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Preface

This is a cumulative dissertation on neural quantum state methods for simulating quantum many-body
systems. It is based on work done during my doctoral studies between December 2018 and January
2023 at the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) and the University
of Hamburg under the supervision of Michael Sentef, Ángel Rubio, and Nina Rohringer. During my
studies, I have been part of the International Max Planck Research School for Ultrafast Imaging and
Structural Dynamics (IMPRS-UFAST).

Part of the work has been done during my stay as a Summer Research Associate at Flatiron Institute, a
division of The Simons Foundation, in New York City from June to August 2019 under the supervision
of Giuseppe Carleo.

The publications included in this thesis are listed in Chapter 1.
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Abstract

Computational methods for the efficient simulation of quantum many-body systems are crucial for the
study of condensed matter physics.

In this thesis, we investigate numerical properties of neural quantum states (NQS), a machine-learning-
inspired variational ansatz based on using an artificial neural network to represent the quantum wave
function. This representation can be used to stochastically estimate quantum expectation values, and
the NQS ansatz can be trained to approximate ground states as well as real-time dynamics of quantum
systems by classical optimization algorithms.

First, we investigate the stability of NQS time propagation with the time-dependent variational Monte
Carlo method. Using the antiferromagnetic Heisenberg ladder as a benchmark system, we find that
stochastic noise inherent to Monte Carlo sampling can be amplified by the variational equation of
motion which can cause numerical instabilities. We propose an error diagnostic that can be used to
quantify this effect and demonstrate the influence of regularization methods for the equation of motion
on the stability of the dynamics. Subsequently, we discuss the importance of symmetries for improving
NQS ground state calculations and propose a symmetry-projection scheme for the honeycomb Kitaev
model. Furthermore, we present results of a systematic study of the capabilities of NQS based on
feed-forward neural networks to represent highly entangled ground states in the Sachdev-Ye-Kitaev
model. In this case, we find that this NQS ansatz does not learn a more efficient representation compared
to the exponential scaling of the exact quantum states. This observation highlights the importance of
further study to determine which properties decide whether a quantum state is amenable to an efficient
approximation by neural quantum states. Finally, we present NetKet, an open-source project and
software framework for numerical calculations in quantummany-body systems based on the NQS ansatz
and variational Monte Carlo.

Altogether, our work highlights important challenges for the NQS approach and presents ways to help
overcome those challenges and develop NQS into a reliable part of the toolbox for simulating quantum
many-body physics.
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Zusammenfassung

Rechenmethoden zur effizienten Simulation von Quantenvielteilchensystemen sind von essentieller
Bedeutung für die Erforschung der Physik kondensierter Materie.

In dieser Arbeit werden numerische Eigenschaften von Neural-Quantum-States (NQS) untersucht,
einem von Machine-Learning-Methoden inspirierten Variationsansatz, der auf der Darstellung der
quantenmechanischen Wellenfunktion durch ein künstliches neuronales Netz basiert. Diese Darstellung
kann verwendet werden, um mittels stochastischer Methoden quantenmechanische Erwartungswerte
abzuschätzen. Der NQS-Ansatz kann mit klassischen Optimierungsverfahren trainiert werden, um
Grundzustände sowie die Realzeitentwicklung von Quantensystemen zu approximieren.

Zunächst untersuchen wir die Stabilität von NQS-Zeitentwicklung unter Verwendung der zeitabhän-
gigen Variational-Monte-Carlo-Methode. Wir zeigen mithilfe der antiferromagnetischen Heisenberg-
Leiter als Benchmarksystem, dass stochastisches Rauschen, welches als natürliche Konsequenz des
Monte-Carlo-Verfahrens auftritt, durch die variationelle Bewegungsgleichung verstärkt werden und
dadurch numerische Instabilitäten verursachen kann. Wir stellen ein Diagnoseverfahren vor, um diesen
Effekt zu quantifizieren und betrachten den Einfluss von Regularisierungsmethoden für die Bewegungs-
gleichung auf die Stabilität der Zeitentwicklung. Anschließend diskutieren wir die Bedeutung von
Symmetrien für die Verbesserung von NQS-Grundzustandsrechnungen und schlagen ein Symmetrie-
Projektionsverfahren für das Honeycomb-Kitaev-Modell vor. Weiterhin zeigen wir Ergebnisse einer
systematischen Untersuchung der Fähigkeit von auf Feed-Forward-Neural-Networks basierenden NQS
zur Darstellung stark verschränkter Grundzustände im Sachdev-Ye-Kitaev-Modell. In diesem Fall zeigt
sich, dass dieser NQS-Ansatz im Vergleich zu den exponentiell skalierenden exakten Zuständen keine
effizientere Darstellung lernt. Diese Beobachtung unterstreicht die Notwendigkeit weiterer Forschung
im Hinblick auf die Frage, welche Eigenschaften eines Quantenzustands dafür entscheidend sind, ob
er effizient durch NQS approximiert werden kann. Schlussendlich wird NetKet vorgestellt, ein Open-
Source-Projekt und Software-Framework für numerische Rechnungen in Quantenvielteilchensystemen
mit Variational-Monte-Carlo und dem NQS-Ansatz.

Insgesamt zeigt diese Arbeit wichtige Herausforderungen für die Anwendung von NQS-Methoden auf
und stellt Wege vor, die dabei helfen können, diese zu überwinden und so NQS zu einem zuverlässigen
Werkzeug zur Simulation der Quantenvielteilchenphysik zu entwickeln.
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1 Overview of publications

This cumulative dissertation is based on the four publications listed below. Declarations of contributions
are provided on a separate cover page preceding each publication. Furthermore, this dissertation contains
a section (Section 5.2) based on results that have not yet been independently published.

Included publications

Publication [P1] (included in Chapter 4) concerns stability properties of neural quantum state (NQS)
time-propagation with the time-dependent variational Monte Carlo (t-VMC) method. Publication [P2]
(included in Chapter 6) discusses numerical experiments on learning volume-law entangled ground
states in the Sachdev-Ye-Kitaev (SYK) model using NQS. Finally, Publications [P3] and [P4] (included
in Chapter 7) describe two major versions of the NetKet framework, which provides models and
algorithms for NQS methods and to which I have contributed in the course of my studies. Note that the
publications and results are included in a non-chronological order chosen for clarity of presentation.
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NetKet: A machine learning toolkit for many-body quantum systems.
SoftwareX 10, 100311 (2019). DOI 10.1016/j.softx.2019.100311.
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1 Overview of publications
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Resonant laser excitation and time-domain imaging of chiral topological polariton edge states.
Physical Review Research 2, 033386 (2020). DOI 10.1103/PhysRevResearch.2.033386.
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Preprint (2022), accepted in Physical Review Letters. DOI 10.48550/arXiv.2209.02081.
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2 Introduction

The quantum physics of condensed matter systems is fundamental to modern material science and
technology. Quantum phenomena play a crucial role in the behavior of light-matter coupled systems
[1, 2], strongly correlated electron systems [3], the formation of superconductivity [4], topologically
protected states of matter [5], and quantum spin liquids [6, 7]. Understanding the physics of such
systems can contribute to technological progress, especially in areas such as quantum computing [8–10],
engineering of electronic and photonic devices [11], and materials design [12, 13].

The quantum many-body problem

Condensed matter systems are described by quantum many-body theory, the foundations of which have
been developed over the past century. While the axioms and equations governing quantum many-body
systems are well established, the emergent complexity of quantum many-body systems [14] still poses a
formidable challenge for solving real-world problems, be it through numerical simulation or analytical
means.

To model fundamental quantum effects, such as superposition and entanglement, the state of a quantum
system needs to be described by a quantum wave function, which is an object of exponential dimension-
ality in the size of the physical system. This scaling limits the exact classical simulation of arbitrary
quantum systems to only a few particles or lattices of tens of sites at most. The challenge presented by
the vast complexity of the quantum state space has been known and discussed since the early days of
quantum physics, as illustrated by the following widely-known quote by Dirac:

“The underlying physical laws necessary for the mathematical theory of a large part
of physics and the whole of chemistry are thus completely known, and the difficulty is
only that the exact application of these laws leads to equations much too complicated to
be soluble. It therefore becomes desirable that approximate practical methods of applying
quantum mechanics should be developed, which can lead to an explanation of the main
features of complex atomic systems without too much computation.”
– P. A. M. Dirac, Proc. Royal Soc. A 123 (1929) [15].

Simulating quantum systems in a scalable manner was also the primary motivation behind Richard
Feynman’s proposal to simulate quantum mechanics using quantum-mechanical systems, which sparked
research into quantum computing [16]. While practically useful universal quantum computers are yet to
be realized [8, 10, 17], quantum simulation using more specialized experimental setups is an integral part
of current physics research [18, 19]. Implementing and effectively utilizing such quantum simulators
still requires a solid understanding of the underlying physics and, thus, efficient simulation methods
realizable on classical computers.
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2 Introduction

Many approaches have been used over the past century to study the physics of quantum many-body
systems while avoiding the exponential barrier imposed by the dimensionality of the quantum state
space. Ideally, analytical expressions for quantities of interest can be derived, which can be evaluated
by hand or using comparatively modest computational resources. Examples of analytically solvable
systems include the quantum transverse-field Ising model in one dimension [20], the Bethe ansatz for
some interacting one-dimensional systems [21–23], or the Kitaev model on the honeycomb lattice, which
can be transformed into a system of free fermions under certain constraints [24]. However, such general
analytical results are scarce and often limited to equilibrium settings.

Many computational methods focus on reduced quantities [25] such as the single-particle density, which
is a fundamental object in density functional theory [26] and time-dependent density functional theory
[27, 28], or n-body correlators, which are central to nonequilibrium Green’s function theory [29, 30].
Approaches such as these make it possible to circumvent the complexity of the many-body quantum
state while still giving access to key physical properties of the systems under consideration. However,
some types of quantum systems, particularly strongly correlated systems out of equilibrium, still pose a
significant challenge for these techniques [3].

In the variational approach, the concept of the full quantum state is retained by parametrizing a subset of
the full Hilbert space, the variational manifold, using a computationally tractable number of parameters
[31, 32]. Whether the variational manifold contains the states required to describe the physics of a
specific system is a central question for the applicability of a particular variational method. For some
classes of variational states, there is a solid understanding of the types of systems that are well captured.
For instance, matrix-product states (MPS) can efficiently represent the weakly entangled ground states
of local, gapped Hamiltonians, particularly in one dimension [33–35], while Gaussian states can capture
the physics of non-interacting bosonic and fermionic Hamiltonians [36–38]. However, some physical
systems are currently beyond the capabilities of established variational techniques. Particular challenges
again arise in strongly correlated quantum systems [2]. Therefore, finding suitable classes of ansätze for
such systems is an important goal of current research.

Machine learning and neural quantum states

Over the past years, machine learning methods have started to play an increasingly important role in the
physical sciences [39–45]. This trend has been inspired by the success of such approaches, particularly
deep learning [46–48], in solving problems in a diverse set of fields such as image classification [49, 50],
natural language processing [51], protein folding [52], numerical linear algebra [53], and even playing
complex games [54–56]. In computational quantum physics, machine-learning-based methods have
been explored for a variety of purposes, including classifying phases and identifying phase transitions
[57–62], optimizing driving protocols [63] and quantum circuits [64], Hamiltonian learning [65–67],
and experiment design [68, 69].

Artificial neural networks are mathematical models with powerful approximation capabilities and
represent important building blocks of many machine learning algorithms. The method of neural
quantum state (NQS), introduced in a seminal paper by Carleo and Troyer [70] in 2017, is based on
the idea of using a neural network as a variational parametrization of a generic many-body quantum
state. This ansatz can be evaluated and optimized stochastically through variational Monte Carlo (VMC)
[71, 72]. NQS methods can be applied to learning ground and excited states as well as the dynamics of
quantum systems [42], and has been used for spin [70, 73–90], bosonic [91–95], and fermionic [96–100]
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models, often achieving ground state energies improving on or competitive with the state-of-the-art [73,
81, 86, 88, 100]. Theoretical results that demonstrate the capabilities of NQS to represent quantum states
of interest, such as random volume-law entangled states [101, 102] and chiral spin liquids [103–105],
have increased the interest in this ansatz due to its potential to fill an important gap in the landscape of
computational methods. A particular focus has been the investigation of frustrated spin systems [75, 81,
86, 88, 89] and nonequilibrium dynamics [76, 78, 79, 87, 106].

The availability of open-source software projects that make state-of-the-art methods available to re-
searchers and other interested parties with a low barrier of entry has been an important factor in the
evolution of machine learning methods over the past decade [107, 108]. This has also benefited the
application of machine learning methods in physics, and the NQS community itself has given rise to
several open-source frameworks [109, 110, P3, P4].

There are important open questions in NQS research. Since NQS algorithms are based on VMC, stochastic
noise can affect estimates and cause numerical instabilities; this has been encountered especially when
simulating real-time dynamics [78, 111–113, P1], though stochastic effects also play a role in ground state
optimization [94, 114, 115]. Another important frontier is the question of representability: Investigation
into the representation capabilities of specific network architectures has shown that NQS can efficiently
represent a wide variety of quantum states [101–105, 116–120]. However, it is yet to be understood
which specific features of a quantum state allow it to be efficiently learned by an NQS ansatz and how
this could be quantified [106, P2].

After providing a review of relevant background information on the variational approach, neural
quantum states, and variational Monte Carlo (Chapter 3), this thesis will address several aspects of these
questions and developments. Specifically, this is done by investigating the numerical stability of NQS
time propagation (Chapter 4), the utilization of symmetries to improve the accuracy of VMC calculations,
with a particular application to a quantum spin liquid system (Chapter 5), and the learnability of highly
entangled ground states in the Sachdev-Ye-Kitaev (SYK) model (Chapter 6). Furthermore, we will discuss
the development of the open-source framework NetKet for NQS simulations (Chapter 7). Finally,
Chapter 8 will conclude this thesis with a discussion and outlook.
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3 Variational and neural quantum states

This chapter reviews the fundamental concepts of variational quantum states, neural quantum states,
and their numerical treatment by variational Monte Carlo (VMC) methods, which form the basis of the
work presented in subsequent chapters of this thesis.

Recently, several reviews have been published that cover neural quantum state (NQS) and further
machine learning applications beyond the overview provided here. In particular, the reader is referred
to Ref. [42, Chapter 3] for a set of lecture notes containing additional details and examples of neural
quantum states as well as Refs. [41–44] for broader coverage of the many applications of machine
learning methods in the physical sciences.

3.1 Variational quantum states

Condensed matter systems can generally be simulated using quantum-mechanical lattice models. The
Hilbert space of such a model can be expressed as a tensor product H =

⊗
i∈Λ Hi of local Hilbert spaces

Hi over a lattice Λ. The lattice is a (finite or infinite) collection of sites, which can be represented by
positions in a d dimensional space, Λ ⊆ Rd, or an arbitrary set of vertices in a graph (allowing for
arbitrary labels of the lattice sites). The local Hilbert spaces have the form

Hi = span{|s〉 | s ∈ Li}, (3.1)

where Li is an arbitrary (and potentially infinite) set of size |Li| = dim Hi labeling the states of a
local orthonormal basis, 〈s|s′〉 = δs,s′ . A basis state of the full Hilbert space is then identified by a
configuration s ∈ S =

∏
i∈Λ Li.These configurations correspond to the tensor-product basis states

|s〉 =
⊗
i∈Λ

|si〉 ∈ H (3.2)

which, too, are orthonormal. In the simplest case, the local Hilbert space can have the form of a two-level
system (a qubit), where Hi

∼= C2.1 More generally, the local state space can be a di-level system (a
qudit) Hi

∼= Cdi or, in the case of a bosonic system, the countably infinite space of square-summable
sequences Hi

∼= `2(C).The labels of the basis are, in principle, arbitrary, e.g., a qubit system can be
described by basis states {|0〉, |1〉}, or as an equivalent spin-1/2 system with σ̂z basis states {| ± 1〉}.

1The actual quantum state space is Hi modulo the gauge equivalence |ψ〉 ≡ γ|ψ〉 for all |ψ〉 ∈ Hi, γ ∈ C, which is a
projective Hilbert space [121]. We will not explicitly make this distinction in the following and work with the plain vector
space Hi, keeping in mind the gauge equivalence where it is relevant. Note that we will not assume (variational) pure
states to be normalized, instead using the gauge-invariant definitions of expectation values and other observable quantities.
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3 Variational and neural quantum states

Figure 3.1 | Exponential scaling of memory requirements for storing a single quantum state in the full state
vector representation of a lattice system with spin-1/2 (blue) or two-orbital fermion (red) degrees of
freedom at each site. The memory requirements assume the state is stored as a vector of complex
double-precision floating point numbers, each taking up 128 bits.

In the remainder of this thesis, we will focus on finite Hilbert spaces where both |Λ| = N ∈ N>0 and
| dim Hi| are finite and the many-body Hilbert space is thus given by

H = span{|s〉 | s ∈ S = L1 × · · · × LN}. (3.3)

This definition encompasses all spin and qudit systems, fermionic systems, and bosonic systems with
bounded local occupation numbers. The Hilbert space dimension of a lattice system is the product of
its local dimensions, dim H =

∏
i∈Λ dim Hi. In a uniform system of local dimension d, the Hilbert

space dimension thus scales exponentially as dim H = dN . To illustrate this scaling, Fig. 3.1 shows the
memory required to store a single state vector |ψ〉 ∈ H naively as a vector of double-precision floats
(requiring 128 bits for every complex number) for qubit (d = 2) and spinful fermion (d = 4) local bases.
Memory size is not the only limiting factor. Algorithms based on exact state vector simulation need
to process the data contained in |ψ〉 to perform tasks such as calculating observables or evolving the
state. In the generic case, this requires examining all amplitudes of a given state at least once, giving an
exponential lower bound for the runtime complexity of these operations. Due to this scaling, only small
quantum systems (up to a limit of approximately 20-30 qubits depending on the specific system and task)
can be simulated using non-specialized hardware and exact algorithms based on the full quantum state.

The scaling of state vector simulations can be improved for specific tasks, particularly finding ground
states by exact diagonalization (ED), through exploiting symmetries, which can extend the regime of
systems accessible by ED methods up to about 50 sites [122]. Similar system sizes can theoretically
be simulated for general quantum states in specialized settings using a significant amount of high-
performance computing (HPC) resources. However, the associated cost makes such an undertaking
almost impossible in practice [123–125].

