarity 
axes as they are polar at either one (RC G1 and G2) or both anchors of a gradient (RC G3). Hier-
archical clustering of average NTRM densities separated both the visual and limbic network from 
other functional networks, mirroring clustering results obtained via autoradiography (Zilles and 
Palomero- Gallagher, 2017), and indicating more homogeneous chemoarchitectural compositions 
in these regions that, importantly, show little overlap between them. Summarizing the interrelation-
ships of receptome gradients and brain structure and function, our results suggest that receptor 
similarity is organized in a fashion that combines organizational principles of cytoarchitectural, struc-
tural, and functional differentiation, although interrelationships to structural and functional connec-
tivity and cytoarchitectural variation present themselves differently across parcellation granularities. 
Incorporating receptor similarity as a novel layer in studies of structure–function relationships could 
be crucial to discern a governing set of rules in hierarchical brain architecture (García- Cabezas 
et al., 2019).
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Analysis of architectural correspondence on the node level showed significant decoupling of SC 
and FC from chemoarchitectural similarity, particularly in heteromodal and paralimbic regions, whereas 
primary areas showed the strongest coupling. This suggests that both structure–function as well as 
interstructural relationships dissociate in regions conveying more abstract cognitive processes such as 
attention, cognitive control, and memory (Spreng et al., 2009; Smallwood et al., 2012; Smallwood 
et  al., 2021; Langner et  al., 2018). Previous work showed that structural and functional connec-
tivity is more closely linked in unimodal cortices and exhibits gradual decoupling toward transmodal 
cortices, a phenomenon that is hypothesized to be instrumental for human flexible cognition (Preti 
and Van De Ville, 2019; Liu et al., 2022; Valk et al., 2022). Replicating this observation for chemo-
architectural similarity suggests that diversification of NTRM fingerprints may be equally important 
to enable flexible cognitive functions (Suárez et al., 2020). We corroborate this hypothesis through 
clustering analysis, where functional networks involved in more abstract cognitive functions and heter-
omodal cortices show greater receptomic diversity, meaning a wider spread of receptor fingerprints 
represented in them. This is consistent with associative areas showing high segregation into subareas 
based on their receptor architecture (Amunts et al., 2010). High receptomic diversity might be a 
disease vulnerability factor as recent work has shown that cortical thickness alterations across different 
diseases are most pronounced in heteromodal cortices (Hettwer et al., 2022). However, it has to 
be noted that primary regions show a lesser degree of interindividual neuroanatomical variability 
compared to heteromodal regions, which could be a possible methodological confound influencing 
our finding of sensory- to- fugal architectural decoupling (Mueller et al., 2013). Notably, our results 
exemplify a chemoarchitectural divide between heteromodal and paralimbic cortices as the latter 
showed NTRM co- distribution homogeneity similar to idiotypic cortices. A mechanistic explanation 
might be that, next to memory and emotion (RajMohan and Mohandas, 2007), olfactory areas are 
also located in paralimbic cortices, adding a sensory component to their function (Courtiol and 
Wilson, 2017). Additionally, recent work has indicated a differentiation between heteromodal and 
paralimbic regions, where the former show decreased heritability and cross- species similarity (Valk 
et al., 2022). Further work may focus on uncovering the developmental mechanisms underlying the 
differentiation between structure and function of these transmodal zones, also taking into account its 
diverging chemoarchitecture.

