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I. MAGNETIC CONFIGURATION

The magnetic array composed of small nanomagnets of width w, length [, and thickness d is uniformly
distributed on a finite area of the magnetic substrate of thickness s, as illustrated in Fig. S1. The distance
between neighboring nanomagnet is A, and A, respectively, in the y and z directions. There are N, rows

and N, columns in the array. We number (a,b) for the nanomagnet in the a-th column and b-th row.
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FIG. S1. Two-dimensional magnetic array fabricated on a finite area of a magnetic substrate.

An in-plane magnetic field Hy with an angle 8 with respect to the z-direction is applied, which biases the
magnetization of the substrate to be parallel. On the other hand, the magnetization M, in the nanomagnet
follows Hy with an angle § with respect to the z direction [Fig. S2(a)] that we resolve in the following.

The magnetization direction of the nanomagnet at equilibrium is governed by the free-energy density

v Ho ~ Ho ~
= —,qusHo cos (9 — é) + %NZZMSQ cos? 0 + %NWMSQ sin’ 6, (S1)
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FIG. S2. (a) shows the top view of a nanomagnet. Hy is the applied magnetic field and M, is the saturated mag-
netization of the nanomagnet. (b) and (c) plot the dependence of the direction of My on the field direction 6. Two

configurations with 6, and 0, are all stable when the bias field is small.

where the demagnetization factors

wl ld wd

Nyy~——— Ny~——— N, ~——— S2
wl + wd + ld YT wl +wd + Ud wl + wd + ld (82)
The configuration with minimum free energy, i.e., dF,,/ df =0 and d2F,, / do? > 0, is stable:
Ho sin(9 - é) + (M,/2)(N.. — N,,)sin (2@) —0, (S3a)
Hy COS<9 — é) - Ms(sz — Nyy) cos (25) > 0. (S3b)

For MOMS = 1.6 T [1] of CoFeB and poHy = 0.05 T, there are two stable magnetic configurations 6, and 6, for
the nanomagnet with d = 30 nm, w = 100 nm, and ! = 200 nm, which we numerically calculate in Fig. S2(b)
and (c).

II. CHIRAL DIPOLAR COUPLING BETWEEN MAGNONS

We focus on the Kittle mode of the nanomagnet. The effective magnetic field Heg, in the lab {x,y, 2}-
coordinate system, is mainly contributed by the applied magnetic field Hy and the demagnetization field
Hd:

_Nszx
Heg=Ho+Hy= | —N,,M,+ Hysinf |. (S4)
—szMz + Hy cos 0
In order to calculate the eigenmode in the nanomagnet, we transform to the local {Z, g, Z}-coordinate system,

where the z-axis is along M, and the X-axis is normal to the substrate as shown in Fig. S2(a). We transform

from the lab system to the local system in terms of the rotation matrix

1 0 0
R@) =] 0 cosf —sind |. (S5)

0 sind cosf
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The components of the magnetic field and magnetization transform according to H 5= 7~€,~WH,, and M, w =
7@;;](4,;, leading to

Hi _NwwMi
Hy | = —(Nyy cos? 0 + N, sin® §) M . (S6)
H: (Nz2 — Nyy) sin 6 cos é]\;[g — (Nyy sin? + N, cos? é)Mg + Hy cos (9 — é)
The magnetization M of the nanomagnet obeys the Landau-Lifshitz (LL) equation, which in the linear regime
reads
M; N - . . _
887& = —poYy {HO cos (9 - 9) — M,(cos? 0 — sin? §)(N., — Nyy)} Mj
oMy _ Hycos(6 —6) — My(N,,sin?0 + N, cos? 0 — N,,)| M, S7
o —/J,o’}/[ ocos( — )— s(Nyysin® 0 + N, cos“ 0 — m)] = (S7)

where g is the vacuum permeability, and + is the modulus of the electron gyromagnetic ratio. We obtain the
FMR frequency Q = ,/wjws and the ratio Mg/z\kj = i€2, = iwy/wy for the Kittel mode, where

w1 = oY (Ho cos (9 — é) — ]\;[8(0052 0 — sin? é)(NZZ — Nyy)> ,
wo = oY (Ho cos (9 — é) — Ms(Nyy sin? 0 + N, cos® 0 — Nm)> . (S8)

Via the normalization condition [ dr (./\;153/\;15 —M}Mg) = —i/2, the normalized eigenmodes Mz =
Y <2§m\/lwd) and My = —i&n/ (2\/lwd)

is quantized in terms of the magnon operators S, p:

0‘=l‘){577ﬂ} (I‘) = _\/m/\;laéa,b + H.c.. (SQ)

We transform back to the lab {x,y, z}-coordinate system by Mu = 7%;,;1]\;[,;:

N (x) = =/ 2075 (M + Hee.) (S10a)

with which the magnetization in the (a,b)-th nanomagnet

)

]\%‘“b)(r) = —\/2M R (Mgﬁa,b + H.c.) cos 0 + sin O M, (S10b)
J\QIZ(“’b)(r) = —\/2M R (/\;lgﬁaﬁb + H.c.) sinf + cos O M,. (S10¢)

For the magnetic substrate, the equilibrium magnetization M is along Hy. We consider the dynamics of
M in the local {z/,y’, 2’ }-coordinate system, where the z’-axis is along Hy and the %X’-axis is normal to the

substrate (Fig. S1). From the LL equation, we obtain the eigenfrequency of the spin wave of wave vector k’
w(k') = poy(Ho + aex Msk"), (S11)

and the normalized amplitudes M, = —1/(2+/L,L.s) and M,» = —i/(2,/Ly,L.s), where cey is the exchange
stiffness of the substrate, and L, and L. are the lengths of substrate along the y- and z-directions. With the
magnon annihilation operator my, the magnetization operator M(r’ ) of the substrate in the linear regime is
quantized by

Mz/ (I‘I) = Ms,
Ve or yy (') = —/2MARY (Mae™# iiug + He.) (512)
k/



where the inplane p’ = y'y’ + 2’2’. To facilitate the calculation of the coupling between the magnons in the
nanomagnet and substrate, we transform back to the lab {z,y, z}-coordinate system by a counterclockwise
rotation of # with respect to the X-axis in terms of the rotation matrix

1 0 0

R@) =] 0 cosf sinf |. (S13)

0 —siné cosf
The components of the magnetization and the wave vector in Eq. (S12) transform according to M, (1) =
Ry My (’R;é,m/) and k, = Rk, leading to the magnetization operator in the lab {z,y, z}-coordinate

system

—V2MARY - (Myre™Pring + He.) (S14a)
k

My(r) = —\/2Msyhz (Myzeik"’mk + H.c.) cos 0 + sin O M, (S14b)
k
S /QMSfth (My/eik'pmk + H.c.) sin @ + cos O M. (S14c)
k
The spin wave of the substrate generates a dipolar field above it
—k(z+s) ik )
—/2Mgy Z ————— (sinOk My — cos Ok, My — ikMy) | k, | e®Priuc+He., (S15)

z

where k = ,/k2 + k2 is the magnitude of k. For the (a,b)-th nanomagnet located at the center position

(d/2,al,,bA), its Kittel magnon couples via the dipolar interaction with the magnon in the substrate

aA,;+w/2 bA,+1/2 R ~
= —“OZ / da / dzh(r) - M@ (r)

Ay—w/2 bA,—1/2

—ZZhgab)A BT +H.c., (S16)
in which the coupling constant
—kd —ks
ab —(l—eM) (1—e®)  (kaw) . [k .
gl(c ) _4M0'7\/M k3]€ykz Sin UT sin 7 el(akyAJ+bk Az)

k2 —ik(k, cos @ — k. sin 6 M
oM . I
ik(k,sin@ — k, cos®) (k,sin® — k, cos8)(k, cosf — k, sin0) p

i(aky Ay +bhzAz) (S17)

X

= gk€

where gy is a real number.

III. EFFECTIVE MAGNON HAMILTONIAN OF NANOMAGNET SUBSYSTEM

We construct the effective Hamiltonian of the magnons in the nanomagnets by integrating the degree of

freedom of the substrate. The total Hamiltonian

H= Zh — id5) abﬂaHZh ifine+ [ Y05 hgl Vi, + Hee. | (S18)

ab k



where dg ~ agQ and 0,,(k) = agwy with dg and ag denoting, respectively, the Gilbert damping constants

for the nanomagnet and substrate. The Langevin’s equations of B(a,b) and My in the frequency domain read

(W = Wi + 6m) uc(w) = Y e kb tPhAD g B (), (S19a)
a,b

(w—Q+1dg) /Ba p(w Z etaky Ay +bh=02) o) i (W), (S19b)
k

from which we find

—z(akyA +bk.A)
i(w) =Y LY ($20)

oy — Wk + 10,
Substituting into Eq. (S19b), we find
i[(a—a’ )y Ay+(b—b")k=A.] )
—Q+idg) = b S21
(w—Q+ids) B zb:zk: P 9ieBar b (S21)

The magnons in the substrate mediate an effective interaction between Kittel magnons in the nanomagnet.