An arbitrary pure quantum state in the Hilbert space (3.3) is represented by a vector

|ψ〉 =
∑
s∈S

ψ(s)|s〉. (3.4)

Thus, knowing the mapping ψ : s 7→ ψ(s) = 〈s|ψ〉, the quantum wave function, fully specifies the state.
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3.1 Variational quantum states

The fundamental assumption underlying any variational approach is that for physical states of interest,
ψ(s) depends on s in a structured manner and, thus, can be represented using a significantly smaller
amount of information compared to independently memorizing all coefficients [126]. This is known to
be true, e.g., for ground states of gapped, local lattice models in one dimension, which can always be
expressed as an matrix-product state (MPS) of subexponential size, and this representation can often
be efficiently computed using the density matrix renormalization group (DMRG) algorithm [33–35,
127]. Ground states of more general physically motivated Hamiltonians are still significantly different
from random Hilbert space elements [128]. However, the specific structure of the relevant states is not
necessarily known.

Given the structured nature of physically relevant states, it makes sense to express the quantum state
through a parametrized function (an ansatz) (s,θ) 7→ ψθ(s) that depends on a set of variational
parameters2 θ ∈ X ⊆ KM . For our purposes, the parameters space can be a real or complex vector
space, i.e., the underlying field is K ∈ {R,C}. Since CM ' R2M are isomorphic as vector spaces, this
distinction is mainly for notational convenience. A generic variational state (or trial state) is given by

|ψθ〉 =
∑
s∈S

ψθ(s)|s〉. (3.5)

The set of states that can be expressed in a given parametrization is the variational manifold

M = {|ψθ〉 | θ ∈ X }. (3.6)

We refer to the function θ 7→ |ψθ〉 as the variational mapping. Under suitable mathematical assumptions,
in particular regarding the differentiability of the variational mapping, M does indeed carry the
mathematical structure of a submanifold of H [129].

In general, there are several properties that families of variational states need to possess to be useful for
computational purposes:

1. Compression. A variational ansatz needs to be able to parametrize a region of interest within
the full Hilbert space at a sufficiently small size to store and process. In particular, the required
parameter-space dimension should not scale exponentially with the system size.

2. Efficient evaluation of observables. The quantum wave function fully defines the state of a system.
However, to understand a system’s physical properties and obtain data that can be compared to
experiments or predictions from other simulation methods, it is important to compute observable
quantities of interest. Therefore, even an efficiently compressed representation of the quantum
state is only useful if it also supports the efficient evaluation of relevant classes of observables.

3. Efficient optimization. Physical applications rely on optimizing the variational parameters to reach
a target state with desired properties. Typically, optimization targets are the minimization of the
energy expectation value 〈Ĥ〉|ψθ〉 in ground state search (Section 3.3), optimizing the overlap
with an analytically or otherwise known state (Section 3.2.2), or following an equation of motion
(Section 4.1). Therefore, a useful variational ansatz should also provide efficient means to perform
such optimizations, either by specialized algorithms (like DMRG) or, more generally, by providing
an algorithm to compute gradients of the ansatz wave function that, in turn, can be used to obtain
gradients of objective functions.

2We will also refer to the number of variational parameters as the size of the ansatz, or network size for NQS, in the following.
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3 Variational and neural quantum states

As formulated above, the definition of a variational state encompasses many different families of states
which vary widely in their physical characteristics, computational complexity, parameter space dimen-
sion, and flexibility. Linear combinations of a subset of basis functions can be seen as a particularly
simple form of variational ansatz, where the variational parameters are the coefficients, and the varia-
tional manifold is a linear subspace. At minimum, a variational state can have only one parameter (e.g.,
a single-mode coherent state). In contrast, the size of many-variable variational ansätze increases with
the system size; examples include MPS and tensor-network states (TNS) [35, 127], Gaussian states and
their generalizations [130, 131], or fermionic pair-product states [132, 133]. For practical applicability,
the scaling of the required size needs to be tractable and, in particular, subexponential.

An important class of ansätze are those that are systematically improvable, which means that the
variational manifold (and thus the representation capabilities) of the ansatz can be expanded by increasing
the number of parameters. Ideally, the ansatz should be able to represent any quantum state in the limit
of infinite size. This is the case for MPS, which are based on decomposing the full state (interpreted as a
rank-N tensor) into a product of lower-dimensional matrices [134]

ψA(s) = A(s1)
1 · · · A(sN )

N , A(si)
i ∈ Cχi×χi+1 , χ1 = χN+1 = 1. (3.7)

The size of the MPS ansatz is controlled by the bond dimensions3 χi, i ∈ [N ]. This ansatz can represent
any quantum state once the bond dimensions become sufficiently large. While the exact representation
of arbitrary states requires exponentially growing bond dimensions, sufficiently structured states can be
represented efficiently [33]. The suitability of a systematically improvable ansatz for a given problem
can be verified by assessing convergence as a function of the bond dimensions.

3.2 Neural quantum states

Neural quantum states (NQS)4 are variational states that use an artificial neural network to represent the
quantum wave function. Section 3.2.1 will review the concept of artificial neural networks, Section 3.2.2
will define NQS, and Section 3.2.3 will give an overview of neural network architectures used in the
context of NQS.

3.2.1 Artificial neural networks

Artificial neural networks are a rich class of mathematical functions that can approximate complicated
functional relationships. Initially inspired by the behavior of biological neurons in the human brain
[135–137], neural networks have developed from these roots into a graphical language for describing
classes of nonlinear approximating functions [46–48, 138], which do not necessarily resemble specific
biological processes [139].

3Here and in the following, we write [N ] = {n ∈ N | 1 ≤ n ≤ N} to denote the set of integers between one and N ∈ N
(inclusive).

4Note that the terms “neural-network quantum state” and “neural quantum state” are both used in the literature and refer to
the same concept. While the first term is the one originally used by Carleo and Troyer [70] and also in two of the included
Publications [P1, P3], parts of the literature, including the Publications [P2, P4] as well as the main text of this dissertation,
have adopted the more concise second term.
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Figure 3.2 | a) Graphical representation of a single artificial neuron (without bias) with index k. The neuron
performs a weighted sum over the input signals x ∈ RN and passes the resulting signal vk ∈ R
through a nonlinear activation function ϕ, generating a scalar output signal yk ∈ R.
b) Graphical representation of a single fully-connected neural network layer (without bias) withM
artificial neurons. The depicted layer performs a linear transformation [withweightmatrixW = (wki)
of shapeM×N ] on the input data x ∈ RN and passes the resulting vector of signals v = Wx ∈ RM

through a nonlinear activation function to generate the output vector y = Φ(v) ∈ RM .

Key theoretical results underlying the power of neural networks are so-called universal approximation
theorems, which show that broad classes of networks are dense in the space of continuous functions
[140–143]. Such neural networks can therefore approximate any continuous function to arbitrary
precision in the limit of infinite network size.

The paradigmatic building block of larger neural networks is the artificial neuron (Fig. 3.2a) [138]. A single
neuron accepts a set of input signals, modeled as a vector x ∈ RN , and performs the transformation

yk = ϕ(vk), vk =
∑
j

wkjxj + bk (3.8)

where we denote by k the index of the neuron. The action of a single neuron on the input signal thus is
comprised of three steps: First, a weighted linear combination of the input signals with weights wkj is
formed and then offset by the bias bk ∈ R. Finally, a nonlinear activation function ϕ is applied, yielding
an output signal yk ∈ R. For some standard activation functions such as the rectified linear unit (ReLU)
[144] ϕ(v) = max(0, v) or the sigmoid function ϕ(v) = σ(v) := (1 + e−v)−1, this process can indeed
be seen as a (rough) approximation of a biological neuron, which collects electrical input signals that
are forwarded and amplified only when they exceed a certain potential threshold. In this picture, the
artificial neuron’s output can be roughly interpreted as the firing rate of a biological neuron [139]. This
analogy does not necessarily extend to other common activation functions, such as hyperbolic functions
like tanh or cosh.

More recently suggested activation functions are designed to overcome various issues in network
optimization, especially the so-called vanishing gradient problem in deep learning [145]. Examples are
the Swish activation ϕ(v) = v σ(v) [146], the penalized tangent [147, 148], the exponential linear unit
(ELU) [149], or the scaled exponential linear unit (SELU) [145].

While the choice of activation function impacts performance and stability of training, results vary
between different applications [146, 148] and, in principle, vast classes of choices for the nonlinear
activation function retain the universal approximation property of neural networks. Common theoretical
requirements on activations functions are that they are continuous, non-polynomial, and differentiable,
at least on some subset of their domain. However, even parts of these very general requirements can
be relaxed depending on the specific proof [140–143]. For practical applications, it is favorable if an
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3 Variational and neural quantum states

Figure 3.3 | Graphical representation of a feed-forward neural network with an input layer of size 4, two hidden
layerswith 6 and 4 neurons, respectively, and scalar output. Each layer applies an affine transformation
followed by a nonlinear activation function, as depicted in Fig. 3.2b.

activation function is smooth (or at least continuously differentiable) almost everywhere in its domain
to allow for stable computation of gradients.

Typically, neural networks are organized in layers of artificial neurons (Fig. 3.2b). A layer consists ofM
artificial neurons, each receiving the same set of inputs (but with separate weights and biases). Then,
the layer’s output is given by

y = Φ(v), v = Wx + b, (3.9)

which is an affine transformation with weight matrix W ∈ RM×N and bias vector b ∈ RM followed by
a nonlinear activation Φ: RM → RM .This activation function usually consists of a component-wise
application of a scalar activation function, Φ(v)i = ϕ(vi). However, it can also include other operations,
such as normalization. The layer given by Eq. (3.9) is called a fully-connected layer or linear layer.
Sequentially applying several fully-connected layers defines a so-called feed-forward neural network
(FFNN) ormulti-layer perceptron (Fig. 3.3) [48]. A layer’s output dimension is often called its width, while
a network’s number of layers is called its depth. The term deep learning thus refers to using networks
with many layers, though already two-layer networks can exhibit characteristics of deep networks [150].

While real-valued signals are the most common choice in standard machine learning applications,
complex-valued signals can also be used. These are particularly common in neural quantum states [42]
but also find applications in areas such as signal processing [151]. In this case, the definition of artificial
neurons and network layers is unchanged. However, the activation functions need to be well-defined
for complex inputs. This is the case for hyperbolic functions such as tanh and cosh. Furthermore, any
real activation function ϕR can be applied to a complex signal by separating real and imaginary parts,
e.g., as ϕ(z) = ϕR(Re z) + iϕR(Im z).

Beyond the fully-connected layer shown here, many more types of network layers exist. Several other
architectures that have found applications in NQS simulations will be shown in Section 3.2.3. The reader
is referred to the literature [41, 42, 48, 138] for a broader overview of models and network architectures.
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3.2 Neural quantum states

3.2.2 Learning quantum states

The key idea of the NQS ansatz is to use a neural network to parametrize the variational mapping, giving
a trial state of the form

|ψθ〉 =
∑
s∈S

NN(s; θ)|s〉 (3.10)

or

|ψθ〉 =
∑
s∈S

eNN(s;θ)|s〉. (3.11)

As a consequence of the universal approximation property of neural networks, NQS are a systematically
improvable variational ansatz.

The neural network output is often taken as the log-probability amplitude lnψθ(s) = NN(s; θ) as in
Eq. (3.11). This choice has the benefit that the network can more easily learn to represent probability
amplitudes spanning several orders of magnitude. Furthermore, neural network libraries provide easy
access to computing derivatives of the networkweights with respect to network parameters via automatic
differentiation functionality (Section 7.2). Direct access to log-amplitude derivatives can simplify the
implementation of VMC algorithms which rely on these quantities in the computation of gradients
(Sections 3.3 and 4.2). Therefore, parametrizing the log-probability amplitudes is the implementation
choice used in NetKet [P3, P4].

Optimization tasks are defined by a target function that is to be minimized. In machine learning, this
objective function is usually called the loss function [138], which depends on the neural network model.
Training the network is then accomplished by finding optimal network parameters that minimize the
selected loss function.

The prototypical machine learning task is that of supervised learning. Here, datasets consisting of
pairs of the form (xi, yi) ∈ D ⊆ X × Y are given, where X is the space of inputs and Y the space of
corresponding outputs. It is assumed that the input and output data are related by an unknown mapping
y : X → Y, x 7→ y(x), which the network should learn to approximate. In this setting, the loss function
needs to quantify the difference between the outputs ỹi(θ) = NN(xi; θ) predicted by the network and
the corresponding true output yi given as part of the training dataset D. The simplest example is the
mean-squared loss [48]

L(θ;D) = 1
|D|

|D|∑
i=1

‖ỹi(θ) − yi‖2. (3.12)

In the context of NQS, the input space is then the space of configurationsX = S, and the network outputs
are (log-)probability amplitudes, Y = C. Given access to training samples D = {(si, lnψ(si))}|D|

i=1,
the mean-squared loss (3.12) does train the network to reproduce the desired quantum wave function.
However, since this loss does not take into account the gauge degrees of freedom, it can be beneficial to
use instead a loss function based on the overlap with the target state, such as the negative log-overlap
loss

L(θ) = − ln |〈ψθ|ψ〉|2

〈ψθ|ψθ〉〈ψ|ψ〉
(3.13)
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3 Variational and neural quantum states

evaluated on subsets of configurations [152]. Supervised approaches rely on the availability of sample
probability amplitudes from the target quantum state. Such amplitudes can be available in some cases,
such as when the target state amplitudes can be computed from another trial state, as it is done for
implementing the actions of quantum gates on an NQS [152], or when the target state is available as a
full state vector in a sufficiently small system, which can be used for studying the ability of a given NQS
ansatz to learn states obtained from ED to test the representation capabilities of the NQS [106, P1, P2].

NQS can also be trained from density measurements |ψθ(s)|, which corresponds to quantum state
tomography (QST) in physical terms [153, 154]. In this application, density measurements can be
performed in different computational bases, which makes it possible to learn the relative phases of the
probability amplitudes in addition to their moduli [153].

For ground-state search, the loss function can simply be chosen as the physical energy of the system
[70],

L(θ) = 〈Ĥ〉|ψθ〉. (3.14)

In contrast to MPS, but analogously to other variational ansätze, there are no general exact algorithms
for efficiently evaluating quantum expectations with NQS. However, it is possible to estimate the energy
and other observables based on evaluating the ansatz ψθ(s) on a subset of configurations obtained by
stochastic sampling. This approach is known as VMC and is discussed in Section 3.3.

It can be beneficial to combine different training schemes. For instance, Czischek et al. [155] have
observed that pre-training of an NQS ansatz via QST can significantly improve the convergence rate of
a subsequent VMC energy optimization.

Beyond pure quantum states, it is also possible to represent mixed quantum states using a variational
ansatz by parametrizing the corresponding density operator. When using a neural-network ansatz, the
resulting operator is called a neural density operator (NDO). The NDO ansatz can be used for finding
steady states and simulating dissipative dynamics in open quantum systems [156–159]. However, we
will focus on pure quantum states in the remainder of this thesis.

3.2.3 Examples of neural quantum states

This section provides several examples of network architectures used in NQS, focusing on those most
relevant in the context of this dissertation.

Restricted Boltzmann machines

The first network architecture used in an NQS ansatz in the original publication by Carleo and Troyer
[70] was the so-called restricted Boltzmann machine (RBM) [160–163]. These networks belong to the
class of energy-based models [164] and are universal approximators for discrete probability distributions
[165].

We follow the presentation in Refs. [162, 163]. An RBM is defined as a set of units arranged in two
layers: Nv units in a visible layer and Nh units in a hidden layer. These units can each take values in
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input layer

weights 

hidden layer

probability amplitude

Figure 3.4 | Graphical representation of a restricted Boltzmannmachine (RBM) quantum state (without visible bias
term). The depicted structure corresponds to the effective one-layer network with (ln) cosh activation,
which is equivalent to an RBM quantum state after tracing out the hidden-layer configurations
[compare Eq. (3.19)]. This illustration is taken from Publication [P1].

L = {±1} and a configuration (v,h) ∈ LNv × LNh has the associated energy5

E(v,h; θ) = −h>Wv − a · v − b · h. (3.15)

Here, θ = (W,a, b) denotes the collection of parameters (the weight matrix W connecting hidden and
visible units and bias vectors a, b for each layer). This energy corresponds to a classical, bipartite Ising
model with couplings only between (not within) the two layers6 and biases as external fields. To each
configuration (v,h), a joint Boltzmann probability

p(v,h; θ) ∝ exp E(v,h; θ) (3.16)

is assigned. The probability assigned to a visible configuration is then obtained by tracing over all hidden
degrees of freedom, i.e.,

p(v; θ) ∝
∑

h∈LNh
p(v,h; θ). (3.17)

The RBM can be used in an unsupervised learning setting, where a dataset V = {vi}|V |
i=1 drawn from an

unknown probability distribution is given as input. The network model is then optimized to learn this
distribution by maximizing the probability assigned to the training data. This can be achieved, e.g., by
minimizing the loss function L(θ;V ) = −

∑
v∈V ln p(v; θ) [162, 163].

In the context of neural quantum states, the quantity to be learned is the quantum wave function.
Thus, the output of the RBM needs to be complex-valued in general, which can be achieved simply by
choosing complex weights, resulting in a complex-valued RBM energy (3.15) and, hence, network output.
Systems with local dimension two can be directly mapped to a spin-1/2 system with configuration space
S = {±1}N (i.e., the width of the visible layer equals the physical lattice size) while qudit data can be
encoded into such a representation, e.g., using a one-hot encoding [74, 93] (in which case the visible
layer needs to be larger than the physical lattice). A visible spin configuration is then mapped to the

5The energy (3.15) should not be confused with the energy of a variational state parametrized by an RBM quantum state.
6This restriction to bipartite couplings distinguishes the RBM from a general (unrestricted) Boltzmann machine.
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probability amplitude

ψθ(s) =
∑

h∈LNh
exp E(s,h; θ) (3.18)

in analogy with Eq. (3.17). Due to the bipartite structure of the RBM model, it is possible to analytically
perform the summation over the hidden degrees of freedom, resulting in [70]

ψθ(s) = exp(a · s)
Nh∏
j=1

cosh[Ws + b]j (3.19)

(up to a constant factor that is neglected here). This expression can be efficiently evaluated in polynomial
time with respect to the visible and hidden layer sizes. In NQS applications, the width of the RBM is
usually parametrized in terms of the hidden unit density α = Nh/Nv.While the RBM wave function
obtained in this way is not normalized, this is not a requirement for VMC and, therefore, unproblematic.
Since we parametrize the log-probability amplitudes, the RBM model is implemented in practice as

lnψθ(s) = a · s +
Nh∑
j=1

ln cosh[Ws + b]j . (3.20)

While derived from a conceptually different energy-based model, the RBM as determined by Eq. (3.20) is
formally equivalent to a feed-forward network with one hidden layer parametrized by weights W and
hidden bias b and using a ln cosh activation function, which is followed by a second layer that performs
an (unweighted) sum of the resulting activations and the visible bias term a · s (Fig. 3.4).

