
Materials Science & Engineering A 881 (2023) 145373

A
0

Contents lists available at ScienceDirect

Materials Science & Engineering A

journal homepage: www.elsevier.com/locate/msea

Application of a nanoindentation-based approach for parameter
identification to a crystal plasticity model for bcc metals
Francisco-José Gallardo-Basile a,∗, Franz Roters a, Robin M. Jentner a, James P. Best a,
Christoph Kirchlechner b, Kinshuk Srivastava c, Sebastian Scholl c, Martin Diehl d,e

a Max–Planck-Institut für Eisenforschung, Max–Planck-Straße 1, 40237 Düsseldorf, Germany
b Institute for Applied Materials (IAM), Karlsruhe Intitute of Technology (KIT), Kaiserstraße 12, 76131 Karlsruhe, Germany
c AG der Dillinger Hüttenwerke, Werkstraße 1, 66763 Dillingen/Saar, Germany
d Department of Materials Engineering, KU Leuven, Kasteelpark Arenberg 44, 3001 Leuven, Belgium
e Department of Computer Science, KU Leuven, Celestijnenlaan 200A, 3001 Leuven, Belgium

A R T I C L E I N F O

Keywords:
Nanoindentation
Micropillar compression
Inverse modeling
Crystal plasticity
Bcc metals

A B S T R A C T

The application of an inverse method for determining the parameters of a crystal plasticity constitutive law
of a body-centered-cubic (BCC) single phase material is presented. Nanoindentation is used as the primary
experimental input. An objective function, based on the deviation between the experimentally measured
imprint and the simulated one, is minimized by a differential evolution algorithm to obtain the best fitting
crystal plasticity parameters. To aid the identification procedure additional experimental data is used: the
upper bounds and the ratios of the critical resolved shear stresses of the three slip plane families in BCC are
estimated from micropillar compression experiments and used as a constraint in the optimization. The effect
of the imposed constraints and the chosen strategy for mapping experimental to simulated displacements is
presented and discussed. The validation of the method is done in the macroscopic regime by comparing an
experimental tensile test with a simulated one using the obtained crystal plasticity parameters. Accurate results
are achieved from two different indents. Therefore, the method is a promising path for determining crystal
plasticity parameters in the case where a direct fitting from a macroscopic stress–strain curve is not possible,
i.e. in the case of multi-phase materials.
1. Introduction

Crystal plasticity (CP) modeling is an established approach for
predicting the mechanical response of metals and alloys [1,2]. A critical
point when employing a CP model is the identification of its con-
stitutive parameters. The large amount of parameters and the strong
non-linear coupling between them renders this a tedious task. With-
out correct parameters, CP models cannot be used for predicting and
understanding the mechanical behavior of metallic materials.

Parameters for a CP constitutive model describe the single crystal
behavior, but still can be obtained from polycrystalline macroscopic
stress–strain curves coming from either unidirectional tension or com-
pression tests [3–6]. Herrera-Solaz et al. [6] determined the single
crystal properties of a magnesium alloy from experimental stress–strain
curves along different directions. The calculated set of CP parameters
was able to accurately predict the stress–strain behavior of the polycrys-
tal. Sedighiani et al. [7] were able to identify reliable parameters that
were sensitive to strain-rate and temperature through a series of tensile
test experiments. In all the above studies, the polycrystal behavior
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was obtained by means of a CP simulation of a representative volume
element (RVE) of the microstructure. This RVE is usually obtained from
sufficiently large and detailed electron backscatter diffraction (EBSD)
scans. The measured 2D orientation maps are used to construct either
2D or 3D RVEs that are aiming to capture the relevant properties of the
microstructure. One of the most important properties in CP modeling
is texture, hence reproducing the experimental orientation distribution
function (ODF) into the RVE is a necessary step to correctly match the
simulated and the real mechanical behavior [8]. Other statistical quan-
tities like grain morphology, grain size, grain shape, grain orientation
spread, etc., may also be included [9,10]. After the RVE creation, the
parameters of a constitutive law are obtained by fitting a simulated
macroscopic stress–strain curve to the experimental one. The simulated
curve is based on the RVE as the microstructure and a constitutive law
with parameters to describe the mechanical behavior.

The information obtained from tensile tests might not be sufficient
to obtain a physically correct set of parameters. For face-centered-
cubic (FCC) metals, where slip occurs mainly along ⟨1 1 0⟩ directions
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on {1 1 1} planes, the identification is possible if the constitutive model
itself is not over-parameterized. In hexagonal-close-packed (HCP) met-
als, plastic deformation can be realized due to slip or twinning on
various slip and twin systems. Due to the hexagonal symmetry and the
vastly different critical resolved shear stresses (CRSS) for the different
deformation modes, different deformation systems are activated when
loading a textured material in different loading directions [11]. This
can be exploited to unambiguously identify CP parameters for HCP
materials. Body-centered-cubic (BCC) metals, in contrast, have many
potential slip systems with a similar CRSS. Commonly observed slip
systems in BCC comprise of ⟨ 1 1 1 ⟩ directions on {1 1 0}, {1 1 2}, and
{1 2 3} planes [12]. This is due to the non-close packed nature of the
BCC lattice together with the fact that its plasticity is governed by glide
of screw dislocations, which are not confined to a well-defined glide
plane [13]. Therefore, the unique parametrization of CP models for BCC
metals is more challenging than for FCC and HCP metals.

Alternative methods have been developed when macroscopic tensile
tests cannot be used to obtain CP parameters. This is for example
the case for multi-phase materials, where the problem regarding the
uniqueness of the solution considerably aggravates when using macro-
scopic quantities. When seeking to model each individual phase of the
material, many combinations of the stress–strain curves of the multiple
phases reproduce a given bulk stress–strain curve, i.e. the correct
solution cannot be obtained. In such cases, a more direct way for deter-
mining CP parameters are micro- or nano-mechanical tests of individual
grains. Bertin et al. [14] and Du et al. [15] used ferritic bi- and single
crystals, respectively, to obtain CP parameters from micro tensile tests.
They, however, did not show a comparison to a macroscopic tensile
test of a polycrystal made of the same material. Another mechanical
test at a micro- or nano-scale is pillar compression, which was used
by Ghassemi-Armaki et al. [16] to determine CP parameters. The mi-
cropillars contained a single block of martensite and were claimed to be
in the bulk regime (where results are expected to be size-independent).
However, extracting reliable material parameters with this method has
several shortcomings: material properties can be altered by the pillar
preparation in the focused ion beam microscope, a misalignment of
the set-up leads to a complex stress state and not considering the
impact of the friction and the elastic–plastic buckling on the force–
displacement data is another source of error [17]. Although the yield
stress can artifact-free be extracted under certain conditions, a direct
and meaningful interpretation of the strain hardening in micropillar
experiments is not possible [17].

Another class of tests for the determination of CP parameters that
allows to probe individual grains but does not require the labor in-
tensive fabrication of micro tensile samples or pillars is instrumented
nanoindentation. It consists on indenting a hard tip into the surface
of the material while measuring force and displacement. The two
main inverse analysis techniques that can be employed to extract
mechanical properties of materials from instrumented indentation ex-
perimental data are: the representative stress–strain method [18–20]
and the iterative finite element analysis. The iterative method has been
used extensively in the past for rather simple isotropic power laws
which describe the plastic behavior of metal materials with a small
amount of parameters to be fitted [21–25]. Zambaldi et al. [26] were
the first to combine nanoindentation, EBSD orientation mapping, and
atomic force microscopy (AFM) topographic measurements to derive
single phase constitutive parameters of HCP alpha titanium for a CP
model. They used both the surface imprint and the load–displacement
for the optimization procedure. Tasan et al. [27] applied the same
inverse technique as Zambaldi et al. [26] for BCC ferrite in a dual
phase material, while the martensite parameters were obtained through
fitting to macroscopic stress–strain curves. Chakraborty and Eisenlohr
[28] demonstrated the reliability of the inverse indentation analysis
using single crystal nanoindentation for an FCC metal with a similar
2

procedure using both the surface imprint and the load–displacement
curve. Shahmardani et al. [29] identified the parameters of a non-
local CP model for a BCC material using the inverse modeling with
nanoindentation. However, in Zambaldi et al. [26], Tasan et al. [27],
Chakraborty and Eisenlohr [28], Shahmardani et al. [29], validation
of the results was not done on a macroscopic level. Engels et al.
[30] applied an inverse method using nanoindentation for tempered
lath martensite. The validation of the identified parameters was done
by comparing numerical and experimental stress–strain curves of a
macroscopic tensile test. For one of the alloys, the results depended
strongly on the indent used for the optimization. Whether the source
of error comes from the difficulty of describing the lath martensite
microstructure, lath martensite plasticity, or the inverse method itself
remained unclear.

