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Abstract 

Cognitive neuroscience has gained insight into covert states using experience sampling. 
Traditionally, this approach has focused on off-task states, however, task-relevant states are also 
maintained via covert processes. Our study examined whether experience sampling can also 
provide insights into covert goal-relevant states that support task performance. To address this 
question, we developed a neural state-space, using dimensions of brain function variation, that 
allows neural correlates of overt and covert states to be examined in a common analytic space. 
We use this to describe brain activity during task performance, its relation to covert states 
identified via experience sampling, and links between individual variation in overt and covert 
states and task performance. Our study established activity patterns within association cortex 
emphasizing the fronto-parietal network both during target detection and a covert state of 
deliberate task focus which was associated with better task performance. In contrast, periods of 
vigilance and a covert off-task state were both linked to activity patterns emphasizing the default 
mode network. Our study shows experience sampling can not only describe covert states that are 
unrelated to the task at hand, but can also be used to highlight the role fronto-parietal regions 
play in the maintenance of covert task-relevant states. 
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Introduction 
 
Contemporary cognitive neuroscience has established the neural correlates of hidden states such 
as mind-wandering 1, or more recently, mind-blanking 2, by associating brain activity with patterns 
of thought described by experience sampling 3-5. These states are a natural target for experience 
sampling studies because they help establish the correlates of states that occur spontaneously, 
and so are hard to evoke using standard experimental methods 6-8. However, overt task behavior 
can also depend on the maintenance of task-relevant information in awareness 9. Accordingly, it 
is possible that experience sampling can also illuminate the nature of covert processes that are 
hypothesized to help task performance. Consistent with this possibility, Turnbull and colleagues 10 
established that when people are off-task, regions involved in external attention, such as regions 
of the dorsal lateral prefrontal cortex (dLPFC), show reductions in activity, and that in demanding 
situations, regions of the dLPFC can suppress off-task activity. However, we currently lack an 
understanding of the patterns of brain activity that support the active maintenance of deliberate 
task-relevant information covertly in awareness. 

To address this gap in our understanding, we re-analyzed a published data set 11 to examine 
whether a pattern of deliberate task-relevant focus is related to specific patterns of neural activity 
and is linked to better performance on the task at hand. To achieve this goal, we developed a 
neural state-space based on dimensions of brain function variation that are derived from resting-
state connectivity data, and commonly referred to as ‘gradients’ 12. These gradients are 
generated using data-driven techniques and depict axes that differentiate observed function in 
major brain systems (for a review, see 13). We used these gradients to build a 3-d coordinate 
system that allows us to organize brain maps derived in different ways within a ‘common space’ 
(see also 14). In the current study, we use this common space to examine how patterns of brain 
activity are related to both 1) covert experiential states that emerge during task processing and 
that we index via experience sampling and 2) the implementation of different stages of goal-
relevant behavior that occur during task completion. The task was a simple sustained attention 
task in which participants were asked to ignore (frequently presented) non-targets and respond to 
(infrequent) targets. To index covert experiential states during the task, multidimensional 
experience sampling (mDES) 8,15 was employed, a method that requires individuals to 
intermittently describe their thoughts by rating several dimensions. This technique has previously 
been used to identify covert experiential states, including the deliberate maintenance of task-
relevant information, as well as patterns of thought that are less related to the here and now, 
including thoughts with a social episodic focus, and patterns of thought with different modalities 
(verbal or visual) (e.g., 10,11,16,17). This approach is also sensitive to changes in neural function as 
indexed by functional magnetic resonance imaging (fMRI) 8,11,14,18-28. 

 
We used these data to understand whether experience sampling can be used to identify the 
neural correlates of patterns of thought that are linked to the organization of task-relevant 
behavior. First, to generate our neural state-space, we selected the first three connectivity 
gradients 12 calculated from resting-state data collected as part of the Human Connectome 
Project (HCP) 29, accounting for approximately 50% of the connectivity variance (see the second 
panel of Figure 1 for spatial maps representing each gradient). The first connectivity gradient 
corresponds to a dimension that differentiates sensory-motor cortex from association cortex, the 
second gradient describes differences between motor and visual cortex, and the third gradient 
differentiates regions of the default mode network (DMN) from the fronto-parietal network (FPN). 
The combination of these three gradients forms the 3-d state-space presented in Figure 1. Next, 
we used these gradients to organize the overt and covert features of cognition derived from our 
data by projecting the relevant task and experiential maps for each participant into the 3-d space, 
correlating each map with each gradient dimension. This analytic step resulted in a set of 3 
‘coordinates’ for each task and experiential map for each participant, in which each coordinate 
describes the location of each map along each gradient dimension. Finally, we used a series of 
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linear mixed models to apply inferential statistics to these coordinates. This analytical pipeline is 
shown in Figure 1, and see Methods for further details. 
 