RBM quantum states have achieved state-of-the-art results for ground state search in lattice spin models
[75, 86]. They have also been used to complement fermionic pair-product wave functions [73, 81],
applied to the Bose-Hubbard model [91, 93], and for studying the dynamics of quantum magnetism [76,
79]. It is possible to implement translation-invariance in an RBM ansatz by restricting the weights [70]
or using generic symmetry-projection schemes [82] (Section 5.1), which can significantly improve the
accuracy of optimization results.

A key result that raised significant interest in the capabilities of RBM quantum states was the proof
by Deng, Li, and Das Sarma [101] in 2017 that randomly initialized RBMs can efficiently represent
states with volume-law entanglement scaling, which is out of reach of more established tensor-network
approaches [2, 166]. However, it is not yet clear what such results for random NQS [101, 102] imply
regarding the representability of highly entangled quantum states of physical interest (Chapter 6).

Feed-forward neural networks

Fully-connected feed-forward neural networks (FFNNs), as defined in Section 3.2.1, have been used
in several applications of NQS. Due to the similarity of the RBM to a one-layer FFNN, multi-layer
FFNNs can be seen as a generalization of the RBM that can still be efficiently evaluated. Adding layers
to an FFNN increases the representation capabilities of the network and can result in more efficient
compression of quantum states [118]. However, increased depth also increases the difficulty of training
the network [50].

We utilize FFNN quantum states in our study of the Sachdev-Ye-Kitaev (SYK) model in Publication [P2].
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Convolutional neural networks

Convolutional neural networks (CNNs) are designed to make use of spatial structure in the input
data to enable more efficient processing of such data compared to fully-connected networks and are
most prominently used in image processing and object recognition [154, 167–169]. It has been shown
that CNN-based NQS can achieve a polynomially increased efficiency for encoding entanglement in
some systems [118] and have been successfully applied to ground state search and time propagation in
two-dimensional spin systems [75, 78, 87, 89].

In a convolutional layer, the fully-connected affine transformation of the FFNN is replaced by a convolu-
tion. This reduces the connectivity between the layers (and, thus, the number of variational parameters)
and enables the network to more efficiently encode local structure in the input data [42]. The output
of the convolution operation (and, thus, the network output) is translation-invariant. It is possible to
construct a generalization of CNNs, the group-convolutional neural networks (GCNNs), that supports
invariance (and, more generally, equivariance) under symmetry operations beyond lattice translations
[170, 171] (see Section 5.1 for details).

3.3 Variational Monte Carlo

Theusefulness of a variational ansatz for the quantumwave function is determined not just by its capacity
to compress the information contained in the quantum state. The existence of efficient algorithms that
compute quantities of interest, such as expectation values and variances of observables as well as their
gradients, is also crucial.

Paraphrasing Clark [172], the variational Monte Carlo (VMC) approach is concerned with two main
tasks:

1. Given a trial state |ψ〉, compute approximate expectation values of observables.

2. Given a family of variational states |ψθ〉, find optimal parameters θ for a given objective function.

Crucially, VMC can be applied to a wide variety of variational ansätze. This flexibility is possible because
VMC relies on a stochastic approximation of quantum expectation values but comes at the cost of
introducing stochastic error that needs to be controlled.

3.3.1 Estimating quantum expectation values

The VMC [72, 173] approach is based on expressing the quantum expectation value 〈Ĥ〉 of an observable
Ĥ as a classical expectation value Eπ[H̃] of a random variable H̃ using the identity

〈Ĥ〉|ψθ〉 = 〈ψθ|Ĥ|ψθ〉
〈ψθ|ψθ〉

=
∑

s,s′∈S ψ
∗
θ(s′)〈s′|Ĥ|s〉ψθ(s)∑
s∈S |ψθ(s)|2 =

∑
s∈S

π(s)H̃(s) = Eπ[H̃] (3.21)
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where

π(s) = |ψθ(s)|2∑
s′∈S |ψθ(s′)|2 (3.22)

is the Born probability density [174] associated with the quantum state and

H̃(s) = 〈s|Ĥ|ψθ〉
〈s|ψθ〉

=
∑
s′∈S

ψθ(s′)
ψθ(s) 〈s|Ĥ|s′〉 (3.23)

is a local estimator of the observable Ĥ (if Ĥ is the Hamiltonian of the system, H̃ is typically called the
local energy)7 [72]. The local estimator is only well defined when the quotient ψθ(s)/ψθ(s′) is finite.
Since ψ(s) = 0 ⇔ π(s) = 0, only configurations with well-defined H̃ contribute to the expectation
value and Eq. (3.21) can be written as

Eπ[H̃] =
∑

s∈suppπ
π(s)H̃(s) (3.24)

where suppπ = {s ∈ S | π(s) 6= 0} is the support of π.The amplitude ratio ψθ(s)/ψθ(s′) can still
pose a challenge in numerical applications when encountering amplitudes of vastly different orders of
magnitude.

While exactly evaluating Eq. (3.24) via full summation over the Hilbert space is still exponentially costly,
the classical expectation value can be estimated using a Monte Carlo algorithm [173, 175, 176]. Given a
sequence of configurations C = (si)NMC

i=1 drawn from the Born distribution, the expectation (3.24) can
be approximated by the sum8

E[H̃] ≈ µ[H̃] = 1
NMC

NMC∑
i=1

H̃(si). (3.25)

This estimate converges (µ[H̃] → E[H̃] as NMC → ∞) by the central limit theorem and the standard
error of the estimate (3.25) is given by the Monte Carlo standard error (MCSE)

εMC[H̃] =

√
σ2[H̃]
NMC

, (3.26)

where σ2[H̃] is the empirical standard deviation of H̃ over the samples C.The Monte Carlo estimate
of the expectation value thus converges to the true expectation value with an error asymptotically
proportional to 1/

√
NMC. This scaling implies that, to improve the error of an estimate by one decimal

place, a hundred times more samples need to be generated. However, generating a suitable sequence
C is not a trivial task since the probability distribution π is usually as intractable as the full quantum
state. Typically, Monte Carlo samples are generated via Markov chain Monte Carlo (MCMC) algorithms
(Section 3.3.3). Specific NQS ansätze, so-called neural autoregressive quantum states (NAQS) [177]
and states based on recurrent neural networks [178], also allow direct sampling from π via specialized
algorithms.

7Note that both H̃ and π depend on the current variational state |ψθ〉, although we omit this dependency in the notation for
the sake of readability.

8We write E instead of Eπ in the following when the probability distribution with respect to which the expectation values
are computed is clear from the context.
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While the Monte Carlo approximation does eliminate one summation over the exponentially large
Hilbert space, the local estimator (3.23) still formally contains an unconstrained and thus exponentially
costly sum. However, this sum is effectively restricted to the set of connected configurations

Conn(s; Ĥ) = {s′ ∈ S | 〈s|Ĥ|s′〉 6= 0}, (3.27)

i.e., the configurations for which the corresponding matrix element is nonzero. The local estimator
thus becomes tractable to evaluate if the operator Ĥ is sufficiently sparse in the computational basis
and if an efficient algorithm exists which, given a configuration s, yields the connected configurations
s′ ∈ Conn(s; Ĥ) and their matrix elements 〈s|Ĥ|s′〉. This is true in particular for sufficiently local
operators in lattice models. Efficient computation of matrix elements for fermionic lattice models in the
Fock basis, in which matrix elements of typical operators contain non-local parity information, typically
require more advanced encoding schemes [97, 179].

In summary, the requirements on a given ansatz and operator to support efficient VMC estimation are
the availability of algorithms for

1. the efficient evaluation of the probability amplitudes ψθ(s);

2. the efficient generation of samples from the Born distribution π(s) ∝ |ψθ(s)|2; and

3. the efficient computation of the connected configurations Conn(s; Ĥ) and corresponding matrix
elements for all observables of interest.

3.3.2 VMC optimization

The most common task in VMC simulations is to find a variational approximation of the ground state,
i.e., the minimum energy eigenstate for a given Hamiltonian Ĥ.This means finding optimal variational
parameters to minimize the Rayleigh quotient [72]

θ? = arg min
θ∈X

〈Ĥ〉|ψθ〉 = arg min
θ∈X

〈ψθ|Ĥ|ψθ〉
〈ψθ|ψθ〉

, (3.28)

which is typically done by gradient-based optimization. It is possible to optimize the parameters by
simple gradient descent, i.e., by iteratively performing the update

θn+1 = θn − τn ∇θ〈Ĥ〉|ψθn 〉 (3.29)

with discrete stepsn ∈ [Nsteps] and a step size τn (potentially varying over the course of the optimization).
In VMC, the gradient of an observable can be estimated using the same Monte Carlo samples as for
computing expectation values [see Eq. (4.20) for the explicit formula]. Alternatively, gradients can
be obtained while evaluating the corresponding expectation value using automatic differentiation
(Section 7.2). It can be helpful to apply more advanced optimization schemes to improve convergence
[180]. These include adaptive-gradient methods such as RMSProb [181], Adam [182], or AdaGrad
[183], which utilize a per-parameter adaptive learning rate that varies based on the history of previous
gradients. While such methods can achieve faster convergence in many cases, they can also be more
prone to overfitting in machine learning applications [184, 185]. It is also possible to perform the ground
state optimization by approximating the time-evolution according to the imaginary-time Schrödinger
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equation (Section 4.1.3). This approach is known as stochastic reconfiguration (SR) in the VMC literature
[72, 186, 187]. A formally equivalent training procedure for classical probability distributions has been
independently developed in the machine learning literature under the name natural gradient descent
(NGD) [188, 189]. In any case, the best choice of optimization algorithm will depend on the specific
problem and can therefore be seen as an additional hyperparameter of the training scheme.

Since the minimum and maximum eigenvalues Emin/max provide bounds for the energy expectation of
any quantum state,

Emin(Ĥ) ≤ 〈Ĥ〉|ψ〉 ≤ Emax(Ĥ) for any |ψ〉 ∈ H, (3.30)

the variational energy expectation value 〈Ĥ〉|ψθ〉 provides an upper bound for the true ground state
energy for arbitrary parameters θ ∈ X . If the variational manifold includes the true ground state
of the system (or states sufficiently close to it), the global variational minimum can provide a good
approximation of the physical ground state. However, a VMC-based optimization run is not guaranteed
to find such a global energy minimum. Nor is the global minimum achievable by a given variational
ansatz necessarily close to the true ground state. For systems with a small energy gap, this can be true
even when the variational energy is low. In this case, non-zero components of low-lying excited states
may still significantly influence observables. Besides monitoring energy convergence, it is thus vital to
assess whether the final variational minimum is a valid candidate for the true ground state by evaluating
the physical properties of the state.

The optimal variational parameters are not generally unique. Different sets of parameters can describe
the same quantum state (up to a gauge degree of freedom γ ∈ C \ {0}), i.e., |ψθ1〉 = γ|ψθ2〉 for θ1 6= θ2.
Furthermore, if the ground state of Ĥ is degenerate, any element of the minimum-eigenvalue eigenspace
is a valid solution to Eq. (3.28).

A key tool to monitor VMC convergence is the vanishing-variance property [72, 114, 190]: The variance
of Ĥ is zero in every Ĥ-eigenstate |η〉, i.e.,

〈(Ĥ − 〈Ĥ〉|η〉)2〉|η〉 = 0. (3.31)

Consequently, the local estimator (3.23) is constant in an eigenstate,

∀s ∈ S : H̃(s) = 〈Ĥ〉|η〉 ⇔ Var[H̃] = 0, (3.32)

and, therefore, the estimated variance can be used to monitor the convergence of the VMC optimization
to an eigenstate. Furthermore, since the MCSE (3.26) is proportional to the square root of the variance,
Monte Carlo estimates become more accurate with the convergence of the optimization run. This
property is crucial for obtaining high-accuracy VMC estimates [114]. Note, however, that the vanishing-
variance property cannot be used to distinguish ground states from excited eigenstates.

While VMC can be categorized as a quantum Monte Carlo (QMC) technique, it differs from typical QMC
approaches in two main characteristics:

On the one hand, VMC is biased by the ansatz [172]: While computed quantities ideally converge to the
true values for a target state in the limit of infinite Monte Carlo samples in other, non-variational QMC
methods [72], VMC estimates only converge to the expectation values for the current trial state |ψθ〉.
The accuracy of VMC results is thus determined by the expressiveness of the ansatz and the ability of
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3.3 Variational Monte Carlo

the optimization scheme to reach the target state.

On the other hand, VMC does not suffer from the QMC sign problem, a phenomenon which causes an
exponential slowdown of convergence for estimates in systems with non-stoquastic9 Hamiltonians for
some QMC schemes [71, 72, 192, 193].

However, being free from the QMC sign problem does not mean that VMC algorithms are unaffected
by the sign structure or, more generally, the structure of relative phases of the target ground state
[194–197]. Suppose the initial state is determined by randomly drawn weights, as is typically done
in NQS simulations. This initial state will generally have a uniform sign structure. If the same is not
true for the target state, the training algorithm needs to optimize both modulus and relative phases of
the probability amplitudes, the latter typically being harder to learn [194]. This increases the training
difficulty, and the VMC optimization can become stuck in local energy minima with a sign structure
distinct from the actual ground state [178, 195]. This difficulty can be alleviated by using more elaborate
training schemes; proposals in the literature include alternating between modulus and phase training
steps [195], using a genetic algorithm [196], or obtaining the phase structure from separate optimization
using a simulated-annealing process [197]. Enforcing symmetries of the problem in the NQS ansatz has
also been observed to help [82, 88, 89] (Section 5.1.2).

3.3.3 Markov chain Monte Carlo and error diagnostics

Estimating expectation values in VMC requires the ability to efficiently draw samples distributed
according to the Born distribution (3.22). However, doing this exactly for an arbitrary variational state
is still an exponentially hard problem. The sampling problem can be made tractable for general NQS
(as well as other types of variational states) by using a Markov chain Monte Carlo (MCMC) approach,
specifically the Metropolis-Hastings algorithm [175, 176], which is reviewed here following Refs. [198,
199].

Markov chains

MCMC works by constructing a stochastic process of samples {s(i)}NMC
i=1 , the Markov chain, in which

each element is obtained from its predecessor by an update rule. This update is described by the jump
distribution T (s(i+1)|s(i)), which represents the probability of transitioning to s(i+1) from s(i). If the
jump distribution preserves the probability distribution π, i.e., if

π(s′) =
∑
s∈S

T (s′|s)π(s) (3.33)

holds for all s′ ∈ S , and the initial sample s(1) is drawn from π, then the chain is stationary with π as
its equilibrium distribution10. Averages of random variables A(i) = A(s(i)) over a stationary chain can

9A Hermitian operator is called stoquastic if all its off-diagonal matrix elements in the computational basis are non-positive,
which ensures that the ground state wave function can be expressed using only non-negative (and, hence, real-valued)
probability amplitudes in that basis [191].

10A Markov chain is said to be stationary if its samples follow the same equilibrium distribution regardless of their position in
the chain.
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3 Variational and neural quantum states

then be used to estimate expectations values with respect to π

Eπ[A] = lim
NMC→∞

1
NMC

NMC∑
i=1

A(i) (3.34)

by the Markov chain central limit theorem (MC-CLT). This is possible even when it is not tractable
to sample from π directly, as long as the update steps can be performed efficiently. However, since it
is not generally possible to draw the initial sample s(1) from π either, the chain must first converge
to the equilibrium distribution when started from an arbitrary configuration. In this initial phase
(which is referred to as burn-in or warm-up phase), chain averages can be biased and provide poor
estimates of expectation values. A number of initial samples are usually discarded to counteract this bias.
Nonetheless, convergence to the equilibrium distribution can be difficult to assess. While diagnostic
criteria (as introduced below) can increase the confidence in the convergence of results, they can still be
fooled by intermittent “pseudo-convergence” to a seemingly converged state [115, 198], which needs to
be kept in mind in practical simulations.

Metropolis-Hastings algorithm

TheMetropolis-Hastings algorithm provides a transition rule that preserves the distribution π as required
by the MC-CLT. The update from configuration s(i) to s(i+1) is performed by first generating a proposed
update s′ according to a proposal distribution Q(s′|s(i)) and then accepting this proposed sample
randomly with probability

Pacc = min
(

1, π(s′)Q(s(i)|s′)
π(s(i))Q(s′|s(i))

)
, (3.35)

which simplifies to Pacc = min(1, π(s′)/π(s(i))) for a symmetric proposal distribution Q(s|s′) =
Q(s′|s). By this rule, an update is automatically accepted if it leads to a configuration with a higher
probability mass. If it leads to a configuration with a lower probability mass, it is accepted randomly
according to the probability ratio. If the update is accepted, then s(i+1) = s′. Otherwise, it is rejected
and s(i+1) = s(i).

The Metropolis-Hastings algorithm yields a jump distribution that satisfies the so-called detailed balance
condition

π(s)T (s′|s) = T (s|s′)π(s′) ∀s, s′ ∈ S. (3.36)

If, additionally, the process is ergodic, i.e., any configuration with non-zero probability can be reached in
a finite number of steps through applying the Metropolis-Hastings update, the algorithm generates a
Markov chain with equilibrium distribution π as required for MCMC sampling. However, the conver-
gence rate of the estimate depends on the details of the update and, thus, the proposal rule. In particular,
it depends on the rate at which suggested updates are accepted (see Section 5.2.2 for an example).

The following are examples for common proposal rules from s to s′:

1. Local update. Select a lattice site j ∈ [N ] uniformly at random and replace sj by another uniformly
drawn value σ ∈ Lj \ {sj}. The proposal is then given by s′

i = si(1 − δij) + σδij . For spin-1/2
systems, this corresponds to flipping a single spin.
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3.3 Variational Monte Carlo

2. Exchange update. Select a pair of distinct sites (j, k) ∈ [N ]2, j 6= k, uniformly at random and
exchange the values at both sites. This update rule preserves the number of occurrences of each
value in s. It is thus suitable for systems with constraints such as particle number conservation
or, in spin systems, conserved magnetization

∑N
i=1 si (Section 5.1.1).