Here, the application of an inverse method for determining the CP
parameters of a ferritic material is presented. The main experimental
input is nanoindentation, as described above. A differential evolution
method is employed to minimize an objective function based on the dif-
ference between the experimentally observed imprint and the simulated
one to provide the best fitting CP parameters. As a novelty, the use of
additional data from micropillar compression experiments to assist the
parameters identification is implemented. In a macroscopic domain, the
CP parameters are validated by contrasting an experimental tensile test
with a simulated one. The goal of the paper is to show the validity of
this method to obtain CP parameters for a BCC material and to discuss
which aspects play a dominant role in order to get accurate results.

This study is structured as follows: In Section 2, the experimental
aspects are described. The CP modeling framework is described in
Section 3. The details of the optimization method are explained in
Section 4. In Section 5, results are shown. Discussion about key aspects
is presented in Section 6 and finally, a summary and outlook are given.

2. Material and methods

The material used is described in Section 2.1. In what follows, the
experimental methods required for the inverse method are outlined.
The micropillar compressions (see Section 2.2) were done at room
temperature to obtain the CRSS for each slip plane family, which will
be used directly as constraints for the parameters optimization (see
Section 4.1). The nanoindentation experiments (see Section 2.3) are
done in order to analyze the post-mortem imprint with atomic force
microscopy (see Section 2.6). This imprint will be compared to a simu-
lated one to evaluate the objective function (see Section 4.4). Lastly, in
order to characterize the macroscopic behavior of the material, EBSD
scans (see Section 2.3) and tensile tests (see Section 2.5) are carried
out. EBSD scans are done to characterize the microstructure of the
material and build the RVE (see Section 3.2). The tensile tests provide
the macroscopic mechanical behavior of the material, which will be
part of the macroscopic validation presented in Section 5.

2.1. Material

A high-strength low-alloy steel with a chemical composition of Fe-
0.05C-0.32Si-1.45Mn (wt%) was heat-treated first for 72 h at 1150◦C
and then at 750◦C for another 5 h to produce large polygonal ferrite
grains without substructure.

2.2. Micropillar compression

Micro compression tests at room temperature were carried out
using a Zeiss Auriga dual-beam scanning electron microscope (SEM)
on OPS polished specimens. Pillars with a top diameter of 5 μm and
a targeted aspect ratio of 2 were milled with a 30 keV Ga+ beam in
three steps: the first outer ring was cut with 2 nA, 600 pA were used
for the middle ring, and a last polishing step was done with 240 pA.
The tapper angle was kept below 2° for every pillar. All micropillars
were tested in situ inside a Zeiss Gemini500 SEM equipped with a
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Fig. 1. Top row shows scanning electron microscopy images of three representative tested micropillars of the {1 1 0}→(red), {1 1 2}→(green) and {1 2 3}→(blue) slip plane families.
Bottom row shows slip planes with the four highest Schmid factors. (For interpretation of the references to color in this figure legend, the reader is referred to the web version
of this article.)
Fig. 2. Cumulative probability of the CRSS for each slip plane family. The average value and the 90% and 95% confidence bands are shown.
Bruker Hysitron PI88 system. The average value of the top and bottom
pillar diameter as well as the pillar height was used to calculate the
engineering stress and strain values. Finally, the CRSS of each pillar
was calculated by multiplying the stress at an engineering strain of
2% and the Schmid factor 𝑚 of the activated slip system. For each
pillar, given the measured crystallographic orientation, the CRSS was
calculated for all 48 considered slip systems. Subsequently, a prediction
is made of the slip planes with the highest Schmid factors. SEM is used
to obtain images of the micropillars and carry out a correlative post
mortem analysis to determine the activated slip plane similar to Tian
et al. [31]. This correlative analysis is shown in Fig. 1 where the slip
plane families {1 1 0}, {1 1 2}, and {1 2 3} are colored in red, green, and
blue respectively. In Figs. 1(a)–1(c), SEM images are shown where the
activated slip plane is overlaid in the image. In Figs. 1(d)–1(f), the four
slip planes with the highest Schmid factors are displayed.

A total number of 15 micropillars were tested. The orientation of the
pillars was chosen based on the predicted slip plane activated in order
to have 5 pillars per slip plane family. The results are shown in Fig. 2,
where a cumulative distribution is used to calculate an average value
3

and its standard deviation for the CRSS for each slip plane family. The
average values are 97MPa, 88MPa, and 83MPa for the {1 1 0}, {1 1 2},
and {1 2 3} slip plane families respectively. For all three values, the
standard error of the mean was determined as ±6MPa.

The orientations of the 15 micropillars are plotted in Fig. 3 into an
inverse pole figure (IPF) with respect to the micropillar compression
axis. Each point is colored according to the experimentally identified
activated slip plane family. The background of the IPF is colored by
the predicted slip plane family based on the Schmid factor. All the
pillars followed Schmid’s law. The activation of all slip plane families
and the satisfaction of Schmid’s law is in agreement with literature.
Tian et al. [31] demonstrated that ferritic pillars in a dual phase steel
showed the activation of all three possible slip plane families all owning
a ⟨ 1 1 1 ⟩ Burgers vector at comparable CRSS. They also showed that
the majority of pillars followed Schmid’s law and non-Schmid effects
do not play a significant role in slip activation at room temperature.
This is expected since non-Schmid effects in Fe are negligible at room
temperature [32,33].
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Fig. 3. Inverse pole figure triangle normal to the micropillar compression axis showing
where the {1 1 0},{1 1 2}, or {1 2 3} slip plane families have the highest Schmid factor.
The tested micropillar orientations are plotted with the color according to experimen-
tally identified activated slip plane family. (For interpretation of the references to color
in this figure legend, the reader is referred to the web version of this article.)

2.3. Nanoindentation

Nanoindentation tests on a grid were performed using a Hysitron
TriboIndenter 950. The diamond indenter had a sphero-conical shape
with a nominal cone angle of 90° and a tip radius of 1 μm. The tip area
function was calibrated against fused silica. All experiments were con-
ducted in load-controlled conditions with a maximum force of 2.5mN
and a loading–holding–unloading time of 10 s–5 s–10 s. The indentations
were arranged in a regular grid with a spacing of 20 μm. A total of 2700
indentations were distributed in sections parallel to ND, TD, and RD.
EBSD scans were done after the indentation to correlate each indent to
a crystallographic orientation. Hardness and reduced Young’s modulus
were evaluated according to the Oliver–Pharr method [34].

As an example, the output data from a single indentation is shown
in Fig. 4. Before point A, the indenter approaches the surface, which
can be seen in the displacement in Fig. 4(c) before t = 0. Since no
contact is yet established, the load is 0 in Figs. 4(a) and 4(b). From the
contact point A on-wards, the sample is loaded and elastic and plastic
deformation of the sample occurs. At point B, the holding phase starts.
It is worth mentioning that some plasticity is still occurring during this
phase with constant load, since some displacement is present from B
to C. At point C, the unloading phase starts until point D, where the
indenter and the sample are no longer in contact.

2.4. Electron backscatter diffraction

First, the heat-treated samples were ground with SiC-paper up to
2000 grit. Afterwards, they were polished with a suspension made of
30 nm aluminum particles. Finally, the EBSD measurement was done
in a Zeiss Auriga dual-beam scanning electron microscope equipped
with an EDAX system. A scan area of 400 μm × 400 μm was measured
perpendicular to all three surfaces (TD × ND, RD × ND, and RD × TD)
with an acceleration voltage of 20 kV and a step size of 0.40 μm. The
data acquisition was done with the TSL OIM 8 software package. A
small amount of austenite (≈0.3%) was measured in the sample but
neglected during the analysis.

2.5. Tensile test

The macroscopic behavior of the material was assessed by carrying
out tensile tests. For this, electrical discharge machining was used
for cutting the tensile test samples into a rectangular shaped cross
section of 8mm × 3mm (TD × ND) and a gauge length of 30mm (RD).
4

A ZwickRoell Z100 universal testing machine was used to perform all
tensile tests in RD at room temperature and at a strain rate of 10−3 s−1.
Since all three tests gave similar results with the biggest deviation
being 8MPa for a given strain, a single data-set of the macroscopic
experimental tensile tests is used for comparison with the simulation
results.

2.6. Atomic force microscopy

Selected indents were characterized topographically with a Dimen-
sion 3100 instrument. The measurements of the height at the surface of
the material were carried out in tapping mode with a tetrahedral silicon
tip of 1 μm. Three zones are clearly distinguishable; the sink-in, the
pile-up, and the zone not affected by the indent. Different patterns in
the pile-up area are formed depending on the orientation of the crystal
being indented. The data acquisition and subsequent calculations were
done with the software Gwyddion [35]. An example of how the data
was processed is shown in Fig. 5. The resolution of the images that were
taken was 512 px × 512 px with a physical size of 5 μm × 5 μm. Thus each
pixel represents a square of dimensions 9.8 nm × 9.8 nm.