Finally, we could expand a chemoarchitecturally driven structure–function relationship observed 
in the cortex (Morosan et al., 2005; Dehaene et al., 2005; Zilles et al., 2015; Zilles and Palomero- 
Gallagher, 2017) to subcortical nuclei. Hierarchical agglomerative clustering of NTRM fingerprints 
revealed a meaningful separation of subcortical structures based on their functionality, exemplified 
by the differentiation of striatal structures (putamen, accumbens, and caudate nuclei) and pallidal 
globe from thalamus. Striatum and pallidal globe constitute the basal ganglia, which, together with 
the thalamus, form the cortico- basal ganglia- thalamic loop. Here, basal ganglia are implicated in 
motor functions and complex signal integration, while the thalamus orchestrates the communication 
between large- scale cortical networks (Bell and Shine, 2016; Hwang et al., 2017; Lanciego et al., 
2012). This functional divide is not only reflected in NTRM fingerprints, but also in receptomic Leiden 
clustering and gradient decomposition, where the first subcortical receptomic gradient describes a 
striato- thalamic axis. We observed partial similarity in NTRM fingerprint composition driving subcor-
tical and cortical chemoarchitectural similarity. While differences in co- distribution patterns of 5- HT4 
and M1 from α4β2 and NAT were relevant in both cortex and subcortex, the two areas differ in other 
relevant NTRM co- distribution patterns. For example, 5- HTT and α4β2 distributions in the cortex are 
prominently anticorrelated but show similar distributions in subcortial nuclei. Irrespective of individual 
NTRM co- expressions, a general similarity in subcortical and cortical receptome organization is indi-
cated by overlapping cortical and subcortico- cortical receptome gradients. Considering similarities 
and differences in NTRM fingerprints could be important when investigating the modulating influence 
of subcortico- cortical projections on functional brain networks (Bell and Shine, 2016; Janacsek et al., 
2022).

Limitations
It is of note that the resource we used to comprise the receptome, while extensive, does not exhaus-
tively cover all cerebral neurotransmitter systems. Important molecules such as the α2 noradrenaline 
receptor, which is an important drug target in the central nervous system (Smith and Elliott, 2001; 
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Alam et al., 2013), are missing from our dataset. Our findings must be viewed with the incomplete-
ness of our primary resource in mind. Additionally, we want to point out that in assessing chemoarchi-
tectural anatomy we decided to study ionotropic receptors, metabotropic receptors, and transporters 
within a shared framework as they exert influence over each other in complex synaptic signaling 
processes. For example, D1 and D2 signaling influence NMDA signaling through cAMP- mediated 
posttranslational modification of the receptor, directly acting upon its neuromodulatory potential 
(Neve et  al., 2004). Similarly, neuromodulation through presynaptic transporters is conjunct with 
receptor expression. For example, the neuromodulatory potency of 5- HTT depends on the post-
synaptic availability of serotonin receptors, which would mediate the effect an inhibition of these 
molecules via a drug, such as Fluoxetine. We therefore argue that when studying the co- expression 
of molecules involved in neurotransmission, incorporating different receptor types and transporters 
is crucial, even though these molecules convey different functionalities and are not interchangeable. 
Regarding our primary resource, while PET scans were performed on healthy participants, information 
on medication and medical history was not available for all participants. Therefore, we cannot control 
for potential medication or disease effects. Additionally, the comparatively low spatial resolution of 
PET imaging is exacerbated by the group- average nature of our dataset. This especially limits the 
ability to investigate subcortical structures. For example, the thalamus consists of more than 60 nuclei 
with distinct cellular composition and diverging functionality (Fama and Sullivan, 2015), important 
properties we cannot pick up on. Other important subcortical structures, for example, the subthalamic 
nuclei, cannot be confidently studied due to their size, limiting our whole- brain perspective to larger 
subcortical nuclei. A more detailed analysis of the subcortical receptome will require methods with 
higher resolution (Gaudin et al., 2019). Furthermore, we want to point out that, although we employ 
structural and functional measures to contextualize our findings about chemoarchitectural anatomy, 
our results do not allow claims about the influence of these anatomical axes of brain function, or their 
interaction with structural brain elements. The correlative nature of our results enables both a richer 
and multifaceted characterization of chemoarchitectural anatomy as well as the formulation of hypoth-
eses about the role of chemoarchitecture in functional specialization, but no causal inferences about 
how chemoarchitecture influences brain structure and function can be derived from them. Dissecting 
how manipulations in the chemoarchitectural landscape influence structure and function goes beyond 
the descriptive scope of the current work.

In sum, our work outlines the organization of chemoarchitectural similarity across the cortex and 
subcortical structures, yielding an additional layer of brain organization associated with structural 
and functional measures of brain organization in both health and disease. Considering this layer in 
future studies could prove important in answering how flexible cognition is supported by its physical 
substrates. Meeting this ultimate goal will provide new avenues to understand, treat, and prevent 
psychiatric diseases and lessen both the personal and societal burden posed by mental illnesses.