3. Hamiltonian update.11 In order to preserve symmetries of the Hamiltonian, it can be helpful
to propose updates corresponding to its non-zero matrix elements, for instance, by choosing
s′ ∈ Conn(s; Ĥ) uniformly at random. This approach is used, e.g., in Ref. [200].

It is also possible to combine update rules. For instance, Ref. [78] suggests combining local spin-flip
updates with an occasional global flip of all spins in simulations of the spin-1/2 transverse-field Ising
model. This additional global update leads to a more symmetric exploration of the full configuration
space and can improve the convergence of expectation estimates.

Autocorrelation and MCMC standard error

While the elements of a stationary Markov chain are distributed according to the invariant distribution,
they are not statistically independent. Thus, the definition of the MCSE (3.26), which requires indepen-
dent samples, is not applicable, and the autocorrelation between samples must be taken into account.
This is done in the the MCMC standard error, which is given by

εMCMC[A] =
√

σ2[A]
Neff [A] . (3.37)

As in the MCSE formula, σ2[A] is the empirical variance of A over the chain but the sample size is
replaced with the effective sample size Neff given by

Neff [A] = NMC
1 + 2τ [A] (3.38)

where τ [A] is the integrated autocorrelation time of the sequence {A(i)} [201]. Note that the autocor-
relation time and, therefore, the effective sample size depends on the observable. For an uncorrelated
chain, Neff = NMC so that εMCMC = εMC.

The autocorrelation between samples can be reduced by thinning, i.e., by averaging over a reduced
chain that includes a subset of samples. Usually, this is done by including only every m-th sample
for sufficiently large m. While thinning reduces autocorrelation, since more updates are performed
between each included sample, the effective sample size is also reduced by a factor ofm. Thus, thinning
the chain beyond the autocorrelation time can be counterproductive. Generally, it is advisable only to
employ thinning as a performance optimization [198], e.g., to reduce the number of evaluations of local
estimators (3.23).

11Note that this definition of a Hamiltonian update, which is also used in the NetKet framework [P3, P4], is unrelated to
the Hamiltonian Monte Carlo algorithm, which is an MCMC sampling algorithm for continuous distributions based on
(classical) Hamiltonian dynamics [199].
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3 Variational and neural quantum states

Diagnosing MCMC convergence

Unbiased estimates of expectation values require the chain to be stationary, and the necessary time
to convergence is not known a priori. Additionally, the chain can become stuck in a high-probability
configuration if the probability ratio of the proposed updates becomes so low that they are constantly
rejected by the Metropolis-Hastings scheme, and sudden jumps in the estimated expectations can occur
when the chain starts to explore previously undersampled regions of the configuration space after
[115]. While these issues do not theoretically prevent the convergence of the estimate (3.34) in the limit
NMC → ∞, they can introduce bias in practical simulations with finite sample size. Therefore, it is
vital to implement diagnostics that can help detect such errors; these include the autocorrelation time,
effective sample size, and MCMC standard error, as discussed above.

MCMC simulations are typically performed using multiple chains that are updated in parallel. This is
beneficial for computational performance: Applying operations, particularly evaluating the probability
distribution π, to a batch of configurations at once can be more efficient than performing the same
task sequentially (especially in GPU computing) [P4]. Furthermore, VMC simulations are typically
distributed over several nodes in an HPC cluster to allow for a massive increase in tractable sample sizes
[71]. In this case, independent chains are run on each node so that communication between nodes can
be restricted to collecting ensemble properties.

Beyond performance benefits, the availability of multiple chains introduces the possibility of comparing
ensemble quantities between chains to detect convergence issues. One way to condense this information
to a single, real-valued quantity is the so-called Gelman-Rubin diagnostic R̂, which we present here
following Ref. [202]12. Let s(m,i) denote the (i ∈ [NMC])-th configuration of the (m ∈ [NC])-th
independent Markov chain and A(m,i) = A(s(m,i)) the corresponding local observable. Defining the
average per-chain variance estimator

W [A] = 1
M

NC∑
m=1

Wm[A], Wm[A] = 1
NMC

NMC∑
i=1

(A(m,i) − µm[A])2, (3.39)

and the between-chain variance estimator

B[A] = 1
NC − 1

NC∑
i=1

(µm[A] − µ[A])2, (3.40)

where µm[A] = N−1
MC

∑NMC
i=1 A(m,i) and µ[A] = N−1

C
∑NC
i=1 µm[A] denote the per-chain and global

averages, respectively, R̂ is given by

R̂[A] =
√

1 + B[A]
W [A] . (3.41)

This factor converges to one in the limit of infinite sample size, limNMC→∞ R̂ = 1. Parts of the statistics
literature suggest empirical limits of R̂ < 1.1 [202] or, in more recent works, R̂ < 1.01 [203] as a
criterion to consider an estimate sufficiently converged. However, acceptable limits depend on the
specific application.

12In this context, the hat notation used for R̂ is used to denote a statistical estimator, not a quantum operator.
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3.3 Variational Monte Carlo

Several non-stationary chains, where the values ofA(i) systematically increase (or decrease), can interact
in such a way that this issue is not detected by the plain R̂ diagnostic of Eq. (3.41). This can be remedied
in some cases by a simple measure: Splitting each chain in the middle and treating both halves as separate
chains will cause the chain averages to disagree if the process exhibits a drift. This adjustment yields
the so-called split-R̂ diagnostic [202]. Several extensions of this diagnostic have been suggested in the
literature to further increase the detectable types of convergence issues, particularly the rank-normalized
R̂ in Ref. [203].

Diagnostic criteria are helpful to increase confidence in the correctness of MCMC estimates and for
early identification of errors. However, it is important to remember that while a diagnostic may detect
the presence of errors, it cannot fully prove their absence [198].
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4 Time propagation of neural quantum states

Neural quantum states can be used to study the dynamics of quantum systems. The following sections
will provide an overview of the time-dependent variational principle (TDVP) and its application to NQS
via time-dependent variational Monte Carlo (t-VMC).This is followed by Publication [P1], which analyzes
in more detail the influence of stochastic noise on t-VMC propagation and provides an interpretation of
this effect in machine-learning terms.

4.1 Variational time propagation

At the core of NQS time propagation algorithms lies the idea of encoding the time-dependence of the
system in a trajectory t 7→ θ(t) of variational parameters. This curve in parameter space directly
corresponds to a curve |ψθ(t)〉 in the full Hilbert space via the variational mapping (3.5). In the full
Hilbert space, quantum dynamics are governed by the time-dependent Schrödinger equation (TDSE)13

i
d
dt |ψθ(t)〉 = Ĥ(t)|ψθ(t)〉. (4.1)

The goal of variational time propagation algorithms is to compute a parameter-space trajectory that
approximates the dynamics induced by the TDSE. Since the states are constrained to the variational
manifold, |ψθ(t)〉 ∈ M, an evolution leading the state outside this manifold cannot be fully captured.
However, it is possible to derive an effective equation of motion for the parameters relying on the
projection of the exact time evolution to the tangent space of the variational manifold (Fig. 4.1) [204,
205]. Ideally, this yields a trajectory that approximates the quantum time evolution to a sufficient degree
in order to extract observables of interest, even in the presence of projection error induced by the
restriction to M.

There are various ways to obtain a suitable parameter-space trajectory. One set of methods, which are
predominantly applied in the context of NQS, is based on obtaining an equation of motion

F(t,θ(t), θ̇(t)) = 0 (4.2)

for the variational parameters, which approximates the TDSE (4.1). Such an equation of motion can
then be solved by standard means for differential equations. In particular, numerical solvers using
Runge-Kutta schemes can be employed, which is done in our work [P1, P4] as well as other publications
in the NQS literature [70, 76, 78, 79, 87, 110] (see Section 4.3 of Ref. [P4] for details on the Runge-Kutta
scheme).

There are various ways of deriving a variational equation of motion of the form (4.2). Generally,
derivations of a variational equation of motion lead to one of the three forms discussed in the following.
The reader is referred to Refs. [32, 190] for further, more detailed discussions.
13Note that here and throughout this thesis, we use units where the Planck constant is set to unity, ~ = 1.
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|ψθ〉
|∂jψθ〉

−iH|ψθ〉

Figure 4.1 | Graphical representation of the TDVP time evolution, which is obtained by locally projecting the
flow of the exact TDSE, the direction of which is locally given by −iĤ|ψθ(t)〉, to the tangent space
of the variational manifold M, which is spanned by the partial derivatives {|∂jψθ(t)〉}M

j=1.
This illustration is based on Ref. [206], which has been released into the public domain by its authors.

4.1.1 Time-dependent variational principle for holomorphic mappings

First, we consider the case where the variational mapping is holomorphic, which means that θ ∈ X ⊆
CM is a complex vector and all of the functions θj 7→ ψθ(s), j ∈ [M ], are complex differentiable (the
nonholomorphic and real-parameter cases are discussed in Section 4.1.2). This condition is equivalent to
requiring that the Cauchy-Riemann differential equations

∂ψθ(s)
∂ Re[θj ]

+ i
∂ψθ(s)
∂ Im[θj ]

= 0 ⇔ ∂ψθ(s)
∂θ∗

j

= 0 (4.3)

hold. Here, we use the Wirtinger derivative operators [207]

∂

∂θj
= ∂

∂ Re[θj ]
− i

∂

∂ Im[θj ]
,

∂

∂θ∗
j

= ∂

∂ Re[θj ]
+ i

∂

∂ Im[θj ]
. (4.4)

In this sense, holomorphic wave functions depend on θ but not its conjugate θ∗, which reduces the
amount of derivative information that needs to be computed. Many common ansätze satisfy this
condition, particularly RBMs, FFNNs, and CNNs, as long as their activation functions are holomorphic.
However, separately applying a nonlinear activation to real and imaginary parts of its input prevents
complex differentiability for any non-trivial activation, since Re and Im are nonholomorphic functions.

Following, for instance, Refs. [78, 190], the variational equation of motion can be obtained starting
from the requirement that, for an infinitesimal time increment δt, the overlap of the exact time evolved
state with the state obtained by applying an infinitesimal update δθ to the variational parameters is
maximized, i.e.,

δθ = arg min
δϑ

DFS
(
e−iδtĤ(t)|ψθ(t)〉, |ψθ+δϑ〉

)
(4.5)
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where DFS denotes the Fubini-Study distance

DFS(|ψ〉, |φ〉) = arccos
√

〈φ|ψ〉〈ψ|φ〉
〈ψ|ψ〉〈φ|φ〉

. (4.6)

For δt → 0, this yields the equation of motion [190]

S(θ(t)) θ̇ = −iF (θ(t), t) (holomorphic TDVP). (4.7)

Two quantities determine this equation of motion: On the left-hand side, the quantum Fisher matrix
(QFM)14 S(θ), named after the closely related Fisher information matrix associated with classical
probability distributions [189, 208], with matrix elements

Sij(θ) = 〈∂iψθ|1 − P̂θ|∂jψθ〉
〈ψθ|ψθ〉

, P̂θ = |ψθ〉〈ψθ|
〈ψθ|ψθ〉

, (4.8)

where |∂jψθ〉 = (∂/∂θj)|ψθ〉; on the right-hand side, a term proportional to the energy gradient, with
elements15

Fj(θ, t) = [∇θ〈Ĥ(t)〉|ψθ〉]j (4.9)

The structure of the equation of motion can be described as follows: The TDSE induces a flow in
parameter space, which is determined by the Hamiltonian as the generator of time evolution that enters
into Eq. (4.7) via the force term of Eq. (4.9). However, the mapping between parameter space and
quantum Hilbert space is highly nonlinear. A small change in parameters may affect the quantum state
to varying degrees, depending on the direction of the change. This geometric structure is incorporated
into the equation of motion via the QFM (4.8). Specifically [190],

DFS(|ψθ〉, |ψθ+εϑ〉) = ε2ϑ† S(θ) ϑ + o(ε2), (4.10)

where o(ε2) denotes terms vanishing asymptotically faster than ε2 as ε → 0. Thus, the QFM plays
the role of the metric tensor by inducing a position-dependent curvature on the parameter space that
represents the geometry of the parametrized quantum state. Due to this structure, S is not generally
invertible. The null space of S(θ) contains redundant directions that, at a fixed point θ, do not affect
the resulting quantum state. Parameter changes in redundant directions may, however, affect gauge
degrees of freedom, i.e., norm and global phase of the variational state.

To simplify the presentation, we will temporarily assume S to be invertible. Given parameter-space
functions16 O1, O2 : X → C, we can define a Poisson bracket [205, 210]

{O1, O2}(θ) = i
M∑
i,j=1

[
∂O1(θ)
∂θi

[S(θ)−1]ij
∂O2(θ)
∂θ∗

j

− ∂O2(θ)
∂θi

[S(θ)−1]ij
∂O1(θ)
∂θ∗

j

]
. (4.11)

14The matrix S is also referred to as the quantum geometric tensor (QGT) [P4], due to its geometric interpretation discussed
below, or “S matrix”, particularly in VMC literature [70, 72].

15For complex parameters, the gradient is defined here as [∇θ]j = ∂/∂θ∗
j (i.e., as the vector of conjugate derivatives) since

this corresponds to the direction of steepest ascent for real functions of complex arguments [209].
16This includes quantum expectation values, i.e., any function of the form O(θ) = 〈Ô〉|ψθ〉 for a Hermitian operator Ô.
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which can be used to write the equation of motion (4.7) in the equivalent form

θ̇j = {H, θj} (4.12)

where H(θ) = 〈Ĥ〉|ψθ〉 is the energy expectation value. More generally, for any (time-independent)
parameter-space function O,

Ȯ = {H,O}. (4.13)

This mathematical structure closely resembles classical mechanics in complex coordinates [210]. Hence,
in the TDVP formalism, quantum dynamics are mapped to classical dynamics in parameter space, with
all quantum effects incorporated into the space’s geometry via the QFM. Equation (4.13) implies that
the TDVP dynamics respect energy conservation for time-independent Hamiltonians, even when the
variational trajectory deviates from the true quantum dynamics. Other constants of motion are not
generally conserved unless they satisfy additional compatibility criteria depending on the ansatz [129].

Note that while the invertibility of S(θ) simplifies the presentation, it is not a necessary assumption. The
equation of motion and energy conservation can be derived for a singular QFM (which is the standard
case in NQS applications) as well [78, 205].

4.1.2 Variational principles for nonholomorphic mappings

For a nonholomorphic variationalmapping of complex parameters, the conjugate derivatives ∂ψθ(s)/∂θ∗
j

(and thus the corresponding log-derivatives) are generally nonzero. Therefore, additional derivative
information needs to be taken into account. In that case, there are no savings in computational effort
compared to treating the ansatz as a real-parameter variational mapping and separately computing
derivatives for real and imaginary parts.

For real-parameter mappings θ ∈ RM , two distinct versions of Eq. (4.7) corresponding to different
variational principles (VPs) can be obtained, depending on the starting point of the derivations [32,
211–213]. These VPs can be expressed in the form of Eq. (4.7) as

Re[S(θ)] θ̇ = Re[−iF (θ, t)] (McLachlan’s VP) (4.14)

Im[S(θ)] θ̇ = Im[−iF (θ, t)] (real-valued TDVP) (4.15)

which are referred to [32, 213] as McLachlan’s VP [211] and the real-valued TDVP [212], respectively.
Both variational principles become equivalent if the real-valued parametrization can be expressed in
terms ofM/2 complex parameters zj = θ$(2j) + i θ$(2j−1) (where $ is a suitable permutation of the
indices), so that the resulting variational mapping is holomorphic [213].

Although the real-valued TDVP has some theoretical advantages (in particular, it guarantees energy
conservation just as the holomorphic TDVP [32]), McLachlan’s VP is predominantly used in practice,
since Re[S] is a Hermitian, positive-semidefinite matrix while Im[S] is skew-Hermitian. This makes
solving the equation of motion in McLachlan’s VP easier for standard algorithms and usually results in
more stable propagation [110].
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4.2 Time-dependent variational Monte Carlo

4.1.3 Imaginary time propagation and stochastic reconfiguration

Variational time-evolution methods are not limited to real-time dynamics. Most notably, using the same
approaches, it is possible to approximate the evolution according to the imaginary-time Schrödinger
equation

d
dt |ψθ(t)〉 = −(Ĥ − 〈Ĥ〉|ψθ(t)〉)|ψθ(t)〉, (4.16)

which is a diffusion equation that drives the state towards lower energies and will eventually project its
initial state to the ground state manifold (as long as the initial state has a nonzero overlap with a ground
state) [71]. Since the structure of Eq. (4.16) is identical to the TDSE (4.1) except for the right-hand-side
prefactor, it can be simulated in an analogous fashion by solving the equation of motion

S(θ(t)) θ̇(t) = −F (θ(t)) (4.17)

(where t now denotes an imaginary-time argument) for a holomorphic ansatz [compare Eq. (4.7)] or the
equivalent of McLachlan’s VP (4.14),

Re[S(θ(t))] θ̇(t) = − Re[F (θ(t))], (4.18)

otherwise [32]. Solving this equation of motion using the first-order Euler scheme

θ̇(t+ δt) = θ(t) + θ̇(t)δt (4.19)

is equivalent to the stochastic reconfiguration (SR) optimization method commonly used in VMC [72,
186, 187]. Higher-order Runge-Kutta integrators can be used for imaginary time evolution, which
sometimes can lead to an improved ground state convergence [214].

In the remainder, we will concentrate on the real-time formulation of variational time propagation,
though most arguments also apply to imaginary-time propagation via the correspondence shown here.

4.2 Time-dependent variational Monte Carlo

In order to solve the variational equations of motion, it is necessary to efficiently obtain the parameter
derivative θ̇ from the linear equation (4.7), which requires computation of the energy gradient (4.9) and
the QFM (4.8). Instead of computing the full QFM, it can also be sufficient to compute its action on a
trial vector, v 7→ Sv, which can be used as part of an iterative linear solver [P4].