From Fig. 5(a) it is visible that the height is not homogeneous
outside the region affected by the indentation. The left side is colored in
red tones (negative height) compared to the right side with blue tones
(positive height). This indicates that the surface is tilted with respect
to the AFM measurement direction. Therefore, it is also tilted with
respect to the indentation performed, assuming that the indentation
and the AFM measurement are vertically aligned. The tilted surface
is approximated by a first degree polynomial in 2D, i.e. a plane (see
Fig. 5(b)) based on the non-affected area. This tilt of the surface is
later on introduced into the simulation modeling. The subtraction of
this plane from the original raw image outputs the result in Fig. 5(c).
For the comparison with simulation required in later stages, two pieces
of information need to be obtained from the AFM image in Fig. 5(c):
the center of the indentation, that is, the first contact point between
the indenter and the surface, and the absolute height. The pixel with
the lowest height after surface correction is assumed to be the center.
The maximum depth is taken from the load–displacement curve and
assigned to the indentation center (see Fig. 5(a)).

3. Modeling framework

DAMASK [36] is used as the crystal plasticity modeling framework.
A phenomenological power law implemented therein is used as the
constitutive law for the simulations. This CP model is an adoption
of the phenomenological description of Hutchinson [37] (for details
see [1]). Assuming that dislocation slip is the only deformation process,
the plastic velocity gradient, 𝐋𝑝, reads

𝐋𝑝 =
𝑁
∑

𝛼=1
�̇�𝛼𝐦𝛼 ⊗ 𝐧𝛼 (1)

where vectors 𝐦𝛼 and 𝐧𝛼 are, respectively, unit vectors describing the
slip direction and the normal to the slip plane of the slip system 𝛼 and
𝑁 is the number of (active) slip systems; �̇�𝛼 is the shear rate on that
same system. The kinetic law on a slip system follows
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with �̇�0 as reference shear rate, 𝜏𝛼 = 𝐒 ⋅ (𝐦𝛼⊗𝐧𝛼), and 𝑛 the stress expo-
nent. The microstructure is parameterized in terms of a slip resistance
𝜉𝛼 on the twelve ⟨ 1 1 1⟩{1 1 0} slip systems, the twelve ⟨ 1 1 1⟩{1 1 2}
slip systems, and the twentyfour ⟨ 1 1 1⟩{1 2 3} slip systems, indexed by
𝛼 = 1,… , 48. These resistances evolve asymptotically from 𝜉0 towards
𝜉∞ with shear 𝛾𝛼 according to the relationship
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where ℎ0, 𝑎 and 𝜉∞ are hardening parameters and 𝑞𝛼𝛼′ are the compo-
nents of the slip–slip interaction matrix, which describes the interaction
between the different slip systems.
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Fig. 4. Output data from a single indentation. Points A, B, and C correspond to the beginning of the load, hold, and unload phase, respectively. Point D is the end of the unload
phase.
Fig. 5. The raw AFM image is shown in (a). The background plane is shown in (b). The results of subtracting (b) from (a) is shown in (c) and referred to as ‘corrected’ image.
(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
3.1. Microscopic modeling – nanoindentation

In order to simulate nanoindentation experiments, DAMASK is cou-
pled to MSC.Marc (commercial finite element software) by using the
material subroutine hypela2 to simulate the material behavior. Three
different bodies are used as shown in Fig. 6(a): the sample made of
the modeled material as a pillar in yellow, the indenter, and a sample
holder. The two last bodies that are colored in blue correspond to
geometric bodies (also referred as rigid bodies) and were modeled using
non-uniform rational basis splines (NURBS). Note that the height of the
cylindrical part of the indenter is irrelevant since this part is not in
contact with the sample at any time during the simulation. The body in
yellow is a meshed body (usually referred as a deformable body), which
consists of finite elements. The sample holder is fixed and glued to the
bottom of the sample, which suppresses all relative motions between
bodies through boundary conditions applied to all the displacement and
rotational degrees of freedom of the nodes in contact. The tilt described
in Section 2.6 is incorporated into the model which is shown in Fig. 6
and referred to as the angle 𝜗.

The sample is meshed using the STABIX toolbox by Mercier et al.
[38]. Three different, coarse base meshes consisting of hexahedral
elements (see Fig. 7) are first created. Only one quarter of each mesh is
displayed, as the other 3 parts are symmetrically equal. The difference
between the meshes, apart from the number of elements, is the aspect
ratio of the elements. Mesh A (Fig. 7(a)) is made of very distorted
elements. In the top part on the surface, distorted elements with their
longest dimension in the XY-plane plane can be seen. In the bottom
part, distorted elements with longest direction in Z direction can be
seen. Mesh B (Fig. 7(b)) is made of less distorted elements. Mesh C
(Fig. 7(c)) is made of the least distorted elements. All the meshes are
denser close to the center to resolve the high deformation where the
contact happens and the pile-ups used for the parameter identification
occur.
5

Finer meshes with more elements are created through a direct
refinement of these three meshes. The number of elements, the re-
finements used, and the maximum and minimum edge lengths are
listed in Table 1. The mesh refinements are realized by dividing the
element dimension in each direction by 2, 3, or 4, hence dividing each
hexahedron into 8, 27, or 64 identical smaller hexahedra respectively.

For modeling friction, the force-based Coulomb friction model is
used. It reads:

𝐟𝑡 = −𝜇𝑓𝑛 ⋅ 𝐭 (4)

where 𝐟𝑡 is the tangential (friction) force, 𝑓𝑛 is the normal force, 𝜇 is
the friction coefficient and 𝐭 is the tangential vector in the direction of
the relative velocity. Since the discontinuity at 𝑓𝑛 = 0 may easily cause
numerical difficulties, a bi-linear model is used to approximate the step
function.

An iterative penetration checking procedure is used for the deter-
mination of when contact occurs and the calculation of the normal
vector. A full Newton–Raphson algorithm is used for the iterative
procedures. Regarding the matrix solver for the calculation of the
stiffness matrix, a symmetric solution is assumed for faster execution. A
mixed direct iterative procedure is used as a symmetric matrix solver.
The Multifrontal Sparse Solver is used to obtain a solution in the initial
iteration of an increment while simultaneously generating the Cholesky
pre-conditioner. The convergence criterion was based on minimizing
both the relative residual forces and the relative displacements with
an individual tolerance of 0.01 each. For more details about how
MSC.Marc deals with contact and friction, see the manual [39].

3.2. Macroscopic modeling – tensile test

For the validation of the CP parameters at the macroscopic level,
a simulated tensile test will be compared to an experimental one. The
simulated polycrystal behavior is obtained by means of a CP simulation
of a RVE of the microstructure. A spectral method using Fast Fourier
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Fig. 6. The FEM nanoindentation modeling set-up is displayed in (a). Geometric bodies are colored in blue while the meshed body is colored in yellow. The rotation of the plane
(sample holder) is better illustrated in (b) by the angles 𝜗 and 𝜑. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of
this article.)
Fig. 7. Different base meshes used in this investigation. Only one quarter is shown.
Table 1
Meshes obtained from the refinement of the base meshes A, B, and C.

Base mesh A B C

Refinement 1 2 3 4 1 2 3 4 1 2 3 4
Number of elements 424 3392 11 448 27 136 1280 10 240 34 560 81 920 2016 16 128 54 432 129 024
Minimum edge length/nm 198 99 66 50 143 72 48 36 132 66 44 33
Maximum edge length/nm 2296 1148 765 574 1171 585 390 293 783 392 261 196
Transforms (FFT) is used for iteratively solving the stress equilibrium
problem [40,41]. Accordingly, a periodic RVE of the microstructure is
build. To this end, EBSD scans were done perpendicular to the three
planes TD × ND, RD × ND, and RD × D. The grain size was measured
using the linear intercept method. The results for the scans on the three
surfaces (TD × ND, RD × ND, and RD × TD) were: 9.1 μm, 7.2 μm, and
13.5 μm for horizontal lines and 7.4 μm, 6.0 μm, and 11.0 μm for vertical
lines, respectively. Based on these calculations, and the fact that there
was no preferential orientation for the major axis of the grains, equi-
axed grains were assumed for building the RVE. This feature as well
as the grain size distribution were reproduced into the RVE by means
of DREAM.3D [42]. The ODF from experimental results was calculated
using MTEX [43] (Fig. 8(a)) using the combined data of all EBSD scans
(RD, TD, and ND). A random sampling method was used for matching
the texture of the RVE to the experimental one (Fig. 8(b)). Selecting
a set of discrete orientations for accurate texture reconstruction was
also done with the method proposed by Eisenlohr and Roters [44].
No significant changes were observed compared to a random sampling
approach which was sufficient. This is due to the number of grains in
the RVE being very high (2 644) and the texture being not very strong
(the texture index is 1.2). Fig. 8(c) displays the difference between
the experimental and the calculated pole figures for the RVE, showing
minimum discrepancy.
6

4. Inverse modeling method for a CP model of a BCC material

The aim of an inverse modeling is to adjust the model parameters to
reproduce a given result or target. Here, the output from the nanoinden-
tation experiments, more specifically the imprint after the indentation,
is used as a reference and the constitutive parameters of the CP model
introduced in Section 3 are adjusted.

