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ABSTRACT: Molecular design requires systematic and broadly
applicable methods to extract structure−property relationships.
The focus of this study is on learning thermodynamic properties
from molecular-liquid simulations. The methodology relies on an
atomic representation originally developed for electronic proper-
ties: the Spectrum of London and Axilrod−Teller−Muto
representation (SLATM). SLATM’s expansion in one-, two-, and
three-body interactions makes it amenable to probing structural
ordering in molecular liquids. We show that such representation
encodes enough critical information to permit the learning of
thermodynamic properties via linear methods. We demonstrate
our approach on the preferential insertion of small solute
molecules toward cardiolipin membranes and monitor selectivity
against a similar lipid. Our analysis reveals simple, interpretable relationships between two- and three-body interactions and
selectivity, identifies key interactions to build optimal prototypical solutes, and charts a two-dimensional projection that displays
clearly separated basins. The methodology is generally applicable to a variety of thermodynamic properties.

1. INTRODUCTION
Computational molecular design is rapidly becoming one of the
most exciting fields of our time thanks to its impressive
developments and broad applicability.1−6 The idea is simple:
identify molecules or materials with desirable properties. In
practice, solving the underlying inverse design problem remains
challenging, requiring extensive computational resources
combined with an approach that exploits the underlying physics
and chemistry at hand. Electronic properties have spearheaded
the movement: quantum-mechanical (QM) calculations (e.g.,
density-functional theory) over large numbers of molecules have
been successfully used in the context of machine learning (ML)
to predict various properties with increasing accuracy and
generalization.7 In no small part is this success due to the
development of molecular representations: they exploit physical
laws (e.g., r−1 scaling for Coulombic interactions) and account
for symmetries via invariances.8,9 In the present study, we focus
on thermodynamic properties, in particular in the context of
condensed-phase liquids.

The same principles should hold when moving from
electronic to thermodynamic properties: molecular representa-
tions form the basic ingredients to describe structural features,
and any physical prior will help learning performance. While
electronic properties typically focus on single molecules in the
gas, our consideration of thermodynamic properties brings two
specificities:

(1) Thermodynamics underlines the role of conformational
entropy. Beyond a static structure, the diversity of conforma-

tions heavily impacts the energetics, calling for phase-space
(Boltzmann) averaging.

(2) The condensed phase involves a molecule embedded in a
dense environment, highlighting the balance of covalent and
noncovalent interactions.

The question addressed by this study is how to efficiently
learn structure−property relationships from (bio)molecular
simulations of thermodynamic properties.

We take clues from the field of glassy dynamics. Impressive
ML developments have been made to establish new insight into
the relevant structure−dynamics relationships.10,11 These
remarkable strides have required large and complex deep neural
networks. However, significantly smallerMLmodels can be used
when exploiting relevant physics: representations that focus on
the local as well as neighboring structure.12 The representations
often consist of structural order parameters, in particular radial
and angular structure functions. While the radial (i.e., two-body)
component measures the density of particles, akin to a radial
distribution function (RDF), the angular terms are inspired by
bond-orientational order parameters, that is, three-body
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interactions.13 The description of molecular systems in terms of
an increasing number of interacting particles is called a body-
order expansion.8

In this work, we adapt the idea of structural body-order
interactions to learn thermodynamic properties in molecular
simulations. We propose to start from an atomic representation
originally developed for the machine learning of electronic
properties: the Spectrum of London Axilrod−Teller−Muto
representation (SLATM).14,15 SLATM provides a body-order
expansion through a histogram of one-, two-, and three-body
atomic contributions. Moreover, it does not distinguish between
covalent and noncovalent interactions, making it well suited for a
condensed phase. Finally, we extend its role to a Boltzmann
ensemble by averaging over snapshots of a molecular dynamics
(MD) trajectory.16−18 Figure 1 sketches our approach: from
chemical-space compound screening to thermodynamic proper-
ties via the structural analysis of MD simulations. When
establishing structure−property relationships, we expect the
structural order parameters to encode critical information that
will ease the learning process.

The application we focus on is a challenging biomolecular
system: lipid selectivity of small molecules in mitochondrial
membranes. The problem involves the subtle identification of
preferential interactions between two similar lipids: cardiolipin
(CL) and phosphatidylglycerol (PG).19−26 Figure 2a shows the
chemical structures of CL and PG. The binding selectivity of a
small molecule between CL and PG membranes amounts to a
relative free-energy difference, ΔΔG. Each free-energy differ-
ence quantifies the insertion of said compound from bulk water
to one membrane interface. Figure 2a highlights the chemical

resemblance between one CL molecule and a pair of PG lipids,
emphasizing the difficulty of the problem.