 

 
 
 
Figure 1. Schematic illustration of the task paradigm and locating the overt task states and covert 
experiential states in the neural state-space. The top row depicts the task paradigm. Participants 
completed a sustained attention task while brain activity was measured using fMRI. The task comprised of 
vigilance periods, in which non-target shapes were presented (80% of trials), and periods of target detection, 
in which target shapes were presented, requiring a behavioral response (20% of trials). During each run of 
the task (13 mins x3), 8 experience sampling probes were presented. Each probe asked participants to rate 
13 items regarding their covert experience during the task (e.g., level of task focus; see Supplementary 
Table 5). Principal Components Analysis (PCA) applied to this data identified three thought patterns, 
represented as word clouds in the second panel (size of word = magnitude of loading and color = direction; 
warm = positive, cool = negative). Our experimental approach, therefore, allowed us to identify brain 
correlates to both overt task states (vigilance and target detection) and covert states (as assessed using 
experience sampling). Brain maps for both overt and covert states (second row) were calculated via the 
application of the general linear model to each participant using the task time-course, and the time-course 
for each mDES dimension as explanatory variables (calculated at the first-level using FSL; see Methods). In 
these brain maps, warmer colors correspond to positive values, while cooler colors correspond to negative 
value (note, each brain map has a its own color scale). Having identified covert and overt brain states for 
each individual, we performed pairwise correlations between each of the three connectivity gradients and 
each individual’s covert and overt brain maps (right-hand side of second row) to produce, for each person 
and each map, three gradient coordinates, indicating where each individual’s brain maps fall in the 3-d 
neural state-space (left-hand side of third row). The results of this analysis are shown in the 3-d scatterplot, 
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in which each point represents an individual’s brain maps location in the state-space (N observations = 285). 
Different colored dots describe different types of brain-cognition relationships. 

 
Results 
 
Location of overt task states in the state-space and how these locations predict target 
detection performance. 
Our first goal was to determine how the neural state-space differentiated the two features of overt 
behavior in our task paradigm (vigilance and target detection) and to understand whether their 
positions in the state-space relate to task performance. To this end, we first calculated the pairwise 
correlations between spatial brain maps summarizing neural activity during periods of vigilance and 
target detection with each of the three connectivity gradients, resulting in three sets of coordinates 
per task map (see Methods). The results of this process can be seen in Figure 2 (panel D), and 
see Supplementary Figure 1 for the distribution of these coordinates for each task map. 
 
To understand how these task events are differentiable along the three dimensions of our state-
space, we compared the position (i.e., the coordinates) of these maps along each dimension in a 
series of linear mixed models. We also examined how these positions in the state-space predicted 
target detection performance during the task in a multiple regression in which the task maps’ 
coordinates were the explanatory variables and response time was the outcome variable. In 
addition to traditional significance testing of main effects, bootstrapping (n iterations = 1000) was 
used to calculate parameter estimates and their associated confidence intervals and p-values to 
establish the robustness of results emerging from these models (see Methods). 
 
The mixed models comparing the coordinates of each task map along each dimension of the state-
space indicated that the position of vigilance and target detection states differed significantly along 
each dimension [dimension 1: [F(1, 56) = 17.01, P < .001]; dimension 2: [F(1, 56) = 28.30, P < 
.001]; dimension 3: [F(1, 56) = 217.86, P < .001]]. Along dimension 1—which separates sensory-
motor and association cortex—vigilance states, compared to target detection states, were located 
further towards the association end [bootstrapped b = 0.05, 95% CI [0.03, 0.07], P < .001]. Along 
dimension 2—which separates motor and visual systems—target detection states, compared to 
vigilance states, were located further towards the motor end [bootstrapped b = -0.05, 95% CI [-
0.07, -0.03], P < .001]. Finally, along dimension 3—which separates the default mode and fronto-
parietal networks—vigilance states, compared to target detection states, were located further 
towards the default mode end [bootstrapped b = -0.14, 95% CI [-0.16, -0.12], P < .001]. Overall, 
therefore, vigilance states tended to fall towards the association end of dimension 1, the visual end 
of dimension 2, and the default mode end of dimension 3. In contrast, target detection states tended 
to fall towards the sensory-motor end of dimension 1, the motor end of dimension 2, and the fronto-
parietal end of dimension 3 (see Figure 2E). All bootstrapped parameter estimates for these models 
are presented in Supplementary Table 1. Finally, the multiple regression indicated that individuals 
whose target detections states fell further towards the motor end of the motor to visual dimension 
tended to respond faster to the targets [F(1, 47) = 4.47, P = .040; bootstrapped b = -1.89, 95% CI 
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[-3.35, -0.04], P = .044] (see Figure 2F for scatterplot and see Supplementary Table 2 for all 
bootstrapped parameter estimates). 
 

