
PHYSICAL REVIEW B 108, 125136 (2023)

Phenomenology of bond and flux orders in kagome metals
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Despite much experimental and theoretical work, the nature of the charge order in the kagome metals
belonging to the family of materials AV3Sb5 (A = Cs,Rb,K) remains controversial. A crucial ingredient for
the identification of the ordering in these materials is their response to external perturbations, such as strain or
magnetic fields. To this end, we provide a comprehensive symmetry classification of the possible charge orders
in kagome materials with a 2 × 2 increase of the unit cell. Motivated by the experimental reports of time-reversal
symmetry breaking and rotational anisotropy, we consider the interdependence of flux and bond orders. Deriving
the relevant Landau free energy for possible orders, we study the effect of symmetry-breaking perturbations such
as strain and magnetic fields. Our results thus provide a road map for future tests of these intricate orders.
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I. INTRODUCTION

Starting with the formation of crystalline materials, spon-
taneous symmetry breaking is a concept foundational to
condensed-matter physics, and it guides our categorical un-
derstanding of phases of matter [1]. Charge order can break
spatial symmetries in the form of nematicity (rotational
symmetry) or density waves (translational symmetry), super-
conductors break particle number conservation, and magnets
break spin-rotation and time-reversal symmetry (TRS). Par-
ticularly interesting situations arise when the order comprises
multiple degenerate components, in other words when the
irreducible representation (irrep) corresponding to the order
is multidimensional or when order parameters from different
irreps are (accidentally) almost degenerate. On the one hand,
this situation can lead to additional breaking of symmetries:
in the case of a superconductor, a complex superposition of
two order-parameter components leads to a chiral supercon-
ductor spontaneously breaking TRS [2]. On the other hand,
multicomponent orders can also help restore symmetries: A
q = (π, 0) charge order breaks both translation and rotation
symmetry, while a superposition of (π, 0) and (0, π ) charge
order describes checkerboard order and restores rotational
symmetry [3].

A charge order of unconventional nature has recently
been identified in a family of quasi-two-dimensional met-
als AV3Sb5 (A = Cs,Rb,K), whose main structural motif
is a kagome lattice of vanadium atoms [4,5]. The charge-
ordered phase, which sets in at about 70–100 K, has been
studied with a variety of experimental techniques including
angle-resolved photoemission spectroscopy [6,7], scanning
tunneling spectroscopy [8–12], nuclear magnetic resonance
[10,13,14], x-ray scattering [15], muon spin-relaxation mea-
surements [16,17], thermal [18] and electrical [10,18–25]
transport, as well as the magneto-optical Kerr effect [26–29].
Broad consensus exists that the charge order creates a 2 × 2
superstructure within the plane, whereas the out-of-plane or-
dering (such as 2 × 2 × 1, 2 × 2 × 2, or 2 × 2 × 4) is still

under debate [30,31]. In addition, controversial results as
to whether or not charge order spontaneously breaks time-
reversal and/or rotational symmetry have been reported.
Several phenomena usually associated with spontaneous TRS
breaking (TRSB) can be induced by a (weak) magnetic field,
such as a giant anomalous Hall effect [32–34] and nonva-
nishing Kerr rotations [28]. However, whether the system
breaks time-reversal symmetry spontaneously, in other words
at zero magnetic field, has been challenged, for instance, by
the absence of a Kerr effect in this regime [28]. Furthermore,
although there are some reports of TRSB at the charge-
ordering temperature, there is a large increase in the respective
signals around 30–50 K. Finally, while there are many reports
of (rotational) anisotropy in these materials [10,21,35,36], a
recent study challenges these reports [24].

The conflicting experimental reports of anisotropy and
spontaneous TRSB naturally raise the question of whether
the experiments themselves change the state probed, and
if so, how the different ordering possibilities can still be
distinguished experimentally. Importantly, the interplay of
different components of the order parameter is crucial, since
charge-density-wave order on the kagome lattice with an
ordering vector Q = M = �M forms a three-dimensional
irrep due to the three inequivalent M points. A single order-
parameter component, corresponding to a single M-point
ordering vector, breaks the rotational symmetry, whereas an
equal superposition of all three could restore the rotational
symmetry of the lattice. Furthermore, a complex order, arising
due to the superposition of (almost degenerate) bond order and
flux order, would lead to TRSB.

To understand the physics of charge-density waves in the
kagome systems better and discuss their coupling to external
perturbations that could help identify them, such as mag-
netic fields or strain, the proper symmetry of the ordering
possibilities needs to be studied first. Such an analysis then
allows for the derivation of an effective Landau description.
While both electronic [37] and phonon [31,38] instabilities
have been studied as mechanisms for the charge ordering in
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the literature, such an approach has the advantage of being
agnostic to the microscopic mechanism of the ordering.

Here, we present a comprehensive symmetry classification
of all in-plane charge orders—including on-site charge mod-
ulations, bond orders, and flux/orbital current orders—on the
kagome lattice with a 2 × 2 unit cell following the scheme
introduced in Ref. [39]. This classification scheme provides
a transparent way to develop an effective theory in the spirit
of a Landau free energy for all charge orders, their coupling
to each other, and to magnetic fields and strain. This theory
is applicable to, but not limited to, AV3Sb5. Since flux and
bond orders both renormalize electron hopping integrals, we
consider them intertwined. However, with the two generically
transforming as different irreps, we treat them as different,
yet coupled, order parameters, instead of one single complex
order parameter. We therefore do not adopt the usual pre-
sumption that one order parameter dominates at and near the
phase transition, but we study the interplay of one flux and
one bond order parameter. This consideration results in a few
scenarios, which can be sharply distinguished experimentally
through their behavior in a magnetic field and by the presence
or absence of anisotropy.

II. SUMMARY OF RESULTS

We start by considering only in-plane ordering. Motivated
by experiments that have established a 2 × 2 in-plane increase
in the unit cell size, we consider all possible charge, bond,
and flux orders on the kagome lattice arising from nearest-
neighbor interactions. In Sec. III, we use a group theory
analysis to classify all these orders within the framework
introduced by Venderbos [39]. The translational-symmetry-
breaking orders can be classified in four different irreps of the
(enlarged) symmetry group, labeled F1, . . . , F4. The irreps are
three-dimensional and F1,2 are even under C2 while F3,4 are
odd. Bond order � can fall in any of the four translationally
symmetry breaking irreps, while flux order �′ has to either
fall in the F2 or F4 irrep.

The observation of time-reversal-symmetry breaking
shows that flux order is present (although whether or not a
small magnetic field is necessary to establish the flux order
is not clear). Bond and flux order naturally couple to one
another, and in Sec. IV we therefore consider Landau theories
that include both orders. The second- and fourth-order terms
in the free energy are identical regardless of which orders
are combined, since these terms are always C2 symmetric.
However, the third-order terms can differ, since they are not
guaranteed to respect C2. If the bond order is even under
C2, then a term of the form �3 is allowed. In addition, the
bond and flux order can couple via ��′2 (the C2 eigenvalue
of the flux is irrelevant here, since the flux order needs to
appear squared for the free energy to respect time-reversal
symmetry).

To gain intuition about the Landau free energy, in Sec. V
we start by discussing the simpler case in which only charge
order is present. We discuss separately the cases in which
a third-order term is present or absent, since this signifi-
cantly impacts the phase diagram. In Sec. VI, we then discuss
the more complicated case with both charge and flux order
present. We again derive the phase diagrams for the cases with

and without the third-order term. In the phase diagrams, we
use the relative critical temperature of the bond and flux orders
as a tuning parameter. We obtain three types of phases: Either
only � or only �′ is present, or both are present simultane-
ously. The latter two phases break time-reversal symmetry.
These different phases may or may not spontaneously break
the C6 symmetry depending on the specific irreps of the re-
spective orders.