Similar to expectation values, their gradients can also be rewritten as classical expectation values in the
form of the covariance [72]17

Fj(θ, t) = Cov[Θj , H̃] = E[Θ∗
j (H̃ − E[H̃])] (4.20)

17As in Section 3.3, all formulas for Ĥ also apply to other quantum observables, not just the Hamiltonian.
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of the local estimator (3.23) of Ĥ and the log-derivatives of the probability amplitude

Θj(s) = 1
ψθ(s)

∂ψθ(s)
∂θj

= ∂ lnψθ(s)
∂θj

. (4.21)

This identity is known as the “log-derivative trick” [190] and F is sometimes called the force vector.
Conveniently, the QFM can also be expressed as a covariance involving the same log-derivatives,

Sij(θ) = Cov[Θi,Θj ] = E[Θ∗
i (Θj − E[Θj ])]. (4.22)

These quantities can be directly used in the holomorphic TDVP (4.7). For nonholomorphic and real-
parameter mappings, see Table 4.1.

Therefore, the equation of motion (4.7) can be approximated by using VMC techniques to estimate
both energy gradient and QFM. After obtaining an approximate derivative θ̇, the variational dynamics
can again be computed using standard numerical techniques, in particular Runge-Kutta solvers. This
propagation method is known as time-dependent variational Monte Carlo (t-VMC) [72, 215].

There are several sources of error that affect t-VMC propagation, some due to the nature of the variational
approach, some due to the VMC sampling:

1. Projection error, which occurs when the variational manifold does not fully contain the direction
of the exact quantum trajectory.

2. Linear solver error from solving the linear system of equations (4.7) for θ̇ by an inexact algorithm
(in particular iterative linear solvers).

3. Local truncation error from the discrete time steps in numerical propagation.

4. Stochastic error due to noise affecting the estimate of the equation of motion and, thus, the
parameter updates.

Diagnosing and controlling these sources of error is crucial to ensuring stable numerical time propagation.
The deterministic sources of error can be estimated using various means. For example, an estimate of
the projection error can be obtained from the residual distance of the minimization (4.5) [78] and the
local truncation error can be readily estimated in Runge-Kutta schemes by comparing the steps obtained
from integrators of two different orders [216], which forms the basis of adaptive-step size schemes.
However, such diagnostics do not take into account the stochastic noise affecting the quantities entering
into the error estimates. In order to reliably use these error estimates (e.g., as part of an adaptive time
propagation algorithm), a large number of Monte Carlo samples is required to suppress the stochastic
noise to a sufficient degree. Due to the highly parallelizable nature of VMC sampling, this is possible in
practice by distributing the computation over many CPUs or GPUs in an HPC cluster [110, P4].

Nevertheless, understanding the influence of these sources of error on the t-VMC propagation and how
it can be reduced at a lower computational cost is still beneficial for optimal utilization of available
resources and motivates the analyses performed in Publication [P1], which is included in the following
pages.
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4.2 Time-dependent variational Monte Carlo

Case I: real Case II: complex, holomorphic

Parameters x ∈ RM z ∈ CM

Variational mapping RM → H, x 7→ |ψx〉 CM → H, z 7→ |ψz〉

Logarithmic gradient Θj(s) = ∂ lnψx(s)
∂xj

, Θ(s) ∈ CM Θj(s) = ∂ lnψz(s)
∂zj

, Θ(s) ∈ CM

Force vector Fj = Cov[Θj , H̃], F ∈ CM Fj = Cov[Θj , H̃], F ∈ CM

Energy gradient ∂E
∂xj

= 2 Re[Fj ], ∇xE ∈ RM ∂E
∂z∗
j

= Fj , ∇zE ∈ CM

QFM Sij = Cov[Θi,Θj ], S ∈ CM×M Sij = Cov[Θi,Θj ], S ∈ CM×M

Equation of motion
∑
j Re[Sij ]ẋj = Re[−iFi], ẋ ∈ RN

∑
j Sij żj = −iFi, ż ∈ CM

Case III: complex, nonholomorphic
(real-valued representation) (complex-valued representation)

Parameters x = Re[z] ⊕ Im[z] ∈ R2M zj = xj + ixj+M , z ∈ CM

Variational mapping R2M → CM → H, x 7→ z 7→ |ψz〉 CM → H, z 7→ |ψz〉

Logarithmic gradient Θj(s) = ∂ lnψx(s)
∂xj

, Θ(s) ∈ C2M

Force vector Fj = Cov[Θj , H̃], F ∈ C2M

Energy gradient ∂E
∂xj

= 2 Re[Fj ], ∇xE ∈ R2M ∂E
∂z∗
j

= 1
2

[
∂E

∂ Re[zj ] + i ∂E
∂ Im[zj ]

]
QFM Sij = Cov[Θi,Θj ], S ∈ C2M×2M

Equation of motion
∑
j Re[Sij ]ẋj = Re[−iFi], ẋ ∈ R2M żj = ẋj + iẋj+M , ż ∈ CM

Table 4.1 | Comparison of relevant quantities and formulas for the t-VMC implementation of McLachlan’s VP
between real-valued (Case I), holomorphic (Case II), and complex-valued nonholomorphic (Case III)
parametrizations. In all cases, the log-probability amplitudes lnψθ(s) ∈ C and, therefore, their
gradients, as well as force vectors, and the QFM, are complex. In Case III, the complex parameters are
represented here as the direct sum of real and imaginary parts in the real-valued representation to
simplify notation; other orderings (such as interleaving real and imaginary part) are equivalent. See
Refs. [32, 190] for details.
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4 Time propagation of neural quantum states
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Summary

This article discusses the influence of different sources of error on the stability of t-VMC simulation
[focusing on the holomorphic TDVP (4.7)] in a two-leg Heisenberg ladder as a model system. It had
previously been shown that dynamics in the two-dimensional Heisenberg model on a square lattice
can be simulated with t-VMC using an RBM ansatz [76, 79]. In contrast, stability issues had been
identified as main challenges for NQS simulations in other works on quenches in the one and two-
dimensional transverse-field Ising models [78, 111, 112]. In this work, we compare driven dynamics in
the antiferromagnetic Heisenberg model on the square lattice and the two-leg ladder. We find the ladder
system to be more sensitive to stochastic noise, requiring significantly more Monte Carlo samples or
other stabilization techniques, and provide a systematic analysis of the effects of different sources of
error on t-VMC propagation. To this end, we introduce a validation-set-based error diagnostic that can
quantify these effects in terms of overfitting of the parameter update to stochastic noise. Using this
diagnostic, we determine that, in this model system, the dynamics can be stabilized by fine-tuning the
regularization strength without requiring a significant increase in Monte Carlo samples.
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Abstract

Neural-network quantum states (NQS) have been shown to be a suitable variational
ansatz to simulate out-of-equilibrium dynamics in two-dimensional systems using time-
dependent variational Monte Carlo (t-VMC). In particular, stable and accurate time prop-
agation over long time scales has been observed in the square-lattice Heisenberg model
using the Restricted Boltzmann machine architecture. However, achieving similar per-
formance in other systems has proven to be more challenging. In this article, we focus
on the two-leg Heisenberg ladder driven out of equilibrium by a pulsed excitation as
a benchmark system. We demonstrate that unmitigated noise is strongly amplified by
the nonlinear equations of motion for the network parameters, which causes numer-
ical instabilities in the time evolution. As a consequence, the achievable accuracy of
the simulated dynamics is a result of the interplay between network expressiveness and
measures required to remedy these instabilities. We show that stability can be greatly
improved by appropriate choice of regularization. This is particularly useful as tuning of
the regularization typically imposes no additional computational cost. Inspired by ma-
chine learning practice, we propose a validation-set based diagnostic tool to help deter-
mining optimal regularization hyperparameters for t-VMC based propagation schemes.
For our benchmark, we show that stable and accurate time propagation can be achieved
in regimes of sufficiently regularized variational dynamics.
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1 Introduction

In recent times, the application of machine learning methods to problems in quantum physics
has received considerable interest [1]. Examples include the use of neural networks for quan-
tum state reconstruction [2], quantum control [3] and feedback [4], as well as classifying
phases of matter [5–7]. Due to their success in approximating high-dimensional nonlinear
functions in machine learning applications, neural networks were proposed in 2017 as a varia-
tional ansatz for the quantum wave function [8]. These neural-network quantum states (NQS)
have been applied to a wide variety of problems in quantum many-body physics, including
spin [8–23], bosonic [11, 24] and fermionic [25, 26] systems, as well as quantum computa-
tion [27,28] and dissipative systems [29–32]. One particular research area where NQS could
prove important in the near future are non-equilibrium quantum many-body problems, which
are of interest across research fields, reaching from quantum simulators with cold atoms and
trapped ions [33,34] via arrays of Rydberg atoms [35], and photonic platforms [36] to laser-
driven quantum materials [37]. The theoretical investigation of such scenarios is restricted by
a lack of computational methods that allow researchers to reliably simulate driven correlated
systems, in particular in two dimensions. NQS provide a promising candidate wave function
for the purpose of investigating out-of-equilibrium dynamics, in part due to their ability to
capture high-entanglement [38] and topological states of matter [9, 10], which may serve to
complement other approaches, in particular those based on tensor network states [39].

Typically, NQS are time propagated using time-dependent variational Monte Carlo (t-VMC)
[8,40,41]. So far, this has been studied in the literature primarily in the context of quenches
in the spin-1/2 Ising and Heisenberg models in both one and two dimensions [42–47]. In
many cases, achieving numerical stability has been identified as the key challenge for the
reliable simulation of quantum dynamics [42–44] and also for ground state optimization using
imaginary time propagation [19]. In contrast, the capability of the NQS ansatz to represent the
relevant dynamical quantum states was not found to be a limiting factor. However, the general
question which types of states can be represented well by a given network architecture and
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the scaling of the required network size is still a matter of active research [20,23].
In this work, we are concerned with understanding and separating different sources of in-

stabilities that can prevent t-VMC time propagation to reach dynamical states even when they
can in principle be captured by the variational ansatz. To this end, we take a closer look at
dynamics in the antiferromagnetic 2D Heisenberg model, which has previously been studied
with t-VMC on a 2D square lattice geometry. There, stable time propagation has been demon-
strated using the well-established restricted Boltzmann machine (RBM) architecture [45–47].
We compare this setting to the same Hamiltonian on a two-leg (L×2) ladder geometry, which
features significantly more complex quantum dynamics and which we find to be much more
sensitive to numerical instabilities. This is true already for very small systems which are still
accessible by exact numerical time evolution (exact diagonalization, ED) which provides us
with reliable data to benchmark the RBM dynamics.

We demonstrate that the observed instabilities arise primarily as a result of stochastic error,
which is amplified through the generally ill-conditioned variational equations of motion. The
stability of the propagation can be improved by reducing noise through means such as increas-
ing the number of Monte Carlo samples or reducing the simulation time step, but this comes at
the cost of increasing the required computational resources. However, we show that regular-
ization of the equation of motion also helps to mitigate the effects of noise without significant
additional computational cost and highlight the strong effect of regularization parameters on
the quality of the resulting trajectory. Taking inspiration from machine learning terminology,
this effect can be described as overfitting to stochastic noise, which leads to poor reliability of
the time stepping procedure. As in machine learning, this type of overfitting can be detected
and quantified by validating the optimized time step on independently sampled data, leading
us to introduce a validation-set variational error and show that it can help identify unstable
regimes and thus optimize regularization hyperparameters.

The main contributions of this work are therefore (i) presenting the two-leg Heisenberg
model as a particularly challenging system to simulate using NQS with t-VMC, making it a
useful benchmark case; (ii) the analysis of different sources of error and the effect of regular-
ization on t-VMC propagation in this model; and (iii) the introduction of a validation-set error
for quantifying error due to overfitting to stochastic noise.

This article is structured as follows: In Section 2 we define the driven Heisenberg model
used as reference in the rest of this paper, in Section 3 we show the influence of regularization
on stability and accuracy of the NQS dynamics, and in Section 4 we discuss how this can be
quantified using a validation-set approach. Finally, in Section 5, we conclude and provide an
outlook on future work.

2 Model and methods

We study excitations in the two-dimensional antiferromagnetic (AFM) Heisenberg model
(working in units with ħh= 1),

Ĥ(t) = J0

∑

{i, j}∈N
ĥi j + J0∆x(t)

∑

{i, j}∈Nx

ĥi j , (1)

where

ĥi j =
3
∑

µ=1

σ̂
µ
i σ̂

µ
j (2)

denotes the local Heisenberg coupling acting on each bond with the Pauli matrices
σ̂
µ
i , µ ∈ {1,2, 3}, and exchange coupling strength J0 > 0. Here, the outer sum runs over
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Sublattice
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(a) (b) (c)
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4×4
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8×2 4×4

Figure 1: (a) Ladder and square lattice geometry for the 2D AFM Heisenberg model.
The colors indicate the A and B sublattices of the bipartite model. In the ladder
geometry, periodic boundary conditions (PBC) in the x direction are imposed. In the
square geometry, PBC are imposed in both directions. (b) The Heisenberg system is
driven out of its ground state by modulating the x-bond coupling in a single pulse
with shape∆x(t) [Eq. (3)], here displayed for Ap = 0.20, tp = 0.987J−1

0 ,ωp = 8.0J0,
and σp = 0.4J−2

0 . (c) Oscillations of the x and y bond spin-spin correlations Cx/y(t)
[Eq. (4)] caused by the pulse for both geometries as computed from the exact time-
evolved state. (d) Overlap of the initial state |Φ0〉 obtained from ED with the exact
time-evolved state |Ψ(t)〉 = Û(t)|Φ0〉 for varying pulse amplitude Ap and both ge-
ometries. The other pulse parameters are the same as in panel (b).

the nearest-neighbor bonds N of a finite-dimensional rectangular lattice L of size N = Lx× L y
[Fig. 1(a)] and Nx/y ⊆N denotes subset of x/y bonds. We will consider two different lattice
geometries: the square lattice with side length L := Lx = L y and the ladder geometry with
L := Lx , L y = 2 sites. In both cases, periodic boundary conditions in x direction are assumed.
For the square lattice, we also impose periodic boundary conditions in the y direction.

Starting from the ground state at t = 0, we study the time evolution of the system under
an excitation created by a pulsed modulation of the exchange coupling along the x direction
of the lattice (which is the long direction in the ladder system), which has the form [Fig. 1(b)]

∆x(t) = Ap sin(ωp t)exp

�

−
(t − tp)2

2σp

�

, for t ≥ 0 . (3)

This driving is physically motivated and can be viewed as a single-cycle THz pulse polarized
along x which drives the exchange coupling through a Raman process [45,48]. The y direction
coupling is kept constant. In addition to the energy, we compute the average nearest-neighbor
bond correlation

Cν(t) =
1
N

∑

{i, j}∈Nν

3
∑

µ=1

〈σ̂µi σ̂
µ
j 〉 , (4)
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input layer

weights 

hidden layer

probability amplitude

Figure 2: Restricted Boltzmann machine architecture used as a variational quantum
state with N visible units corresponding to the lattice size and a hidden unit density
α. A detailed description of the ansatz is given in Appendix A.

along the ν= x , y direction as an observable. To obtain reference data, we have simulated the
time evolution under this pulse through exact (ED) propagation. The resulting dynamics are
shown in [Fig. 1(c)]. In both systems, the pulse causes oscillations that persist after the pulse.
However, while our driving protocol causes only singlet excitations on the square lattice, the
ladder model exhibits both singlet and triplet excitations [49–51] and we indeed observe more
complex and irregular dynamics in the time-dependent bond correlations. For equal amplitude
Ap of the x-bond modulation, the ladder system is more strongly affected as evidenced by the
higher distance to the initial state [Fig. 1(d)].

As a variational ansatz, we employ the restricted Boltzmann machine (RBM) with complex-
valued weights θ ∈ CM (Fig. 2) as a parametrization of the quantum wave function lnψθ (s)
mapping basis spin configurations to the corresponding log-probability amplitudes. The trans-
lation symmetries of the lattice are enforced in the manner described in Refs. [8, 45], which
reduce the number of variational parameters to M = α(N+1), where α is the hidden unit den-
sity. The translation group of an N = L× L lattice with periodic boundary conditions contains
N distinct operations. In the ladder geometry, the notion of periodic boundary conditions only
applies to the long direction; however, we include the reflection symmetry along the short
direction, so the total order of the translation symmetries is still N . The network architecture
is fully described in Appendix A.

The time propagation is done using time-dependent variational Monte Carlo (t-VMC) [8,
40], which corresponds to numerically solving the equation of motion of the time-dependent
variational principle (TDVP)

S(θ (t)) θ̇ = −iF(θ (t), t) , (5)

where θ̇ = dθ (t)/dt, using a stochastic estimate of the quantum Fisher matrix (QFM)

Si j(θ ) = E[Θ∗iΘ j]−E[Θ∗i ]E[Θ j] , (6)

and energy gradient

Fi(θ , t) = E[Θ∗i H(t)]−E[Θ
∗
i ]E[H(t)] , (7)

with log-probability derivatives Θi(s) = ∂i lnψθ (s) and local energy H(t)(s) = 〈s|Ĥ(t)|ψθ 〉
〈s|ψθ 〉

. The

expectation values E[ ·] are taken with respect to the Born probability distribution∼ |ψθ ( · )|2.
Further details on the t-VMC propagation scheme are provided in Appendix B. The initial
ground state is prepared by minimizing the energy of a randomly initialized RBM using stochas-
tic reconfiguration [41].

5

https://scipost.org
https://scipost.org/SciPostPhys.12.5.165


SciPost Phys. 12, 165 (2022)

3 Stability and regularization

In this section, we will highlight jump-like numerical instabilities that we find to arise pri-
marily due to stochastic noise from VMC sampling that enters into the nonlinear equation of
motion (5), leading to missteps where the simulation diverges from the physical trajectory in
an irrecoverable fashion. We will then show how regularization of the equation of motion can
stabilize the dynamics without requiring a change in time step or an increase in Monte Carlo
samples.

3.1 Numerical instabilities from unmitigated noise
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0.00
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Figure 3: Time-dependent per-site energy change Ē(t) = [〈Ĥ(t)〉 − E(0)]/N and
average x-bond correlation C̄x(t) = Cx(t)− Cx(0) for the 8× 2 ladder [panels (a)–
(c)] and 4×4 square geometry [panels (d)–(f)] and varying pulse strengths Ap. The
trajectories have been obtained from t-VMC evolution using MCMC [panels (a),(d)]
and EMC [panels (b),(e)] sampling as well as results based on full summation of the
equations of motion [panels (c),(f)]; see Sect. 3.1 for details. The dashed lines show
ED results for reference. In all cases, a symmetric RBM with hidden unit density
of α = 10 has been used. The initial state is the approximate ground state of the
respective system obtained by stochastic reconfiguration and is the same for panels
(a)–(c) and (d)–(f), respectively. In all cases, the equation of motion is evaluated
by singular-value decomposition of S and applying a diagonal shift of ε = 10−3 (see
Sect. 3.2 and Appendix D) for regularization.
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We first highlight the practical challenge posed by the highly nonlinear and stochastic t-
VMC equation of motion, by demonstrating how a change in lattice geometry of an otherwise
unaltered physical model can affect the stability of the NQS propagation.

