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S1 Derivation of the CBO-HF matrix elements

In this section we provide a detailed derivation of the new matrix elements of the cavity Born-

Oppenheimer Hartree-Fock (CBO-HF) ansatz. The Pauli-Fierz Hamiltonian for a single-

mode cavity, in the length gauge and within the dipole approximation, and the cavity Born-

Oppenheimer approximation (CBOA) has the form:1–7

ĤCBO = Ĥel +
1

2
ω2
cq

2
c − ωcqc (λc · µ̂) +

1

2
(λc · µ̂)2 , (S1)

where

µ̂ = µ̂el + µNuc = −
Nel∑
i=1

r̂i +

NNuc∑
A=1

ZARA , (S2)

represents the molecular dipole operator, which is defined by the operators of the Nel electron

coordinates r̂, the classic coordinates R of the NNuc nuclei and the nuclear charge Z. Using

ĤCBO and a Slater determinant Ψ, the CBO-HF energy expectation value ECBO can be

determined using the standard self-consistent field (SCF) procedure:8

〈
ECBO

〉
=
〈
Ψ
∣∣Ĥel − ωcqc (λc · µ̂) +

1

2
(λc · µ̂)2

∣∣Ψ〉+ 1

2
ω2
cq

2
c (S3)

with the Slater determinant Ψ defined as follows:

Ψ(τ1, τ2, . . . , τN) =
1√
Nel!

|φ1, φ2, . . . φi⟩. (S4)

The resulting energy expectation ECBO consists of four energy contributions:

ECBO = Eel + Elin + Edse + Edis with Edis =
1

2
ω2
cq

2
c (S5)
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The terms Elin and Edse represent the liner light-matter coupling via the molecular dipole

moment and the dipole self energy contribution due to self-polarization, respectively. Both

can be extended to one- and two-electron contributions. In the following, we express them

in terms of matrix elements of one- and two-electron operators between a Nel-electron Slater

determinant, following the standard rules for Hartree-Fock matrix elements.8 The energy

contribution Elin is formulated as modified dipole moment integrals and a parametric nuclear

contribution:

Elin = −ωcqc
〈
Ψ
∣∣λc · µ̂el

∣∣Ψ〉− ωcqc (λc · µNuc) = ωcqc

Nel∑
i=1

〈
Ψ
∣∣λc · r̂i

∣∣Ψ〉− ωcqc (λc · µNuc)

= ωcqcNel

〈
Ψ
∣∣λc · r̂

∣∣Ψ〉− ωcqc (λc · µNuc) = ωcqc

Noc∑
i=1

〈
φi

∣∣λc · r̂
∣∣φi

〉
− ωcqc (λc · µNuc)

(S6)

Before deriving Edse in terms of matrix elements, we decompose the operator describing the

dipole self-energy (DSE) into a purely electronic operator Ĥ
(el)
dse , a mixed electron-nuclear

operator Ĥ
(e-n)
dse , and a parametric nuclear energy contribution E

(nuc)
dse .

1

2
(λc · µ̂)2 =

1

2

(
−

Nel∑
i=1

λc · r̂i + λc · µNuc

)2

=
1

2

(
Nel∑
i=1

λc · r̂i

)2

−

(
Nel∑
i=1

λc · r̂i

)
(λc · µNuc) +

1

2
(λc · µNuc)

2

=
1

2

(
Nel∑
i=1

λc · r̂i

)2

−

(
Nel∑
i=1

λc · r̂i

)
(λc · µNuc) + E

(nuc)
dse

=Ĥ
(el)
dse + Ĥ

(e-n)
dse + E

(nuc)
dse

(S7)
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The purely electronic contribution E
(el)
dse is decomposed into the one-electron part E

(1)
dse and

the two-electron part E
(2)
dse:

E
(el)
dse =

〈
Ψ
∣∣Ĥ(el)

dse

∣∣Ψ〉 = 1

2

〈
Ψ
∣∣(− Nel∑

i=1

λc · r̂i

)2 ∣∣Ψ〉 = 1

2

〈
Ψ
∣∣(− Nel∑

i=1

λc · r̂i

)(
−

Nel∑
j=1

λc · r̂j

)∣∣Ψ〉
=

1

2

〈
Ψ
∣∣ Nel∑
i=1

(λc · r̂i)2 +
Nel∑
i=1

Nel∑
j ̸=i

(λc · r̂i) (λc · r̂j)
∣∣Ψ〉

=
1

2

Nel∑
i=1

〈
Ψ
∣∣ (λc · r̂i)2

∣∣Ψ〉+ 1

2

Nel∑
i=1

Nel∑
j ̸=i

〈
Ψ
∣∣ (λc · r̂i) (λc · r̂j)