One way to distinguish the different possible order pa-
rameters is to consider the impact of symmetry-breaking
perturbations. In Sec. VII, we therefore investigate the effects
of strain and an out-of-plane magnetic field. The lowest-order
coupling to such a magnetic field B takes the form B��′.
Since the magnetic field is odd under in-plane mirror sym-
metries, this term is only allowed when the product ��′ is
odd under these mirrors.

Up to this point, the Landau theory considered was very
general and relied only on well-established experimental facts
on the kagome metals. In Sec. VIII, we review the experimen-
tal situation in more detail and suggest that the most likely
order parameter combination to describe the experiments is
an F1 bond order with an F2 flux order. Note, however, that
while this conclusion relies on experimental input that is less
well-established, we emphasize that the general discussion
does not.

Finally, in Sec. IX we propose several experiments includ-
ing elastoresistance, scanning tunneling microscopy (STM),
and resonant ultrasound spectroscopy that, in combination
with the Landau analysis, would allow us to clearly establish
the type of ordering in the kagome metals.

III. SYMMETRY ANALYSIS

In the following, we consider a single kagome layer with
point group C6v [40]. Further, we study translational sym-
metry breaking arising from M-point ordering vectors in the
kagome Brillouin zone. This ordering vector arises due to
three van-Hove singularities (VHSs) of the band structure of
the kagome lattice at the three M points [41]:

M1,3 = π

a
√

3
(±

√
3, 1), M2 = 2π

a
√

3
(0,−1), (1)

where a is the lattice constant. Close to the van Hove filling,
the low-energy physics is dominated by scattering between
these VHSs, with momentum transfers corresponding to mo-
mentum differences between the M-points. These nesting
vectors are also M-point vectors, since M2 − M3 ≡ M1 (up
to a reciprocal-lattice vector) and the order parameters consist
of superpositions of waves with wave vectors Mi. Therefore,
the order parameter in the unit cell centered at R will be a
linear superposition of the components of

v(R) =
⎛
⎝cos M1 · R

cos M2 · R
cos M3 · R

⎞
⎠ (2)

leading to an increase in the size of the unit cell by 2 × 2. The
corresponding Bragg peaks are indeed seen experimentally in
x-ray diffraction [6,30,42] and STM [8,9,11,43].

The possible bond and flux orders have been classified
previously in Refs. [44,45] regarding the point group D6h. We
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FIG. 1. Schematic of the 2 × 2 enlarged unit cell of the kagome
lattice with definitions of the elements of C′′′

6v . We define the three
translation operations ti, mirror reflections σv, σd , and rotations Cn

with n = 2, 3, 6. Sites and bonds are indicated in gray, while plaque-
ttes are indicated by a black cross. There are 12 sites, 24 bonds, and
12 plaquettes within the 2 × 2 enlarged unit cell (green shading).

choose here a different route by following the classification
scheme introduced in Ref. [39] and restricting ourselves to the
point group C6v for simplicity. In this real-space scheme, the
relevant symmetry group is enlarged to C′′′

6v , where the primes
indicate that the point group of the kagome lattice, C6v , con-
tains three additional elements corresponding to translations
ti (with i = 1, 2, 3) that describe the translational symmetry
breaking. The enlarged unit cell as well as the symmetry op-
erations forming the group C′′′

6v are shown in Fig. 1. The group
C′′′

6v has four one-dimensional and two two-dimensional irreps
that are trivial under translation and are thus simply analogous
to the irreps of C6v . There are also four three-dimensional
irreps Fi, which, in contrast, are nontrivial under translations.
Their dimensionality directly follows from the fact that there
are three M points in the Brillouin zone. Table I presents the
character table for the irreps of C′′′

6v .
There are three fundamental types of order, which, fol-

lowing the nomenclature adapted in Ref. [39], we denote
as site, bond, and flux order, with the latter two being real
and imaginary renormalizations of the hopping integrals. We
deduce which irreps of C′′′

6v these orders on the kagome lattice
decompose into, considering only nearest-neighbor order for

TABLE I. Character table of the group C′′′
6v [39]. The one- and

two-dimensional irreps preserve the translation symmetry of the
original kagome lattice, while the three-dimensional irreps lead to
a 2 × 2 increase in the unit cell.

I ti C2 tiC2 C3 C6 σv tiσv σd tiσd

|C| 1 3 1 3 8 8 6 6 6 6

A1 1 1 1 1 1 1 1 1 1 1
A2 1 1 1 1 1 1 −1 −1 −1 −1
B1 1 1 −1 −1 1 −1 1 1 −1 −1
B2 1 1 −1 −1 1 −1 −1 −1 1 1
E1 2 2 −2 −2 −1 1 0 0 0 0
E2 2 2 2 2 −1 −1 0 0 0 0

F1 3 −1 3 −1 0 0 1 −1 1 −1
F2 3 −1 3 −1 0 0 −1 1 −1 1
F3 3 −1 −3 1 0 0 1 −1 −1 1
F4 3 −1 −3 1 0 0 −1 1 1 −1

the bond and flux order. To do so, we consider the permutation
matrices P describing the action of the symmetry operators on
the sites, bonds, and fluxes. These permutation matrices are
representations of C′′′

6v and, using the character Table I, they
can be decomposed into irreps, see Appendix A.

Site order corresponds to a modulation of 〈a†
iσ (R)aiσ (R)〉,

the local electron density, where a†
iσ (R) creates an electron

with spin σ =↑,↓ at a position R + δi. Here, R points to the
unit cell center and δi is the position of the sublattice site
i = A, B,C with respect to R. Denoting the order-parameter
components on each sublattice by a three-dimensional vector
si, the site order takes the form

〈a†
iσ (R)aiσ (R)〉 = si · v(R). (3)

With 12 sites in the (2 × 2)-increased unit cell, the repre-
sentation is 12-dimensional. The possible site orders then
decompose into the following irreps:

Ps = A1 + E2 + F1 + F3 + F4. (4)

A general bond order corresponds to modulations

〈a†
Aσ (R)aBσ (R)〉 = w1 · v(R),

〈a†
Aσ (R)aCσ (R)〉 = w2 · v(R),

〈a†
Aσ (R)aBσ (R − t3)〉 = w3 · v(R),

〈a†
Aσ (R)aCσ (R + t2)〉 = w4 · v(R),

〈a†
Bσ (R)aCσ (R + t2)〉 = w5 · v(R),

〈a†
Cσ (R)aBσ (R − t3)〉 = w6 · v(R). (5)

We refer to real components of these wi as bond order. There
are 24 bonds within the 2 × 2 unit cell, and we find the bond
order decomposition

Pb = A1 + B1 + E1 + E2 + 2F1 + F2 + 2F3 + F4. (6)

Finally, flux orders imply an imaginary component of the wi

[46]. Equivalently, one can think of the resulting flux thread-
ing through the plaquettes. There are 12 plaquettes within the
2 × 2 enlarged unit cell with possible orders decomposing
into the irreps,

Pφ = 2A′
2 + B′

2 + 2F ′
2 + F ′

4 . (7)

In addition to spatial symmetries, the flux order breaks TRS,
which we denote by a prime. Figure 2 shows examples of
different types of translational symmetry-breaking bond and
flux orders for each of the four three-dimensional irreps.

IV. LANDAU THEORY

Having categorized the possible site, bond, and flux orders,
we can construct the free energy within Landau theory for dif-
ferent order parameters and their combinations. Constructing
such free energies then allows us to map out possible phase
diagrams of the kagome metals, which capture the interplay of
these order parameters, before studying the effect of external
perturbations. The different responses to external perturba-
tions can provide distinguishing experimental signatures.