In previous works [45–47], it has been shown that the dynamics of the Heisenberg model
on a square lattice can indeed be successfully simulated using t-VMC with RBM quantum states.
We obtain equivalent results for our pulsed driving [Fig. 3(d)–(f)]. The main manifestation of
the error as compared to the exact dynamics is a continuous decay of amplitude of the resulting
oscillations, which is visible from the averaged nearest-neighbor correlation Cx(t). Increasing
the width of the network, i.e., the hidden unit density α, both improves the accuracy of the
initial (ground) state and reduces the loss of accuracy over the course of the time evolution
(data not shown). This shows that the decay is the result of accumulated TDVP error and can
be reduced by an increase in network size, which is in agreement with results for a square pulse
excitation presented in Ref. [45]. However, this behavior is markedly different for the ladder
geometry (with otherwise unchanged system parameters), where instabilities quickly occur
during t-VMC evolution already for weak pulse strengths Ap ¾ 0.02 [Fig. 3(a),(b)]. Notably,
the observed instabilities violate energy conservation, a property that is inherent to the TDVP
equation of motion for a static Hamiltonian. Therefore, their origin has to be numerical. In
order to better understand which sources of error in the t-VMC method contribute to these
instabilities, we compare three different propagation schemes:

1. t-VMC propagation where the components of the equation of motion are estimated
stochastically using Markov chain Monte Carlo (MCMC) with the Metropolis algorithm,
which is the standard propagation method for NQS [8,41] [Fig. 3(a),(d)];

2. autocorrelation-free “exact” Monte Carlo (EMC), where samples are directly drawn ac-
cording to the Born distribution |ψ( · )|2 without using the Metropolis algorithm
[Fig. 3(b),(e)]; and

3. time propagation based on full summation of the t-VMC equation of motion over all spin
configurations, which provides a reference free of stochastic noise [Fig. 3(c),(f)].

In the Metropolis MCMC scheme, updates to the spin configuration are proposed based on
exchanges of spin pairs which preserve the total magnetization and thus the restriction of
the ansatz to the zero-magnetization sector. The EMC scheme can only be applied to small
systems accessible to ED, because it relies on the knowledge of the full Born distribution. Here,
it is used strictly as a benchmark to uncover the influence of noise on the dynamics while
ruling out errors due to non-convergence of the Metropolis sampling1. The full summation
scheme is similarly limited to small systems with tractable Hilbert space. We have used a
second-order Runge-Kutta method (Heun’s method) for time propagation in all cases, using
two evaluations of the equation of motion (5) per time step, a fixed step size of δt = 0.002 and
Ns = 7000 Monte Carlo samples for EMC and t-VMC. Here and in all other MCMC simulations
presented in this work, a number of Monte Carlo steps equal to the system size N is performed
between each of the Ns samples included in the chain in order to reduce the autocorrelation
between successive samples. While there is a visibly increased level of noise with the MCMC
sampling, divergences occur at similar time points of the evolution for both approaches. In
the full summation results at the same driving strengths, the energy jumps are absent and the
dynamics are more accurately reproduced on the ladder with pulses Ap ≤ 0.10 [Fig. 3(c),(f)].
We note that even in the absence of stochastic noise, the time evolution shown here fails
to accurately capture the ladder dynamics for stronger excitations, as can be seen from the

1Note that autocorrelation-free Monte Carlo sampling is practically possible beyond the ED regime for NQS
architectures based on autoregressive networks [52], though this is quite different from the benchmark implemen-
tation considered here.
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Ap = 0.15 trajectory. Furthermore, we note that the likelihood of instabilities can be reduced
by lowering the integrator time step, which, however, increases the computational cost of the
simulation.
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Figure 4: (a) Time evolution of the nearest-neighbor coupling term
C01 =

∑3
µ=1〈σ̂

µ
0 σ̂

µ
1 〉 using the TDVP equation of motion evaluated by full summation

with added artificial noise [Eq. 8]. We show results for the dynamics on the 4 × 4
lattice with pulse strength Ap = 0.20 for an RBM with hidden unit density α = 10.
For each value of the noise strength η, five independent trajectories are shown
as faint lines. The opaque lines indicate the median of the respective curves.
(b) Empirical standard deviation between the set of curves in panel (a) grouped by
noise strength η.
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Figure 5: (a),(b) Same trajectories as in Fig. 4[(a),(b)] for a driving strength of
Ap = 0.10 and with varying time step δt at a fixed noise level of η= 10−3.

In any case, the occurrence of jump-type instabilities is significantly more likely in the pres-
ence of Monte Carlo noise. This is true both for MCMC and EMC, showing that the instabilities
are not just a result of failed convergence of the Markov chain sampling. Indeed, a noisy en-
ergy gradient alone is sufficient to cause the observed divergences when combined with the
t-VMC equation of motion for NQS. We show this in an idealized picture as follows: Consider
Eq. (5) without any stochastic sampling but with an artificial term of proportional Gaussian
white noise added to the energy gradient2. This provides a direct way to control the noise

2We note that the proportional Gaussian noise model of Eq. (8) is indeed a simplification. An analysis in
Ref. [44] shows that the actual noise level varies between components of the energy gradient and depends on the
quantum geometry of the ansatz (through the QFM spectrum) as well as the energy fluctuations. However, already
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level without affecting other steps in the propagation. Specifically, we solve

Sθ̇ = −i(F + ξ) , (8)

where ξ is a random vector with components drawn from a complex normal distribution with
mean E[ξi] = 0 and variance Var[ξi] = |ηFi|2. The parameter η determines the relative noise
strength and the standard error in each component is proportional to |Fi|. The equation of
motion is solved using the same second-order Heun scheme used for the t-VMC simulation
and at a fixed time step of δt = 0.002. In Fig. 4(a) we show resulting trajectories for varying
noise levels η. For each value of η, five independent trajectories are shown. In the absence
of instabilities, the standard deviation of the trajectories at first grows with increasing noise
[Fig. 4(b)]. After a time of the order of the pulse length, the spread of the trajectories stabilizes
at a value that is independent of η. For η≥ 10−3, jump instabilities occur within the simulation
time. Whereas for η = 10−2 all trajectories show this instability already around t = 1 J−1

0 ,
the jumps happen more sporadically and at later times for η = 10−3, with only two of the
trajectories exhibiting a jump before t = 6 J−1

0 . Reducing the integrator time step decreases
the frequency of instabilities in a similar fashion, as is shown in Fig. 5.

This idealized experiment shows that random noise in the gradient can be amplified
through Eq. 5. Together with the highly non-linear nature of the phase space of the NQS
ansatz (compare Ref. [19]), this can cause jump-type instabilities like we have observed in the
t-VMC propagation, instead of a gradually increasing spread of the trajectories that would be
expected for a more regular ansatz and equation of motion. Both a reduction in noise level
and time step reduce the likelihood of instabilities.

In agreement with observations made for other systems [19,44], we find that the expressive
capabilities of the network are not a limiting factor. For individual time points, the exact
quantum state shown in Fig. 3 can indeed be represented to good accuracy by an RBM of
width α= 10. See Appendix C for detailed results.

Beyond the data shown here, we have observed RBM states with fewer parameters to be
generally more stable. This, however, comes at the cost of decreased accuracy over time, as
representational error accumulates (cf. Ref. [45]). The numerical instability present in larger
network thus counteracts the benefits of increased expressiveness, making it particularly im-
portant to find ways of alleviating this effect without significant increase in computational cost.
We further note that while the ladder system is particularly sensitive to the types of instabilities
discussed here, they can also occur in the square lattice geometry. We have observed this both
in the artificial noise model (Fig. 4) and for a driving strength increased beyond Ap = 0.30
(data not shown). Therefore, while the Heisenberg ladder is a very suitable benchmark system
for these types of numerical issues, the observations made here can be expected to apply to a
broader class of systems, especially when they are driven far out of equilibrium on short time
scales.

In the next section, we will discuss how the choice of regularization scheme affects the
stability of the dynamics.

3.2 Influence of regularization

The formal solution of the TDVP equation (5) is given by

θ̇ = −iS+F(t) , (9)

where S+ denotes the Moore-Penrose pseudoinverse of the QFM [8, 42, 44, 46]. Computing
the pseudoinverse can be done by singular-value decomposition (SVD), which is equivalent

the simple proportional model used here does exhibit the jump-like instabilities when subjected to noise amplified
through the equation of motion.

9

https://scipost.org
https://scipost.org/SciPostPhys.12.5.165


SciPost Phys. 12, 165 (2022)

10−6

10−4

10−2

100

E(
t)

(a) N = 8× 2, Ap = 0.02 (b) N = 8× 2, Ap = 0.10 (c) N = 4× 4, Ap = 0.20

Threshold λ

1e-01

1e-02

1e-03

1e-04

1e-05

1e-06

1e-07

1e-08

1e-09

1e-10

0.0 2.5 5.0 7.5 10.0
J0t

10−6

10−4

10−2

100

E(
t)

(d)

0.0 2.5 5.0 7.5 10.0
J0t

(e)

0.0 2.5 5.0 7.5 10.0
J0t

(f)

Figure 6: Infidelity of the time-evolved variational state compared to the exact trajec-
tory for varying regularization (in the form of the SVD threshold λ). The trajectories
have been computed using t-VMC with EMC [panels (a)–(c)] and Metropolis [panels
(d)–(f)] sampling. The columns correspond to a weak excitation Ap = 0.02 [panels
(a),(d)] and a moderate excitation Ap = 0.10 [panels (b),(e)] in the 8× 2 ladder, as
well as a stronger excitation Ap = 0.20 in the 4×4 square lattice [panels (c),(f)]. The
initial E(t = 0) of order 10−5 is the approximation error of the variational ground
state. The time propagation has been computed using t-VMC with EMC sampling
with Ns = 24000 samples for the ladder [panels (a),(b)] and Ns = 11200 for the
square lattice [panel (c)]. We have used the symmetrized RBM ansatz with a hidden
unit density of α= 10.

to the eigendecomposition in this case. This is because S is a covariance matrix and there-
fore positive semi-definite, i.e., all eigenvalues are nonnegative. Then, in the eigenbasis of
S = V diag({ζ j}Mj=1)V

†, the TDVP equation reduces to

ζ j[V
†θ̇] j = −i[V †F] j . (10)

We order the eigenvalues of S by magnitude ζ1 ≥ ζ2 . . .≥ ζM in the following and denote the
smallest nonzero eigenvalue by ζr . Then, for all nonzero eigenvalues corresponding to j ≤ r,
we have [V †θ̇] j = −iζ−1

j [V
†F] j . The directions in the null-space of S do not contribute to the

physical dynamics; changes of θ in those directions only affect gauge degrees of freedom of
the quantum state. In order to obtain the minimum-norm solution, these are set to zero, i.e.,
[V †θ̇] j = 0 for j > r.

In practice, the numerical solution of this equation is complicated by the fact that NQS
typically possess a non-exponential but still large number of variational parameters com-
pared to more traditional variational wave functions and further allow for redundancy in the
parametrization of a specific quantum state. As a consequence, the QFM is singular, and the
nonzero part of its spectrum typically spans many orders of magnitude [43,44,53]. Therefore,
the linear system (5) has a high condition number κ(S) = ζ1/ζr which, in particular, means
that small perturbations in the right-hand side F(t) can be strongly amplified in the solution θ̇
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Figure 7: Relative change in energy and x-bond correlation as defined in Fig. 3 for a
selection of trajectories shown in Fig. 6 with different regularization strengths λ.

of the equation of motion (EOM), causing the jump instabilities we have empirically observed
above. For this reason, it is necessary to regularize the EOM in order to stabilize the dynamics
while preserving the physical accuracy of the resulting trajectory. Typically, this is done by
truncating eigenvalues below a threshold λ in Eq. (9). Specifically, ζi is treated as zero when
ζi ≤ λζ1. The effective condition number of S is then bounded by κ≤ λ−1. While we focus on
this regularization scheme in the remainder, our analysis also applies to a broader class of reg-
ularization schemes. In particular, the application of a diagonal shift to S and a signal-to-noise
ratio based regularization scheme proposed in Ref. [44] are briefly discussed in Appendix D.

Naturally, there is a trade-off between stability and accuracy: Too much regularization will
suppress crucial parts of the physical dynamics, while the system is susceptible to instabilities
without or with only weak regularization. This can be seen in Fig. 6, where we show the
infidelity of the time-dependent quantum state relative to the ED time evolution of the system,

E(t) = 1−
|〈ΨED(t)|ψθ (t)〉|2

〈ΨED(t)|ΨED〉〈ψθ (t)|ψθ (t)〉
, (11)

for varying regularization strength λ. Specifically for the weak pulse [Fig. 6(a)], we can clearly
see a separation of three regimes: an over-regularized regime (for λ ≥ 10−4), where the dy-
namics are stable but inaccurate; an intermediate stable regime where the physical observables
are accurate and the regularization still sufficient to stabilize the dynamics; and an unstable
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regime (λ ≤ 10−8) where jump instabilities occur within the simulation time frame. While
for the weak pulse the stable regime spans several orders of magnitude, it becomes smaller
with increasing strength [Fig. 6(b)]. By contrast, on the square lattice the dynamics remain
stable and largely unaffected by the regularization strength over a wide range of λ even at
a pulse strength of Ap = 0.20 [Fig. 6(c)]. These results have been obtained with EMC sam-
pling, but the same behavior can be observed for the practically relevant case of Metropolis
sampling, which is shown in Fig. 6[(d)–(f)]. In this case, the stable regime of regularization
becomes smaller for the ladder system. Figure 7 shows the expectation values of energy and
bond correlations for several trajectories. These observables show how in the over-regularized
regime, numerical stability comes at the cost of physical errors which manifest here in an in-
correct reproduction of the oscillation frequencies. At the same time, the square lattice system
is almost unaffected by Metropolis sampling, except at very low thresholds. Notably, for both
EMC and MCMC sampling strategies, the dynamics converge to a stable trajectory at a much
lower number of Monte Carlo samples than in the the ladder system. This hints at an increased
sampling complexity of the low-lying ladder excitations in accordance with the higher physical
complexity of the ladder excitations, an observation which is corroborated by our results in
the next section.

Altogether, our results highlight the delicate balance between stability and accuracy of the
dynamics in the presence of stochastic noise and the resulting necessity to fine-tune regulariza-
tion hyperparameters to reach the optimal regime. From the comparison of ladder and square
geometry, we have further seen that the extent of this behavior depends strongly on the details
of the system.

4 Overfitting to noise and validation error

In order to choose an optimal regularization for a given system and excitation scheme, it is
important to have access to appropriate diagnostics. While the error relative to ED as shown in
the previous section provides a straightforward way to assess the quality of the solution, this
option is restricted to small benchmark systems. Here, we therefore propose an alternative
diagnostic which is more generally applicable.

The local truncation error resulting from a single time step in the variational approximation
is quantified by the TDVP error [8,44]

r2(t) =

�

D(ψ[θ (t) + θ̇ δt], Ût+δt,tψ[θ (t)])

D(ψ[θ (t)], Ût+δt,tψ[θ (t)])

�2

. (12)

Here, D(·, ·) denotes the Fubini-Study distance and Ût ′,t is the unitary time evolution operator
from t to t ′. The equation of motion (5) can be derived by locally minimizing the numerator
of Eq. (12). The denominator provides a rescaling of the error to account for the varying exact
distance between points along the trajectory. This quantity can be estimated to second order
in δt as [44]

r2(θ̇ ; S, F,δE) = 1+
θ̇ †(Sθ̇ + iF)− iF†θ̇

(δE)2
, (13)

where (δE)2 = Var[Ĥ(t)] and the other quantities are defined as in Eq. (5).
While capturing loss of accuracy due to the variational approximation, the TDVP error does

not account for effects caused by the stochastic noise affecting the equation of motion and thus
its solution. In order to account for this additional source of errors, we take inspiration from a
standard practice of machine learning: the use of a so called validation error to detect failure to
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Monte Carlo sampling and used to obtain two independent derivatives through solv-
ing the equation of motion. The validation error (15) is then computed as the error
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generalize beyond the training data caused by overfitting to a specific sample [54]. Adapted to
our present purpose, we consider the specific realization of spin configurations used to estimate
the EOM as the training set. Solely optimizing the parameter update for this realization bears
the risk of overfitting, in which case the solution may be optimal only on the training set but
performs badly on independent estimates of the same EOM. In order to detect this, we can
compute two updates θ̇ (i), i = 1,2, from independently drawn samples (separately estimating
S(i), F (i) for both). While the resulting θ̇ (i) and corresponding error estimates

r2
tr,i = r2(θ̇ (i); S(i), F (i),δE(i)) (14)

are identically distributed, the error of the update θ̇ (2) with respect to the independently esti-
mated equation of motion S(1)θ̇ = −iF (1) can be used to quantify the generalization properties
of the parameter derivative. This procedure is illustrated in Fig. 8. Specifically, we define the
validation TDVP error as

r2
val = r2(θ̇ (2); S(1), F (1),δE(1)) . (15)

Crucially, r2
val can be estimated using only quantities that are accessible as part of the t-VMC

computation. This makes it feasible to use the validation error as a diagnostic for the degree
of overfitting and thus reliability of the TDVP solution in systems where a comparison to ED
data is no longer possible. If the solution of the EOM is deterministic, we have θ̇ (1) = θ̇ (2)

and consequently r2
val = r2

tr,i . Otherwise, the validation error will be larger, indicating the

amount of “overfitting” of the update θ̇ (1) to noise present in the sample. We note that the
error estimates are themselves affected by noise in both EOM and energy variance. This is
alleviated by considering the integral

R2
tr/val(t) =

∫ t

0

r2
tr/val(t

′)dt ′ , (16)

or, if the local quantity is needed, by averaging over additional realizations of r2
val. Despite its

ad-hoc nature, we find that this definition of a validation error provides a useful way of quan-
tifying how the regularization scheme affects the solution of the EOM in the presence of noise.
Figure 9 shows the integrated TDVP and validation error for weak and moderate driving. While
the bare TDVP error is insensitive to the Monte Carlo error and corresponding instabilities3,
a clearly discernible effect is present in the validation error which therefore shows a much
better qualitative agreement with the reference ED error (compare Fig. 6). Note that we show
here the error for EMC sampling because, while the utility of the local validation error is not
limited to this case, the integrated curves are strongly affected by local perturbances present
in the MCMC data.