The complexity of the system compounded with the size of
drug-like chemical-compound space makes an atomistic
modeling approach intractable. Instead, we base our inves-
tigation on coarse-grained (CG) MD simulations. Coarse-
graining averages over atomic degrees of freedom to only
describe larger superparticles or beads.29,30 Beyond the
computational appeal of faster MD simulations, a certain class
of CG models has the appealing property of reducing the size of
the chemical-compound space.6,31 Compressing chemical space
translates to a more efficient compound screening, which is a
valuable property to establish structure−property relationships.
CGmodels that can reduce the size of chemical space have a top-
down parametrization strategy: they aim at modeling large-scale
behavior by defining a finite set of bead types, which encode
specific physicochemical flavors. Critically, it is the number of
bead types that scales the (reduced) size of chemical space of the
CG model. While we base our study on the biomolecular CG
Martini model,32,33 we will use a further reduced yet compatible
CG model, made of fewer bead types, to efficiently screen for
small molecules.34 Figure 2b illustrates the reduction in the
number of bead types between the original Martini and our
reduced so-called 5 + 1 force field. We previously used this
approach to devise a rigorous discovery pipeline combining CG
simulations, free-energy calculations, and active learning, which,
taken together, led to the identification of design rules.35 We
further showed that such CG simulations can be used to propose
small-molecule probes for experimental validation, with exciting
results both in vitro and in vivo.36

Figure 1. This study considers the identification of structure−property relationships between a solute molecule and a target thermodynamic property.
Rather than directly learning the relationship, we propose a three-step process: (1) molecular dynamics simulations of the solute in its condensed-
phase environment; (2) structural analysis of the liquid structure; and (3) relating structural order parameters and thermodynamic properties. The
learning procedure thus relies on features that incorporate relevant physics, including Boltzmann phase-space averaging, liquid environment, and
collective effects. Our methodology is able to identify complex structure−property relationships, even with a simple linear model. Icon from flaticon.
com.
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The CG simulations will be used as test system for the
ensemble SLATM approach. Our data set consists of n = 439
solute small molecules, for which we have calculated the target
property, ΔΔG. Here we will run a single isothermal−isobaric
MD simulation per compound and lipid environment, so as to
compute the averaged structural order parameter. Because the
resultingmolecular representation is difficult to interpret, we will
apply dimensionality reduction on the set of n = 439 order
parameters. To demonstrate the effectiveness of our representa-
tion, we will limit ourselves to a linear method: principal
component analysis (PCA). The linearity of themethod will also
be leveraged through interpretability: we will extract the key
two- and three-body interactions that are most relevant to
modulate selectivity. The gathered insight will allow us to
construct prototypical solutes that optimize for the target
property. Finally, we will show that a two-dimensional
projection in PCA coordinates displays clearly separated basins
of solutes with high and poor CL selectivity, effectively
generating a clear structure−property map.

2. METHODS
In the following, we cover the three methodological parts
sketched in Figure 1: (i) molecular dynamics simulations; (ii)
structural analysis; and (iii) relating order parameters to
thermodynamics.

2.1. Molecular Dynamics Simulations. Coarse-grained
(CG) molecular dynamics (MD) simulations were run using
GROMACS 2020 and Martini parameters tailored to GPU
acceleration.37,38 We used an integration time step δt = 0.02τ,
where τ is the natural unit of time of the model. The simulations
were kept at constant temperature (T = 300 K) and pressure (P
= 1 bar) using the Langevin thermostat and Parrinello−Rahman

barostat.39 Electrostatic interactions were calculated using
particle-mesh Ewald summation.40

Membranes were generated using the CHARMM-GUI
Martini maker.41 The cardiolipin (CL) and phosphatidylglycer-
ol (PG) membranes consist of 98 and 118 lipid molecules,
respectively. They were solvated in water as well as sodium ions
to maintain charge neutrality. Bulk water systems consisted of
974 water beads, as well as sodium and chloride ions to mimick
the ion concentration of the membrane systems. More details
about the MD simulation setups and parameters can be found in
Mohr et al.35

2.1.1. Coarse-Grained Modeling. All lipids, water, and ion
particles were represented using the standardCGMartini 2 force
field with refined polarizable models for water and ions.32,42,43

For the solute compounds, we used a reduced and compatible
Martini-like CG force field.34 As compared to Martini’s 14 bead
types, the reduced force field only defines 6 types: 5 neutral and
one charged, denoted {T1, T2, T3, T4, T5} and {Q0±},
respectively (i.e., we define a single charged bead type, although
the charge can take a positive or negative sign). We herein refer
to the reducedmodel as the 5 + 1 force field. Figure 2b highlights
the placement of the fewer CG beads on the hydrophobicity axis.
Utilizing fewer bead types compresses the size of chemical space,
used here to more efficiently screen across solutes.