Previous theoretical work has already studied several types
of Landau free energies for the kagome metals. In particu-
lar, Ref. [31] studied coupling between an M-point and an
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FIG. 2. Schematics of the bond order F1, F3 and flux orders
F ′

2 , F ′
4 . For the bond orders, solid (dashed) lines indicate positive

(negative) values of the order parameter. Colors indicate the com-
ponents �1,�2, �3 of the bond order parameter. For the flux order
parameter, the arrows indicate the direction of the current. Colors
indicate the components �′

1,�
′
2, �

′
3 of the flux order parameter.

L-point order, and Ref. [47] studied the coupling between
an imaginary M-point order and superconductivity. Finally,
Refs. [37,45,48–51] studied coupling between real and imag-
inary M-point orders, which is the case we aim to study here.
Such a combination of orders is motivated by the observa-
tion of TRSB in experiments, which indicates that flux order
is present at least under certain circumstances. Furthermore,
since flux and bond order are the imaginary and real com-
ponents, respectively, of the same (nearest-neighbor) order
parameter, it is natural to consider a theory including both.

However, most of the previous literature considered the
bond order parameter to be a complex number, hence mixing
bond and flux order of our classification. While this might be
physically motivated and suggests a proximity of one order
to the other, the real and imaginary components generally
transform as different irreps, which manifests itself in differ-
ent critical temperatures in these combined theories. We thus
follow a different approach, and in the following we use the
results from the order-parameter classification of Sec. III with
the multiplication Table II to write a family of free energies for

TABLE III. Table of the allowed third-order terms and couplings
to the magnetic field for a free energy Fi j constructed from order
parameters transforming under a time-reversal symmetric Fi and a
time-reversal symmetry breaking F ′

j . Consequently, the free energies
F12,F14,F22,F24 have third-order terms. The free energies F12,F34

have linear coupling to a magnetic field.

Flux order

F ′
2 F ′

4

Bond order F1 F 3
1 , F1F ′2

2 , BF1F ′
2 F 3

1 , F1F ′2
4

F2 F 3
2 , F2F ′2

2 F 3
2 , F2F ′2

4

F3 none BF3F ′
4

F4 none none

two coupled order parameters transforming under two (dif-
ferent) three-dimensional irreps: a time-reversal symmetric
Fi and a TRS breaking F ′

j . In particular, with the free energy
transforming as a scalar, only combinations of irreps, whose
decomposition includes A1, can appear. For this purpose, we
first derive the Landau free energy F[�,�′] up to fourth
order in the order parameters � and �′, before studying their
coupling to strain and (out-of-plane) magnetic fields.

A. Homogeneous M-point free energy

The quadratic terms in the free energy take the same form,
irrespective of the irrep combination. We include the temper-
ature dependence to the quadratic coefficients

F (2)[�,�′] = α(T − Tc)
(
�2

1 + �2
2 + �2

3

)
+ α′(T − T ′

c )
(
�′2

1 + �′2
2 + �′2

3

)
. (8)

The parameter Tc (T ′
c ) is the temperature at which the coef-

ficient for the quadratic term in � (�′) changes sign. While
this sign change signals that the solution with vanishing order
parameter becomes unstable, this temperature does not neces-
sarily coincide with the critical temperature at which the order
parameter acquires a nonzero value. The third-order terms, as
well as the coupling between the order parameters, can shift
the critical temperature away from Tc (T ′

c ).
The third-order terms may or may not be allowed, depend-

ing on the transformation properties of the irreps, in particular
their transformation behavior under C2. In Table III, we list

TABLE II. The product of two irreps R1 and R2 can be decomposed into irreps of C′′′
6v . The table is symmetric, and for conciseness we only

populate the upper triangle of the matrix.

A1 A2 B1 B2 E1 E2 F1 F2 F3 F4

A1 A1 A2 B1 B2 E1 E2 F1 F2 F3 F4

A2 A1 B2 B1 E1 E2 F2 F1 F4 F3

B1 A1 A2 E2 E1 F3 F4 F1 F2

B2 A1 E2 E1 F4 F3 F2 F1

E1 A1 + A2 + E2 B1 + B2 + E1 F3 + F4 F3 + F4 F1 + F2 F1 + F2

E2 A1 + A2 + E2 F1 + F2 F1 + F2 F3 + F4 F3 + F4

F1 A1 + E2 + F1 + F2 A2 + E2 + F1 + F2 B1 + E1 + F3 + F4 B2 + E1 + F3 + F4

F2 A1 + E2 + F1 + F2 B2 + E1 + F3 + F4 B1 + E1 + F3 + F4

F3 A1 + E2 + F1 + F2 A2 + E2 + F1 + F2

F4 A1 + E2 + F1 + F2
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the allowed third-order terms for the different order-parameter
combinations. When the terms are allowed, they take the form
[48,49]

F (3,0)[�,�′] = β1�1�2�3, (9)

F (1,2)[�,�′] = β2(�1�
′
2�

′
3 + �′

1�2�
′
3 + �′

1�
′
2�3). (10)

The term F (3,0) is allowed if A1 ⊂ Fi ⊗ Fi ⊗ Fi, while the
term F (1,2) is allowed if A1 ⊂ Fi ⊗ F ′

j ⊗ F ′
j . Due to time-

reversal symmetry, there is neither a linear nor a cubic term
for �′. Note that the third-order term in Eq. (10) couples �

and �′ in such a way that any finite �′ induces a finite �

order, but not the other way around. In other words, while
the TRS-preserving bond order may exist by itself, a finite �′
always induces bond order transforming as F1 and F2. In the
following, we will see how the presence of these third-order
terms significantly alters the phenomenology of the ordered
phase as compared to the case without such terms.

The fourth-order terms are again generically the same for
all order-parameter combinations [45,48,49],

F (4) = λ1
(
�2

1 + �2
2 + �2

3

)2

+ λ2
(
�′2

1 + �′2
2 + �′2

3

)2

+ λ3
(
�2

1 + �2
2 + �2

3

)(
�′2

1 + �′2
2 + �′2

3

)
+ λ4

(
�2

1�
2
2 + �2

1�
2
3 + �2

2�
2
3

)
+ λ5

(
�′2

1 �′2
2 + �′2

1 �′2
3 + �′2

2 �′2
3

)
+ λ6

(
�2

1�
′2
2 + �2

1�
′2
3 + �2

2�
′2
3

+ �′2
1 �2

2 + �′2
1 �2

3 + �′2
2 �2

3

)
+ λ7(�1�

′
1�2�

′
2 + �1�

′
1�3�

′
3 + �2�

′
2�3�

′
3).

(11)

The inclusion of the fourth-order terms is necessary for the
thermodynamic stability of the free energy. Furthermore, in
the absence of third-order terms, the fourth-order terms deter-
mine the form of the symmetry-breaking combination, such as
anisotropic or TRS-breaking, below Tc. F (4) can also couple
� and �′, such that, for example, the λ3 term describes at-
traction (repulsion) between the order parameters for λ3 < 0
(λ3 > 0). Note, however, that due to the quadratic nature of
this term, such an interaction between the order parameters
only amounts to a change of the critical temperature of the
secondary order parameter.

B. Comment on three-dimensional ordering

So far, our discussion has been based on a purely two-
dimensional model. Despite the layered structure of the
kagome metals, it is possible that three-dimensionality is im-
portant. Since some experiments report a 2 × 2 × 2 increase
in the size of the unit cell [30], and DFT calculations report
instabilities at the L-points [31], we are driven to consider
L-point charge ordering as well. There are again three inequiv-
alent wave vectors, which in this case are

L1,3 =
(

± π

a
,

π

a
√

3
,
π

c

)
, L2 =

(
0,− 2π

a
√

3
,
π

c

)
, (12)

where c is the lattice constant in the vertical direction.
Here, pure L-point third-order terms in the free energy will

be absent, since the three momenta do not add up to zero.
However, the second- and fourth-order terms will be present
and unchanged with respect to the previous case, since only
even powers of the order parameters appear and hence the
L-point momenta in the z-direction add up to zero. In this
sense, the pure L-point charge order has the same Landau
theory as a pure M-point flux order [45]. In the case of the
M-point order, it is TRS that forces the absence of a pure third-
order term, whereas in the L-point case, it is z-momentum
conservation.