Materials and methods
Receptor similarity matrix generation
To investigate cortical and subcortical receptor similarity, we made use of an open- access PET MRI 
dataset described previously (Hansen et al., 2022). The associated receptors/transporters, tracers, 
number of healthy participants, ages, and original publications, for which we refer to full methodolog-
ical details, are listed in Table S1. In brief, images were acquired in healthy participants using best 
practice imaging protocols recommended for each radioligand (Nørgaard et al., 2019) and averaged 
across participants before being shared. Images were registered to the MNI152 template (2009c, 
asymmetric). No medication history of participants was available. The accuracy and validity of receptor 
density as derived from the PET images have been confirmed using autoradiography data, and the 
mean age of participants was shown to have negligible influence on tracer density values (Hansen 
et al., 2022). The cortical receptor density maps were parcellated to 100, 200, 300, and 400 regions 
based on the Schaefer parcellation (Schaefer et al., 2018), averaging the intensity values per parcel. 
Subcortical NTRM densities were extracted using a functional connectivity- derived topographic atlas 
(Tian et al., 2020). For tracers where more than one study was included, a weighted average was 
generated. This resulted in a parcel × 19 matrix of format (parcel × receptor). The intensity values 
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were z- score normalized per tracer. We then performed parcel × parcel Spearman rank correlation of 
receptor densities, yielding the receptome, a matrix of interregional NTRM similarity.

Gradient decomposition
To assess the driving axes of cortical and subcortical architectural covariance organization, we 
employed gradient decomposition using the brainspace python package (Vos de Wael et al., 2020). 
Gradients are low- dimensional manifold representations that allow for the characterization of main 
organizational principles of high- dimensional data (Margulies et al., 2016). To calculate gradients 
of cortical NTRM covariance, rsFC, and MPC, the full matrix was used. SC gradients were separately 
calculated for intrahemispheric connections in both hemispheres using procrustes analysis to align 
the gradients to increase comparability and subsequently concatenated. We excluded interhemi-
spheric connections due to their biased underdetection in dMRI fiber tracking, which would result 
in gradient decomposition primarily detecting asymmetric interhemispheric axes that are unlikely to 
possess neurobiological relevance, but rather reflect the aforementioned bias (Royer et al., 2022). To 
calculate the gradients, the respective input matrices were thresholded at 90% and, using a normal-
ized angle similarity kernel, transformed into a square non- negative affinity matrix. We then applied 
diffusion embedding (Coifman and Lafon, 2006), a nonlinear dimensionality reduction technique, to 
extract a low- dimensional embedding of the affinity matrix. Diffusion embedding projects network 
nodes into a common gradient space, where their distance is a function of connection strengths. 
This means that nodes closely together in this space display either many suprathreshold or few very 
strong connections, while nodes distant in gradient space display weak to no connections. In diffu-
sion embedding, a parameter α controls the influence of sampling density on the underlying mani-
fold (where α = 0 equals no influence and α = 1 equals maximal influence). Similar to previous work 
(Margulies et al., 2016), we set α to 0.5 to retain global relations in the embedded space and provide 
robustness to noise in the original matrix.

Structural, functional, and microstructural profile covariance data 
generation
To contextualize receptor similarity organization, we aimed to compare it to SC, resting- state FC, 
and MPC. The diversity pertaining to age and sociodemographic variables of the subjects in the PET 
dataset made the selection of matched reference subjects for FC, SC, and MPC analysis infeasible. 
Instead, we opted for the construction of group- consensus FC, SC, and MPC matrices collected from 
the same healthy individuals, obtained, and processed in a reproducible pipeline to ultimately provide 
comparability of the receptome to SC, FC, and MPC measures of reference nature. We therefore 
chose the Microstructure Informed Connectomics (MICA- MICs) dataset (Royer et al., 2022) to obtain 
FC, SC, and MPC data. MRI data was acquired at the Brain Imaging Centre of the Montreal Neurolog-
ical Institute and Hospital using a 3T Siemens Magnetom Prisma- Fit equipped with a 64- channel head 
coil from 50 healthy young adults with no prior history of neurological or mental illnesses (23 women; 
29.54 ± 5.62 y). No medication history was available. For each participant, (1) a T1- weighted (T1w) 
structural scan, (2) multi- shell diffusion- weighted imaging (DWI), (3) resting- state functional MRI (rs- 
fMRI), and (4) a second T1- weighted scan, followed by quantitative T1 (qT1) mapping. Image prepro-
cessing was performed via micapipe, an open- access processing pipeline for multimodal MRI data 
(Cruces et al., 2022). Individual functional connectomes were generated by averaging rs- fMRI time 
series within cortical parcels and cross- correlating all nodal time series. Individual structural connec-
tomes were defined as the weighted count of tractography- derived whole- brain streamlines. To esti-
mate individual microstructural profile covariance, 14 equivolumetric surfaces were generated to 
sample vertex- wise qT1 intensities across cortical depths and subsequently averaged within parcels. 
Parcel- level qT1 intensity values were cross- correlated using partial correlations while controlling for 
the average cortical intensity profile. The resulting values were log- transformed to obtain the indi-
vidual MPC matrices (Paquola et al., 2019).