In order to have a reliable set of target data representative for the
bulk material, only results from indents that are unaffected by grain
boundaries are used. While it is trivial to measure the distance between
grain boundaries and indents in the measurement plane, subsurface
grain boundaries are more difficult to detect. To circumvent labor-
intensive post-mortem serial sectioning to measure the distance to
subsurface grain boundaries, here the indents are selected based on the
quality of the results. More precisely, the imprints and hardness values
of different indents into similarly oriented grains are compared and
those indents that show a significantly different behavior are discarded.

Once the experimental input is selected, nanoindentation into grains
of the same orientation is simulated. The difference in the height profile
between the simulated and the experimental imprint on each of the 𝑁
nodes is taken as the objective function 𝜆:

𝜆 = 1
𝑁active
∑

|

|

|

𝑢sim
𝑛 − 𝑢exp

𝑛
|

|

|

,n being nodes with 𝑢exp
𝑛 > 0 (5)
𝑁active 𝑛=1
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Fig. 8. Pole figures computed from the ODF of the experimental results (a) and the constructed RVE (b). The difference between pole figures is displayed in (c). (For interpretation
of the references to color in this figure legend, the reader is referred to the web version of this article.)
where 𝑢sim
𝑛 is the displacement at the location of node 𝑛 and 𝑢exp

𝑛 the
(interpolated) experimental displacement at the same spatial location.

As seen from Eq. (5) only the pile-up, i.e. points with positive
displacement, are taken into account and the actual indent is not
compared. Disregarding the indent, whose topography directly depends
on the shape of the indenter, ensures that the objective function is
sensitive to the crystallographic orientation, which determines the pile-
up topography. Through the optimization algorithm, CP parameters are
being modified accordingly for every iteration.

First, the selection of the CP parameters is discussed in detail
in Section 4.1 where also the assumptions made for each parameter
are described. A study on the influence of element type and size on
the simulated height profile is then given in Section 4.2. Third, the
optimization algorithm is explained in depth in Section 4.3. Lastly,
some technical details on how to evaluate the objective function are
discussed in Section 4.4.

4.1. Selection of parameters

The CP model presented in Section 3 contains 38 parameters, of
which alone 28 are required to populate the interaction matrix 𝑞𝛼𝛼′
(cf [45]). Since it is not feasible to optimize in such a large parameter
space, optimization needs to be limited to the parameters that have a
high influence and whose values cannot be estimated. To this end, the
known values are used for the following parameters:

• The initial hardening rate (ℎ0) is taken from Tasan et al. [27]
where a fitting for the ferritic phase of the material using the
same constitutive law was performed. This parameter accounts
for the initial hardening when the plastic deformation begins,
information which is extremely difficult to get from the imprint.
Additionally, the effect on the final macroscopic stress–strain
curve can be achieved with the other parameters that are fitted.

• The stress exponent 𝑛 determines the rate sensitivity. It cannot be
determined from experiments at a fixed deformation rate and is
therefore taken from Tasan et al. [27] and kept constant.

• The reference shear rate �̇�0 is directly approximated from the
nanoindentation load–displacement curves. The meaning of this
parameter becomes apparent looking at Eq. (2): At the yield point,
where 𝜏𝛼 = 𝜉𝛼 , the material is shearing with rate �̇�0 independently
of the strain rate sensitivity. For this parameter, only the order of
magnitude is relevant since the strain rate differs from slip system
to slip system. Besides, due to the value of the stress exponent,
stresses only change to a small amount for large changes in strain
rate. Therefore, the slope of the displacement–time curve at the
yield point (determined as the end of the linear elastic regime) is
taken as the value for �̇� .
7
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Table 2
Material parameters, based on Tasan et al. [27]. Parameters where a
range is given are the ones to be fitted.

Property Symbol Value Unit

Elastic constant 𝐶11 233.3 GPa
Elastic constant 𝐶12 135.5 GPa
Elastic constant 𝐶44 118.0 GPa

𝜉0{1 1 0} (0, 97] MPa
Initial resistance 𝜉0{1 1 2} (0, 88] MPa

𝜉0{1 2 3} (0, 83] MPa
𝜉∞{1 1 0} (97, 800] MPa

Saturation resistance 𝜉∞{1 1 2} (88, 726] MPa
𝜉∞{1 2 3} (83, 685] MPa

Initial hardening rate ℎ0 1.0 GPa
Reference shear rate �̇�0 4.0 10−2∕s
Stress exponent 𝑛 20.0
Strain hardening exponent 𝑎 (2, 20]

• The components of the slip–slip interaction matrix (𝑞𝛼𝛼′ ) are
assumed to be 1.4 for non-coplanar and 1.0 for coplanar inter-
actions [46].

The initial resistance of the slip plane families can be linked with the
CRSS values measured experimentally for the micropillars. However,
a direct use of these values is not possible, since the predicted yield
point would be much higher than the experimental one due to size
effects in micropillar compression experiments. Instead, these values
are used as an upper bound limit. The lower bound is set to 0.0MPa.
Additionally, the experimentally obtained ratio between them, 𝜏crit{1 1 0} ∶
𝜏crit{1 1 2} ∶ 𝜏crit{1 2 3} ≡ 1 ∶ 0.91 ∶ 0.86, is imposed as a constraint (𝜉0{1 1 0} ∶
𝜉0{1 1 2} ∶ 𝜉0{3 2 1} ≡ 1 ∶ 0.91 ∶ 0.86).

The saturation value of the CRSS cannot be determined from the
micropillar compression experiments. Still, the ratios obtained for the
initial CRSS are used to constrain these values as well (𝜉∞{1 1 0} ∶ 𝜉∞{1 1 2} ∶
𝜉∞{3 2 1} ≡ 1 ∶ 0.91 ∶ 0.86). These constrains are motivated from the
fact that the three plane families have similar packing density which
results in similar Peierls stresses. Furthermore, the strain hardening
mechanisms are similar for the 3 slip plane families. The lower bounds
of these parameters are set according to the initial yield point as
determined by the micropillar compression experiments. The upper
bound is set to almost double of the maximum nominal stress in the
stress–strain curve of the tensile test.

A summary of the material parameters, including elastic constants
(𝐶 , 𝐶 , and 𝐶 ), is shown in Table 2.
11 12 44
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Fig. 9. Fitting from macroscopic tensile test.

Table 3
Parameters determined from fitting the macroscopic behavior.

Property Symbol Value Unit

𝜉0{1 1 0} 76 MPa
Initial resistance 𝜉0{2 1 1} 68 MPa

𝜉0{3 1 1} 65 MPa

𝜉∞{1 1 0} 277 MPa
Saturation resistance 𝜉∞{2 1 1} 248 MPa

𝜉∞{3 1 1} 237 MPa

Strain hardening exponent 𝑎 2.0

4.2. Selection of the mesh and the element type

The influence of the finite element mesh on the predicted force–
displacement curve and pile-up topography is investigated. The goal
is to determine the convergence limit, i.e. the mesh with the smallest
number of elements that gives sufficiently accurate results. Since the
study requires the use of reasonable material parameters, an initial
guess of the material parameters is carried out. A direct fit using the
macroscopic tensile test up to the ultimate yield stress (see Fig. 9) is
done. The RVE (described in Section 3.2) is used for simulating the
tensile test, and the parameters presented in Section 4.1 are manually
adjusted until the resulting stress–strain curve matches the experimen-
tal one. The results of this identification are shown in Table 3. The error
of the simulation stress–strain curve is measured by the area between
the simulation and experimental curves (𝛥).

The influence of the mesh resolution is studied for one crystallo-
raphic orientation (with Euler angles being 𝜙1 = 255.8°, 𝛷 = 75.9°, 𝜙2 =

275.8° with the coordinate system as defined in Fig. 6). The different
meshes presented in Table 1 are used for this analysis. The boundary
conditions impose the experimental displacement shown in Fig. 4(c).
Only the loading part (A to B) is analyzed here, while the holding and
unloading part are not considered. Three different element types were
considered for the study: a linear element with reduced integration, a
linear element with full integration, a quadratic element with reduced
integration. A quadratic formulation with full integration was also
tested but discarded due to poor convergence. Simulations were run for
combinations of all the meshes and element types, except for the two
meshes with 81 920 and 129 024 elements, which were run only for
the linear element with reduced integration due to the long computa-
tion time when using the other element types. The load–displacement
curves are displayed in Fig. 10. Some curves are not shown with the
purpose of a better visualization. The continuous line corresponds to
the mesh with the highest number of elements and is considered the
most accurate result. The line made of square markers corresponds to
the mesh with the minimum number of elements that still resulted in
8

a converged stress–strain curve. For a converged result, a threshold of
≈ 0.012 μN is established for the mean absolute error with respect to the
most accurate solution. When using the linear element with reduced
integration (see Fig. 10(a)), a mesh of 81 920 elements has to be used
to reach convergence. In contrast, for the linear element with full
integration (see Fig. 10(b)), a mesh of 10 240 elements suffices to reach
convergence and for the quadratic element with reduced integration
(see Fig. 10(c)), a mesh of only 2 016 elements can be used to reach
convergence.

