(A)PDX3 (At5g49970) MRNVIRRVTTMTFTFLLQSPPLPISPSPPQFSLSSSPLSKTQRFITPSQGSRLRTLCTKV60
PNPO-RP (At2g46580) 0
PDX3 (At5g49970) IIPNMQDSGSPPLSYLTQREAAEIDETLMGPLGFSIDQLMELAGLSVAASIAEVYKPEEY 120
PNPO-RP (At2g46580) 0
PDX3 (At5g49970) SRVLAICGPGNNGGDGLVAARHLHHFGYKPFICYPKRTAKPLYTGLVTQLDSLSVPFVSV 180
PNPO-RP (At2g46580) 0
PDX3 (At5g49970) EDLPDDLSKDFDVIVDAMFGFSFHGAPRPPFDDLIRRLVSLQNYEQTLQKHPVIVSVDIP 240
PNPO-RP (At2g46580) 0
PDX3 (At5g49970) SGWHVEEGDHEDGGIKPDMLVSLTAPKLCAKRFRGPHHFLGGRFVPPSVAEKYKLELPSY 300
PNPO-RP (At2g46580) 0
PDX3 (At5g49970) PGTSMCVRIGKPPKVDISAMRVNYVSPELLEEQVETDPTVQFRKWFDE---AV--AAGLR 355
PNPO-RP (At2g46580) --MGTHVAPWKQLLFGAIEANSHLS 23
PDX3 (At5g49970) ETNAMALSTANKDKKPSSRMVLLKGFDENGFVWF--TNYESKKGSDLSENPSAALLFYWE 413
PNPO-RP (At2g46580) HSSYVQLATIGLNGRPSNRTVVFRGFEENSDRIQINTDLRSRKIEELKHCPFSEMCWYFS 83
PDX3 (At5g49970) ILNRQVRIEGPVERIPESESEN---------YFHSRPRGSQIGAIVSKQSSVVPGRHVLY 464
PNPO-RP (At2g46580) DTWEQFRINGRIEVIDASNPDQTKLQQREKAWFANSLRSRLIYVC------PTPGSPCNS 137
PDX3 (At5g49970) DEYEELTKQYSDGSVIPKPKNWGGFRLKPNLFEFWQGQPSRLHDRLQ-YSLQDVNGNPAW 523
PNPO-RP (At2g46580) EQSSQQVK--LDPSSGPVP-EYCLLLLEPEKVDYLNLK---TNQRLFFSSMATGTGEKCW 191
PDX3 (At5g49970) KIHRLAP 530
PNPO-RP (At2g46580) TSEKVNP 198
(B)

Supplemental Figure S1. Probing the two-domain structure of PDX3. (A) Amino acid sequence alignment of PDX3 (At5g49970, Uniprot: Q9LTX3) and the PDX3 related protein, PNP-RP (At2g46580, Uniprot: Q9ZPY1) described by Marbaix et al 2019. Similar residues are highlighted in gray and highly conserved residues of PDX3s and PNP-RPs as described in Marbaix et al 2019 are indicated with a gray arrow. The two PDX3 residues (D238 and R505) mutated in this study are indicated by a bold red font. (B) Immunochemical analysis of PDX3 protein levels in wild type (Col-0), pdx3 and lines expressing either the PDX3 D238A or PDX3 R505A transgene. The analysis was performed on 14 days old plants grown on soil (unfertilized) under a 16 h photoperiod (120-160 $\mu \mathrm{mol}$ photons $\mathrm{m}^{-2} \mathrm{~s}^{-1}$) at $22^{\circ} \mathrm{C}$ and 8 h darkness at $18^{\circ} \mathrm{C}$ using $20-25 \mu \mathrm{~g}$ of total protein.

Supplemental Figure S2. Phenotype of rosette leaves of pdx3 compared to wild type. Photographs of wild type (Col-0) and pdx3 lines grown on unfertilized (-) and either potassium nitrate ($+\mathrm{KNO}_{3}$), ammonium nitrate $\left(+\mathrm{NH}_{4} \mathrm{NO}_{3}\right)$ fertilized soil. The plants are 21 days old and were grown on soil under a 16 h photoperiod ($120-160 \mu \mathrm{~mol}$ photons $\mathrm{m}^{-2} \mathrm{~s}^{-1}$) at $22^{\circ} \mathrm{C}$ and 8 h darkness at $18^{\circ} \mathrm{C}$ and were watered either with water alone (-) or a 50 mM solution of the indicated compound every 9-10 days. The scale bar applies to all photographs. Individual images were digitally extracted for comparison.