∣∣Ψ〉 = E
(1e)
dse + E

(2e)
dse

(S8)

The energy contribution E
(1e)
dse can be formulated as modified quadrupole moment integrals:

E
(1e)
dse =

1

2

Nel∑
i=1

〈
Ψ
∣∣ (λc · r̂i)2

∣∣Ψ〉 = 1

2
Nel

〈
Ψ
∣∣ (λc · r̂)2

∣∣Ψ =
1

2

Noc∑
i=1

〈
φi

∣∣ (λc · r̂)2
∣∣φi

〉
(S9)

Since E
(2e)
dse connects the position operators of two electrons i and j, its transformation

into Hartree-Fock matrix elements, follows a similar logic as the derivation of the Coulomb

interaction in a regular Hartree-Fock ansatz:8

E
(2e)
dse =

1

2

Nel∑
i=1

Nel∑
j ̸=i

〈
Ψ
∣∣ (λc · r̂i) (λc · r̂j)

∣∣Ψ〉 = 1

2
Nel (Nel − 1)

〈
Ψ
∣∣ (λc · r̂1) (λc · r̂2)

∣∣Ψ〉
=

1

2

Noc∑
i=1

Noc∑
j ̸=i

〈
φi

∣∣ (λc · r̂)
∣∣φi

〉〈
φj

∣∣ (λc · r̂)
∣∣φj

〉
−
〈
φi

∣∣ (λc · r̂)
∣∣φj

〉〈
φj

∣∣ (λc · r̂)
∣∣φi

〉
(S10)
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Since the case i = j is equal to zero, the restriction on the summation can be removed:

E
(2e)
dse =

1

2

Noc∑
i=1

Noc∑
j=1

〈
φi

∣∣ (λc · r̂)
∣∣φi

〉〈
φj

∣∣ (λc · r̂)
∣∣φj

〉
−
〈
φi

∣∣ (λc · r̂)
∣∣φj

〉〈
φj

∣∣ (λc · r̂)
∣∣φi

〉
=
1

2

Noc∑
i=1

Noc∑
j=1

〈
φi

∣∣ (λc · r̂)
∣∣φi

〉〈
φj

∣∣ (λc · r̂)
∣∣φj

〉
−
∣∣〈φi

∣∣ (λc · r̂)
∣∣φj

〉∣∣2
=
1

2
E

(2J)
dse +

1

2
E

(2K)
dse

(S11)

The resulting two parts are a Coulomb-like dipole-dipole interaction component E
(2J)
dse and an

exchange-like component E
(2K)
dse , which are calculated via modified dipole moment integrals.

The mixed electron-nuclear operator Ĥ
(e-n)
dse leads to the energy contribution E

(e-n)
dse , which

is formulated as a product of modified dipole moment integrals and a parametric nuclear

contribution:

E
(e-n)
dse =

〈
Ψ
∣∣Ĥ(e-n)

dse

∣∣Ψ〉 = − (λc · µNuc)

Nel∑
i=1

〈
Ψ
∣∣λc · r̂i

∣∣Ψ〉
= (λc · µNuc)Nel

〈
Ψ
∣∣λc · r̂

∣∣Ψ〉 = (λc · µNuc)
Noc∑
i=1

〈
φi

∣∣λc · r̂
∣∣φi

〉 (S12)

The contribution E
(nuc)
dse depends only on the nuclear part of the dipole moment and is added

as a scalar quantity to ECBO.

In the last part of this section we will briefly discuss the underlying modified dipole

moment integrals and modified quadrupole moment integrals. For modified dipole moments,

the regular integrals are simply multiplied by the corresponding Cartesian component of the

coupling strength λc and then summed over the three Cartesian coordinates.