Solute compounds were constructed by considering various
graph representations and a variety of CG bead types from the 5
+ 1 force field.35 We limited the number of beads to up to five, to
roughly stay within the molecular weight prescribed in
Lipinsky’s rule of five for drug-likeness of small molecules.44

We applied angles and constraints to the compound structures
according to their geometry (Figure S2). This small change in
conditions as compared to the previously performed free-energy
calculations is warranted due to the dependence of the structural
order parameter on nonconflicting particle coordinates. See the
Supporting Information for more details on the 5 + 1 force field
and solute graph representations.

The subsequent structural analysis of a solute in a membrane
environment will monitor CG beads from both force fields:

• All beads from the reduced 5 + 1 force field, so as to screen
across the solute’s chemical space, that is, {T1, T2, T3,
T4, T5, Q0±}.

• Only some beads from Martini: those involved in
describing the CL and PG membrane environments, as
well as the water and ionmodels, that is, {Nda, P4, Qa, Na,
C1, C3, POL, PQd}.

The combination yields a set of N = 14 different bead types,
which will impact the dimensionality of the structural order-
parameter vectors described below.

2.1.2. Alchemical Free-Energy Calculations of Selectivity.
Our target thermodynamic property is the selectivity of a solute
to preferably insert in a CL membrane as compared to a similar
PG membrane. Selectivity thus corresponds to a relative
thermodynamic affinity between the two membrane environ-
ments. We quantify the individual insertions by means of
transfer free energies from bulk water to the interfacial region of
the membrane bilayer, denoted

=G G GW M
M W

(1)

Accordingly, selectivity is measured by the difference of
transfer free energies between the PG and CL environments:

=G G GW M
CL

W M
PG (2)

Figure 2. (a) Chemical structures of cardiolipin (CL) and
phosphatidylglycerol (PG) next to their coarse-grained (CG) Martini
representation. CG beads relevant for solute−lipid interactions are
placed according to the chemical structure. (b) CG bead types for
Martini and the reduced 5 + 1 force field. The hydrophobicity scale
summarizes the beads’ physicochemical characteristics. Structures and
cartoon representations were rendered using ChemSketch and
VMD.27,28
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Both terms in eq 1 were calculated using relative alchemical
free-energy calculations: we focused on the change in free energy
when solvating the solute. The water environment was simulated
using a simple water box. Themembrane simulation consisted of
an equilibrated lipid bilayer with added solute placed at the
interface, that is, close to the lipid headgroups, which embodies
the main chemical difference between PG and CL.

Alchemical free-energy calculations consisted of successive
coupling of all nonbonded interactions (i.e., van der Waals and
electrostatics) between a solute and its surrounding environ-
ment, together with the use of soft-core potentials.45−47 We
applied 40 intermediate coupling steps for each interaction type
to ensure adequate sampling. We subsequently estimated free
energies using the MBAR method and the pymbar package.48,49

For more details about the free-energy calculations, see Mohr et
al.35

2.1.3. Trajectory Analysis. The present structural analysis
solely relies on the fully coupled alchemical state of the system,
while other states were entirely discarded. For each one of theN
= 439 compounds, we ran and analyzed an MD simulation of
total simulation time Δt = 20, 000 τ, and extracted 200 frames.
For each snapshot, we centered the simulation around the solute
and kept information up to a radial distance of 1.1 nm.
Trajectory processing was performed using MDAnlysis.50,51

2.2. Structural Analysis. 2.2.1. The Spectrum of London
Axilrod−Teller−Muto (SLATM) Representation: Atomic Case.
The Spectrum of London Axilrod−Teller−Muto (SLATM)
representation describes an atomic environment as a vector of
one-, two-, and three-body interactions occurring within a cutoff
(Figure 3).14,15 SLATM ignores the notion of covalent bonding.

The representation features translational, rotational, and
permutation invariance. Given a particle i (atom or CG bead),
let I refer to its atom or bead type, one out ofN types defined by
the force field. We denote by xi the SLATM representation of
particle i, as a sum over body-order contributions:

(1) The one-body term, xi(1), simply accounts for the identity
of the particle, denoted ZI, the elemental atomic number for
particle i in an atomistic representation. For the present CG
resolution, we remedy the lack of elemental number by assigning
ZI an arbitrary (but unique) value.