In general, if we combine an M-point charge order �M

with L-point charge (or flux) order �L (or �′L), then all the
allowed third-order terms take the schematic form �M (�L )2,
�M (�′L )2. These terms are only present as long as the M-
point order is even under C2. Therefore, three-dimensional
L-point bond or flux order always induces a subsidiary
M-point charge order.

Finally, there have also been reports of 2 × 2 × 4 order
[52]. This time there are six inequivalent wave vectors (which
we call “quarter”-points/Q-points), which in this case are

Q1,2 =
(

π

a
,

π

a
√

3
,± π

2c

)
, (13)

Q3,4 =
(

0,− 2π

a
√

3
,± π

2c

)
, (14)

Q5,6 =
(

−π

a
,

π

a
√

3
,± π

2c

)
. (15)

The second-order term would be proportional to (Q1Q2 +
Q3Q4 + Q5Q6). Since there are six order parameters, there
is a significant increase in the number of fourth-order terms.
Third-order terms will be absent from a pure Q-point theory
due to kz momentum conservation. If we combine an L-point
charge order �L with Q-point charge (or flux) order �Q (or
�′Q), then all the allowed third-order terms take the schematic
form �L(�Q)2, �L(�′Q)2. These terms are only present as
long as the L-point order is even under C2.

V. PURE BOND ORDER

We start our discussion with pure bond order without any
flux order. This case has already been extensively covered in
Ref. [31], and here we just summarize the most important
results. The possible Landau theories only differ in the pres-
ence or absence of the third-order term, Eq. (9). As can be
seen from Table III, F1 and F2 orders at the M point have a
third-order term, while the F3 and F4 orders at the M point,
as well as any L-point orders, lack these terms. Note again
that the absence of the third-order term for F3 and F4 is an
immediate consequence of them being odd under C2.

A. Without a third-order term

In this case, we have a second-order phase transition, when
the coefficient of the quadratic term switches sign, in other
words exactly at Tc. The specific form of the ordering is de-
termined by the fourth-order terms. With only � present, only
the λ1 and λ4 fourth-order terms are present. λ1 alone does
not break any degeneracy, irrespective of its value. λ4 > 0
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then leads to an anisotropic solution immediately below the
charge-ordering temperature: Only one of the components �i

will be nonzero. On the contrary, λ4 < 0 favors an isotropic
solution. There are two degenerate isotropic solutions, since
the free energy is independent of the sign of the individual
order-parameter components: For the F3 and F4 irreps, the
cases with all components with the same sign (�1 = �2 =
�3) and one component with the opposite sign (�1 = −�2 =
−�3 or cyclic variations) are degenerate and related by C2.

B. With a third-order term

In the presence of a third-order term in the free energy, the
phase transition changes to first order. Generically, the free
energy takes the form

F = α(T − Tc)�2 + b�3 + c�4, (16)

which undergoes a first-order transition at T̃c = Tc +
b2/(4αc) > Tc, where the order parameter jumps to a finite
value �0 = − b

2c .
Further, the third-order term lifts the degeneracy between

the isotropic solutions. In particular, for λ4 � 0 and β1 < 0,
the configuration with sign(�1�2�3) > 0, referred to as tri-
hexagonal ordering for the case of F1, is favored. When β1 >

0, the configuration sign(�1�2�3) < 0, the so-called Star-of-
David ordering for F1, is favored.

Finally, we can consider the case in which λ4 > 0 in the
presence of a third-order term. In that case, the first-order
transition into the |�1| = |�2| = |�3| order is followed by
a crossover to |�2| = |�3| ≈ 0 < |�1| (or cyclic variations)
at lower temperatures.

VI. COUPLED BOND AND FLUX ORDER

We now consider the case in which bond order and flux
order coexist. Following our analysis in Sec. III, we only have
to consider flux orders belonging to the F ′

2 and F ′
4 irreps,

while for bond order, all three-dimensional irreps have to be
considered. Translated into our irrep classification, previous
work has studied various combinations of bond and flux order
parameters: In Ref. [48], the authors study the single order
parameter combination F1 and F ′

4 ; Ref. [37] considers the
combination F1 and F ′

2 ; Ref. [50] considers F1 and F ′
4 ; and

Refs. [45,49] consider a variety of different order-parameter
combinations.

We construct the free energy Fi j for coupling bond order Fi

with flux order F ′
j . In the absence of additional perturbations,

there are two cases shown in Table III: First, we consider
coupling bond order that is even under C2 (from the F1 or F2

irreps) to any flux order (from the F ′
2 or F ′

4 irrep). Then, the
free energy

Fi j = F (2) + F (3,0) + F (1,2) + F (4), (17)

where (i j) = (12), (14), (22), (24) includes all third-order
terms. Secondly, we consider coupling bond order that is odd
under C2 (from the F3 or F4 irreps) to any flux order (from the
F ′

2 or F ′
4 irrep). The corresponding free energy

Fi j = F (2) + F (4), (18)
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FIG. 3. (a) Phase diagram without a third-order term applicable
to the free energies F32,F34,F42,F44. (b) Phase diagram with a
third-order term applicable to the free energies F12,F14,F22,F24.

The color indicates the angle φ = arctan
∑

i �′2
i∑

i �2
i

, while the intensity

denotes
∑

i(�
2
i + �′2

i ). Solid lines indicate first-order phase tran-
sitions and dashed lines indicate second-order transitions. Hatching
denotes an anisotropic solution of the order parameter. TRS is broken
when �′ > 0. The Landau free-energy coefficients are chosen to be
α = α′ = λ1 = λ2 = μi = β1 = −β2 = 1, λi>2 = 0.

where (i j) = (32), (34), (42), (44) has no third-order terms.
For both of these two cases, we next present a phase diagram,
where we tune the relative strength of the � and �′ order by
tuning their relative critical temperature Tc − T ′

c .

A. Without a third-order term

Figure 3(a) shows the phase diagram without any third-
order terms. This is the case for F32,F34,F42,F44. Since
� and �′ are only coupled via the fourth-order term, we
can have either order parameter existing alone. The phase
diagram splits into three ordered regions that are entered
through second-order transitions: one where � exists alone
(Tc > T � T ′

c ), one where �′ exists alone (T ′
c > T � Tc), and

one where both coexist. TRS is broken any time �′ is nonzero.
Note that without a third-order term, there is a symmetry
under exchanging � and �′ (as well as exchanging the cor-
responding coefficients of the free energy). This explains the
left-right symmetry in the phase diagram.

B. With a third-order term

Figure 3(b) shows the phase diagram with third-order
terms. This is the case for F12,F14,F22,F24. In this case,
a finite �′ always induces a subsidiary �. Unlike the case
without third-order terms, where there are three regions and
the phase-transition into the coexistence region happens at
a singular point (Tc = T ′

c ) and is always second order, here
the phase diagram only has two regions: one where � ap-
pears alone and TRS is preserved, and one where both order
parameters coexist and TRS is broken. As in the pure bond-
order case, the transition into the former is always first order
with a (potential) additional second-order transition into the
coexistence region. The direct transition into the coexistence
region changes from first order for Tc ≈ T ′

c and �′ ∼ � to
second order for T ′

c  Tc and �′  �. Within the ordered
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phase, there is then a crossover between these domains. More
details on the transitions can be found in Appendix D.