〈
φi

∣∣ (λc · r̂)
∣∣φi

〉
=
〈
φi

∣∣λxr̂x + λyr̂y + λz r̂z
∣∣φi

〉
= λx

〈
φi

∣∣r̂x∣∣φi

〉
+ λy

〈
φi

∣∣r̂y∣∣φi

〉
+ λz

〈
φi

∣∣r̂z∣∣φi

〉 (S13)

6



For the modified quadrupole moment integrals the situation is slightly more complicated.

All quadrupole moment tensor elements are multiplied with the two corresponding Cartesian

components of the coupling strength λc and then summed over all elements.

〈
φi

∣∣ (λc · r̂)2
∣∣φi

〉
=
〈
φi

∣∣ (λxr̂x + λyr̂y + λz r̂z)
2
∣∣φi

〉
=
〈
φi

∣∣λ2
xr̂

2
x + λ2

yr̂
2
y + λ2

z r̂
2
z + 2λxλyr̂xr̂y + 2λxλz r̂xr̂z + 2λyλz r̂yr̂z

∣∣φi

〉
=λ2

x

〈
φi

∣∣r̂2x∣∣φi

〉
+ λ2

y

〈
φi

∣∣r̂2y∣∣φi

〉
+ λ2

z

〈
φi

∣∣r̂2z∣∣φi

〉
+ 2λxλy

〈
φi

∣∣r̂xr̂y∣∣φi

〉
+ 2λxλz

〈
φi

∣∣r̂xr̂z∣∣φi

〉
+ 2λyλz

〈
φi

∣∣r̂yr̂z∣∣φi

〉
(S14)
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S2 Single HF molecule in an optical cavity

The energy change of a single HF molecule induced by the interaction with the cavity, as

well as the underlying energy components, are visualized in Fig. S1. For this purpose qc is

scanned for different cavity field strengths and a fixed nuclear configuration. The molecular

dipole moment µ is aligned with the polarization axis of the cavity.

For the coupling strengths studied, the cavity potential energy surfaces (cPESs) defined

by ECBO (Fig. S1 a)) are basically shifted versions of the harmonic potential Edis, for defi-

nition, see Eq. S5. With increasing ϵc the minimum of the cPES defined by qmin is shifted

to higher values of qc and simultaneously to higher energies. The shift in qc is due to Elin

describing the energy induced by the coupling between the molecule and the photon displace-

ment field. As shown in Fig. S1 b) Elin is a nearly linear function of qc with a zero crossing

at qc = 0.0 and a slope that increases with ϵc. The shift of ECBO towards higher energies

is caused by Edse. This contribution, see Fig. S1 c), is for the conditions studied nearly

constant when changing qc and its value increases with increasing ϵc. To get an impression

of how the quantities just discussed (ECBO, Elin, and Edse) depend on the orientation of

the molecular dipole moment, the angle ϕ between µ and the unit vector pointing along the

cavity mode polarization axis is scanned. The energy values obtained for optimized qmin are

visualized in Fig. S2

The cPESs shown in Fig. S2 a) have a clear minimum for ϕ = 90◦, which corresponds to

µ being orthogonal to the cavity polarization axes. Parallel orientation (0◦) and antiparallel

orientation (180◦) are maxima/transition states along the rotation coordinate defined by ϕ,

although the interaction with the cavity is maximal (Fig. S2 b and c)) for these configurations.

For ϕ = 90◦ there is no direct dipole cavity interaction, Elin = 0.0 eV see Fig. S2 c) and

Edis = 0.0 eV see Fig. S2 b). However, the energy difference between cPESs and cavity-free

potential energy surface (PES) is not zero for ϕ = 90◦. This is due to Edse, which is not zero

in this orientation, as shown in Fig. S2 d)). In Fig. S3 a further decomposition of EDSE is

shown. The overall highest contribution is E
(1e)
dse and both E

(1e)
dse and E

(2K)
dse are non-zero for

8



Figure S1: Scan along the photon displacement coordinate qc for a fixed single HF molecule
of the total energy ECBO (a)), the linear energy contribution Elin (b)) and the DSE part
Edse (c)). All scans were performed with the molecular dipole moment µ aligned with the
cavity polarization axis, a cavity frequency ωc of 4467 cm

−1 and the cavity field strengths ϵc
is increased from 0.0V nm−1 to 2.0V nm−1 (color-coded).