(2) The two-body interaction, xi,J(2)(r), represents the
population of pairwise interactions between i and all other
particles of type J, as a function of radial distance, r.

(3) The three-body bond-angle interaction, xi,JK(3)(θ), describes
the interactions between i and all other particles of types J andK,

as a function of the angle, θ, and averaged across interparticle
distances.

The radial and angular dependencies of the two- and three-
body interactions are binned along their respective intervals: [0,

rcutoff] and
Ä
Ç
ÅÅÅÅÅÅ

É
Ö
ÑÑÑÑÑÑ,

9
10

9
. For ease of notation, we represent the

binned interaction as a vector. For instance, the two-body
representation between particle i and all others of type J yields

Ä

Ç

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

É

Ö

ÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑ

=x

x r

x r

( )

( )

i J

i J

i J N

,
(2)

,
(2)

0

,
(2)

1
(2)

b (3)

where r denotes the interparticle distance, and the size of the
vector is given by the number of radial histogram bins, Nb

(2). A
similar representation is considered for three-body interactions
between particle i together with all combinations of types J with
K, xi,JK(3), which would bin over the angle between a triplet of
particles. SLATM then concatenates over all possible pairwise
and triplet types to yield

ß Ö́ÖÖÖÖÖÖÖÖÖÖÖÖÖ ÆÖÖÖÖÖÖÖÖÖÖÖÖÖÖ Ö́ÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖ ÆÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖ
= [ ]x x x x xx , , ..., , , ...,i i i J i J i J K i J K

(1)

one body

,
(2)

,
(2)

two body

,
(3)

,
(3)

three body

T
N N N0 0 0

(4)

Functional forms for two- and three-body interactions follow
the London dispersion forces and the Axilrod−Teller−Muto
potential.52−54 The body-order interactions read

=x Zi I
(1) (5)

=x r Z Z g r R
r

( )
1
2

( )
1

i J I J
j J

ij,
(2)

6
(6)

=

×
+

x Z Z Z g

R R R

( )
1
3

( )

1 cos cos cos

( )

i JK I J K
j i k j i

ijk

jki kij

ij ik kj

,
(3)

3
(7)

where Rij and θijk are the pairwise distance and triplet angle,
respectively, and two- and three-body interactions are
smoothened by a Gaussian function:

i
k
jjjj

y
{
zzzz=g x x

( )
1
2

exp
2

2

2
(8)

We used the implementation of Christensen et al. and adapted
some of their parameters for use with CG resolution.55 Notably,
the widths of the Gaussian kernels were set to σ = 0.3 Å and 0.2
rad for distances and angles, respectively. The bin widths of the
histograms were set to 0.2 Å and 0.2 rad, and the radial cutoff was
set to rcutoff = 8.0 Å.

2.2.2. Boltzmann-Ensemble Averaging. A single config-
uration is not statistically significant; that is, we require a
Boltzmann average of the representation, ⟨xi⟩. By ergodicity, we
approximate the Boltzmann-ensemble average by a time average,
that is, over snapshots of the MD trajectory. Although we gather
500 equidistant frames along the trajectory, we only keep a
subset of 200 to exclude those whose solute lies further away
from the target depth of insertion (i.e., at the lipid headgroup
interface). We calculate the Boltzmann averages over these 200
snapshots of each atomic SLATM.

Figure 3. Schematic of a SLATM histogram with decomposition in
one-, two-, and three-body contributions: particle counts (purple),
pairwise interactions (blue), and triplets (red). Inset: Cartoon
representation of interacting beads with example two- and three-body
interactions around the T5 particle. The dashed lines emphasize that
interactions need not be covariant.
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2.2.3. Molecular SLATM. Rather than focusing on atomic
representations, we describe the behavior of an entire molecule
at once. To do so, we sum over all CG beads of a molecule of
interest, , so as to yield the Boltzmann-averaged molecular
representation:

= x
i

i
(9)

The sum in eq 9 requires a separation of contributions in the
various bead types. A single atomic SLATM contains 1, N, and
N(N + 1)/2 one-, two-, and three-body terms. When summing
over multiple particles, the molecular SLATM will feature N,
N(N + 1)/2, and a subset of N3 types, pairs, and triplets,
respectively. For the number of triplets considered, see
Supporting Information section 2. In this study, we consider
N = 14 bead types, leading to 14, 105, and 1361 contributions.

Each two- and three-body contribution has high dimension-
ality, as it is a histogram over a range of distances or angles. To
reduce the dimensionality of the molecular SLATM vector, we
averaged over the distance and angular information. Averages
were normalized against the sum over the corresponding
distances or angles (eq S1).