Figure 10 shows the local TDVP and validation error over a range of thresholds at various
times during the duration of the pulse. Here we can see that the unstable regimes of regu-
larization indeed correspond to an increased validation error r2

val compared to r2
tr, which is

consistent with their interpretation as being a consequence of overfitting to noise in the Monte
Carlo update, while in the stable regions almost no overfitting error is observed, indicating a
high degree of consistency between updates. Furthermore, this behavior is not uniform over
time: For Ap = 0.10, overfitting occurs particularly strongly at the waning edge of the pulse.
The degree of overfitting and its sensitivity to the regularization strength is significantly lower
for the weaker excitation. Note that the absolute magnitude of the TDVP error is not directly
comparable between different pulse strengths. This is because the denominator of Eq. (12) de-
pends on the distance between |ψ(t)〉 and |ψ(t+δt)〉which decreases with decreasing driving

3While R2
tr does increase for small λ eventually in Fig. 9, this only happens after the jumps in the corresponding

trajectories have already occurred, in contrast to R2
val which detects hints of the instability already before that point.
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val on a loga-
rithmic scale for varying regularization strength in the form of the SVD threshold λ at
different points in time for (a) a weak Ap = 0.02 and (b) stronger driving amplitude
Ap = 0.10 on the 8× 2 ladder system. The TDVP error has been computed here by
taking variational states |ψθ (t)〉 from the stable λ = 10−6 trajectory [Fig. 6(d),(e)]
and then performing a single step δt = 0.002 at each displayed time and for each
λ using Metropolis sampling with Ns = 28 · 103 samples. We show here the average
error over five independent realizations of the validation error, with error bars indi-
cating the standard deviation, in order to account for variance in the error estimate
itself.
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Figure 11: Validation error relative to the TDVP error for the data shown in Fig. 10.

strength and goes to zero for vanishing dynamics. Therefore, r2 measures the error relative
to the magnitude of the physical dynamics which puts the observed higher values of r2

tr/val for
the weaker excitation strengths into perspective. Data for the validation error relative to the
baseline TDVP error can be found in Fig. 11. The validation error also provides some insight
into the behavior of the propagation depending on the number of Monte Carlo samples, which
we briefly show in Appendix E.

We note that the region of increased overfitting coincides with a region where the exact
quantum states, while being representable to a fidelity below 10−3, appear to be harder to
learn using a supervised scheme than states at other times (see Appendix C). However, we
would like to stress it is still possible to achieve stable and accurate propagation in this region
by suitable tuning of regularization and sample size, showing that an absolute inability of the
RBM ansatz to represent those states is not the issue. The precise relationship between the
difficulty of supervised optimization, sampling complexity, and generalization error remains
an important question for further research, also in comparison with other works [23].
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In summary, we have demonstrated that the sensitivity of the ladder system to the regu-
larization scheme as well as the need for a high number of Monte Carlo samples to accurately
estimate dynamics especially around the end of the THz pulse is indeed captured by the pro-
posed TDVP validation error. These effects can thus be seen as a consequence of a lack of
generalization of the derivative estimate θ̇ or overfitting to an insufficiently representative
sample of spin configurations.

5 Conclusions and outlook

We have presented the time propagation of the Heisenberg model on the two-leg ladder as a
key benchmark for neural-network-based methods to simulate quantum many-body dynamics.
In line with other studies, we have found that RBM quantum states are in principle capable of
representing the relevant quantum states during the simulated time evolutions, although im-
portant open questions remain regarding the relationship between learnability and sampling
complexity of an NQS. However, the combination of (i) numerical instabilities already in small
systems and (ii) tunability between relatively well-behaved dynamics on the square lattice and
the much more challenging dynamics on the ladder make this model system a suitable case
study for t-NQS. Moreover, larger-scale ladders can also be simulated with tensor network
states, which makes Heisenberg ladders an ideal drosophila for more detailed comparisons
between different systematically improvable variational ansätze and propagation schemes be-
yond system sizes accessible to exact diagonalization.

We have shed light on the delicate balance between stabilizing regularization and physical
accuracy of the variational time evolution in the presence of stochastic noise inherent in the
t-VMC approach. In particular, motivated by the interpretation of these instabilities as a con-
sequence of overfitting to Monte Carlo noise in the equation of motion, we have introduced a
validation-set approach as a quantitative diagnostic of the noise-based error. We have demon-
strated that this validation error can be used to aid in the optimization of relevant hyperpa-
rameters and can help identifying critical regions where the propagation becomes particularly
sensitive to noise. While this is particularly relevant for NQS dynamics, the validation-set ap-
proach can be applied to t-VMC simulations using other variational states as well as ground
state optimization based on imaginary-time propagation.

The specific validation error introduced here is based on a second-order approximation
of the TDVP error, which can be computed from quantities directly available during standard
t-VMC runs. However, it is itself susceptible to noise and numerical instabilities. Therefore,
while we have shown its capability of quantifiying the influence of regularization and high-
lighting regions of particularly unstable dynamics, finding a more robust measure of the error
may be a useful line of future research.

The ability of quantifying the generalization error in t-VMC propagation also opens up
the possibility of devising an adaptive scheme to control regularization hyperparameters and
Monte Carlo sampling in order to achieve stable dynamics without the need for manual fine
tuning. This is particularly relevant for general NQS software frameworks such as NETKET [55]
which strive to be usable in a wide range of physical settings.
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A Variational ansatz

In our simulations, we employ the translation-invariant RBM ansatz as introduced in Ref. [8].
Explicitly,

lnψθ (s) =
Nh
∑

j=1

ln cosh [W̃ s+ b̃] j . (17)

Here, the full weight matrix W̃ ∈ CNh×N and hidden bias b̃ ∈ CNh are defined in terms of a
smaller number of independent parameters W ∈ Cα×N and b ∈ Cα, ensuring that
ψ(τ(s)) = ψ(s) for all N lattice translations τ. We refer to the independent parameters col-
lectively as θ = (W, b) ∈ CM . This ansatz reduces the number of variational parameters to
M = α(N+1) where α= Nh/N is the hidden unit density. Thus, the dimension of the parame-
ter space grows only linearly in the system size for the symmetric RBM ansatz. Note that RBM
wave functions can include another term, the visible bias ã ∈ CN , as ψa,θ (s) = eã>sψθ (s).
When enforcing translation invariance in the manner described above, only one component of
the visible bias ãi = a ∈ C remains independent which is redundant in the zero magnetization
sector and therefore not included in our variational ansatz.

In addition to enforcing translation symmetry, we restrict the state space of the model to the
zero magnetization subspace of the full Hilbert space. Thus, the ansatz wave function is only
evaluated for spin configurations satisfying

∑

j s j = 0 and ψθ (s) = 0 is assumed otherwise.
For N sites, the dimension of the full Hilbert space is 2N , the zero-magnetization subspace
has dimension

� N
N/2

�

. Note that the driving is compatible with both the translation symmetry
and zero magnetization constraints. Furthermore, all of our calculations were performed in
a computational basis taking into account the sign structure of the AFM ground state, which
is a standard approach for the Heisenberg model [57–59] and helps circumvent the difficulty
of learning states with a nontrivial sign structure, which is a more challenging task for NQS
[17,18]. Specifically, this is done as follows: Let {|s〉 | s ∈ {±1}N} denote the σ̂z eigenbasis, so
that σ̂z

i |s〉= si|s〉. In the AFM phase, the Heisenberg model has a nondegenerate ground state

|Φ0〉=
∑

s∈{±1}N
Φ0(s)|s〉 , (18)
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which is part of the zero eigenspace of the magnetization M̂ z =
∑

i∈L σ̂
z
i . On a bipartite lattice

where the sites are partitioned into disjoint subsets A and B [compare Fig. 1(a),(b)], the
ground state coefficients have the form

Φ0(s) = (−1)$(s)A0(s) , (19)

where A0(s) ∈ R>0 is real and nonnegative. The parity $(s) =
∑

i∈A si is determined by the
magnetization on the A sublattice. This property is known as Marshall’s sign rule [60] and
makes it possible to represent the ground state by a real nonnegative wave function in the
computational basis |sc〉 =

∏

i∈A σ̂
z
i |s〉, which significantly improves convergence of the NQS

ground state optimization as the network only needs to learn a trivial sign structure.

B Time propagation

In t-VMC [40, 41], the time propagation of the variational ansatz is based on the time-
dependent variational principle (TDVP). The equation of motion for the vector of variational
parameters θ ∈ CM is given by dθ (t)/dt = θ̇ , where θ̇ is the solution of the linear system
Eq. (5). The quantities involved in this equation are the quantum Fisher matrix (QFM)

Si j(θ ) =
〈∂iψθ |∂ jψθ 〉
〈ψθ |ψθ 〉

−
〈∂iψθ |ψθ 〉〈ψθ |∂ jψθ 〉

〈ψθ |ψθ 〉2
, (20)

and the energy gradient

Fi(θ , t) =
∂ 〈Ĥ(t)〉
∂ θ ∗i

=
〈∂iψθ |Ĥ(t)− 〈Ĥ(t)〉|ψθ 〉

〈ψθ |ψθ 〉
. (21)

Here, ∂i = ∂ /∂ θi denotes the complex partial derivative with respect to θi . Geometrically, the
QFM accounts for the local curvature around |ψθ 〉 on the manifold of variational states. This
is analogous to the role of the Fisher information matrix for classical probability distributions
[28], which is used in natural gradient descent [61]. The QFM only depends on the form
of the variational ansatz and the location in parameter space but not on the Hamiltonian.
Still, analysis of its structure and, in particular, its spectrum can give insight into the quantum
properties and phase diagram of the system for the RBM ansatz [53].

In t-VMC, both QFM and gradient are estimated as stochastic expectations values E[ · ]
with respect to the Born probability distribution∼ |ψθ ( · )|2 as written in Eqs. (6) and (7). The
resulting equations of motion are valid for a complex differentiable (holomorphic) mapping
θ 7→ψθ between the parameters and the quantum wave function. This is indeed satisfied by
the symmetric RBM ansatz.

In order to obtain the ground states used as initial states for the time propagation, we have
used stochastic reconfiguration [8,41], which is based on an approximation of the imaginary-
time Schrödinger equation in the manner of Eq. (5).

C Representability of the trajectory

Even though wider RBMs are necessary in order to better follow the true dynamics via TDVP-
based propagation, the states along the trajectories considered here are in general not signifi-
cantly harder to learn by an RBM than the ground state. In order to test this statement, we fit
RBMs with α = 2 and α = 10 to the exact states along the ED trajectory |Ψ(t)〉 in the ladder
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Figure 12: (a) Infidelity [Eq. (11)], (b) energy, and (c) spin-spin correlation Cx for
α = 2 and α = 10 RBM states obtained from supervised learning of the amplitudes
along the exact trajectory at an excitation strength of Ap = 0.10. For each time point,
the best-fidelity results among five independently optimized states are displayed. See
Appendix C for further details.

system using a supervised learning approach. The results presented here have been computed
using the supervised learning implementation available in NETKET [55]. Specifically, for each
given time t, we minimize the negative log-overlap loss

Lt(θ ) = − ln
〈ψθ |Ψ(t)〉〈Ψ(t)|ψθ 〉
〈ψθ |ψθ 〉〈Ψ(t)|Ψ(t)〉

, (22)

using the known probability amplitudes of the exact states that we have obtained from ED.
Starting from an approximate ground state, we have run a natural-gradient based optimization
[61] targeting this loss function for n = 1000 steps at a constant learning rate of γ = 0.01.
This corresponds to a parameter update

θ (i+1)← θ (i) − γ gt(θ
(i)) , (23)

with the loss gradient gt(θ ) which is the least-squares solution of the linear equation

S(θ ) gt(θ ) =∇θ Lt(θ ) . (24)

The QFM S(θ ) is defined in the same way as in the main text. In practise, we evaluate the loss
Lt(θ ) on batches of spin configurations {s(i)}Bi=1 of size B = 1000 per step, which are randomly
drawn from a uniform distribution over all zero-magnetization configurations on the lattice.
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Note that this update equation is of the same form as in stochastic reconfiguration (SR) [41].
This is because SR is a special case of the natural gradient descent approach applied to the
energy expectation value as opposed to a general loss function [28]. The optimization is per-
formed independently for each time t. Results for the final infidelity, energy, and spin-spin
correlation are shown in Fig. 12. For each time point, the best-fidelity state has been selected
from five independent optimizations from the same initial state and with the same parame-
ters4. Already at a small hidden unit density of α = 2, the trajectory can be represented with
an infidelity of the order of 10−3 with good accuracy in energy and spin correlations. For a
wider network at α = 10 and starting from a well-converged initial state at E = 10−5, the
trajectory can be captured with infidelity below 10−3 throughout, although a peak of infidelity
is clearly visible around t∗ ≈ 1.65. The location of this peak matches the region of increased
overfitting and thus instability observed in Sect. 4 (compare Fig. 10). However, even though
the peak region is more prone to instabilities, it can still be passed by t-VMC if the time prop-
agation is sufficiently stabilized (compare Fig. 7). Thus, the increased final infidelity of the
learned excited states is not necessarily an indication of an absolute inability of the RBM ansatz
to capture them more accurately but may also be attributed to an increased difficulty of the
optimization.

Altogether, these results provide an upper bound on the minimal infidelity achievable by
an optimal RBM representation of the dynamic states at a given size and thus indicate that
the representability of the time-evolved states is not the key limitation here. Therefore, an
improved time propagation scheme should be expected to be able to reach the accuracy of the
supervised learned states.

D Alternative regularization schemes

There are many ways to regularize the linear equation of motion (5) to reduce its suscepti-
bility to noise. We have focused here on the conceptually simple method of truncating the
QFM spectrum at a relative threshold as described in Sect. 3.2. Alternatively, the EOM can be
regularized by adding a diagonal shift S̃ = S+εI , with ε > 0. This is typically done for ground
state optimization (see, e.g., Refs. [8,42,46]), but can in principle also be applied to the time-
dependent case. Since S is Hermitian and positive semi-definite, the spectrum of the shifted S̃
is bounded from below by ε, making the matrix invertible and bounding the condition number
by κ(S̃)≤ (ζ1 + ε)/ε. Therefore, a shift significantly larger than machine precision also serves
to improve the condition number and stabilize the propagation in a fashion similar to the SVD
cutoff. This can be seen in Fig. 13(a) which shows a similar behavior of the shift regulariza-
tion when compared to the threshold in Fig. 6. A more sophisticated regularization strategy
has recently been proposed in Ref. [44]. This approach truncates parts of the equations of
motion akin to the singular value threshold above but taking into account the strength of VMC
noise in different components of the energy gradient. Specifically, directions in the S eigenba-
sis are discarded based on a softened cutoff λSNR of the signal-to-noise of the corresponding
component of the energy gradient which can be estimated from the t-VMC data. When ap-
plying this approach to the ladder geometry, we have found a behavior similar to the other
methods discussed above as a function of varying λSNR [Fig. 13(b)]. This highlights that the
trade-off between stability and physical accuracy we have discussed and the need for reliable

4In the region of peak infidelity around t∗ defined below, the optimization of the α= 2 RBM frequently became
unstable after reaching the minimal energy, leading to an increased energy after 1000 steps compared to the
actual achievable minimum. Therefore, for the results presented here, the iteration has been stopped early after
10 successive steps without reduction of the loss in this region. The optimization of the α= 10 RBM did not have
this issue.
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Figure 13: Infidelity of the time-evolved variational state compared to the exact tra-
jectory for (a) the diagonal shift regularization with varying strength ε and (b) the
signal-to-noise (SNR) ratio based regularization of Ref. [44] with varying threshold
λSNR. The trajectories have been computed using t-VMC with EMC at a moderate ex-
citation strength of Ap = 0.10 in the 8 × 2 ladder geometry using the symmetrized
RBM ansatz with a hidden unit density of α= 10.

diagnostics is relevant beyond the simple regularization scheme used in the main text.

E Validation error and Monte Carlo sample size

While sensitive to the regularization, the Monte Carlo error in the update θ̇ is of course also de-
pendent on the number of samples used in the estimate of the equation of motion. The fewer
samples are used, the higher the generalization error with respect to the full Hilbert space
will be. As with the regularization, this behavior is strongly system and excitation dependent.
For the square lattice geometry, convergence with respect to the sample size occurs quickly
compared to the ladder system, where a much higher number of samples is needed to obtain
reliable estimates. This indicates a higher sampling complexity of the ladder states compared
to the well-behaved singlet magnon excitation in the square lattice, as is qualitatively captured
by the validation error. This is demonstrated in Fig. 14, which shows the TDVP and validation
error, and Fig. 15, which shows the relative validation error, as a function of sample size for
both geometries and different driving strengths. We see a clear overfitting behavior which is
especially strong around the waning edge of the pulse, as is similarly observed in the regular-
ization dependence in Section 4, and which is only suppressed by increasing the number of
samples up to ∼ 28 · 103 for the ladder5. In contrast, convergence of the validation error in
the square lattice system occurs much faster, even for the stronger excitation shown here.

5We note that simulations with larger sample sizes are computationally feasible (compare, e.g., Ref. [44]).
However, ∼ 28 ·103 already exceeds the Hilbert space dimension of our benchmark systems by more than a factor
of two. Given this already large relative size and the fact that MCMC convergence is proportional to the square root
of the (effective) sample size, we consider it important to be able to stabilize the dynamics through regularization
in this regime.
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Figure 14: (a),(b) Comparison of TDVP and validation error for varying number of
Monte Carlo samples on a linear scale for the same trajectory and parameters as in
Fig. 10, with λ= 10−6 and at driving amplitudes Ap = 0.02 [panel (a)] and Ap = 0.10
[panel (b)] in the 8× 2 ladder system. (c) The same data for an Ap = 0.20 pulse in
the 4×4 square geometry. In all panels, the error bars indicate the standard deviation
over five independent realizations of the validation error as in Fig. 10.
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Figure 15: Validation error relative to the TDVP error for the data shown in Fig. 14.
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5 Symmetries in neural quantum states

Symmetries are operations under which a physical system, represented by its Hamiltonian in quantum
many-body physics, is invariant. Knowing the symmetry sector of a target state can be utilized to either
improve convergence by constraining the ansatz to the desired sector or evaluate the accuracy of an
optimized unconstrained trial state.