A mesh sensitivity analysis was also done regarding the topography.
The maximum height of the pile-up is chosen as an indicator for this
analysis and is plotted in Fig. 11. Fig. 11(a) shows the results for
different meshes and element types. For the linear element with re-
duced integration, the maximum height is underestimated when using
a small number of elements. As the number of element is increased,
the maximum height increases. However, it is not clear whether mesh
convergence has been reached even for the finest mesh with 129 024
elements. The results shown in Fig. 11(d) indicate that the mesh type
does not play an important role for linear elements with reduced inte-
gration, and the general trend is maintained regardless of the base mesh
used. For the linear element with full integration, the maximum height
is overestimated when using a small number of elements. For this case,
base mesh A with 424 and 3 392 elements shows big deviation from the
reference result (see Fig. 11(b)). The quadratic element with reduced
integration showed stability and quick convergence, in agreement with
the sensitivity analysis of the stress–strain curve (see Fig. 11(c)).

The time for the simulations is displayed in Fig. 12. A horizontal
black dashed line is plotted to indicate a threshold line for 24 h. Above
this mark, simulations are considered too time demanding for use in the
optimization procedure. It can be seen that the run times of the linear
element with full integration and the quadratic element with reduced
integration are similar. This is explained by the fact that both elements
have the same number of integration points (8) and thus constitutive
evaluations, which are the main contributors to the run time. For the
linear element with reduced integration (single integration point), the
time is significantly lower compared to the other two element types.

For selecting a combination of mesh and element type, it must
perform adequately in terms of convergence of the load–displacement
curve (Fig. 10), convergence of the topography (Fig. 11), and in time
efficiency (Fig. 12). Taking this into account, the mesh with 2 016
quadratic elements with reduced integration was selected. This com-
bination of mesh and element type shows convergence of the load–
displacement curve and the topography at a run time of only four
hours.

The selected combination of mesh and type of element was also
tested for a second orientation (with Euler angles being 𝜙1 = 145.1°, 𝛷 =
51.0°, 𝜙2 = 223.8°). It was directly compared against the high resolution
mesh with 54 432 elements. Both criteria – load–displacement and
topography – exhibited better convergence (not shown) than for the
other orientation. In Fig. 13, the results for the selected mesh and
element type and a higher resolution mesh with the same element type
is shown for both orientations. It becomes apparent that the pile-up
pattern is well captured in both cases using the coarse mesh.

4.3. Optimization algorithm

The minimization problem consists of finding the global minimum
of a multivariate, non-linear, and continuous function. Often, gradient-
based methods like the Nelder–Mead method are being used for inverse
modeling. The biggest limitation of these methods is their strong depen-
dency on the starting point [47]. A global minimum will be found only
if a suitable initial guess is used. Otherwise, the algorithm converges
to a local minimum. In the case of material parameters, a good initial
guess is not always possible, and therefore gradient-based methods
are not ideal. In order to find the global minimum, other types of
algorithms such as the differential algorithm developed by Storn and
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Fig. 10. Load displacement curves for different element types (a, b, c) and meshes with different numbers of elements.

Fig. 11. Maximum height of the pile-up pattern for different meshes and element types.

Fig. 12. Wall time of the simulations for different meshes and element types.

Fig. 13. Results for the selected coarse mesh (left) and a high resolution mesh (right) for the two orientations used for the convergence study. (For interpretation of the references
to color in this figure legend, the reader is referred to the web version of this article.)



Materials Science & Engineering A 881 (2023) 145373F.-J. Gallardo-Basile et al.

t

𝛯

i
s
F
v

𝜃

w

f
o
O
u

F
v
e
m
i
m
i

Price [48] are better suited. In contrast to gradient-based approaches,
these methods use stochastic processes which makes it possible to scan
large areas of the parameter space. As a drawback, they require more
function evaluations than conventional gradient-based techniques. The
algorithm is based on iteratively improving a candidate solution based
on an evolutionary process. Since this method offers many possibilities
to vary it (selection of initial population, strategy for mutation, etc.),
the discussion in the following is limited to the differential evolution
(DE) approach used here.

The algorithm is first initiated with a population of 𝑁 candidate
solutions, each of which is described by a vector of length 𝐿 corre-
sponding to the number of parameters to be optimized. The selection of
this population is made through ‘latin–hypercube’ sampling originally
formulated by Tang [49]. It is a statistical technique for obtaining a
near-random sample of parameter values from a multidimensional dis-
tribution. This population evolves during each generation, represented
by 𝐺 = 0, 1,… , 𝐺f inal, until a final one is reached. Thus, candidate 𝑖 of
he 𝑁 candidate solutions of generation 𝐺 is represented by
𝐺
𝑖 =

[

𝜚𝐺1,𝑖, 𝜚
𝐺
2,𝑖,… , 𝜚𝐺𝐿,𝑖

]

(6)

In the DE algorithm, this vector is called target. A donor vector 𝜃
s calculated from a mutation of the current target vector. There are
everal strategies for the mutation. Here, the ‘best1bin’ strategy is used.
or each generation, the best solution is denoted by 𝛯𝐺

best . The donor
ector is then obtained by

𝐺
𝑖 = 𝛯𝐺

best + 𝐹
⏟⏟⏟
∈[0,2]

(

𝛯𝐺
𝑟𝑖1
− 𝛯𝐺

𝑟𝑖2

)

=
[

𝜃𝐺1,𝑖, 𝜃
𝐺
2,𝑖,… , 𝜃𝐺𝐿,𝑖

]

(7)

where 𝑟𝑖1 and 𝑟𝑖2 are different target vectors randomly chosen and 𝐹
is the mutation factor (also called differential weight) with a value
between 0 and 2. In this case, random dithering is employed, and 𝐹
changes for every generation. The parameters in the donor vector (𝜃𝐺1,𝑖)
must satisfy the bounds. Otherwise, the donor vector is recalculated.
A crossover operation is applied after mutation to obtain a trial vector
𝛤𝐺
𝑖 . This is done by the exchange of variables between target and donor

with a binomial distribution based on a random number 𝑅 ∈ (0, 1]
that is generated. It is then compared to the recombination constant,
also known as the crossover probability or the crossover constant and
denoted as 𝑅threshold (in our case, 𝑅threshold = 0.7) for selecting the lth
parameter from either the target vector or the donor vector. The last
parameter is always chosen from the donor vector.

𝛤𝐺
𝑖 =

[

𝛾𝐺1,𝑖, 𝛾
𝐺
2,𝑖,… , 𝛾𝐺𝐿−1,𝑖, 𝜃

𝐺
𝐿,𝑖

]

, with 𝛾𝐺𝑙,𝑖 ∶=

{

𝜚𝐺𝑙,𝑖 if 𝑅 ⩾ 𝑅threshold

𝜃𝐺𝑙,𝑖 else.

(8)

The trial vector is then evaluated. If it is a better solution than the
target vector, it substitutes it for the next generation. If not, the target
vector is kept as part of the population for the next generation.

The numerical algorithm used is the one implemented in the SciPy
Python library [50].

4.4. Evaluation of the objective function

To compare the experimental and simulated results, two techni-
cal details must be tackled: the alignment of the experimental and
simulated imprints and the interpolation strategy to calculate the ex-
perimental and simulated displacements at the same positions.

Regarding the alignment, firstly, the center position of both, exper-
imental and simulated images, is lined up. The experimental center
is assumed to coincide with the pixel with the lowest height (see
Section 2.6). The simulation center is taken as the central node, which
coincides with the first node in contact (even after the sample is tilted).
This is indicated by a black cross in Fig. 15. The remaining rotational
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degree of freedom is fixed by aligning the maximum height obtained
from the simulation (Fig. 13) with the experimental maximum height.
This results in the alignment of the experimental and simulation pile-up
patterns. Since the CRSS ratio of the slip plane families is kept constant
(it is the same as for the mesh sensitivity analysis in Section 4.2 and for
the optimization in Section 5.1), it is expected that the axial positions
of the pile-up maxima remain unchanged.

Secondly, an interpolation strategy must be chosen for the cal-
culation of the objective function (𝜆 in Eq. (5)). The experimental
topography exists on a regular 512 × 512 pixel grid and displacements
are measured at the center of each pixel denoted by 𝑖. The simulation
outputs the topography on an irregular mesh and displacements are
calculated at the nodes denoted by 𝑛. Here, the experimental data (𝑢exp

𝑖 )
is mapped to the irregular mesh of 𝑛 nodes of the simulation using
Gaussian interpolation. Since all nodes are equally weighted in Eq. (5),
the denser areas of the irregular mesh – closer to the center – are given
more importance than those with lower nodal density. The calculation
of the experimental interpolated value on the node 𝑛 reads:

𝑢exp
𝑛 =

=1
⏞⏞⏞
∑

𝑖
𝑤𝑖

∑

𝑖
𝑢exp
𝑖 = 𝐶 ⋅

∑

𝑖
𝑢exp
𝑖 𝑒

( −𝑠⋅𝑟𝑖
R

)

, 𝑖 being nodes with 𝑟𝑖 ⩽ 𝑅

(9)

here 𝑟𝑖 is the distance from the experimental point to the node 𝑛, 𝑠 is
the sharpness, which controls the rate of decay of the Gaussian and R is
the maximum distance from node 𝑛 for which experimental points 𝑖 are
taken into account for interpolation. For the optimization procedure
in Section 5.1, R = 15 nm is used. An in-depth analysis of this selection
is carried out in Section 5.3 where also other radii are used to calculate
the experimental interpolated topography. The interpolation methods,
as implemented in VTK [51,52], are used via PyVista [53].