Supplemental Figure S3. Nitrate reductase activity and PDX3 expression as a function of PMP and N fertilization, respectively. (A) Activity of recombinant nitrate reductase in the presence of PMP, shown as rate of APADH (NADPH substitute) consumption in the presence of $0-2.5 \mathrm{mM} \mathrm{PMP}$ at pH 7.5 and $25^{\circ} \mathrm{C}$. The data represents the mean \pm SD of three technical and two experimental replicates (Exp_1 and Exp_2). Statistical analysis was performed using ordinary one-way ANOVA with Sidak's multiple comparison test (different letters indicate $\mathrm{p} \leq 0.05$). (B) Nitrate reductase activity in rosette leaves of wild type and $p d x 3-3$ plants grown on unfertilized soil under a 16 h photoperiod ($120-160 \mu \mathrm{~mol}$ photons $\mathrm{m}^{-2} \mathrm{~s}^{-1}$) at $22^{\circ} \mathrm{C}$ and 8 h darkness harvested at 0 h (in the dark before the onset of light), $3 \mathrm{~h}, 6 \mathrm{~h}, 12 \mathrm{~h}$ (all in the light), and 18 h (2 h after onset of darkness). The data represents the mean \pm SD of 1 experimental and 3 biological replicates. Statistical analysis was performed using a two-tailed Student's unpaired t-test with Col-0 as control (${ }^{\mathrm{ns}} \mathrm{p}>0.05$, ${ }^{*} \mathrm{p} \leq 0.05$, and ${ }^{* *} \mathrm{p} \leq 0.005$. (C) Relative expression of PDX3 in pdx3 and complementing lines compared to wild type (Col-0) grown on unfertilized (-) and either potassium nitrate ($+\mathrm{KNO}_{3}$) or ammonium nitrate ($+\mathrm{NH}_{4} \mathrm{NO}_{3}$) fertilized soil. Data represents the mean \pm SD across 2 experimental replicates, (either open or filled symbols) except for $p d x 3-4$ and corresponding complementing lines, with 4 biological replicates each. Statistical analysis was performed using an ordinary one-way ANOVA with Tukey's multiple comparisons test for the transcript (different letters indicate $\mathrm{p} \leq 0.05$). (D) Protein levels of PDX3 in wild type (Col-0) and $p d x 3-3$ (as a control) grown on unfertilized soil and wild type grown on either potassium chloride (+KCl), potassium nitrate $\left(+\mathrm{KNO}_{3}\right)$ or ammonium chloride $\left(+\mathrm{NH}_{4} \mathrm{Cl}\right)$ fertilized soil. Data represents the mean \pm SD of 3 biological replicates. Statistical analysis was performed using a two-tailed Student's unpaired t-test using condition (-) as control (${ }^{\mathrm{ns}} \mathrm{p}>0.05$). Plants were grown as in (B) and watered with water alone (-) or a 50 mM solution of the indicated compound every 9-10 days.

Supplemental Figure S4. Photograph of the leaves of wild type (Col-0) and $p d x 3$ lines grown up to 14 days after germination (DAG) under the standard temperature of $22^{\circ} \mathrm{C}$ compared to 12 DAG under $28^{\circ} \mathrm{C}$. In these conditions and developmental stage, the number of true leaves (five) is equal. The scale bar applies to all photographs. Individual images were digitally extracted for comparison.

Supplemental Table S1. Oligonucleotides used in this study. Forward (F), reverse (R), left border (LB).

Purpose	Gene	AGI number	Sequence (5'-3' direction)	Notes
Cloning	PDX3	At5g49970	F- CACCTGTGGTGTGGGAAGTCATT	
			R- AGGCCAAACCATCGTCTC	
Sitedirected mutagen esis			F- CATTGTCTCTGTGGCTATTCCCTCTGGTTG	D238A
			R- CAACCAGAGGGAATAGCCACAGAGACAATG	
			F- CAGGGACAGCCATCTGCTTTACATGACAGGC	R505A
			R- GCCTGTCATGTAAAGCAGATGGCTGTCCCTG	
			F- GCTTTGTCTACAGCGAACAAGG	$p d x 3-3$
			R- CGTCGTATAGAACATGCCTGC	
			LB- ATTTTGCCGATTTCGGAAC	T-DNA
			F- ACACACATAGATGTCCCTGGG	$p d x 3-4$
			R- AACCCAAACTTGGGTATCACTG	
			LB- ATATTGACCATCATACTCATTGC	T-DNA
	$N a h G$		F- GCCTTAGCACTGGAACTCTG	$N a h G$
			R- TCGGTGAACAGCACTTGCAC	
	SID2	Atlg74710	F- GGTGCACCAGCTTTTATCGG	sid2-1
			R- TGGAGTTGGATGCAGAGCAG	
	NPR1	Atlg64280	F- TGCTCTGCAATTGCTCTCCA	npr1-2
			R- TGTTGCGGTCTTCACATTGC	
$\stackrel{\sim}{0}$$\stackrel{\sim}{4}$$\stackrel{1}{2}$	ASN1	At3g47340	F- GTGGCTTGTTCGACTGCAAAG	
			R- TGAATCACAACTCCTTGACCCA	
	ASN2	At5g65010	F- CGACTGTACCAGGAGGTCCAA	
			R- TTCCATTCTTAGGAAGAGGATCT	
	ATL31	At5g27420	F- ACCGGTGGGCTTTTCTTAG	Pair 1
			R- AACTGACGATGTTCCTTCACC	
			F- TGACCCGTATGCTTACAGCG	Pair 2 (Nsupplementation)
			R- CCTGCAGGAGTAACGCTACC	
	GDH2	At5g07440	F- CACTAACGCTCAAACCATGGC	Pair 1
			R- GAACCACCAAGATCAATGGGC	
			F- GACTCGAGCCTTTCACAACATC	Pair 2 (N supplementation)
			R- AGCGAC TCGGTTAACTCCAAG	
	PR1	At2g14610	F- ACACGTGCAATGGAGTTTGTG	

		R- TTGGCACATCCGAGTCTCACT	
		F- GGTAGTGAGTAGAAGTCATGGG	
		R- CGTTTACATGACAGGCTGCA	
		F- AGGCTACGCTTATTCTGGAGG	
		R- TGTTCGGTTTCTCCTGGTGG	
		F- GTTTCATTGGTGGCCGGATG	
	Allg ${ }^{\text {a }}$	R- TACCACCAACCTTCTTCGTCG	
		F- TTGTTCCAGCCCTCGTTTGT	
	Abgi8780	R- CCTGGACCTGCCTCATCATACT	
		F- TAGCATTGATGGCTCATCCTGA	
	Asg25760	R- TTGTGCCATTGAATTGAACCC	