To generate the group- average matrix of each modality, precomputed and pre- parcellated matrices 
of 50 individual subjects were used. As no PET data was available for the medial wall, the rows and 
columns representing it in all SC, FC, and MPC matrices were discarded. For SC and FC matrices 
additionally, rows and columns containing values for subcortical regions were discarded as well as no 
analysis of subcortical SC and FC was intended. To generate the group- consensus MPC matrix, parcel 
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values across the subjects were averaged. To generate the group- consensus FC matrix, the subject 
matrices underwent Fisher’s r- to- z transformation, and subsequently, parcel values across the subjects 
were averaged. To generate the group- consensus SC matrix, individual matrices were log- transformed 
and parcel values across subjects were averaged. Afterward, we applied distance- dependent thresh-
olding to account for the over- representation of short- range and under- representation of long- range 
connections in non- thresholded group- consensus SC matrices (Betzel et al., 2019), and the resulting 
thresholded matrix was used in subsequent analyses.

Coupling analysis
To investigate the coupling between receptor similarity and FC, SC, and MPC, we performed row- wise 
Spearman rank correlation analyses of the nonzero elements of the respective matrices.

Leiden clustering
To evaluate whether NTRM similarity intrinsically structures the cortical surface and subcortical 
structures, we applied the Leiden clustering algorithm (Traag et al., 2019). This clustering analysis 
enables an assessment of how similarity in chemoarchitecture forms anatomical communities, akin 
to approaches used to reveal resting- state functional networks (Thomas Yeo et al., 2011) or parcel-
lations (Schaefer et al., 2018). The Leiden algorithm is a greedy optimization method that aims to 
maximize the number of within- group edges and minimize the number of between- group edges, with 
the resulting network modularity being governed by the resolution parameter ɣ. To incorporate anti-
correlations, we used a negative- asymmetric approach, meaning that we aimed to maximize positive 
edge weights within communities and negative edge weights between communities. To search the 
feature space, we chose a ɣ range of 0.5–10 in increments of 0.05 for cortical data, calculating 1000 
partition solutions per ɣ. For subcortical structures, we chose a ɣ range of 1–10 in increments of 0.5, 
calculating 250 partitions per ɣ. To assess partition stability, we calculated the z- rand score for every 
partition with every other partition per ɣ value and chose the partition with the highest mean z- rand 
score, indicating highest similarity to all other partitions for the given ɣ (Steinley, 2004; Pedregosa 
et al., 2023). Additionally, we calculated the variance of z- rand scores between partitions per ɣ. A 
high mean z- rand score and a low z- rand score variance indicated a stable partition solution.

Modular stability
To assess the overlap of cytoarchitectural classes and receptomic clustering, we developed the 
modular stability score. This metric captures how far a predefined ROI, in our case, a functional 
network or a cytoarchitectural class, matches a Leiden clustering- derived receptomic community. It is 

calculated as 
 
Cmax ×

(
1

Cin ÷ Ctot

)
× s

 
, where Cmax is the biggest proportion of the ROI is taken up by 

one clustering- derived receptomic community, Cin is the number of different receptomic communities 
represented inside the ROI, Ctot is the total number of receptomic communities formed at the given 
resolution parameter, and s is the relative size of the ROI. An ROI that is covered by one receptomic 
community to a large degree and does not contain a relatively large number of receptomic communi-
ties, as measured by the proportion of communities inside the region of interest divided by the total 
number of communities, will display a high modular stability score. As larger ROIs will have a higher 
number of communities inside them by chance, we normalize by the relative size of the ROI. We then 
employ the modular stability score to quantify to what degree predefined ROIs break up into different 
receptomic communities as the clustering- derived network modularity increases as we sample the 
resolution parameter space. Note that this experimental score has not been used and verified for 
validity under other conditions.