 
Figure 2. Location of overt task events in the neural state-space and their relationship to task 
performance. A) The (unthresholded) target and vigilance group-level maps plotted on the cortical surface 
in MNI space (N = 57). These two maps share a common color scale. B) A scatter plot of the first two 
dimensions of the state-space (points = parcels), colored by the fMRI BOLD activity in the target and 
vigilance brain maps shown in panel A. C) Word clouds representing the results from a meta-analysis using 
NeuroSynth to decode the most likely terms used to describe the pattern of brain activity seen in the target 
and vigilance maps, where the size of the word represents the magnitude of the relationship, and the color 
represents the direction (warmer colors = positive relationship, cooler colors = negative relationship). D) 3-d 
scatterplot showing where 1) individual target and vigilance maps fall in the state-space (smaller circles) and 
2) the average position of these maps across the sample (larger circles). In this plot, each point represents a 
whole-brain map for each task condition for each participant (N observations = 114). Open circles represent 
target maps while closed circles represent vigilance maps. E) Bar graph showing the results of the linear 
mixed models comparing the coordinates of periods of vigilance and moments of target detection along each 
dimension in the neural state-space. Each bar represents the estimated marginal mean (i.e., predicted 
value) for each level of ‘task map’ (vigilance and target detection). Error bars represent 95% CIs (N 
observations = 114). Y-axis labels shown on the right-hand-side indicate the brain systems at the extreme 
ends of each dimension. F) Scatterplot showing the relationship between target detection response time (z-
scored seconds; y-axis) and the position of the target map along the motor to visual dimension of the state-
space (dimension 2; x-axis). Error bars represents 95% CIs (N observations = 57). X-axis labels indicate 
extreme ends (motor and vision) of dimension 2. 

 
Location of covert experiential states in the state-space and how experiential reports predict 
target detection performance. 
 
Having established the position of the overt task states in the state-space, we next made use of 
this common space to understand the position of the three covert experiential states identified by 
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experience sampling. Principal Components Analysis (PCA) was applied to the mDES data, 
revealing three components, accounting for 47.41% of the total variance: 1) off-task episodic social 
cognition, 2) deliberate task focus, and 3) verbal, self-relevant thought (see Methods). These 
components are represented as word clouds in Figure 3A. We then performed a linear regression, 
at the individual-level, in which each individuals’ fMRI data during the six seconds prior to the 
experience-sampling probe was the outcome variable and the individual’s thought score on each 
of the thought patterns (1-3) was the explanatory variable (see Methods). This produced, for each 
individual, a spatial map of how their brain activity was associated with their score on each of the 
three thought patterns identified via PCA. Next, we calculated the pairwise correlations between 
each of these three ‘experiential’ maps and each of the three connectivity gradients, resulting in 
three coordinates per experiential map. The results of this process can be seen in Figure 3E, and 
see Supplementary Figure 1 for the distribution of these coordinates. To understand how these 
experiential maps are differentiable along the three dimensions of our state-space, we compared 
the position (i.e., the coordinates) of these maps along each dimension in a series of linear mixed 
models (see Methods). As before, in addition to traditional significance tests of main effects, we 
performed bootstrapping (n iterations = 1000) to calculate parameter estimates and their 
associated confidence intervals and p-values. 
 
The mixed models comparing the position of each experiential map along each dimension of the 
state-space revealed that the position of the experiential maps differed significantly along 
dimension 3, which separates the default mode and fronto-parietal networks [F(2, 165) = 4.75, P = 
.010]. The off-task state fell towards the default mode end of this dimension [bootstrapped b = -
0.04, 95% CI [-0.07, -0.01], P = .008], while the deliberate task focus state fell towards the fronto-
parietal end [bootstrapped b = 0.04, 95% CI [0.01, 0.08], P = .002]. Therefore, our results indicate 
that covert states of deliberate task focus are associated with patterns of brain activity emphasizing 
the fronto-parietal network rather than the default mode, whereas, covert off-task states tend to 
show the opposite pattern. In both cases, the maps were not only different from one another on the 
default mode – fronto-parietal dimension of the state space, but the distributions of both states fell 
on average outside the center of this dimension (see Figure 3F). All bootstrapped parameter 
estimates for these models are presented in Supplementary Table 3. 
 
Finally, we conducted a multiple regression to examine how individual variation in each of the three 
dimensions of thought was associated with response time. This analysis indicated that patterns of 
deliberate task focus were associated with faster response times during target detection [F(1,50) = 
5.51, P = .023; bootstrapped b = -0.34, 95% CI [-0.60, -0.01], P = .046], suggesting that this covert 
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experience may support better task performance (see Figure 3G for scatterplot and see 
Supplementary Table 4 for all bootstrapped parameter estimates). 
 