Finally, the third-order term now breaks the symmetry of
exchanging � and �′, such that the phase diagram is no longer
left-right symmetric.

VII. SYMMETRY BREAKING

A. Coupling to strain

Uniaxial strain has proven to be a very effective perturba-
tion to probe correlated orders in two-dimensional and layered
materials. Uniaxial strain was used in layered systems such as
the cuprates to probe the charge-density wave [53] or Sr2RuO4

[54], where it lifts the degeneracy of critical temperatures
for the superconducting and TRS-breaking states, while the
ground state in twisted bilayer graphene changes drastically
under strain [55]. Indeed, recent experiments indicate that
coupling to strain significantly alters the transport properties
of kagome metals [24], and we therefore include such cou-
pling in our Landau theory. The strain matrix in terms of the
displacement field u is given by εαβ = 1

2 (∂αuβ + ∂βuα ). The
coupling to strain is independent of the order parameters we
consider and has the form (see Appendix C)

F (str) = μ2
[
(εxx − εyy)

(
�2

1 − �2
2/2 − �2

3/2
)

+ εxy

√
3
(
�2

2 − �2
3

)]
+ μ3

[
(εxx − εyy)

(
�′2

1 − �′2
2 /2 − �′2

3 /2
)

+ εxy

√
3
(
�′2

2 − �′2
3

)]
. (19)

Being quadratic in the order parameters, strain shifts the
critical temperatures of different components of the order
parameters, and as such it is possible that strain induces an
order even though the temperature is too high in the strainless
state. For example, it is possible for the strain to increase the
critical temperature of one of the components of the flux order
and thereby break TRS.

Finally, we note that having a first-order transition relies on
the third-order term being relevant. The presence of strain fa-
vors some of the components of � over others and, therefore,
weakens the effect of the third-order term �1�2�3. Strain
thus generally weakens the first-order nature of the transition
into the ordered state.

B. Anisotropy

As anisotropy we denote the breaking of rotation symme-
try in a system. In the context of crystalline systems, where
rotation symmetry is already discrete, anisotropy then refers
to a further reduction, such as the breaking of C6 down to
C2. In the context of a charge-density-wave instability with
multiple inequivalent wave vectors, an anisotropy can arise
from different magnitudes of the individual order-parameter
components. Note that in the following, we consider purely
in-plane order, since for finite out-of-plane momentum (such
as L-point ordering) the rotational symmetry can be trivially
broken [31].

Strain explicitly breaks rotation symmetry and will thus
introduce an anisotropy. The susceptibility towards an
anisotropy in a small strain field can thus serve as an indicator

for the anisotropy in the system. In particular, the susceptibil-
ity of a C3-breaking order parameter to strain will diverge for
an anisotropic ground state. We thus calculate {�2

1 − �2
2/2 −

�2
3/2,

√
3

2 (�2
2 − �2

3)} to assess whether rotational symmetry
is broken and, similarly, for the corresponding order pa-
rameter for flux order. In Appendix C, we show how the
susceptibility is related to this “order parameter”

∑
i, j[(�

2
i −

�2
j )

2 + (�′2
i − �′2

j )2]. Below, we discuss the conditions for
an anisotropy in the solution to the Landau free energy in the
cases without and with third-order terms.

1. Without a third-order term

As in the case of pure bond order, the fourth-order term
can introduce an anisotropy. The terms with coefficients λ1,
λ2, and λ3 do not break the degeneracy between isotropic and
anisotropic solutions. As shown in Sec. V A, pure bond order
is anisotropic when the fourth-order term λ4 > 0. Similarly,
flux order is anisotropic when λ5 > 0. In addition, λ6 > 0
leads to an anisotropic solution, if both bond and flux order are
nonzero. Note that the nonzero component of the two orders
is the same, meaning a solution of the form �i �= 0, �′

i �= 0 is
stable.

2. With a third-order term

Anisotropy can arise from the third-order term in the free
energy even when the fourth-order terms favor an isotropic
solution. To see this, consider the terms

β1�1�2�3 + β2(�1�
′
2�

′
3 + �′

1�2�
′
3 + �′

1�
′
2�3) (20)

as perturbations with �2 = �2
1 + �2

2 + �2
3 and �′2 = �′2

1 +
�′2

2 + �′2
3 being fixed by the second-order and fourth-order

terms in the free energy. Let us assume β1 > 0 and β2 < 0 (the
case β1 < 0 and β2 > 0 can be obtained by flipping the sign of
�i). We can then compare the energies of two extreme cases:
For an isotropic solution �1 = �2 = �3 = �/

√
3 and �′

1 =
�′

2 = �′
3 = �′/

√
3, the third-order terms yield an energy

|β1|
3
√

3
�3 − |β2|

3
√

3
��′2 (21)

while the anisotropic solution �1 = � and �′
2 = �′

3 =
�′/

√
2 has energy

−|β2|
2

��′2. (22)

Therefore the isotropic solution will be favored when
(�′/�)2 > ( 3

√
3

2 − 1)|β1|/|β2|. Increasing the ratio �′/�
corresponds to moving to the left in the phase diagram of
Fig. 3(b). Similarly, the anisotropic solution gives way to
an isotropic solution when � is large (see Appendix E for
details). This leads to the wedge-shaped region in the phase
diagram where the solution is anisotropic.

C. Coupling to a z-axis magnetic field

The lowest-order coupling to a magnetic field is linear in
field and quadratic in the order parameters. However, only
some of the order-parameter combinations couple to a mag-
netic field at this lowest order. The magnetic field breaks TRS
and transforms under the A2 irrep of C′′′

6v . Therefore, for the
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FIG. 4. (a) Phase diagram in the presence of a magnetic field
without a third-order term applicable to the free energy F34. (b) Phase
diagram in the presence of a magnetic field with a third-order term
applicable to the free energy F12. The color indicates the angle

φ = arctan
∑

i �′2
i∑

i �2
i

, while the intensity denotes
∑

i(�
2
i + �′2

i ). Solid

lines indicate first-order phase transitions, and dashed lines indicate
second-order transitions. Hatching denotes an anisotropic solution
of the order parameter. TRS is broken everywhere due to the applied
field. The Landau free-energy coefficients are chosen to be α = α′ =
λ1 = λ2 = μi = β1 = −β2 = 1, λi>2 = 0.

order parameters to couple in this manner to the magnetic
field, we require A2 ⊂ Fi ⊗ F ′

j . If the coupling is allowed (see
Table III), it takes the form

F (B) = μ1B(�1�
′
1 + �2�

′
2 + �3�

′
3). (23)

We note that this is an unusual form of magnetic field coupling
to (translational-symmetry-breaking) order parameters since
the magnetic field couples linearly. This is only possible since
we have both TRS-breaking and TRS-preserving orders with
the same wave vectors. Importantly, this term fixes the relative
sign between � and �′. Without a magnetic field, there can
be domains with opposite relative signs. Applying a magnetic
field causes the domains to flip such that the relative sign is
the same everywhere. We note in passing that this form of the
coupling to the magnetic field would also be possible if � and
�′ are both L-point orders, but not for a combination of an
L-point and M-point order.

1. Without a third-order term

Figure 4(a) shows the phase diagram in the presence of
a magnetic field when there are no third-order terms in the
free energy. The only order-parameter combination that has
the lowest-order coupling to a magnetic field, while lacking a
third-order term, is F3 with F ′

4 , in other words the free energy
F34. In this case, the magnetic field couples � and �′ and
hence the two orders always coexist. The regions �  �′,
� ∼ �′, and � � �′ are now separated by crossovers. In the
region Tc ∼ T ′

c , the critical temperature is enhanced as both
order parameters condense at the same time. While TRS is
trivially broken in the entire phase diagram, the magnetic field
does not induce an anisotropy if not present already. Note that
while in Ref. [56] the effect of magnetic field in a Landau
theory of the kagome metals was considered, only the case
without third-order terms was treated.