Meta-analytic decoding
To assess the relationship between cortical receptome gradients and localized brain functionality, 
we leveraged meta- analytical, topic- based maps of functional brain activation, derived from the 
Neurosynth database (Tor D., 2011). Using Nimare, we calculated topic- based activation maps of 
the Neurosynth v5- 50 topic release (https://neurosynth.org/analyses/topics/v5-topics-50/), a set of 
50 topics extracted from the abstracts in the full Neurosynth database as of July 2018 using Latent 
Dirichlet Analysis (Poldrack et al., 2012). We parcellated the resulting continuous, non- thresholded 
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activation maps and performed parcel- wise Spearman rank correlations with the cortical receptome 
gradients.

Disorder impact
To assess the relationship between receptome gradients and various neurological and psychiatric 
diseases, we used publicly available multisite summary statistics of cortical thinning published by 
the ENIGMA Consortium (Thompson et al., 2014). Covariate- adjusted case- vs.-control differences, 
denoted by across- site random- effects meta- analyses of Cohen’s d- values for cortical thickness, were 
acquired through the ENIGMA toolbox python package (Larivière et al., 2021). Multiple linear regres-
sion analyses were used to fit age, sex, and site information to cortical thickness measures. Before 
computing summary statistics, raw data was preprocessed, segmented, and parcellated according to 
the Desikan- Killiany atlas in FreeSurfer (http://surfer.nmr.mgh.harvard.edu) at each site and according 
to standard ENIGMA quality control protocols (see http://enigma.ini.usc.edu/protocols/imaging- 
protocols). To assess a diverse range of cerebral illnesses, we included eight diseases in our analysis: 
ASD (van Rooij et al., 2018), ADHD (Hoogman et al., 2019), BPD (Hibar et al., 2018), DiGeorge- 
syndrome (22q11.2 deletion syndrome) (DGS) (Sun et al., 2020), EPS (Whelan et al., 2018), MDD 
(Schmaal et al., 2017), OCD (Boedhoe et al., 2018), and SCZ (van Erp et al., 2018). Sample sizes 
ranged from 1272 (ADHD) to 9572 (SCZ). Summary statistics were derived from adult samples, except 
for ASD, where all age ranges were used.

Hierarchical clustering
To discern a similarity hierarchy of subcortical structures and cortical networks based on mean NTRM 
density, we performed agglomerative hierarchical clustering. Initially, a set of n samples consists of m 
clusters, where m = n. In an iterative approach, the samples that are most similar are combined into 
a cluster, where after each iteration, there are m – # iteration clusters (Nielsen, 2016). This process is 
repeated until m = 1. We use Euclidean distance to assess the distance between clusters and use the 
WPGMA method to select the closest pair of subsets (Sokal et al., 1958).

Null models
Assessment of statistical significance in brain imaging data may be biased when not accounting 
for spatial autocorrelation of brain imaging signals (Alexander- Bloch et al., 2018; Váša and Mišić, 
2022). To generate permuted brain maps that preserve spatial autocorrelation in parcellated data, 
we resorted to variogram matching (VGM) (Burt et al., 2020). Here, we randomly shuffle the input 
data and then apply distance- dependent smoothing and rescaling to recover spatial autocorrela-
tion. To assess the significance when comparing surface- projected data, we applied spin permutation 
(Alexander- Bloch et al., 2018) to generate randomly permuted brain maps by random- angle spher-
ical rotation of surface- projected data points, which preserves spatial autocorrelation. Parcel values 
that got rotated into the medial wall, and values from the medial wall that got rotated to the cortical 
surface, were discarded (Markello and Misic, 2021). In each approach, we generated 1000 permuted 
brain maps.
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