 

Figure 3. Location of experiential states in the neural state-space and how self-reports of these 
states predict task performance. A) Word clouds representing the three experiential states identified by 
applying Principal Components Analysis (PCA) to the to the experience sampling data. The first describes 
patterns of off-task episodic social cognition, the second describes patterns of deliberate task focus, and the 
third describes patterns of verbal, self-relevant thought. Size of the word represents the magnitude of the 
relationship, and the color represents the direction (warmer colors = positive relationship, cooler colors = 
negative relationship). B) Word clouds representing the results from a meta-analysis using NeuroSynth to 
decode the most likely terms used to describe the pattern of brain activity seen in the experiential maps. 
Size of the word represents the magnitude of the relationship, and the color represents the direction (warmer 
colors = positive relationship, cooler colors = negative relationship). C) The (unthresholded) experiential 
group-level maps plotted on the cortical surface in MNI space. These three maps share a common color 
scale. D) A scatter plot of the first and third dimensions of the state-space (points = parcels), colored by the 
fMRI BOLD activity in the experiential brain maps shown in panel C. E) 3-d scatterplot showing where 1) 
individual experiential maps fall in the state-space (smaller points) and 2) the average position of these 
maps across the sample (larger points). In this plot, each point represents a whole-brain map for each 
experiential state for each participant (N observations = 171). Squares represent off-task maps, closed 
circles represent deliberate task focus, and open circles represent verbal, self-relevant thought. F) Bar graph 
showing the results of the linear mixed model comparing coordinates of the experiential states along the 
DMN to FPN dimension of the state-space. Each bar represents the estimated marginal mean (i.e., 
predicted value) for each level of ‘experiential map’. Error bars represent 95% CIs (N observations = 171). 
G) Scatterplot showing the relationship between target detection response time (z-scored seconds; y-axis) 
and the extent to which an individual reported deliberate task focus during the task (x-axis) (N observations 
= 57). 
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Discussion 

Our study set out to examine whether experience sampling can be used to provide insights into 
covert task-relevant states that are hypothesized to play a role in organizing task behavior. To 
address this question, we used a simple sustained attention task in which participants detected 
visually presented targets (to provide an index of overt behavioral states) and experience 
sampling (to provide indices of covert cognitive states). To allow these different features to be 
examined in a common analytic space, we used a state-space derived from dimensions of brain 
function variation 12 calculated from the resting state data of the Human Connectome Project 29. 
These dimensions characterize three different types of brain organization: 1) the distinction 
between sensory-motor and association cortex, 2) the distinction between motor and visual 
cortex, and 3) the distinction between the default mode and fronto-parietal networks in 
association cortex. As well as indicating that the default mode network is involved in covert off-
task states, experience sampling revealed that the fronto-parietal network is involved in covert 
states of deliberate focus on the task at hand. Moreover, our data suggest that this pattern of 
thought was beneficial rather than detrimental to task performance, and the fronto-parietal system 
was also linked to neural patterns important for the act of target detection. These results, 
therefore, establish that experience sampling can also describe task-relevant states as well as 
states that are unconstrained by external input. 
 
As well as establishing the value of experience sampling in understanding task-relevant states, 
our study provides important insights regarding the mapping between cognition and brain activity. 
First, our study suggests that association cortex may be generally important when cognition 
depends on stimulus-independent information processing. We found that patterns of activity 
within the fronto-parietal and default mode networks distinguished between covert patterns of 
cognition that are likely to depend, in part, upon information that cannot be inferred directly from 
immediate sensory input. Contemporary views on the topology of brain organization suggest that 
regions that make up both the fronto-parietal and default mode networks are located in regions of 
the cortex that are maximally distant from the systems involved in action and perception 12. The 
location of association cortex at the maximal distance from sensory-motor systems may provide a 
mechanism through which brain activity in these regions can be more distinct from activity in 
regions that respond to input describing the immediate environment (for a discussion see: 30). Our 
data, therefore, is consistent with contemporary perspectives on association cortex which suggest 
that the distance along the cortical mantle from the brain’s input-output systems may be important 
for helping support patterns of brain activity that are less directly related to information in the 
immediate environment. 
 
Extrapolating from this perspective, it is possible that different systems within association cortex 
may serve processes that enable them to help organize cognition and behavior over different time 
scales. For example, our study suggests that although both the default mode and fronto-parietal 
networks are important for maintaining covert states, they may do so with a different temporal 
resolution. Covert states of deliberate thought share organizational features with the patterns of 
brain activity seen when participants detected a target. This is consistent with a role for this 
system in maintaining goals relevant to performing the task at hand 9,31. In contrast, the default 
mode network was important for patterns of thought that emphasized mental contents derived 
from memory and focused on the future or past, instead of the task at hand. These findings are 
consistent with a role for the default mode network in states like mental time travel 32-34, which 
may be important for organizing behavior over time 35,36 and may depend in part on this system’s 
role in the ability to replay information from memory 37. More broadly, this perspective is 
consistent with the alignment between the default mode network and features of declarative long-
term memory such as semantic or episodic memory 38. 
 