all possible orientations. Only E
(2J)
dse is zero for ϕ = 90◦.
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Figure S2: Scan along the angle ϕ, defined between µ of a single HF and the polarization
axis e. a) ∆E between the rotational cPESs and the cavity-free PES, b) Edis, c) Elin, and d)
Edse for optimized qmin. All scans were performed with a cavity frequency ωc of 4467 cm

−1

and the cavity field strengths ϵc is increased from 0.25V nm−1 to 2.0V nm−1 (color-coded).
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Figure S3: Scan along the angle ϕ, defined between µ of a single HF and the polarization
axis e. a) E

(1e)
dse b) E

(2J)
dse c) E

(2K)
dse . for optimized qmin. All scans were performed with a cavity

frequency ωc of 4467 cm
−1 and the cavity field strengths ϵc is increased from 0.25V nm−1 to

2.0V nm−1 (color-coded).
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S3 Fixed ensembles of HF in an optical cavity

The change in individual molecular energy induced by the interaction with the cavity, as

well as the underlying energy components, are visualized in Fig. S4 as a function of the size

of the all-parallel ensemble Nmol without Edis included.

Supplementary simulation results for fixed ensembles of HF molecules in an optical cavity

without rescaling λc are shown in Figs. S5 and S6. The results discussed for the scaled case

in the manuscript are still valid, and only the scaling behaviors change. For the ensemble

perspective, see Fig. S5, the cavity-induced change in the total energy scales linearly with

Nmol, while its three contributions (Edis, Elin, and Edse) scale quadratic. The energy changes

for an individual HF molecule, shown in Fig. S6 a), scales quadratic with Nmol. The linear

interaction Elin (Fig. S6 b)) and the interacting part of the Edse (Fig. S6 d)) changing linear

with Nmol and the local part of Edse (Fig. S6 c)) is constant as expected.
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Figure S4: Influence of the cavity interaction on an individual HF molecule in all-parallel
ensembles of different size and vacuum-field strengths ϵc. a) The energy difference ∆E

between E
(1)
CBO and the field-free energy E

(1)
HF without Edis included, b) the local linear

energy contribution Elin, c) the local Edse and d) the intermolecular dipole-dipole energy as
a function of Nmol. The individual dipole moments are aligned with the cavity polarization
axis, and a cavity frequency ωc of 4467 cm−1 is used. The strength of the cavity field ϵc
increases from 0.5V nm−1 to 2.0V nm−1 (color-coded). The used coupling strength λc is
rescaled according to Eq. 16.
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Figure S5: Influence of the cavity interaction on the collective energy of different ensembles of
perfectly aligned HF molecules, without rescaling of λc. a) The total energy ECBO referenced
to the case without a cavity (EHF ), b) cavity potential Edis, c) linear energy contribution
Elin, and d) the DSE part Edse for optimized qmin as a function of Nmol. Individual dipole
moments are aligned with the cavity polarization axis and a cavity frequency ωc of 4467 cm

−1

is used. The strength of the cavity field ϵc increases from 0.5V nm−1 to 2.0V nm−1 (color-
coded).
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Figure S6: Influence of the cavity interaction on an individual HF molecule in ensembles of
different size, without rescaling of λc. a) The individual molecular energy ECBO referenced
to the case of a single molecule without cavity interaction, b) the local linear energy contri-
bution Elin, c) the local Edse and d) the intermolecular dipole-dipole energy as a function
of Nmol. The individual dipole moments are aligned with the cavity polarization axis and a
cavity frequency ωc of 4467 cm

−1 is used. The strength of the cavity field ϵc increases from
0.5V nm−1 to 2.0V nm−1 (color-coded).
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S4 Scanned ensembles of HF molecules in an optical

cavity

Supplementary results for ensemble energy changes along the scan of a single HF bond are

shown in Figs. S7, S8, and S9. Individual energy contributions for the dissociating HF

molecule in different ensembles are shown in Figs. S10, S11, S12, and S13.
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Figure S7: Cavity-induced energy contribution of the complete ensemble along the HF bond
length for different ensemble sizes in the all-parallel configuration. a) linear energy contri-
bution Elin, b) cavity potential Edis, c) local part of Edse d) interaction part of Edse. A
cavity frequency ωc of 4467 cm−1 is used. The strength of the cavity field ϵc is 1.5V nm−1