2.3. Relating Order Parameters to Thermodynamics.
Recall that our target thermodynamic property is a solute’s
selectivity to CL and against PG membranes. The following
describes our tailoring of the molecular SLATM representation
to focus on selectivity and the use of principal component
analysis (PCA) to establish a structure−property relation.

2.3.1. Tailoring SLATM to Membrane Selectivity. The
power-law behavior used for the two- and three-body
interactions leads to strong heterogeneities in the SLATM
bins. Order-of-magnitude differences are commonly observed,
making their immediate use for any ML analysis potentially
difficult. Instead here we work with the logarithm of the
molecular SLATM, so as to compress the space.

Focusing on the difference in observed interactions between
CL and PG environments, our quantity of interest is the
difference between the two log-transformed molecular repre-
sentations, leading to

= ln CL

PG (10)

For each one of the n = 439 herein considered compounds, we
computed the structural order-parameter vector, . Further
details are included in the Supporting Information.

2.3.2. Principal Component Analysis (PCA). Each structural
order-parameter vector, , is of high dimensionality: D =
1480. To reduce the dimensionality and effectively tease out the
contributions most relevant to thermodynamic selectivity, we
apply a simple methodology: principal component analysis
(PCA).56−59 PCA looks for a set of orthogonal directions that
maximizes the variance of the zero-mean data matrix, X̂, of
dimension n × D, by solving the eigenproblem:

=X X v vCov( , ) k k k (11)

where λk and vk are the kth eigenvalue and unit-norm
eigenvector, respectively. Similarly, the linear combination X̂vk
is called the kth principal component (PC), a scaled eigenvector.
The elements of the eigenvectors vk are called the PC loadings.60

Intuitively, eigenvectors indicate the directions of high variance
in a set of samples, while eigenvalues represent the
corresponding amount, via the variance of the PCs. The

proportion of variance explained up to dimension d is given by
∑i<dλi/∑j<Dλj.61

The PCA representation then consists of choosing a number
of components d (where, typically, d ≪ D), and projecting the
original data onto the eigenvectors as Y =XV, whereV is a matrix
of dimension D × d containing the first d eigenvectors.
Correlating lower-dimensional PCs to target properties offers
strong interpretability, thanks to the possibility to transform
back from PCs to original coordinates.2,61

We used the PCA implementation of the scikit-learn package
with the random seed set to a constant value for reproduci-
bility.62−64 We performed no whitening of the data. For
computational efficiency, we used the PCA module using
randomized singular value decomposition, utilizing the appro-
priate dimensionality and shape of the SLATM arrays.

2.3.3. PCA of Molecular SLATM Vectors Depends Almost
Exclusively on Two- and Three-Body Interactions.Although in
principle all three bodies of interaction play a role in the PCA
analysis of (eq 10), the one-body contributions are
virtually negligible. Indeed, the two lipid environments display
almost the same collections of bead types. The headgroup beads,
Nda and P4, are the distinguishing characteristics between CL
and PG, respectively (see Figure 2). This difference is
systematically present in all . Consequently, PCA places
minimal importance on the one-body contributions relative to
the higher-order interactions. In the following, we thus limit our
evaluation to the two- and three-body interactions.

2.3.4. Physicochemical Interpretation of the Principal
Components. Interpretation of the main PCs was achieved by
cross-correlation with several (physicochemical) descriptors. All
descriptors are normalized by the number of CG beads in the
solute, to account for the heterogeneity in solute sizes. The
descriptors include the water−octanol partitioning of the
solutes, ΔGW→Ol (see Supporting Information section 1.1);
number of solute polar beads, that is, T1 and T2; number of
solute charged beads, that is, Q0; number of solute beads that
offer hydrogen-bond-like characteristics, that is, T3; and the l2
norm of the structural order-parameter vector, | |2. We
relied on linear regression to measure the correlation, quantified
by the coefficient of determination, R2.65

3. RESULTS AND DISCUSSION
The following describes the results of the methodology sketched
in Figure 1 in the context of small solute molecules interacting
with either cardiolipin (CL) or phosphatidylglycerol (PG)
membranes. We run MD simulations, extract structural order-
parameter vectors (here in the form of the molecular SLATM),
and subsequently analyze them using principal component
analysis (PCA). We first relate some of the first principal
components (PCs) to physicochemical properties. We then
focus on the PC most relevant for selectivity and identify key
two- and three-body interactions. Finally, we establish linear
structure−property relationships between PCs and selectivity
for CL membranes.

3.1. Physicochemical Interpretation of PCA Eigenvec-
tors. The amount of variance explained by the eigenvalues
ideally prescribes a number of PCs to retain d ≪ D. Upon
inspection, we find no clear change in regime, but rather a
smooth behavior (Figure S5). We focus here on the first six
eigenvectors, representing 77% of the overall variance.