Although our study demonstrates the value of experience sampling in understanding covert task-
relevant states, it nonetheless leaves several questions unanswered. First, since we focused only 
on one task context, it remains unclear how the current findings generalize to situations with 
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different features. In order to fully understand the role association cortex plays in behavior, it is 
likely to be particularly important to explore task situations where information from memory is 
important for guiding actions 39-41 and in tasks where performance depends on integration 
between memory and different types of sensory input (e.g., movie watching or semantic decision 
making). In the future, therefore, it will be valuable to employ our state-space approach across a 
wider range of task contexts. This is particularly important given an emerging body of work 
highlighting the importance of considering the context in which covert experiences emerge when 
investigating their psychological and neural correlates 8,16,17,42,43. Second, since our study focused 
only on a single scanning session, it will be important for future work to evaluate the consistency 
and reliability of findings, within and across individuals and over time. For example, future work 
could use more intensive scanning procedures like those employed in the Midnight Scan Club 44 
to evaluate the stability of brain state’s locations in the state-space. Third, although we identified 
a relationship between deliberate thought and better task performance, the significance of this 
relationship would likely be improved if we could identify situations which maximize the beneficial 
value of deliberate thought to performance. For example, in a large behavioral sample, Turnbull 
and colleagues 45 demonstrated that off-task thought was more detrimental to performance in a 
working memory task than in a choice reaction time task. It could be important in the future to 
understand how variations in deliberate task focus impact on performance across a range of 
different task conditions to better understand how this thought pattern supports better 
performance. Finally, although the state-space approach is useful for identifying coarse 
similarities and differences in whole-brain patterns between states, it may be limited in its ability 
to identify more fine-grained details. Although this approach is likely to be insufficient to detail 
modular functions within regions, as our study highlights, it provides a simple way to understand 
commonalities in brain organization between different types of state and thus is a powerful 
method to investigate domain general perspectives on how brain organization gives rise to 
cognition and behavior. 
  
Materials and Methods 
 
In the following Methods section, the details for the participant information, task paradigm, 
experience sampling, task procedure, fMRI acquisition and preprocessing, Principal Components 
Analysis, and FSL-based fMRI analysis are the same as those described in Konu et al. 11, with 
minor rewording in places for clarity (material originally published under a Creative Commons 
License: CC BY-NC-ND 4.0). 
 
Participants. 
One hundred and seven participants took part in this study. Ninety-one participants participated in 
a behavioral session (67 females; mean age: 23.38 years, standard deviation: 4.53 years, age 
range: 19–40 years). Sixty-two participants participated in the scanning session (41 females; 
mean age: 23.29 years; standard deviation: 4.51 years, age range: 18–39 years). After excluding 
5 participants, 57 remained for fMRI data analysis (due to technical difficulties or excess 
movement). Forty-six participants participated in both the behavioral and scanning session. All 
participants had normal/corrected vision and had no history of psychiatric or neurological illness. 
All scanning participants were right-handed. This cohort was acquired from the undergraduate 
and postgraduate student population at the University of York. The study was approved by the 
local ethics committee at the York Neuroimaging Centre and University of York Psychology 
Department and all research was performed in accordance with relevant guidelines and 
regulations. All volunteers provided informed written consent and received monetary 
compensation or course credit for their participation. These details are the same as those 
described in Konu et al. 11. 
 
Task paradigm. 
Participants were instructed to attend to the center of the screen while they were presented with a 
sequence of ‘non-target’ and ‘target’ stimuli, to which they responded only to target stimuli (mean 
stimulus presentation duration: 1000 ms). Therefore, this task comprised of ‘vigilance’ periods, in 
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which non-target stimuli were presented, and ‘target detection’ periods, in which target stimuli 
were presented, requiring a button push. A single run of the task was 13 minutes and contained 
eight instances of experience sampling probes. For each experience sampling probe, participants 
rated each experience sampling item once (see the next section for details of the experience 
sampling technique). Each of the 13 experience sampling items were presented for a maximum 
of 4 s on the screen—based on the average response time from previous studies—followed by a 
500 ms fixation cross. The remainder of the time was allocated to two kinds of experimental trials: 
target and non-target. In target trials, a green circle was randomly presented (20% of the 
experiment trials) and participants were required to make a response (a single key or button 
press). In non-target trials, a red octagon was presented (80% of the experiment trials) and no 
behavioral response was required. An experimental trial was fixed at 3000 ms. The inter-stimulus-
intervals (ISI) consisted of a fixation cross and was jittered (1500–2500 ms). The stimulus was 
presented on screen for 500–1500 ms until a response was made. Once a response was 
captured, a fixation cross appeared on the screen for the remaining time. This task was designed 
to require minimal cognitive demand since these conditions (i.e., long periods of vigilance, 
interleaved with simple target detection) facilitate the occurrence of self-generated thought at a 
level that is comparable to rest 46. The task paradigm is presented schematically in the top panel 
of Figure 1. In the scanner, participants completed three runs of the task, whereas, in the 
behavioral session they completed one run of the task. Written instructions were presented at the 
start of each run. These details are the same as those described in Konu et al. 11. 
 