and the number of molecules in the ensemble is color-coded.The used coupling strength λc

is rescaled according to Eq. 16.
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Figure S8: Cavity-induced energy contribution of the complete ensemble along the HF bond
length for different ensemble sizes in the antiparallel configuration. a) linear energy con-
tribution Elin, b) cavity potential Edis, c) local part of Edse d) interaction part of Edse. A
cavity frequency ωc of 4467 cm−1 is used. The strength of the cavity field ϵc is 1.5V nm−1

and the number of molecules in the ensemble is color-coded.The used coupling strength λc

is rescaled according to Eq. 16.
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Figure S9: Cavity-induced energy contribution of the complete ensemble along the HF bond
length for different ensemble sizes in the defective configuration. a) linear energy contribution
Elin, b) cavity potential Edis, c) local part of Edse d) interaction part of Edse. A cavity
frequency ωc of 4467 cm

−1 is used. The strength of the cavity field ϵc is 1.5V nm−1 and the
number of molecules in the ensemble is color-coded.The used coupling strength λc is rescaled
according to Eq. 16.
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Figure S10: The local linear energy contribution Elin along the HF bond length for different
ensemble sizes is shown for a) the all-parallel configuration, b) the antiparallel configuration
and c) the defective configuration. A cavity frequency ωc of 4467 cm

−1 is used. The strength
of the cavity field ϵc is 1.5V nm−1 and the number of molecules in the ensemble is color-
coded.The used coupling strength λc is rescaled according to Eq. 16.
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Figure S11: The cavity potential Edis along the HF bond length for different ensemble sizes
is shown for a) the all-parallel configuration, b) the antiparallel configuration and c) the
defective configuration. A cavity frequency ωc of 4467 cm−1 is used. The strength of the
cavity field ϵc is 1.5V nm−1 and the number of molecules in the ensemble is color-coded.The
used coupling strength λc is rescaled according to Eq. 16.
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Figure S12: The local part of Edse along the HF bond length for different ensemble sizes
is shown for a) the all-parallel configuration, b) the antiparallel configuration and c) the
defective configuration. A cavity frequency ωc of 4467 cm−1 is used. The strength of the
cavity field ϵc is 1.5V nm−1 and the number of molecules in the ensemble is color-coded.The
used coupling strength λc is rescaled according to Eq. 16.
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Figure S13: The local interaction part of Edse along the HF bond length for different ensemble
sizes is shown for a) the all-parallel configuration, b) the antiparallel configuration and c)
the defective configuration. A cavity frequency ωc of 4467 cm

−1 is used. The strength of the
cavity field ϵc is 1.5V nm−1 and the number of molecules in the ensemble is color-coded.The
used coupling strength λc is rescaled according to Eq. 16.
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(3) Jestädt, R.; Ruggenthaler, M.; Oliveira, M. J.; Rubio, A.; Appel, H. Light-matter in-

teractions within the Ehrenfest–Maxwell–Pauli–Kohn–Sham framework: fundamentals,

implementation, and nano-optical applications. Adv. Phys. 2019, 68, 225–333.

(4) Lindoy, L. P.; Mandal, A.; Reichman, D. R. Quantum dynamical effects of vibrational

strong coupling in chemical reactivity. Nature Communications 2023, 14, 2733.

(5) Flick, J.; Ruggenthaler, M.; Appel, H.; Rubio, A. Atoms and molecules in cavities, from

weak to strong coupling in quantum-electrodynamics (QED) chemistry. Proc. Natl. Acad.

Sci. U.S.A. 2017, 114, 3026–3034.

(6) Flick, J.; Appel, H.; Ruggenthaler, M.; Rubio, A. Cavity Born–Oppenheimer approxi-

mation for correlated electron–nuclear-photon systems. J. Chem. Theory Comput. 2017,

13, 1616–1625.

(7) Flick, J.; Narang, P. Cavity-Correlated Electron-Nuclear Dynamics from First Principles.

Phys. Rev. Lett. 2018, 121, 113002.

(8) Szabo, A.; Ostlund, N. S. Modern Quantum Chemistry: Introduction to Advanced Elec-

tronic Structure Theory, 1st ed.; Dover Publications, Inc.: Mineola, 1996.

24