5. Results

First, the details of the optimization procedure for determining the
CP parameters are given in Section 5.1. The outcome without the con-
straints from the micropillar experiments is presented in Section 5.2.
Third, an analysis of the interpolation strategy is detailed in Section 5.3.
Finally, the effect of the friction and the tilt angle is discussed in
Sections 5.4 and 5.5, respectively.

5.1. CP parameters from optimization procedure

Two indents with different orientations are considered for this
study. Indent I and indent II correspond to the orientations of Euler
angles 𝜙1 = 255.8°, 𝛷 = 75.9°, 𝜙2 = 275.8° and 𝜙1 = 145.1°, 𝛷 =
51.0°, 𝜙2 = 223.8°, respectively. The two orientations are the same ones
or which the mesh sensitivity analysis was done in Section 4.2. The
ptimization algorithm is carried out independently for each of them.
nly the loading and holding part (A-C) is considered whereas the
nloading part (C-D) is ignored (c.f. Fig. 4).

A single population (N = 10) is evaluated once in every iteration.
itting the seven parameters requires to optimize three independent
ariables (L = 3) after imposing the constraints from the micropillar
xperiments. The value 𝜆 of the objective function, Eq. (5), is deter-
ined in total 420 times (42 generations) per indent and its evolution

s shown in Fig. 14. The objective function of indent I reaches its
inimum value of 𝜆 = 11.1 nm at 𝐺 = 31 (see Fig. 14(a)). As shown

n Fig. 14(b), a minimum value of 𝜆 = 10.4 nm is reached at 𝐺 = 35
for indent II. The best solution at each generation (𝛯𝐺

best) is marked
and labeled with their CP parameters. For each set of CP parameters,
a simulated tensile test of the RVE presented in Section 3.2 is done to
simulate the macroscopic bulk behavior and the difference between the
stress–strain curve obtained with the given set of CP parameters and

experimental macroscopic tensile test is measured by the area between
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Fig. 14. Evolution of the objective function (𝜆) across the generations in the optimization procedure.
Fig. 15. Comparison of the raw experimental (left), interpolated experimental (center), and simulated (right) imprints for indent I (top row) and indent II (bottom row). (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
them (𝛥). For both indents a decrease in 𝛥 is observed for a decrease
of 𝜆.

The optimized CP parameters determined from each indent and
from the direct fitting in Section 4.2 are used to simulate the macro-
scopic bulk behavior. To this end, the RVE presented in Section 3.2
is used. For each set of CP parameters, a simulated tensile test of the
11
RVE is done and the difference between the stress–strain curve obtained
with the given set of CP parameters and experimental macroscopic
tensile test is measured by the area between them (𝛥).

Once the optimized CP parameters are determined, a simulation
that includes the unloading part (C-D) is performed for each indent to
enable an extended comparison with the experiments. The results are
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Fig. 16. Comparison of the load–displacement curves coming from the simulation with optimized CP parameters and the experiments.
Fig. 17. Simulated bulk behavior using the CP parameters determined from the direct fitting and the fits from the indents.
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isplayed in Fig. 15, for which the top row corresponds to indent I and
he bottom row to indent II. The raw experimental topography (left) is
isplayed in the original rectilinear grid from the AFM measurements.
he interpolated experimental topography (center) and the simulated
ne (right) are displayed in the corresponding mesh used for the simu-
ation. The color orange indicates heights below 0 nm and therefore are

not part of the pile-up zone considered here. The gray color corresponds
to zones where the interpolation cannot not be performed and it is la-
beled as ‘not a number’. For indent I, the raw experimental topography
(see Fig. 15(a)) exhibits an almost 4 fold symmetry which is broken
since the 4 maxima are not identical and have very different values.
Starting from the biggest pile-up on the right-top corner and going
clock-wise, the heights are 85.4 nm, 35.1 nm, 51.0 nm, and 32.1 nm. For
he interpolated topography (see Fig. 15(b)), the heights are 77.7 nm,
4.9 nm, 49.7 nm, and 29.8 nm. In the simulated imprint (see Fig. 15(c)),
he topography is closer to a strict 4-fold symmetry with the heights
f the maxima being 45.5 nm, 39.4 nm, 42.6 nm, and 41.1 nm. For indent
I, the raw experimental topography (see Fig. 15(d)) exhibits 6 maxima
nd appears to have a 6-fold axis of rotational symmetry if considering
nly the positions of these maxima. Starting from the biggest pile-up
n the bottom left and going clock-wise, the heights of the maxima
or the experimental imprint are 66.7 nm, 20.6 nm, 21.1 nm, 26.2 nm,
8.5 nm, and 26.3 nm. For the interpolated topography (see Fig. 15(e)),
he heights are 52.9 nm, 17.8 nm, 19.2 nm, 23.3 nm, 22.4 nm, and 24.6 nm.
he symmetry becomes more apparent for the simulated imprint (see
ig. 15(f)) where the heights are 20.3 nm, 15.7 nm, 17.2 nm, 19.0 nm,
6.6 nm, and 17.7 nm.

In Fig. 16, the load–displacement curves are displayed for indents I
nd II, respectively. The boundary conditions for the simulation impose
12

t

he experimentally measured displacement although the experimental
anoindentation was load-controlled. This is the cause of the sudden
rop in load for the holding part (B-C). It is important to note that these
urves are not used for the optimization procedure. In both cases, the
imulated nanoindentation predicts a softer material in the microscopic
egime since the final displacement is achieved with about half of the
xperimental load. This is discussed later on in Section 6.2.

The optimized CP parameters determined from each indent and
rom the direct fitting in Section 4.2 are used to simulate the macro-
copic bulk behavior. The results are shown in Fig. 17. The experi-
ental yield point of 170MPa is overestimated by the fit from indent I
179MPa) while it is significantly underestimated by the fit from indent
I (130MPa) compared to the direct fitting (168MPa). The experimental
tress at the final deformation of 438MPa is underestimated by the fit
rom indents I and II (410MPa and 423MPa, respectively) compared to
he direct fitting (435MPa). The 𝛥 parameter is found to be greater for
he fits from indent I (5.75MPa) and indent II (2.98MPa) compared to
he direct fitting (0.93MPa)

.2. Effect of the constraints from the micropillar experiments

In Section 5.1, constraints from the micropillar compression experi-
ents – the upper bounds and the ratios of the three slip plane families
are used. Here, the optimization procedure is carried out without

hese constraints. In this case, the initial and saturation resistances
re bounded from 0 MPa to 800 MPa. Additionally 𝜉0𝑖 < 𝜉∞𝑖 for
he three slip plane families 𝑖 = 1, 3 is imposed. The evolution of

he objective function (𝜆) across the generations with and without
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Fig. 18. Evolution of the objective function (𝜆) across the generations with and without the constraints from the micropillar compression experiments.
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constraints from the micropillar experiments is shown in Fig. 18. It can
be seen that the objective function has higher values at the beginning
of the optimization procedure compared to the situation with the
micropillar constraints. However, the optimization procedure without
the micropillar constraints is already outperforming the other one at
𝐺 = 5 (with 𝜆 = 10.9 nm) for indent I and at 𝐺 = 14 (with 𝜆 = 10.1 nm).
At the end, the objective function optimized without the micropillar
constraints reaches the values of 𝜆 = 10.2 nm and 𝜆 = 9.9 nm for indents
I and II, respectively. The value of 𝛥, a measure for the difference
between the experimental and simulated stress–strain curve, is also
displayed in Fig. 18 for each set of CP parameters. Interestingly, in
contrast to what was seen in Section 5.1, the minimization of 𝜆 is not
correlated with a better prediction of the macroscopic bulk behavior.
This is clearly illustrated for indent II, where 𝛥 rises as the minimization
takes place: 29MPa, 26MPa, 31MPa, 60MPa, and 113MPa.

The macroscopic behavior predicted by the set of the CP parameters
determined with and without using the constraints from micropillar
compression are shown in Fig. 19. The fits from both indents without
the constraints do not represent the experimental bulk mechanical
behavior with yield points around 500MPa which is almost 2.7 times
higher then the experimental one. The fit from indent I predicts a stress
of approximately 600MPa at the final deformation compared to the
experimental one of 438MPa, while the fit of indent II predicts a stress
of almost 1000MPa.