Since wi = poy(Ho + qex Msk?) only depends on the magnitude of k, the summation over k in Eq. (S21) is

conveniently performed in the polar {k, ¢}-coordinate:

i[(a—a/)kyAy+(b—b')k=A.]

S e

a’,b’
27
Z X2 k(( —a’) Ay+(b—b")sin pA.) A
d dh——2 \" ) a—a’) cos pAy+( )sin ¢ z) D
)2 / ‘P/ W — wg + i0m Paro

a’ b’

|k|g ) ikr ’ 7 cos(p— ’ 1) A
m)? Z / / b on+iom Wi + O ot my ot o) By, (522)

a’ b’

where we define ro_q/ p—py = (@ — a’)Ayy + (b — ')A, 2 in the polar coordinate with magnitude rq—q p—p and

polar angle ¢g—q/ p—ty. When a =a’ and b=V or ¢ = £7/2 4+ ¢y’ p—t,

LL |k|g?(k, @) A . L,L, /7r ko o —kg
dk‘ W — o o, Bar b = T OdSO ag(k )+7g( ,#) 5a'b'
L,L, [T k., k., .
= —lzi/ dy (gg(kw, ) + —=g* (ke m + w)) B
T Jo Uk Uk,
L'L/Lz 27 kw 2 )
= ;= do—=g*(ky,, ©)Bar v 523
s [ o b e (523)

where k, = \/(w — o yHo)/(Hoyoex M), and vy, = (Ow/0k)|k, = 2poyexMsk,,. Otherwise, rq_q/ p—ty > 0.
For (¢ — ¢pa—a’ p—t) € (—7/2,7/2), cos(p — Pa—a’b—1r) > 0, s0 we close the contour integration in the upper
complex plane, where the singularity is located at q, = k(1 + iag/2), leading to

o) eikra—a’,b—b’ Cos(wid)a*“'vb*bl)|k‘92(k,QD)
dk - =
W— Wi + 10,

— 00

ko ; _
,271—1‘792(]%7 @)t a al b/ cos(P—ba_ar 1) (S24)
v

w

For (¢ — ¢pg—a’ b—b) € (7/2,3m/2), we close the contour integration in the lower complex plane, where there is



another singularity located at —q,, = —k., (1 + iag/2), leading to

= o7 ‘ - kw' 92(_kw, s0)efz'qwrafa/7b7b/ Cos(ﬂp*‘lsa—a’,b—b’)

dk -
W — wg + 10, —vy

— 00

/oo e“”’a—a’,b—b’ COS(¢7¢a7a/‘b7b,)|k|g2(k,(p)

w

— —97i |kW|g2(kw> 0 — //T)e*iqura—a’,b—b’ cos(tpfcf)afa/’bfb/)
Vk,,

_ —QWiking(kw, ©— W)eiquafa/,bfb/ COS(‘P_ﬂ_‘ba—a’,bfb’).
(525)
When ¢q_q p—ty € [—7/2,7/2), we divide the integral region ¢ € [0, 7] into two parts [0, Pg—a’ p—ir +7/2] and
(Pa—ar b—t + /2, 7], and calculate Eq. (522) as

LyLz Z /¢aa’,bb/+g d(p /°° e eikTa—a',b_b/ C05(¢—¢a_a/,h—b’)|k|92(k’7 SD)B oy
(2m)2 £= Jo e W — Wy + 0 “

L Lz g [e%S) eik"‘a—a’,b—b’ cos(tpfd)a,aryb,b/) k 2 k, R
dEE[ e[

W— Wi + 10,

Py
a’,b’ a—a’,bfb'+§ -

¢a—a/,b—b’+l . ~
— L;Lz Z/ 2 dgpkfwg2(kw;So)elqwraial’bib/ cos(4p7¢a,a/1b,b/)ﬂa,’b/
T o Uk,

L,L i k : .
i yiz Z / dgﬁng(kw, 0 — W)elqw"‘a—a’,b—b’ COS(‘P*”*@z—a’,b—b’)ﬂa/7b,
’ b/ ¢ w

s
a—al b—b/ T 5

L,L. Pa—al b/ T 0 ke, iqur. s cos(p— ’ A
LI (/0 dso+/¢ e LY

2m a’ b’ a,—a’,b—b’7%
L. L Pa—al b/ T k . ] .
= — gﬂz Z/q5 d(png(kw,w)ezq”“—""’b‘b' COS(Wf(b”"“'vb_”/)ﬂa’,b" (S26)
a’ b’ a—a’ b—b' " T w