To interpret the first six PCs, we cross-correlate them with
different physicochemical descriptors. Figure 4a shows the
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correlation between the third component, PC3, against
selectivity itself, ΔΔG. We measure a meaningful coefficient of
determination R2 = 0.31, while cross-correlation with the other
main PCs yields virtually 0 (Figure S6). It is not surprising to
find correlation between the PCs and the target property,
because of our construction of the structural order-parameter
vector. Indeed, focuses on the difference in observed
interactions of a solute between the two lipid environments.
Although expected, the lack of correlation with any other main
PCs makes for a clear map between solute and target selectivity,
via a single PC.

Simultaneously, we find that PC3 also correlates strongly with
other physicochemical descriptors: water−octanol partitioning
free energy, ΔGW→Ol (R2 = 0.36); polar bead types, T1 and T2
(R2 = 0.57); and charged bead types, Q0 (R2 = 0.47). However,

PC3 does not correlate significantly with bead types T3,
associated with a CG proxy for hydrogen bonding (Figures S8−
S10). Taken together, the direct association of PC3 to selectivity
hints at the role played by ΔGW→Ol, polar beads, and charged
beads in modulating CL selectivity. In fact, ΔGW→Ol is a key
quantity in the parametrization of CG Martini, and in particular
that of the reduced 5 + 1 force field.34 The design rules inferred
from our previous active-learning study similarly highlighted the
effects of polar and charged beads.35

Other PCs also exhibit some physicochemical interpretation,
as shown in Figures S6−S11. We find that PC1 and PC2 weakly
correlate with polar beads (R2 = 0.14) and hydrogen-bonding
beads (R2 = 0.13), respectively. The other main PCs correlate
more significantly to physicochemical descriptors: PC4
associates with both water−octanol partitioning (R2 = 0.22)
and charged beads (R2 = 0.11). PC5 strongly correlates with T3
types associated with hydrogen bonding (R2 = 0.45, Figure 4b),
and to a smaller extent with the norm of the structural order-
parameter vector (R2 = 0.32) as well as the number of charged
beads (R2 = 0.21). Finally, PC6 almost exclusively and strongly
correlates with the norm of the structural order-parameter
vector (R2 = 0.51). It is not clear to us whether this mirrors a
sensitivity to an overall difference between CL and PG
environments, or whether the metric is biased by particular
coordinates of .

Overall, the relatively straightforward association of PCs to
few physicochemical descriptors likely arises from the CG
resolution of the model itself, which reduces the number of
relevant degrees of freedom. In addition, we point at the effective
role played by our MD structural order-parameter vectors,
which exacerbates the relationship between salient features of
the solute in its condensed-phase environment with the target
thermodynamic property.

3.2. Identification of Key Interactions to Design
Selective Solutes. Correlation of relevant PCs to selectivity
is only a means to an end. What we care to understand is the role
played by specific (two- and three-body) interactions in
modulating selectivity. Fortunately, the linearity of PCA allows
us to easily transform back to the space of and read off the
contribution of every single interaction. To this end, we focus on
the scaled PC loadings (eq S2), that is, the elements of the PCA
eigenvectors. The scaled PC loadings for the various PCs down
to an absolute value of 1.0 are reported in Figures S12 and S13.
However, not all components carry equal importance. Recall
from Figure 4a that PC3 correlated positively with selectivity.
However, strong selectivity values tend to be large and negative
(i.e., they are free-energy differences). Given the positive
correlation between PC3 and ΔΔG, we expect PCs with
negative coefficients to contribute to strong selectivity.

Figure 5 reports the interactions that have negative PC3
eigenvector components (see the Supporting Information for
the other PCs). The interactions are displayed on a graph, where
nodes and edges correspond to bead types and interactions,
respectively. Because edges are inherently pairwise, three-body
interactions are projected down onto the relevant pairwise
counterparts. Both bead types and interactions have specific
visual features depending on the system: solute, lipid, or solvent.
Importantly, the thickness of the edges emphasizes the
occurrence of a bead pair in the dominant scaled PC loadings,
and thus the relevance of the interaction. Panels a and b display
the CL and PG systems, respectively. First, they highlight the
central role played by the Nda and P4 lipid beads.We recall from
Figure 2a that these are the two bead types that specifically

Figure 4.Cross-correlation of (a) the third principal component (PC3)
to CL selectivity ΔΔG and (b) PC5 to the ratio of hydrogen-bonding
beads in each solute. The color gradients further visualize the respective
physicochemical descriptor represented on the vertical axis. The lines
represent best fits from linear regression.
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distinguish CL from (2×) PG. For CL, Nda predominantly
interacts with Q0, T3, and T4. For PG, P4 interacts primarily
with T1 and T2. For both membranes, these contributions
largely reflect the strengths of two-body interactions. In
addition, they are further reflected in many of the relevant
three-body interactions, sometimes accompanied by other bead
types: T5 for CL; T3, T4, and T5 for PG. Furthermore, the role
of the solvent is highlighted via key interactions with the POL
and PQd bead types.