5.3. Effect of the interpolation strategy

The effect of the interpolation strategy on the results in Section 5.1
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is analyzed. To this end, the radius R used in the Gaussian interpolation f
is changed to obtain different experimental interpolated values 𝑢𝑒𝑥𝑝𝑛 (see
Eq. (9)). The objective function (𝜆 in Eq. (5)) is then re-evaluated for
the already existing completed simulations in Section 5.1 (420 for each
indent). The best solution (𝛯𝐺

best) is plotted for different radii against
the 𝛥 parameter for indent I in Fig. 20. The range where 𝛯𝐺

best is stable
is highlighted in green and corresponds to a radius of 7 nm to 60 nm.
Outside that zone, the obtained CP parameters cannot be used for
representing the macroscopic bulk behavior of the material since there
is a large deviation of more than 15% on the stress–strain curve. For
indent II (not shown) the stable solution is in the range of 9 nm to 38 nm.

.4. Effect of friction

Simulations using the obtained CP parameters (Section 5.1) with
ifferent friction coefficients are run to analyze the effect of the fric-
ion on the simulation results. It is important to note that the load–
isplacement curves as well as the sink-in part of the topography
re analyzed even though they were disregarded in the optimization
rocedure in Section 5.1 (c.f. Eq. (5)).

The load–displacement curves for different friction coefficients are
hown in Fig. 21. The figures for indent I (Fig. 21(a)) and II (Fig. 21(b))
re displayed with a zoom-in on the last part of the curve where the
argest deviations appeared. For lower friction, less load is needed to
chieve the same displacement. The maximum load for indent I is
510 μN, 1490 μN, 1460 μN, and 1420 μN for values 0.3, 0.18, 0.1, and
.01 of the friction coefficient. Above 𝜇 = 0.3, saturation happens, and
esults for 𝜇 = 0.4, and 𝜇 = 0.5 are almost identical. The maximum load
eached for indent II is 1500 μN, 1480 μN, 1460 μN, 1410 μN, and 1360 μN

riction coefficients of 0.5, 0.3, 0.18, 0.1, and 0.01.
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Fig. 19. Simulated bulk behavior using the CP parameters determined from the direct fitting and the fits from the indents with and without the constraints from the micropillar
compression experiments.
Fig. 20. CP parameters determined from indent I by using different radii in the interpolation strategy to calculate the experimental interpolated topography. (For interpretation
of the references to color in this figure legend, the reader is referred to the web version of this article.)
Fig. 21. Effect of the friction coefficient on the load–displacement curve.
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The effect of friction on the topography is displayed in Fig. 22
here the maximum sink-in depth (Fig. 22(a)) and the maximum pile-
p height (Fig. 22(b)) are displayed for different friction coefficients.
he maximum sink-in depth (Hmin) is measured at the end of the
imulation and it is normalized by the experimental maximum depth
Hexp
min), which is 260 nm for indent I and 240 nm for indent II. For low

riction, Hmin is greater than the experimental one and it decreases
n absolute value towards the experimental value till approximately
= 0.3 where saturation happens. The largest maximum height of

he pile-up (H ) is also measured at the end of the simulation and
14

max 𝜃
it is normalized by the experimental maximum height (Hexp
max), which is

85 nm for indent I and 67 nm for indent II. The maximum value of Hmax
s obtained for the lowest 𝜇 and then decreases when increasing the
riction coefficient.

.5. Effect of the surface tilt

To analyze the effect surface misalignment on the simulation results,
imulations using the determined CP parameters are run for tilt angles
in the range 0° to 5°. To limit the parameter space, the alignment of
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Fig. 22. Effect of the friction coefficient on the topography output of the simulations.
Fig. 23. Effect of the tilt (𝜗) on the topography output and on the wall time of the simulations.
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the tilt axis is fixed, i.e. 𝜑 in Fig. 6(b) remains at the experimentally
obtained value. As for the study on the influence of friction (Sec-
tion 5.4), the load–displacement curves as well as the sink-in part of
the topography are included in the analysis.

The load–displacement curves (not shown) are not significantly
affected by the tilt for both indents. A maximum deviation of 30MPa is
observed approximately at the maximum indentation depth.

The analysis of the topography is done as in Section 5.4 but without
the unloading part (C-D) because some simulations did not converge in
the unloading regime. The results are shown in Fig. 23. The maximum
sink-in depth (Fig. 23(a)) does not change significantly — the variation
of the ratio Hmin/Hexp

min is within a range of 0.03 and 0.01 for indents I
and II, respectively. The maximum pile-up height (Fig. 23(b)) is almost
constant for indent II for all values of the tilt angle. In contrast, for
indent I, the ratio is higher (0.57) for the non-tilted sample compared
to the tilted ones (0.53). The wall time of the simulations is displayed
in Fig. 23(c). The simulations using non-tilted samples require less time
than those with tilted surface. The maximum times are obtained for the
maximum tilt for both indents. The simulation for indent II and a tilt
of 5° was not able to be completed due to convergence issues.

6. Discussion

The presented method for determination of CP parameters by in-
verse modeling is discussed with respect to the choices and simplifi-
cations made for modeling and experiments. The influence of several
investigated effects on the accuracy and robustness is then explained,
followed by comments on general aspects regarding the nano to macro
scale transition. Finally, the application of the method to multi-phase
materials is outlined.
15
6.1. Choices and simplifications made

Neglecting the unloading part. During the optimization in Section 5.1,
the unloading part of the load–displacement curve (C-D) was neglected
due to severe convergence issues. Convergence is difficult to reach
whenever the indenter and the sample lose contact. During the un-
loading part, this can happen several times at different positions which
creates a large source of numerical instability. For the optimized pa-
rameters, a complete simulation was done including the unloading part,
but a stricter convergence criterion was imposed at the cost of a longer
simulation time. For indent I, the maximum height of the pile-up, not
taking into account the unloading part is 44.7 nm for both values of
the convergence criterion. For the complete simulation with the stricter
convergence criterion, a maximum height of 45.5 nm was obtained. For
ndent II, the maximum height of the pile-up, not taking into account
he unloading part, is 20.1 nm for both values of the convergence
riterion. For the complete simulation with the stricter convergence cri-
erion, a maximum height of 20.3 nm was obtained. From these results,
he conclusion that both convergence criteria output similar results
an be drawn. Also, when taking into account the unloading part, the
aximum height in the pile-up area was increased by 1.8% and 1.1%

or orientation I and II, respectively. Looking at the comparison of pile-
p patterns given in Section 5.1, this small difference is not expected
o have a huge impact on the overall result.

onstraints from the micropillar compression experiments. Running the
arameter identification without the constraints obtained the micropil-
ar compression experiments results in lower values for the objective
unction 𝜆 in comparison to the proposed approach of using these
onstraints (Section 5.2). However, in this case the minimization of
does not go together with the determination of CP parameters that
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accurately represent the macroscopic behavior. The determined CP
parameters without constrains predict bulk behavior that is signifi-
cantly harder than the experimental reference. From this results, the
conclusion that the micropillar experiments are necessary – and not
just helpful in reducing the independent variables to be determined –
to get reliable and usable CP parameters for the macroscopic regime
can be drawn.

Interpolation strategy. The calculation of the loss function requires
n approach for interpolation of the experimentally measured dis-
lacement values to the nodal positions of the simulation mesh (𝑢𝑒𝑥𝑝𝑛

in Eq. (9)). For the results presented in Section 5.1, Gaussian inter-
polation with cutoff radius R = 15 nm was used for this purpose. In
ection 5.3 the consequences of using different radii for the inter-
olation strategy are presented. The results show that low and high
alues for R result in different minima for the objective function 𝜆 and,
ccordingly, correspond to different sets of CP parameters. However,
here exists a wide range for the radius of the interpolation (7 nm to
0 nm for indent I and 9 nm to 38 nm for indent II) where the minimum
s the same and the obtained parameters predict the macroscopic bulk
ehavior in good agreement with the experiment. Outside this ranges,
he obtained CP parameters do not correctly reproduce the macroscopic
ulk behavior of the material. For small radii, the interpolation is very
ensible to artifacts in the AFM data such as dirt on the sample. For
arge radii, it is hypothesized that the sink-in part alters the topography
f the pile-up pattern in two different ways: First, the total number of
𝑒𝑥𝑝
𝑛 with a height greater than 0, 𝑁active, changes — 𝑁active = 610 for R
15 nm whereas 𝑁 = 594 for R = 100 nm for indent I and 𝑁active = 581

for R = 15 nm whereas 𝑁active = 576 for R = 100 nm for indent II. Second,
he topography itself is changed. An example of this is the difference
n the maximum pile-up height. For indent I, 77.53 nm is obtained for

= 15 nm whereas 75.41 nm is obtained for R = 100 nm. For indent II,
2.91 nm is obtained for R = 15 nm whereas 51.29 nm is obtained for R
100 nm. This alterations are explained by the fact that, although the

aussian interpolation puts more weight on the points closer to the
ode being interpolated, the maximum depths — 260 nm and 240 nm —
re changing the interpolated pile-up area significantly since they were
arger than the maximum heights — 85 nm and 67 nm for indents I and

II, respectively.