 
Multidimensional Experience Sampling (mDES). 
Participants’ ongoing thought throughout the task was measured using a technique known as 
multidimensional experience sampling (mDES) 15. When an mDES probe occurred, participants 
were first asked how much their thoughts were focused on the task, followed by 12 randomly 
shuffled items about the content and form of their thoughts (see Supplementary Table 5 for all 
mDES items). All items were rated on a 1-10 continuous scale (see top panel of Figure 1 for an 
illustration). Within one run of the task, participants completed 8 sets of mDES probes, yielding a 
total of 8 probes per individual in the behavioral session and 24 probes per individual in the 
scanning session. In the scanning session, two participants had one run dropped due to technical 
issues, leaving them with 16 probes overall. These details are the same as those described in 
Konu et al. 11. 
 
Procedure. 
In the behavioral session, participants completed a single 13-min run of the task with mDES. In 
the scanning session, participants completed three, 13-min functional runs of the task with mDES 
while undergoing fMRI. The scanner session took around 1 h and 15 min, of which the task took 
~45 min, and this was separated into three blocks. These details are the same as those 
described in Konu et al. 11. 
 
fMRI acquisition. 
All MRI scanning was carried out at the York Neuroimaging Centre. Structural and functional 
scans were acquired using a Siemens Prisma 3T MRI Scanner with a 64-channel phased-array 
head coil. Structural data were acquired using a T1-weighted (MPRAGE) whole-brain scan (TR = 
2300 ms, TE = 2.26 ms, flip angle = 8°, matrix size = 256 x 256, 176 slices, voxel size = 1 x 1 x 1 
mm). Functional data were collected using a gradient-echo EPI sequence with 54 bottom-up 
interleaved axial slices (TR = 3000 ms, TE = 30 ms, flip-angle = 80°, matrix size = 80 x 80, voxel 
size = 3 x 3 x 3 mm, 267 vol) covering the whole brain. These details are the same as those 
described in Konu et al. 11. 
 
fMRI data pre-processing. 
Functional and structural data were pre-processed and analyzed using FMRIB’s Software Library 
(FSL, version 5.0.1, http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FEAT/). Individual T1-weighted structural 
images were extracted using BET (Brain Extraction Tool). Functional data were pre-processed 
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and analyzed using the FMRI Expert analysis Tool (FEAT). Individual participant analysis 
involved motion correction using MCFLIRT and slice-timing correction using Fourier space time-
series phase-shifting. In the current study, to control for individual’s movement during the 
scanning period in our inferential analyses, we also calculated each individual’s mean movement 
across all three runs using the MCFLIRT output to include as a nuisance regressor in subsequent 
analyses (prefiltered_func_data_mcf_abs_mean.rms). After co-registration to the structural 
images, individual functional images were linearly registered to the MNI-152 template using 
FMRIB’s Linear Image Registration Tool (FLIRT). Registration from high resolution structural to 
standard space was then further refined using FNIRT nonlinear registration. Functional images 
were spatially smoothed using a Gaussian kernel of FWHM 6 mm, underwent grand-mean 
intensity normalization of the entire four-dimensional dataset by a single multiplicative factor, and 
had high pass temporal filtering (Gaussian-weighted least-squares straight line fitting, with sigma 
= 50s). These details are the same as those described in Konu et al. 11. 
 
Principal Component Analysis. 
Analysis of the mDES data was carried out in SPSS (Version 25, 2019). Principal Component 
Analysis (PCA) was applied to the scores from the 13 experience-sampling items comprising the 
probes for each participant. PCA was applied at the trial level in the same manner as in our prior 
studies e.g., 15-17,23,47,48,49. Specifically, we concatenated the responses of each participant for 
each trial into a single matrix and employed a PCA with varimax rotation. We performed this 
analysis separately for each session (behavioral and scanning) in order to examine the similarity 
in the solutions produced across each situation (see Supplementary Figure 2). These details are 
the same as those described in Konu et al. 11. In the current study, we calculated each 
individual’s mean score, across runs, for each PCA component identified for inclusion in 
inferential analyses. Intraclass correlation (ICC) analyses indicated moderate consistency of 
component 1 (0.68), and good consistency of component 2 (0.77) and component 3 (0.75) across 
the three runs. 
 