Leveraging information from this analysis further, we can
visualize favorable geometric arrangements of beads to enhance
selectivity. Figure 6 reconstructs information from the

interaction graphs to place prototypical solutes around the
two lipids. Solute beads are placed manually around the lipids so
as to illustrate the information of Figure 5. The arrow widths
further reflect the interaction strengths, mirroring the PC
loadings. The figure emphasizes the role played by some of the
bead types and clearly conveys the idea that different bead types
will favorably associate with either CL or PG. Panel a, which
targets CL, better illustrates relevant solute characteristics for
the target property at hand in this work.

3.3. Charting Selectivity in Low-Dimensional Maps.
Beyond the relationship between individual PCs and selectivity,
we look for more insight by combining pairs of components. We
iterate through all pairs of PC1−6, each time generating a two-
dimensional map or embedding, populating it with the n = 439
solutes based on their PCA coordinates, and coloring the points
according to the different physicochemical descriptors (Figures
S21−S32). Out of all combinations, the pair PC3−PC5 stands
out in its high overall correlation to several descriptors, including
selectivity. The two-dimensional map is reproduced in Figure
7a. The combination is somewhat expected: the high correlation
of PC3 and PC5 alone was already reported in Figure 4a and b,
respectively. Figure 7a shows that the combination of PC3−PC5
creates two clear basins in terms of proportion of charge in the
solute. Remarkably, this projection simultaneously leads to a
separation between poorly and highly selective solute
compounds, as evidenced in Figure 7b. This separation is
clearly visible between the upper-left and lower-right corners of
the space. The basin of high selectivity associates with low and
high values of PC3 and PC5, respectively.

Figure 5. Graph of the interactions of PC3 with dominant negative PC loadings for the (a) CL and (b) PG systems. The edge width scales with the
occurrence of the interaction. Orange edges show interactions between solute beads, and dashed edges represent interactions with beads used tomodel
water or sodium ions.

Figure 6. Three-dimensional illustration of the dominant interactions
of PC3 reported in Figure 5 for (a) CL and (b) PG. The sets of beads
form hypothetical solutes that would favorably interact with either lipid.

Figure 7. Biplots of PC3 and PC5, colored by (a) the ratio of charged beads per solute and (b) the selectivity, ΔΔG. The values of the principal
components are scaled to the interval [−1, 1]. In (a) and (b), we show the six highest eigenvector coefficients of two-body interactions. In (b), three
example compounds are classified for CL selectivity by PCA, without calculating their respective partitioning free-energy difference ΔΔG.
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The two-dimensional maps of Figure 7 represent so-called
biplots, because they also feature the directions and magnitudes
of the PC loadings via the displayed arrows. Intuitively, each
arrow points at the correlation between a select two- or three-
body interaction and a PC. Figure 7 focuses on two-body
interactions only and clearly highlights how the P4−Q0 and
Q0−Nda both align perpendicular to the separation between
poor and high solute selectivity. The biplot further singles out
the role of Q0 as a key solute bead to modulate selectivity, but
specifically identifies the bead’s impact in terms of two-body
interactions.

Now that we have a two-dimensional map charted with clear
basins of poor and high selectivity, we apply it to predict the
selectivity of new solutes. We construct three compounds
outside of the initial set of n = 439. Compounds A and B follow
the three-dimensional structural aspects prescribed by Figures
5a and 6a; that is, they are expected to be selective to CL.
Compound C, however, was originally eliminated from our
initial study because of a lack of stable insertion at themembrane
interface, that is, expected to not be selective to CL.35 For these
three compounds, we have no free-energy calculation to
determine ΔΔG. We will instead solely apply the methodology
sketched in Figure 1: run a single MD simulation, compute the
structural order-parameter vector across the trajectory, trans-
form to PCA coordinates, and place the new compound
on the two-dimensional PC3−PC5 map.