Friction. It is assumed that the friction between the indenter and the
sample can be modeled using Coulombs friction law with 𝜇 = 0.18. Most
of the models in literature also assume this, when friction between a
diamond tip and steel is considered, with 𝜇 ranging from 0 in some
frictionless models [29,54] up to 0.3 in others [55]. However, in that
range, 0 , to 0.3 , the topography changed significantly in this study (see
Fig. 22). Consequently, the use of a different value of 𝜇 will lead to a
different result of the optimization. The method is therefore dependent
on having a reliably parameterized friction model.

Surface tilt. The incorporation of the experimentally measured tilt into
the nanoindentation modeling does not have a relevant impact neither
for 𝜗 = 0.56° (indent I) and nor for 𝜗 = 0.65° (indent II). However,
it significantly deteriorates the convergence and entails an increase in
the simulation time (see Section 5.5). For properly set up indentation
experiments (𝜗 < 5°) the tilt may be neglected in the simulation.

Indenter tip. It is possible to measure the tip shape to include that as
part of the modeling, but this was not done here. The indenter was used
for the first time after purchase for this experiment, and so the tip was
assumed to have the exact shape as described by the manufacturer.

The size and the tip of the indenter was selected based on two
criteria: On the one hand, a small tip is needed since a possible
application of this method are steels made of complex microstructures
with small features, i.e. martensitic laths or bainitic sheaves. The ability
to hit single orientations in such application cases is proportional to the
indenter dimensions. On the other hand, an effort is done to minimize
the indentation size effects that describe the increase in hardness with
16
decreasing size of the indent. For that reason, a smaller indenter could
not be used since indentation size effects would not be negligible. In
addition, a spherical tip was chosen, as more shallow indents are known
to exhibit a more significant indentation size effect [56]. Furthermore,
the spherical shape offered other advantages which are explained in
what follows [24]. Several studies show the importance of using dif-
ferent indenter shapes to increase the accuracy and remove ambiguity
that is likely to result from comparison between experiment and model
for a single shape in the determination of parameters obtained from
inverse modeling [57–59]. Dean and Clyne [59] showed that, provided
the indenter shape is not self-similar, making multiple comparisons
on different sections of the same load–displacement plot is similar in
effect to the use of multiple indenter shapes. For an indenter with
a spherical shape, the stress and strain fields change qualitatively as
penetration progresses. Hence, the information being obtained over
different depth ranges is analogous to carrying out separate tests with
different indenter shapes (reducing the likelihood of different stress–
strain curves giving very similar load–displacement plots) [60]. Also,
a sphere is much less prone to becoming damaged than other shapes
having edges or sharp apex since the sharp tips will wear faster,
leading to changes in the tip geometry and resulting tip area function.
Spherical-shaped indenters are also easier to specify and manufacture.
Finally, using a spherical indenter reduces the risk of encountering
computational problems that arise when simulating regions of high
local curvature (edges or corners) [60].

Objective function. It is well established that different materials can
lead to the same indentation curves [61–64]. Uniqueness of the me-
chanical properties extracted only from loading/unloading curves is
therefore not possible to achieve. For that reason, Bolzon et al. [65]
were the first to propose to include the residual imprint after indenta-
tion in addition to the load–displacement curve. There exists, however,
some arbitrariness when using both, the load–displacement curve and
the imprint for the optimization. In that case the objective function
would read:

𝜆 = 𝑤1 ⋅ 𝜆topo +𝑤2 ⋅ 𝜆load–displacement (10)

However, the selection of an appropriate weight for each part of the
objective function is rather arbitrary. Therefore, for the method pre-
sented here, only the imprint was used with the additional constraints
based on the results from micropillar compression.

6.2. From nano to macro material behavior

Despite many years of experience, it is still a challenge to correlate
results of nanoindentation experiments to bulk material behavior. The
triaxial mechanical stress state during indentation is different from the
one encountered in a uniaxial test. Moreover, nano-mechanical testing
involves only a small volume. This can cause a scatter in the results
when the microstructure is heterogeneous, depending on whether pre-
existing dislocations are present in the test volume or not [56]. Another
common feature to all indentation processes is the so called gradient
effect, which consists in the development of sharp strain gradients near
the indenter tip [66]. These two mechanisms can be seen as part of
the more general indentation size effect that describes the increase in
hardness with decreasing size of the indent.

The use of a simple phenomenological CP model is therefore only
possible if indentation size effects are not significant. From the results
in Fig. 16, it becomes clear that the correct load–displacement curve
was not captured. The CP model used predicts a much too soft material
behavior on the nano scale. When fitting the parameters to this nano
scale behavior (not shown), the bulk material is predicted more than
twice as hard as in reality. This effect is too big to be explained by
friction, tilt, misalignment, and/or other sources of error. The CP model
used could clearly not describe the load–displacement curve in nano
indentation. Still, the fitting of the pile-up area of the nano indent
(along with the additional constraints of the method) can be used
successfully to obtain a reasonable mechanical behavior on the macro
scale.
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6.3. Use of the method in multi-phase materials

The application of this method is a promising path for determining
CP parameters for multi-phase materials [67]. For this case, the fit from
a macroscopic stress–strain curve only is not possible, since calculating
a correct and unique set of CP parameters for each individual phase is
not possible. Regarding the creation of the RVE, the distinction between
different phases becomes fundamental in order to correctly model the
microstructure of the material [68,69].

7. Summary and outlook

An inverse method for determining CP parameters that are repre-
senting the bulk behavior of a single BCC phase material has been
presented. Its primary experimental input is obtained from nanoinden-
tation. The post-mortem imprint is measured by AFM and compared to
a simulated one. The simulations are done using the commercial FEM
package MSC.Marc and the CP toolkit DAMASK. The objective function
is minimized by a differential evolution algorithm to determine the
best fitting CP parameters. As a novelty it is proposed here to simplify
the optimization procedure using constraints derived from experiments.
The CRSS of the 3 different slip plane families in BCC materials is
derived from micropillar compression tests. A direct use of the CRSS
values is not possible due to size effects, but they define an upper bound
and their ratio is imposed as an additional constraint. The validation of
the results in the macroscopic regime is done by comparing a simulated
tensile test with an experimental one. The results from two different
indents are shown to be reasonably accurate. For getting even better re-
sults, the authors propose to combine several indents when evaluating
the objective function. Moreover the different indents should be from
different orientations. The reason is, that, given a certain orientation,
one slip plane family can dominate the deformation, i.e. contribute
most shear. If this is the case, the parameters corresponding to the
others slip plane families cannot be uniquely determined. However, as
a fixed CRSS ratio is used in this work, the effect is less pronounced
here.

A differential evolution algorithm is used for the optimization. This
allows the search of a global minimum, and therefore, there is no
need to provide an initial guess close to the solution. For that case,
the often used Nelder–Mead method would have been less suited as
it frequently gets stuck in local minima. A potential improvement is
proposed by first using the differential evolution algorithm to globally
search for a solution, which can then be used as the starting point for
the Nelder–Mead algorithm to reach an even better solution.

The importance of a mesh sensitivity analysis for this type of inverse
analysis is also demonstrated. Four element types are tested: linear
and quadratic hexahedra, each one with reduced- and full-integration
schemes. Among these, quadratic elements with reduced integration
show the best balance between accuracy, time efficiency, and conver-
gence. As expected, meshes using less distorted elements show better
convergence behavior.

The CP parameters identified from optimization without imposing
the constraints obtained from the micropillar compression experiment
predict a macroscopic material response that is harder than experimen-
tally observed. Therefore, the constraints from micropillar experiments
are not just an optional input to reduce the number of independent
variables, but are essential for determining suitable CP parameters.

The importance of using a suitable interpolation strategy to com-
pare experimental and simulated data is also demonstrated. Using a
Gaussian interpolation approach is shown to give good results when
the radius parameter is within a given range. It fails for small radii —
which is expected from the fact that the AFM image is not artifact-free
— and for large radii — since the interpolation results suffer from the
averaging over large areas.

The effect of friction and tilt is discussed. It is shown that a correct
modeling of the friction is needed in order to accurately determine the
17
CP parameters. A force-based Coulomb friction model with 𝜇 = 0.18 is
assumed for this study. The tilt of the experimental surface does not
have a big impact on the results when taking it into consideration for
the simulation modeling.

This method is a promising path for determining CP parameters in
cases where a direct fitting from a macroscopic stress–strain curve is not
possible. Even though a unique parameter set was not achieved using
a single indent, the macro behavior was reproduced well when using a
suitable interpolation method. When combining multiple indents in one
objective function as suggested above, there is an expectation of getting
at least close to an usable parameter set. In the case of multi-phase
materials, this approach allows to determine sets of CP parameters for
the individual phases as needed for full field CP simulations.
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