2. With a third-order term

Figure 4(b) shows the phase diagram in the presence of
a magnetic field when there is a third-order term in the free
energy. The only order-parameter combination that has both
the lowest-order coupling to a magnetic field and a third-
order term is F1 with F ′

2 , in other words the free energy
F12. The two order parameters are again coupled and always
appear together. The regions �  �′, � ∼ �′, and � � �′
are separated by crossovers. Due to the third-order term, an
anisotropy can be induced if � and �′ both become large
enough. In the region where Tc > T ′

c , adding the magnetic
field increases the strength of the flux order, thereby enhanc-
ing the anisotropy via the third-order term. This is shown
explicitly in Appendix F. Again, TRS is trivially broken in
the entire phase diagram.

VIII. CONSTRAINTS FROM EXPERIMENTS ON AV3Sb5

While our phenomenological description of charge-density
orders in kagome metals is valid for any such system, we com-
ment in the following on the consequences of our discussion
for the AV3Sb5 family. There are several experimental facts,
which any theory of the charge-ordered (normal) state should
reproduce:

(i) A 2 × 2 increase in the in-plane unit cell at Tc as ob-
served by x-ray diffraction [6,30,42] and STM [8,9,11,43].

(ii) The transition at Tc appears to be first order. First, the
heat capacity displays a sharp peak at Tc [6], which is a general
feature of a first-order transition. In addition, x-ray scattering
[30] and NMR [57] show discontinuities at Tc, further sug-
gesting a first-order transition. Finally, transport [19,24] does
not see an extended region of fluctuations but a rather abrupt
change, especially for out-of-plane conductivity.

(iii) TRS is/can be broken below T ′ < Tc, as seen in muon
spin-relaxation [16,17] and Kerr rotation [26,27]. It is cur-
rently uncertain whether this is truly spontaneous TRSB or
whether it is a giant response to a small applied magnetic
field. In either case, it is clear that the coupling of the order to
(out-of-plane) magnetic fields is important: A small field leads
to a giant anomalous Hall response [32,33] and a large μSR
response [16,58,59]. Finally, such a magnetic field (linearly)
couples the chirality of the ordered state [22].

Experimental fact (i) implies we should consider the
translational-symmetry breaking orders of C′′′

6v , in other words
the four three-dimensional irreps denoted as Fi, i = 1, . . . , 4.
Experimental fact (ii) requires the presence of a third-order
term in F . Absent a third-order term, the phase transitions
in the Landau free energy are generically second-order. Ex-
perimental fact (iii) suggests that the system is at least very
tunable towards TRSB order, which should therefore lie close
in energy to the ground state. This implies that we should
consider additional flux order, in other words F ′

2 and F ′
4 . In

addition, experimental fact (iii) requires a term that (linearly)
couples the magnetic field to the order parameters. In our
classification, the only order-parameter combination that has
third-order terms as well as (linear) coupling to a magnetic
field is F1 with F ′

2 . There is evidence from experiments and
density functional theory that the charge order transforms
as the F1 irrep [38,60–63], which supports the conclusion
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reached above using different means. The nature of the flux
order has not been determined yet by other means.

IX. PROPOSALS FOR FUTURE EXPERIMENTS ON AV3Sb5

A. Transport

With the order-parameter combination F1 and F ′
2 , we are

able to explain the striking experimental results seen in trans-
port in Ref. [24]. The experiment reported isotropic transport
in the absence of strain; however, application of an out-of-
plane magnetic field leads to anisotropic transport. If we are
in the regime where Tc  T ′

c , then only � is induced at Tc

and this order is isotropic. However, a magnetic field will
induce �′ at Tc as well (due to the μ1 term in the free energy).
The β2 third-order term coupling � and �′ can then lead to
anisotropy as outlined in Sec. VII B.

One natural future direction to explore is how closely the
transport anisotropy is related to the charge order. It has been
shown that with sufficient Nb and Ta doping on the V-site,
the chemical pressure can suppress the charge-density-wave
transition down to lower or even zero temperature [64,65].
The report of an isotropic superconducting gap suggests the
absence of anisotropy without applying an external field
[66], but the field- or strain-induced anisotropy is yet to
be explored. Therefore, we propose a complete mapping of
anisotropy across the doping phase diagram in order to ex-
plore how the field and strain dependence of the electronic
anisotropy evolves when the charge order is suppressed or
absent.

Meanwhile, previous experimental results showed that
when a magnetic field is applied, the direction of transport
anisotropy seems to be pinned to a particular direction most
likely due to the small uniaxial strain [24]. It is worth checking
whether this pinning can be altered by a strong current pulse
which may overcome the barrier of the pinning energy.

Moreover, the angular dependence of magnetoresistance
(MR) seems to suggest a twofold symmetry which indicates a
breaking of the sixfold in-plane rotation symmetry [21]. Yet,
this technique is strongly limited by the misalignment of the
magnetic field direction due to the huge magnetoresistance
spike with in-plane field [22]. Therefore, measuring the an-
gular dependence of the magnetoresistance with a spherical
rotation of the magnetic field direction would reveal the true
in-plane component of MR with and without an out-of-plane
field component.

Furthermore, we are working under the assumption that
there is no anisotropy in the strain-free case. Elastoresistance
measurements such as those in Ref. [10] are interesting in
order to quantify the dependence on strain.

Most of the theoretical treatment of our work assumes a
two-dimensional nature of the charge ordering. One impor-
tant open question is how much of the physics of the charge
density order is two-dimensional. In particular, a possible ex-
planation of the data in Ref. [24] observing isotropic transport
is that while the transport in a given layer is anisotropic, the
transport averages over different layers such that one obtains
isotropic transport. To rule out this scenario, one could probe
the transport in a two-dimensional film of the material. Indeed,
there has been recent progress in manufacturing thin films

of the kagome metals via exfoliation [67–69]. It would be
exciting to reach the monolayer limit and measure transport
anisotropy in that case.

B. STM

Another approach to detect whether the isotropic transport
behavior in the low strain devices of Ref. [24] arises due to
averaging over many domains/layers would be to perform
local measurements of the anisotropy, for example via STM,
on ultralow strain devices. Reference [24] reports anisotropic
transport once a magnetic field is switched on. It would be
interesting to perform an STM study (or indeed an x-ray scat-
tering experiment) when the sample is in a magnetic field in
order to establish the source of this anisotropy. However, one
should be aware that STM is a surface probe, and the physics
probed at the surface may not necessarily be representative of
the physics in the bulk.

C. TRSB

Currently the results on TRSB in kagome metals are still
controversial. In particular, there is no consensus on whether
there is spontaneous TRSB in zero magnetic field or whether
the TRSB is induced by the small training fields used in
experiments. In terms of the probes used to investigate (spon-
taneous) TRSB in the kagome metals, there have been both
the Kerr effect and muon spin rotation experiments. Another
probe that could be used to detect the circulating currents pre-
dicted in these materials is neutron scattering. This technique
has been successfully used to detect the loop currents in the
pseudogap phase of the cuprates [70].

Our Landau theory as well as recent experiments [24] show
that kagome metals can be very sensitive to strain. While these
experiments showed that there was no observable dependence
of the charge-ordering temperature on the strain, it has yet
to be established whether the TRSB temperature depends on
strain.

D. Stiffness measurements

Transport experiments have revealed that the anisotropy in
strain-free samples increases when a magnetic field is applied,
and this should yield observable signatures in measurements
of elements of the stiffness matrix, as we elaborate on below.