fMRI analysis. 
Creating brain maps for covert experiential states and overt task states. 
Task-based analyses were carried out using FSL. A model was set up including 6 explanatory 
variables (EVs). EVs 1 and 2 modeled ‘vigilance’ and 'target detection’ periods. EV 3 modeled 
activity 6s prior to each mDES probe. Finally, EVs 4, 5, and 6 modeled the 3 thought components 
identified through PCA, with a time period of 6s prior to the mDES probes and the scores for the 
relevant component as a parametric regressor. EVs were mean-centered within each run and no 
thresholding was applied to the EVs. Standard and extended motion parameters were included 
as confounds. This was convolved with a hemodynamic response function using FSL’s gamma 
function. We chose to use the same 6s interval as used in Turnbull et al. 23. Contrasts were 
included to assess brain activity that related to each of the two task events (vigilance and target 
detection) and that related to each component of thought during the 6s period prior to the probe. 
The three runs were included in a fixed-level analysis to average across the activity within an 
individual. The averaged-run individual-level unthresholded (z-stat) contrast maps were used in 
the state-space analyses described below. Group-level analyses followed best practice 50. 
Specifically, we used FLAME, as implemented by FSL. Figure 2A and Figure 3C show the 
unthresholded group-level maps in MNI space while Figure 2B and Figure 3D show scatterplots 
representing how the BOLD activity in the maps’ parcels is distributed along the state-space 
dimensions. The unthresholded group-level maps were used in the NeuroSynth analysis 
described in the next section. These details are the same as those described in Konu et al. 11. 
 
Neurosynth decoding of covert experiential and overt task spatial maps. 
We used Neurosynth’s online meta-analytical decoder 51 to identify terms most commonly 
associated with our (unthresholded) group-level neural maps in the available literature (5 maps: 
vigilance, target detection, off-task thought, deliberate thought, and verbal, self-relevant thought). 
When provided with an unthresholded whole-brain map, the Neurosynth decoder performs a 
reverse inference analysis to identify the terms describing cognitive and psychological functions 
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that are most strongly associated with the patterns of neural activation shown in the map. 
Specifically, the decoder compares the patterns of activation in the input map to patterns of 
activation in the studies in the Neurosynth database, resulting in a list of terms that are most likely 
to be positively or negatively associated with the patterns of activation in the input map. To 
visualize the results of this analysis as word clouds, we selected the top 10 positive and top 10 
negative cognitive and psychological terms associated with each map, retaining only the first term 
in instances of duplicates (e.g., ‘autobiographical’ and ‘autobiographical memory’) and excluding 
terms related to anatomy instead of function (e.g., ‘occipital’). These word clouds are shown in 
Figure 2C (overt states) & Figure 3B (covert states). 
 
Connectivity gradients used to construct the 3-d neural state-space. 
The three connectivity gradients used in the current study were generated by Margulies et al. 12 
and are openly available via Neurovault: https://identifiers.org/neurovault.collection:1598. These 
gradients were generated by applying a non-linear dimension reduction technique (diffusion 
embedding) to the averaged functional connectivity matrix of the Human Connectome Project 
(HCP) data 29. These gradients explain whole-brain connectivity variance in descending order, 
such that the first gradient explains the most variance in the whole-brain connectivity data, the 
second explains the second most variance, and so on. Along each gradient, brain regions with 
similar connectivity profiles (to the rest of the brain) fall close together, and have similar ‘gradient 
values’, while regions with more distinct connectivity profiles fall further apart, and have more 
dissimilar ‘gradient values’ 13. This analysis, therefore, results in a spatial map for each gradient 
identified in which each parcel contains a ‘gradient value’. Prior studies have highlighted that the 
first three gradients relate to important features of cognition 14,40,52. We use these three gradients 
to construct the 3-d neural state-space (see below). The first gradient describes the difference 
between sensory-motor regions and association cortex. The second gradient separates motor 
and visual systems. Finally, the third gradient describes the difference between the DMN and the 
FPN (see second panel of Figure 1). 
 
Locating overt task states and covert experiential states in the neural state-space. 
To locate overt task states and covert experiential states in the neural state-space, we calculated 
the pairwise spatial correlations (Pearson) between each individual’s covert and overt brain maps 
and each of the first three connectivity gradients described in Margulies et al. 12. Therefore, for 
each individual, this resulted in three correlation values for each brain map, indicating where that 
brain map falls along each dimension of the neural state-space. These correlation values act as 
‘coordinates’ in the 3-d neural state-space (see Figure 1). Finally, we Fisher-z transformed the 
correlation values before using them in inferential analyses. 
 
Linear Mixed Models. 
Linear Mixed Models (LMMs) were fitted by restricted maximum-likelihood estimation in R [4.1.1 
53] using the lme4 package [1.1.31 54]. We used the lmerTest package [3.1.3 55] to obtain P values 
for the F-tests returned by the lme4 package. For each set of models, the alpha level for each F-
statistic was set based on 0.05 divided by the number of models (i.e., Bonferroni-corrected alpha 
level). Degrees of freedom were calculated using Satterthwaite approximation and for F-tests, 
type 3 sum of squares was used. Contrasts were set to “contr.sum,” meaning that the intercept of 
each model corresponds to the grand mean of all conditions and that when a factor has two 
levels, the parameter estimate is equal to half of the difference between the two levels 56. 
Estimated marginal means (shown in Figure 2E and 3F) were calculated using the emmeans 
package [1.8.3 57]. Across all models, to account for multiple observations per participant, 
‘participant’ was included as a random intercept. Finally, to establish the robustness of our 
results, we used the easystats package [0.6.0 58] to obtain bootstrapped parameter estimates (n 
iterations = 1000) and their associated confidence intervals and P values. 