Figure 7b places the three compounds A, B, and C on the two-
dimensional map. C is featured well within the basin of poorly
selective compounds, where its lack of charged beads places it
toward the lower-right side of the map. Compounds A and B,
however, stand to the upper left of the dividing line between
poor and high selectivity, suggesting selectivity to CL. For both
compounds, the presence of charged beads places them toward
the leftmost side of PC3, while the number of T3 beads likely
impact the different positions along PC5. Naturally, a larger set
of compounds would enrich the chemical space explored, but
even within our limits, we achieve reasonably accurate
predictions.

Evidently, estimating selectivity by transforming the solute’s
to PCA coordinates offers significant appeal in terms of

computational load. The alchemical free-energy calculations
involved in calculating ΔΔG consumed from 24 to 48 GPU
hours of an NVIDIA Tesla V100 per neural and charged
compounds, respectively.35 However, a single MD simulation
used in the present protocol only needed 0.3−0.7 GPU hours of
an NVIDIA GTX 980. Although the two GPUs are different, the
need for a sole MD simulation, and without the usual
sensitivities associated with alchemical free-energy calculations,
evidently leads to a drastic reduction in computational load.

4. CONCLUSION
The present work proposes a methodology based on molecular
simulations to link chemical structure to thermodynamic
properties. Attempting a direct structure−property link, for
example, via machine learning, between chemical compound
and target property is likely to be clouded by several factors.
First, the condensed-phase environment of a liquid will likely
lead to a combination of covalent and noncovalent interactions,
and both may critically impact the target property. In addition, a
single three-dimensional molecular configuration is unlikely to
be representative, because of the phase-space (Boltzmann)
averaging inherent to thermodynamic quantities.

To address this challenge, we propose the use of an atomic
representation originally developed for machine learning of
electronic properties: the Spectrum of London Axilrod−Teller−
Muto (SLATM) representation. SLATM decomposes a
configuration into a collection of increasing body-order
interactions: single particle (one-body); pairwise (two-body);
and triplets (three-body). For each term, SLATM builds a
histogram of population of these interactions. The pairwise term
is reminiscent of the radial distribution function, which hints at
the adequacy of the representation for molecular liquids. We
adapt SLATM to average over snapshots of an isothermal−
isobaric MD simulation, acting as a proxy for a Boltzmann
average. This adapted ensemble-SLATM representation thereby
addresses the two above-mentioned issues: (i) it does not
distinguish between covalent and noncovalent interactions; and
(ii) it offers phase-space averaging.

We argue that this adapted ensemble-SLATM representation
is particularly amenable to establishing structure−property
relationships of thermodynamic properties. As an application,
we focus on a complex biomolecular system: small molecules
targeting (phospholipid) cardiolipin (CL) membrane environ-
ments. We rely on a coarse-grained (CG) resolution, not only
for computational efficiency, but mostly for its ability to reduce
the size of chemical space and thereby screen across compounds
more efficiently. The CG resolution allows us to screen across a
large subset of small drug-like molecules with relatively few CG
molecular structures. Although based on the biomolecular CG
Martini model, our solute compounds are represented via a
further reduced force field that defines fewer bead types.

Establishing here the structure−property map boils down to
reducing the dimensionality of the SLATM vectors. To
demonstrate the benefits of including relevant physics in the
representation (e.g., phase-space averaging or key two- and
three-body interactions), we apply a simple, linear statistical
method: principal component analysis (PCA). Transformation
of the original coordinates to the main principal components
allows us to focus on a handful of dimensions, thereby
significantly reducing the dimensionality of the problem.

Our analysis shows that we can correlate the first main
principal components (PCs) against relevant physicochemical
descriptors, as well as CL selectivity, the target property itself, via
a single PC. The linearity of PCA makes it possible to transform
back from PCA to SLATM coordinates to identify key two- and
three-body interactions that impact the various PCs. We isolate
key CG bead types present in higher-order interactions that
overwhelmingly impact CL selectivity. In the present case, this
includes CG types Q0, T3, T4, and T5, interacting favorably
with the Nda bead type on CL’s headgroup. The results offer
direct prescriptions on the design of solutes selective to CL.

Finally, we gain further insight by charting a two-dimensional
map in the PCA coordinates. A simple evaluation of all pairs of
PCs reveals one that surprisingly separates two clear basins of
compounds: poor and high CL selectivity. From this map, it is
straightforward to predict a compound’s thermodynamic CL
selectivity based on its PCA coordinates. Computationally, this
methodology only requires a (relatively short) MD simulation,
as compared to expensive alchemical free-energy calculations.
We demonstrate the idea on three test compounds out of the
initial training set.

Although demonstrated on a CG model applied to CL-
membrane selectivity, we foresee the methodology to be
generally applicable to molecular simulations of a variety of
thermodynamic properties.
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