In addition to the coupling between the strain and the order
parameters, there is also a contribution to the free energy
coming from the elastic energy itself. Using the Voigt nota-
tion for the strain tensor, i.e., introducing the six-dimensional
vector ε = (εxx, εyy, εzz, 2εyz, 2εxz, 2εxy), we can write the
elastic energy as

F (ε) = 1

2

∑
αβ

cαβεαεβ, (24)

where cαβ is the stiffness matrix. For a system with D6h sym-
metry, there are five independent components of the stiffness
matrix [49]: c11, c12, c13, c33, c44. In general, the components
of the stiffness matrix can be discontinuous at a second-order
phase transition, which can be measured in experiments. The
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discontinuities are given by the formula [49,71,72]

�cαβ =
∑
γ δ

∂2F (str)

∂εα∂Dγ

∂2F (str)

∂εβ∂Dδ

(
∂2F

∂Dγ ∂Dδ

)−1

, (25)

where D = (�,�′) is the six-dimensional vector combining
the order parameters. As shown in Ref. [49], at the onset
of isotropic charge ordering, there will be discontinuities
�c11,�c12,�c13,�c33. On the other hand, at the onset of
anisotropic order, there will be further independent compo-
nents of the stiffness matrix, which are discontinuous, namely
�c22 �= �c11 and �c13 �= �c23. Therefore, one interesting
experiment would be to measure �c22 − �c11 and �c13 −
�c23 in a pristine (strain-free) sample as a function of an
applied magnetic field.

Resonant ultrasound spectroscopy is a method used to
measure the elements of the elastic stiffness matrix [73]. It
would be interesting to perform these experiments as a func-
tion of the applied magnetic field, though resonant ultrasound
spectroscopy in a magnetic field is challenging and it is pos-
sible that pulse-echo sound velocity measurements are more
realistic.

X. CONCLUSION

Kagome metals are known to undergo charge ordering with
a 2 × 2 increase in the size of the unit cell. Using a group
theory analysis, we write down all possible site, bond, and flux
ordering that is consistent with the system symmetries. The
observation of TRSB and coupling to a magnetic field further
motivates studying TRSB flux order. Flux and bond order are
natural partners since they are the imaginary and real part of
the same underlying order parameter, and so in general we
expect these two orders to be coupled. This leads us to study
all possibilities for the coupling of flux and bond order.

We use a Landau analysis to study the interplay of the
two orders. The different types of flux and bond order lead
to differences in the third-order term in the Landau theory as
well as differences in the coupling to the magnetic field. We
construct the phase diagrams for different types of coupled
flux and bond order. Depending on the type of order, the two
order parameters corresponding to flux and bond order may
appear separately or always in unison.

By synthesizing various experimental results and compar-
ing to the Landau theory phase diagrams, we are able to
deduce that the most likely candidate is a tri-hexagonal or
Star of David bond order with a subsidiary C2-preserving flux
order.

Note added. After completion of our work, we became
aware of unpublished work [74] that also supports the irrep
combination F1 with F ′

2 for the in-plane ordering in the mate-
rial RbV3Sb5.
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APPENDIX A: GROUP THEORY DETAILS

For the site order, we compute the permutation matrix
Ps(g) that describes how the sites transform into each other
under the operation g ∈ C′′′

6v . Since there are 12 sites in the
2 × 2 enlarged unit cell, the set of permutation matrices de-
scribe a 12-dimensional reducible representation of C′′′

6v . To
decompose this representation into irreps, we compute the
characters χ (g) = Tr(Ps(g)), in other words, we count the
number of sites that map to themselves under the operations
of C′′′

6v . We find

g I ti C2 tiC2 C3 C6 σv tiσv σd tiσd

Tr(Ps(g)) 12 0 0 4 0 0 2 0 2 0

We can then compute the multiplicity nR of the irrep R in
the decomposition of this reducible representation via

nR = 1

|C′′′
6v|

∑
g∈C′′′

6v

χR(g)χ (g), (A1)

where the characters χR(g) are listed in the character table
(Table I). This leads to the decomposition of site order,

Ps = A1 + E2 + F1 + F3 + F4. (A2)

The bond and flux order can be treated similarly.

APPENDIX B: MULTIPLICATION TABLE
OF IRREPS OF C′′′

6v

We want to decompose the product of two irreps Ri and Rj

into a sum of irreps

Ri ⊗ Rj =
⊕

k

nkRk, (B1)

where

nk = 1

|C′′′
6v|

∑
g∈C′′′

6v

χk (g)χi(g)χ j (g). (B2)

We list the results in Table II.

APPENDIX C: COUPLING TO STRAIN

The crucial symmetry to determine the coupling to strain
is C3. The components of the strain tensor transform in the
E irrep, which transforms nontrivially under C3, and so in
order to obtain a scalar (i.e., a term that we can add to the free
energy), we need to construct a term out of the order parameter
that also transforms under the E irrep. The basis functions
of the E irrep are conventionally labeled as p± = px ± ipy,
which pick up phases of ω = e2π i/3 and ω∗, respectively, un-
der C3. Looking at the transformation properties of the order
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2
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(a) case with d = 0

−2 0 2
4αc(Tc − Tc)/b
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0.006

0.008
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(b) case with d = b/4

FIG. 5. Temperature derivative of the order-parameter amplitude
�2 + �′2 for the free energy (D1) with a term d�3. Large values
of the derivative (yellow) indicate first-order phase transitions. (a) In
the case d = 0, there is a first-order transition for a finite range of
Tc − T ′

c . The red curves show the analytical results (D6) and (D8).
(b) In the case d > 0, there is a first-order phase transition for all
Tc > T ′

c .

parameter under C3, we find that the quadratic terms that
transform correctly are

p+ = �2
1 + ω�2

2 + ω2�2
3, (C1)

p− = �2
1 + ω2�2

2 + ω�2
3, (C2)

where ω = e2π i/3. Then we write these as p± = (px ± ipy)
with

px = �2
1 − �2

2/2 − �2
3/2, (C3)

py =
√

3

2

(
�2

2 − �2
3

)
. (C4)

One can check that the doublet {px, py} transforms in the same
way under C3 as {εpx , εpy} = {(εxx − εyy)/2, εxy}, allowing us
to construct the C3-symmetric term to be added to the free

energy:

F (str) = 2μ2(εpx px + εpy py)

= μ2
[
(εxx − εyy)

(
�2

1 − �2
2/2 − �2

3/2
)

+ εxy

√
3
(
�2

2 − �2
3

)]
. (C5)

The analogous term for flux order automatically respects time-
reversal symmetry since it is quadratic in the order parameter
and hence flux order couples to strain in the same manner
(with a different coupling coefficient).

The coupling to strain gives us a way to quantify the
anisotropy in the system. For an isotropic phase, the order pa-
rameters px and py will be zero. If the solution is anisotropic,
there will be degenerate solutions with different values of px

and py, and application of strain will pick out one of these
degenerate solutions leading to divergent susceptibility. Let
us consider the response to strain in the system at finite tem-
perature T . The expectation value of the symmetry-breaking
order parameter is

〈px〉F (εpx ),T = 〈pxe−βF (str)〉0,T = 〈pxe−2βμ2εpx px 〉0,T , (C6)

where 〈. . .〉0,T denotes the finite-temperature average with
respect to the zero-strain free energy F (εpx = 0) and β =
1/(kBT ). The susceptibility is then

χpx = lim
εpx →0

∂〈px〉F (εpx ),T

∂εpx

= −2βμ2〈p2
x〉0,T , (C7)

and similarly χpy = −2βμ2〈p2
y〉0,T . The susceptibilities di-

verge when T → 0 if p2
x or p2

y acquire a finite expectation
value in the ground state. This is the signature of sponta-
neous symmetry breaking. This motivates us to introduce the
anisotropic order parameter

1

β
Trχ = 1

β
(χpx + χpy ) = −2μ2

(
p2

x + p2
y

)

= −4βμ2

∑
i, j

(
�2

i − �2
j

)2
, (C8)

and an analogous order parameter can be written down for the
flux order.