Comparing the location of overt task states in the neural state-space. 
We ran three LMMs—one with each dimension coordinate as the outcome variable and “task 
map” as the explanatory variable (two levels: vigilance and target detection). Age, gender, and 
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mean movement were included as nuisance covariates. In total, 57 participants were included in 
these models. These models allowed us to investigate how the location of the two overt task 
states (vigilance and target detection) differed along each dimension of the neural state-space. 
 
Example model formula: lmer(Dimension Coordinate X ~ Task Map + Age + Gender + Mean 
Movement + (1|Participant)) 
 
Comparing the location of covert experiential states in the neural state-space. 
We ran three LMMs—one with each dimension coordinate as the outcome variable and 
“experiential map” as the explanatory variable (three levels: off-task thought, deliberate thought, 
and verbal, self-relevant thought). Age, gender, and mean movement were included as nuisance 
covariates. In total, 57 participants were included in these models. These models allowed us to 
investigate how the location of the three covert experiential states (off-task, deliberate, and verbal, 
self-relevant thought) differed along each dimension of the neural state-space. 
 
Example model formula: lmer(Dimension Coordinate X ~ Experiential Map + Age + Gender + 
Mean Movement + (1|Participant)) 
 
Multiple Regressions. 
Multiple regressions were fitted by ordinal least squares (OLS) in R [4.1.1 53] using the stats 
package. We used the rstatix package [0.7 59] to obtain F-test statistics and associated p-values. 
For F-tests, type 3 sum of squares was chosen and contrasts were set to “contr.sum,” meaning 
that the intercept of each model corresponds to the grand mean of all conditions and that when a 
factor has two levels, the parameter estimate is equal to half of the difference between the two 
levels 56. To establish the robustness of our results, we used the easystats package [0.6.0 58] to 
obtain bootstrapped parameter estimates (n iterations = 1000) and their associated confidence 
intervals and P values. Across all models, age, gender, and mean movement were included as 
nuisance covariates. Finally, in these reaction time models, cases exhibiting a z-scored response 
time greater than 2.5 were considered outliers, and the z-scores of these outliers were set to zero 
to mitigate their influence on the results. Using this approach, two cases were considered outliers. 
 
Examining how the location of overt task states in the neural state-space predict target 
detection reaction time. 
We ran a multiple regression in which response time (z-scored) was the outcome variable and the 
three coordinates for each of the two overt task brain maps (vigilance and target detection) were 
the explanatory variables (6 in total). In total, 57 participants were included in these models. This 
regression allowed us to investigate whether there is a correspondence between the location of 
overt task states within the neural state-space and target detection performance. 

Example model formula: lm(Z-scored Response Time ~ Target Detection Coordinate along 
Dimension 1 + Target Detection Coordinate along Dimension 2 + Target Detection Coordinate 
along Dimension 3 + Vigilance Coordinate along Dimension 1 + Vigilance Coordinate along 
Dimension 2 + Vigilance Coordinate along Dimension 3 + Age + Gender + Mean Movement) 
 
Examining how experiential reports of covert states predict target detection reaction time. 
We ran a multiple regression in which response time (z-scored) was the outcome variable and 
individual’s mean scores for each of the three thought patterns (off-task thought, deliberate 
thought, and verbal, self-relevant thought) were the explanatory variables. In total, 57 participants 
were included in these models. This model allowed us to investigate whether there is a 
correspondence between individual’s covert experiences and their target detection performance.  

Example model formula: lm(Z-scored Response Time ~ Off-task Thought + Deliberate Thought + 
Verbal Self-relevant Thought + Age + Gender + Mean Movement) 

Data Availability 
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Ethical approval conditions and European Research Council (ERC) grant stipulations do not 
permit the public sharing of raw data. However, anonymized Multidimensional Experience 
Sampling data and Gradient coordinates are publicly available via Mendeley: 
https://doi.org/10.17632/mx76fvdm3v.1. In addition, all group-level unthresholded brain maps 
presented in the figures are available via NeuroVault: 
https://identifiers.org/neurovault.collection:13520. The code for the task paradigm is publicly 
available at: https://vcs.ynic.york.ac.uk/hw1012/go_nogo_experience_sampling/tree/master/. All 
code used in the current analysis and preparation of figures is publicly available via GitHub at: 
https://github.com/Bronte-Mckeown/mDES_States. 
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