The same calculation applies when ¢q—q p—r € [7/2,37/2). So via changing the integral domain of ¢ in
Eq. (522), we arrive at

ei[(a—a’)kyAy+(b—b’)szz]

Z Z W — wg + 10, e

a’#a or b'#b k

L. L Pa—a’ b—b/' 5 k . «
(%) 2 A2 )eitemeeroos (o bewos) By (82
a’#a or b'#b ¢ Uk,

2m x
a—a’ b—b/ T2

Using the on-shell approximation w — €2, the matrix elements of the effective Hamiltonian of the magnons

in the nanomagnet read
Heff|a=a’,b=b’ =Q—idp — Z’F(ra*a”b*b’ =0),
,Heﬂ‘a;éa’ or b _ir(ra—a'7b—b' # 0)7 (828)

where the effective coupling between magnons within the nanomagnets

L,L. [*™ &k
F(rafa’,bfb’ = 0) = Zi/ dgpiﬂ.ﬁﬁ(kﬂa 90)7 (829)
I8 0 UkQ
and in different nanomagnets
L,L, Pa—a’ - t5 k o ‘
Dlrawas #0) = 5= [ =g (ki )T er o X2 bami) - (S30)
n Pa—al b—b/ — % ka



IV. PRECISE TOPOLOGICAL CHARACTERIZATION FOR ONE-DIMENSION

The analytical solution for the frequency spectra of long-range coupled magnons exists in the one-
dimension [2], which allows a comparison with the numerical results that we model by the periodic boundary
condition. We consider a finite-sized array of N CoFeB magnetic nanowires that are equally spaced on the
YIG substrate with neighboring distance Ly. According to Ref. [2], the elements of the effective Hamiltonian

matrix Heg |y = (1 — idg)Q0yr — ilyr, in which the effective coupling between the I-th and ’-th wire

(T, +Tg) /2, =1
Ty = FLetillfl'\Lo’ >0, (S31)
[reiall=UILo | <
where I';, and I'g are the coupling strength between the magnons from the left to the right (the right to the

left) wire, and g = kq(1 + iag/2) with the resonant wave number kq of the substrate magnon to the FMR

frequency € of the wire. The analytical solution for the frequency spectra reads [2]

N L1+ etlaa+r)Lo Trl+ et(i—ga)Lo
wn = (1 =i06) Q=i ety Vg T ko

(S32)

For the periodic system, kLg € [0, 27] is real.
On the other hand, we can numerically calculate the frequency spectra in the periodic system constructed
according to our approach as addressed in the main text, where the effective coupling in the open system

Eq. (S31) is replaced by the periodic one
I, = Tigsnn),

where summation runs over the integer n € (—o0,400). As an example, we consider the array of N = 100
CoFeB nanowires of thickness d = 30 nm and width w = 100 nm spaced equally with neighboring distance
Ly = 1 um on the thin YIG film of thickness s = 10 nm, biased by the in-plane applied magnetic field
woHy = 0.05 T. The saturated magnetization of CoFeB wire MOMS = 1.6 T is pinned along the wire z-direction
due to the shape anisotropy, in which configuration the FMR frequency Q2 = 27 x 21.2 GHz. For the YIG
substrate, its saturated magnetization oM = 0.177 T, Gilbert damping coefficient ag = 1073, and exchange

2. The resonant wave number of magnon in YIG to Q is kg = 1.13 x 108 m~1.

stiffness ooy = 3 x 10716 m
We numerically diagonalize the periodic Hamiltonian matrix Hfjﬁ\”/ = (1—iag)Qoy — iff’l,, and compare the
eigenfrequencies, relative to (1 — id)?, with the analytical solution (S32) with different chiralities as shown
in Fig. S3. The eigenfrequency is normalized by I', = (I'r, + I'g)/2. All the numerically calculated frequency
spectra locate at the curves from the analytical calculation. Such excellent agreement validates our numerical

approach.
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FIG. S3. Comparison of frequency spectra in the one-dimensional system from the analytical and numerical calculations
with different chiralities I'r /T', = 0.2 [(a)], 1 [(b)], and 5 [(c)].
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