APPENDIX D: FIRST-ORDER TRANSITION

When Tc ∼ T ′
c , there is a first-order transition into a phase

with both charge and flux order (see Fig. 5). Let us consider
the free energy

F = α(T − Tc)�2 + α(T − T ′
c )�′2+b��′2 + c(�2 + �′2)2

= Aψ2 + Bψ3 + Cψ4, (D1)

where we used the parametrization � + i�′ = ψeiφ and

A = α(T − Tc) cos2 φ + α(T − T ′
c ) sin2 φ

= α[T − Tc cos2 φ − T ′
c sin2 φ], (D2)

B = b cos φ sin2 φ, (D3)

C = c. (D4)
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FIG. 6. We plot the six order parameters and the phase boundaries between the different solutions. The blue line shows the boundary
between solution 1 and solution 2 (∼T ∗), while the green line shows the boundary between solution 3 and solution 4 (∼T ′

c ). In between the
blue and green lines, there is a crossover from solution 2 to solution 3. The yellow lines show the onset of � order (∼Tc). The wedge between
the blue and green lines is where the solution is anisotropic.

The minimum of the free energy is at a nonzero value of the
order parameter when A < B2

4C , i.e., when

T < T1 = Tc cos2 φ + T ′
c sin2 φ + b2

4αc
cos2 φ sin4 φ

= Tc + (T ′
c − Tc)[sin2 φ + η(sin4 φ − sin6 φ)],

(D5)

where η = b2/[4αc(T ′
c − Tc)]. We will have a first-order

transition, when there is a nonzero solution at T > Tc, T ′
c .

Consider first the case in which T ′
c > Tc. Maximizing the term

in square brackets leads to

maxφ (T1)

= Tc + (T ′
c − Tc)

[η + √
η(3 + η)][6 + η + √

η(3 + η)]

27η
,

(D6)

when sin2 φ = [η + √
η(3 + η)]/(3η) � 1. We have

maxφ (T1) > T ′
c when η > 1. Similarly, when Tc > T ′

c ,
we can write

T1 = T ′
c + (Tc − T ′

c )[cos2 φ − η cos2 φ(1 − cos2 φ)2]. (D7)

Maximizing with respect to φ yields

maxφ (T1)

= T ′
c +(Tc−T ′

c )
2[2η + √

η(3 + η)][3 − η + √
η(3 + η)]

27η
,

(D8)

and maxφ (T1) > Tc when η < −4. So we have a first-order
transition in a range where the critical temperatures of the two
orders are similar:

b2

4αc
> (T ′

c − Tc) > − b2

16αc
. (D9)

APPENDIX E: ANISOTROPY FROM A THIRD-ORDER
TERM

Anisotropy can arise from the third-order term in the free
energy even when the fourth-order terms favor an isotropic
solution. To see this, consider the terms

F (3) = β1�1�2�3 + β2(�1�
′
2�

′
3 + �′

1�2�
′
3 + �′

1�
′
2�3)

(E1)

as perturbations with �2 = �2
1 + �2

2 + �2
3 and �′2 = �′2

1 +
�′2

2 + �′2
3 being fixed by the second-order and fourth-order

terms in the free energy. The results derived below will

FIG. 7. We plot the six order parameters for a set of different magnetic fields. The order parameters are computed at a fixed temperature
as a function of Tc − T ′

c . For B = 0 we see the transitions between the four different solutions described in Appendix E. The region where the
solution is most stable (at the left of the phase diagram) becomes larger as the B-field increases.
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FIG. 8. We plot the order parameter of the anisotropy∑
i, j[(�

2
i − �2

j )
2 + (�′2

i − �′2
j )2] for a set of different magnetic

fields. We fix the temperature T = 0.2. We plot the anisotropy at a
fixed temperature as a function of Tc − T ′

c . There is a range of Tc − T ′
c

where the magnetic field significantly enhances the anisotropy.

therefore be exact in the limit β1 → 0, β2 → 0, though the
numerics demonstrate that the results are similar for finite
β1, β2. We study the case β1β2 < 0. The signs of β1 and β2

can always be flipped by changing the sign of �i, so without
loss of generality, we assume β1 > 0 and β2 < 0. We now
study the competition between four different solutions of the
free energy, which will be the ground states as we traverse the
phase diagram in Fig. 6 from left to right.

(i) Solution 1: �1 = �2 = �3 = �√
3

and �′
1 = �′

2 =
�′

3 = �′√
3

leads to F (3) = |β1|
3
√

3
�3 − |β2|√

3
��′2.

(ii) Solution 2: �3 = � and �′
1 = �′

2 = �′√
2

leads to

F (3) = −|β2|
2 ��′2.

FIG. 9. Increase of the anisotropy
∑

i, j[(�
2
i − �2

j )
2 + (�′2

i −
�′2

j )2] as a function of the applied field. We fix Tc − T ′
c = 0.5 and

T = 0.2.

case with Tc − T ′
c = −0.5

case with Tc − T ′
c = 0.5

FIG. 10. Increase of the anisotropy
∑

i, j[(�
2
i − �2

j )
2 + (�′2

i −
�′2

j )2] as a function of the applied strain for two different values
of the magnetic field. We fix T = 0.55. In the case Tc > T ′

c the
application of the magnetic field increases the anisotropy, consistent
with the experimental results from Ref. [24].

(iii) Solution 3: �1 = −�2 = �3 = �√
3

and �′
1 = �′

2 =
�′√

2
leads to F (3) = − |β1|

3
√

3
�3 − |β2|

2
√

3
��′2.

(iv) Solution 4: �1 = −�2 = �3 = �√
3

and �′
i = 0 leads

to F (3) = − |β1|
3
√

3
�3.

Let us further assume second-order terms F (2) =
α(T − Tc)�2 + α(T − T ′

c )�′2 and fourth-order terms F (4) =
λ(�4 + �′4) such that

�2 = α(Tc − T )

2λ
, (E2)

�′2 = α(T ′
c − T )

2λ
. (E3)
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Comparing the energies of solution (i) and solution (ii), we
find that the transition occurs at

T ∗ = Tc − ζT ′
c

1 − ζ
, (E4)

where ζ = 3(1 −
√

3
2 )|β2|/|β1|. We plot this transition tem-

perature as a blue line in Fig. 6. Solutions (i) and (iv) are
isotropic, while solutions (ii) and (iii) are anisotropic.

APPENDIX F: ANISOTROPY IN THE PRESENCE
OF A MAGNETIC FIELD

The magnetic field adds a term to the free energy,

F (B) = μ1B(�1�
′
1 + �2�

′
2 + �3�

′
3). (F1)

The effect of the magnetic field is to induce �′ as soon as �

is present. Let us assume without loss of generality B < 0 (we
can always switch the sign of �′

i to adapt to the sign of B). Of
the four solutions, the only solution that can take advantage
of F (B) and lower its energy is solution (i), which has a con-
tribution −B��′. None of the other solutions have changes
in energy to this order in the perturbation theory. Therefore,
solution (i) becomes more stable and the boundary between
solution (i) and solution (ii) shifts to the right; this is shown
in Fig. 7. The result of this effect is that the magnetic field
can increase the anisotropy of the order parameters, as shown
in Figs. 8 and 9. In particular, due to the phase boundary
between solution (i) and solution (ii) shifting to the right, the
value of � is larger when the components become anisotropic,
and this results in a larger anisotropy. We note that if we
are in the part of the phase diagram where Tc < T ′

c , then
the magnetic field has the opposite effect and suppresses the
anisotropy (Fig. 10).
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