In a quantum system with Hamiltonian Ĥ , a symmetry corresponds to an invertible operator T̂ that
commutes with the Hamiltonian, [Ĥ, T̂ ] = 0. As a consequence, the two operators are simultaneously
diagonalizable. Every non-degenerate eigenstate of Ĥ is, therefore, also an eigenstate of T̂ . Degenerate
energy eigenstates can still be superpositions of states in different symmetry sectors. Thus, while the
simultaneous diagonalizability guarantees the existence of a complete eigenbasis of joint eigenstates
of Ĥ and T̂ , arbitrary energy eigenstates are not necessarily eigenstates of T̂ . If the ground state of a
system is degenerate, variational energy minimization will generally yield an arbitrary vector within
the ground state manifold (if it can be represented and learned). In this case, symmetry projections can
be used for targeting specific ground-state subspaces. Symmetry projections can also restrict the ansatz
to specific non-ground-state sectors to target excited states by energy minimization [88, 92].

Generally, symmetries of a quantum system can be described in terms of symmetry groups and their
representations. Therefore, some concepts from group theory will appear in the following sections.
A more comprehensive overview of group-theoretic concepts can be found in the literature, e.g., in
Refs. [217, 218]. We only consider Abelian symmetry groups18; approaches to enforce non-Abelian
symmetries are discussed in Refs. [200, 219].

In the following, Section 5.1 will review several approaches from the literature to implement symmetries
in NQS. Then, Section 5.2 will discuss a specific application of symmetry projections in the context of
the honeycomb Kitaev model (HKM).

5.1 Implementing symmetries in NQS

This section discusses several approaches for constructing symmetry-adapted variational states.

5.1.1 Diagonal symmetries and basis restrictions

The simplest forms of symmetries are those that can be represented by an operator D̂ that is diagonal
in the computational basis, i.e., 〈s′|D̂|s〉 = D(s)δs,s′ . Restricting the trial state to the eigenspace of D̂

18A group G is Abelian if all its elements commute, i.e., if for all g, g′ ∈ G: gg′ = g′g [217].
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5 Symmetries in neural quantum states

corresponding to a specific eigenvalue λ ∈ R then requires the eigenvalue condition

(D̂ − λ)|ψθ〉 = 0 ⇔ [D(s) − λ]ψθ(s) = 0 (5.1)

to hold for all s ∈ S . Thus, whenever D(s) 6= λ, the corresponding probability amplitude needs to
vanish or, equivalently, suppψθ ⊆ Dλ = {s ∈ S | D(s) = λ}, while amplitudes corresponding to
configurations s ∈ Dλ within the desired eigenspace are unconstrained.

To enforce this condition in VMC, it is sufficient to restrict the Monte Carlo sampling process to the
subset Dλ, so that the wave function is only evaluated in the correct symmetry sector. The commutation
relation [Ĥ, D̂] = 0 implies that the Hamiltonian only has non-zero matrix elements within each
symmetry sector, i.e.,

s ∈ Dλ ⇒ Conn(s; Ĥ) ⊆ Dλ (5.2)

[where the connected configurations Conn(s; Ĥ) are defined as in Eq. (3.27)]. Thus, the local en-
ergy (3.23) is well-defined for the restricted set of configurations, and Eq. (3.24) can still be applied.

Since configurations outside Dλ have zero probability, they do not need not be explored during MCMC
sampling (Section 3.3.3). Thus, the process needs to be implemented in such a way that configuration
updates leading outside the symmetry sector are always rejected and it is necessary to adapt the proposal
distribution so that ergodicity is preserved and, ideally, no symmetry-breaking updates are proposed.

As a specific example, consider a spin-1/2 system and the total z-direction magnetization

M̂z = 1
2

N∑
i=1

σ̂zi , Mz(s) = 〈M̂z〉|s〉 = 1
2

N∑
i=1

si. (5.3)

The operator M̂z is diagonal in the σ̂z eigenbasis σ̂zi |s〉 = si|s〉. This global magnetization is conserved,
e.g., in the antiferromagnetic Heisenberg model, and the ground state is part of the zero-magnetization
eigenspace. This symmetry has been regularly exploited in theNQS literature [70, 76, 79, P1] by restricting
the simulation to that subspace, which is spanned by the configurations D0 = {s ∈ S | Mz(s) = 0}.
The standard proposal scheme for spin-1/2 systems is to propose single spin flips at randomly chosen
indices. However, in D0, such proposals would always be rejected as they necessarily change the
magnetization, leading to a stuck sampling process. Therefore, the proposal scheme is typically altered
so that exchanges of spins at two randomly chosen sites are proposed instead, which conserves the total
magnetization and retains ergodicity in D0, since any permutation of spins can be decomposed into a
sequence of exchanges. Another example of a diagonal symmetry, the parity of the magnetization, will
be discussed in Section 5.2.

5.1.2 Symmetry-projection by superposition

Non-diagonal symmetries can no longer be imposed simply by restricting the computational basis.
However, given an unconstrained variational wave function ψ̃θ , with no assumptions regarding its
internal structure, it is possible to project the trial state to the desired symmetry sector [82]. The
symmetrized amplitudes

ψθ(s) = 〈s|P̂ |ψ̃θ〉 (5.4)
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5.1 Implementing symmetries in NQS

can then be used in VMC algorithms. This approach requires the action of the symmetrization operator
P̂ on the trial state to be efficiently computable.

We consider an Abelian symmetry group G with Nsym = |G| elements acting on the configurations s

by permutation of the indices. This action is denoted by g.s with (g.s)i = sg(i) and the operator T̂g
is defined by T̂g|s〉 = |g.s〉. Prominent examples of such groups are space groups of discrete lattices,
which are generated by elementary translations, rotations, and reflections. An invariant trial state then
has the property that, for all g ∈ G,

ψθ(s) = ψθ(g.s) (5.5)

or, equivalently, T̂g|ψθ〉 = |ψθ〉. Such a state can be obtained from any ansatz wave function ψ̃θ(s) by
applying the symmetrization operator P̂ = 1

Nsym

∑
g∈G T̂g , giving the amplitudes

ψθ(s) = 1
Nsym

∑
g∈G

ψ̃θ(g.s). (5.6)

Thus, the probability amplitudes of the symmetry-invariant state are obtained as a superposition of the
unconstrained state’s amplitudes for all configurations in its orbit sG = {g.s | g ∈ G}.

This approach can be generalized beyond invariance. Different symmetry sectors (i.e., subspaces of
states with specific symmetry quantum numbers) can be labeled by different irreducible representations
(irreps) of the group19 and, since G is Abelian by assumption, all its irreps are one-dimensional [217].
Consequently, each irrep ρ is determined by a mapping χρ : G → C \ {0} which is called the character
of the representation in this case. A general symmetry-projected state is constructed as [82, 218, P4]

ψρθ(s) = 1
Nsym

∑
g∈G

χ∗
ρ(g) ψ̃θ(g.s), (5.7)

with symmetrization operator P̂ρ = 1
Nsym

∑
g∈G χ

∗
ρ(g)T̂g, and transforms according to the irrep ρ as

ψρθ(g.s) = χρ(g)ψρθ(s). (5.8)

There always exists a trivial irrep ρ0, the unit representation, mapping all elements to the identity and
therefore satisfying χρ0(g) = 1 for all g ∈ G. For this irrep, Eq. (5.7) reduces to the symmetry invariant
Eq. (5.6).

To illustrate this abstract picture using a concrete symmetry, consider the example of a translation-
invariant Hamiltonian on a one-dimensional N -site chain with periodic boundaries (adapted from
an example in Ref. [218]). The translation group of this lattice is isomorphic to the cyclic group
ZN ' {τn}N−1

n=0 and is generated by the shift operation τ , which acts on a configuration as

τ.s = (sN , s1, . . . , sN−1). (5.9)

The irreps of ZN are theN -th roots of unity which can be labeled by the lattice momenta kn = 2πn/N.

19Formally, an n-dimensional representation of a group G is a map from G to the space of invertible linear operators GL(V )
on an n-dimensional vector space V.The representation associates an operator ρ(g) with each group element g so that the
group structure is respected, i.e., ρ(g)ρ(g′) = ρ(gg′). An irrep is a representation with no nontrivial subrepresentations.
For the purpose of this chapter, it is only relevant that the set of irreps of a symmetry group can be used to classify different
symmetry sectors. See Ref. [217] for a detailed explanation.
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5 Symmetries in neural quantum states

The character is then given by

χkn(τm) = eiknm. (5.10)

In physical terms, each irrep corresponds to a permissible value of the lattice momentum, and the
symmetry-projected states

ψnθ (s) = 1
N

N∑
m=1

e−iknmψ̃θ(τm.s) (5.11)

transform according to this momentum as

ψnθ (τm.s) = eiknmψθ(s). (5.12)

As expected, translation-invariant states correspond to the trivial irrep with momentum k0 = 0.

Adopting the symmetry-projection-based approach can significantly improve the accuracy of VMC
results, as shown by Nomura [82]. It has also been observed that the construction of the symmetrized
wave function (5.7) as a sum of many independent copies of the unconstrained trial wave function helps
to improve convergence for target states with complicated phase structure [88, 89].

5.1.3 Symmetry-projection using representatives

The approach for symmetry projection discussed in the previous section requires Nsym evaluations of
the variational ansatz. While this has its benefits (as outlined above), it also increases the computational
cost of evaluating the symmetrized state and, therefore, any VMC optimization procedure linearly in
the size of the symmetry group. An alternative approach first described for NQS by Choo et al. [92] is
reviewed here.

As above, we consider an Abelian symmetry group G acting on the configurations in the computational
basis, which associates the orbit sG = {g.s | g ∈ G} with each configuration. These orbits are
equivalence classes, i.e., each configuration is contained in exactly one orbit, and the set of orbits
partitions the set of all configurations. Instead of summing over all probability amplitudes contained in
an orbit as in Eq. (5.7), it is possible to instead enforce the symmetry condition by selecting a canonical
representative can(s) that is constant on each orbit, i.e.,

can(s) ∈ sG and can(g.s) = can(s) ∀g ∈ G. (5.13)

This representative can be selected arbitrarily. For practical implementations, it is possible to, e.g., select
the smallest configuration by lexicographic order. Then, the ansatz defined by

ψθ(s) = ψ̃θ(can(s)) (5.14)

is symmetry invariant (5.5) as an immediate consequence of Eq. (5.13).

To construct an ansatz that transforms according to a specific irrep ρ [Eq. (5.8)], Eq. (5.14) needs to be
extended so that

ψρθ(s) = rρ(s)ψ̃θ(can(s)). (5.15)
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Thus, the problem of enforcing the correct transformation properties is reduced to appropriately con-
structing rρ(s). See Ref. [92] for a description of this construction for a finitely generated Abelian
group20. A closely related approach specifically for the flux symmetries of the HKM is described in
Section 5.2.3.

5.1.4 Group-convolutional neural networks

Group-convolutional neural networks (GCNNs) can be seen as an extension of the symmetry-projection
scheme discussed in Section 5.1.2 to deep networks. GCNNs were introduced by Cohen and Welling
[170] as a generalization of CNNs beyond translation symmetries and first applied to NQS by Roth and
MacDonald [171]. The main idea of a GCNN is to implement network layers that respect the group
structure of a symmetry group G in such a way that transformed inputs are mapped to equivalently
transformed outputs; this property is known as equivariance.

Specifically, an equivariant NQS ansatz can be constructed as follows (we follow the presentation of
Refs. [88, P4]). As before, we consider a group acting on the configurations s ∈ S by permutation of the
indices, which we also denote as (g.s)i = sg(i).

First, a linear embedding layer is applied to input configuration s to generate the features y = {yg}g∈G,
indexed by group elements and with each yg ∈ CM , as

yg(s) = Φ(vg(s)), vg,i(s) =
N∑
j=1

Ki,g−1(j)sj + bi. (5.16)

Here, Φ is an activation function, K ∈ CM×N a weight matrix, and b ∈ CM is a bias vector in analogy
to a standard linear layer (Section 3.2.1). By construction, the output of the embedding layer satisfies
the equivariance property

yg(h.s) = yhg(s) (5.17)

for all g, h ∈ G. In a deep GCNN, these group-indexed feature vectors are then propagated through
multiple equivariant layers that preserve this property. An equivariant mapping between features y and
{zg}g∈G, zg ∈ CM ′

, has the form

zg(y) = Φ(v′
g(y)), v′

g,i(y) =
∑
h∈G

M∑
j=1

W
(g−1h)
i,j yh,j + b′

i (5.18)

where, again, Φ is the activation function, each W(g) ∈ CM ′×M an independent weight matrix, and
b′ ∈ CM ′ a bias vector. Writing h.y = {yhg}g∈G, it is apparent that Eq. (5.18) indeed retains the
equivariance property

zg(h.y) = zhg(y) (5.19)

as required. The output of an equivariant layer (or a composition of multiple such layers) can finally be
summed analogously to Eq. (5.7) to obtain a network output and, thus, a quantum state that transforms

20An Abelian group G is said to be finitely generated by a set of generators {gi}nG
i=1 if any group element can be decomposed

as a product of generators gn =
∏nG

i=1 g
ni
i . In this case, the integer powers n ∈ NnG determine the group element.
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5 Symmetries in neural quantum states

according to a desired irrep ρ. Specifically, if f = {fg}g∈G denotes the output of the final equivariant
layer (with feature dimension one, i.e., fg ∈ C),

lnψρθ =
∑
g∈G

χ∗
ρ(g) exp(fg), (5.20)

yields the desired log-probability amplitude.

5.2 Symmetry-projected NQS for the honeycomb Kitaev model

This section is based on a project I have worked on in collaboration with Martin Claassen (Department of
Physics and Astronomy, University of Pennsylvania) and Michael A. Sentef which has not yet been independently
published, and discusses its motivation, approach, and presents a selection of preliminary results.

Declaration of contributions. I have selected the variational ansatz, implemented the model and symmetry-
projection scheme for the flux constraints based on NetKet 3, performed simulations and data analysis, created
the figures, and written the text of this section.

The honeycomb Kitaev model (HKM) is an important setting for studying quantum spin liquid (QSL)
physics [220]. It was originally proposed by Kitaev [24] as a simple two-dimensional spin model which
hosts anyonic excitations (i.e., particles with neither Bose nor Fermi statistics [221, 222]). The physics of
the HKM play a vital role in the study of topological quantum computing [220, 223].

Kitaev-like interactions are present in materials with strong spin-orbit coupling, such as the transition
metal compounds Na2IrO3, Li2IrO3, and α-RuCl3 [220]. While many ground state properties of the
HKM, including the ground state energy for a given flux sector (Section 5.2.1), can be analytically
predicted using the Majorana fermion representation introduced by Kitaev [24], this is no longer true
once the Hamiltonian is extended to include Heisenberg or off-diagonal exchange interactions which are
relevant for the physics of real materials [224–226]. Recent progress in learning QSL phases using neural
quantum states in other spin models, particularly in frustrated quantum magnets [86, 88], makes it a
natural question whether an NQS ansatz can learn the QSL phase of the HKM ground state in the spin
representation as well. If this is the case, one might hope to apply such an NQS ansatz to an extended
Kitaev-Heisenberg model and, particularly, study whether it is possible to reach the Kitaev QSL phase
by nonequilibrium processes [227, 228].

Here, we discuss the approach and preliminary results of a VMC study of the HKM using a GCNN ansatz.
We find that the QSL ground state of the HKM is challenging to learn with this ansatz, but convergence
can be improved by enforcing additional symmetries of the model. Specifically, we apply a scheme to
project the variational trial states to eigenspaces of the plaquette flux operators (Section 5.2.3), which are
integrals of motion of the Kitaev Hamiltonian, and find that projecting the trial state to the ground state
flux eigenspace for a large fraction of plaquettes does improve convergence in small systems. However,
because the computational complexity of our symmetry projection scheme scales exponentially with the
number of plaquette operators considered, the question of the scalability of this approach is still open.
We discuss potential remedies and alternative variational ansätze in the discussion section (Section 5.2.5).
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z
x
y

Figure 5.1 | Lattice structure of the Kitaev honeycombmodel. The lattice is bipartite, with each unit cell containing
two sites connected by a z bond. The x and y bonds connect sites in adjacent unit cells. This figure
depicts a simulation cell consisting of 2×2 unit cells (highlighted) with periodic boundary conditions
in both lattice directions.

5.2.1 Honeycomb Kitaev model

The HKM is defined on the honeycomb lattice with a partition of the nearest-neighbor bonds into three
classes called x, y, and z bonds (Fig. 5.1). We denote these bonds by E and the assigned class of each edge
(i, j) ∈ E by γ(i, j) ∈ {x, y, z}. The Hamiltonian is then defined by assigning an Ising coupling term to
each bond in either the x, y, or z basis according to the class of the bond. Explicitly, the Hamiltonian is
[24]

ĤK =
∑

(i,j)∈E
Jγ(i,j)K̂(i,j), where K̂(i,j) = σ

γ(i,j)
i σ

γ(i,j)
j . (5.21)

In the following, we only consider the case of uniform couplings Jγ(i,j) = −1, corresponding to the
gapless QSL phase of the HKM. An important property of the HKM is the existence of a large set of
integrals of motion, i.e., operators that commute with the Hamiltonian and thus partition the Hilbert
space into subspaces simultaneously diagonalizable with Ĥ. Specifically, let p denote a hexagonal
plaquette, ordered in such a way that the edges are of class z, x, y, z, x, y (in that order) along the path,
and define the flux operator

Ŵp =
∏

(i,j)∈p
K̂(i,j). (5.22)

The flux operators commute with the Hamiltonian and among themselves, [ĤK , Ŵp] = [Ŵp, Ŵq] = 0,
which implies the existence of a simultaneous eigenbasis in which all operators are diagonalized.
Additionally, the flux operators square to the identity, Ŵ 2

p = 1, and have vanishing trace, tr Ŵp = 0.
Thus, their possible eigenvalues are ±1, with equal multiplicity. If 〈Ŵp〉 = −1, the plaquette p is said to
host a vortex; conversely, if 〈Ŵp〉 = +1, p is called vortex-free [24].
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Figure 5.2 | a)Acceptance rate ofMetropolis-Hastings updates and b) estimated effective sample size (Section 3.3.3)
over the course of a VMC optimization run for ĤK using a GCNN ansatz for different MCMC
proposal rules. The blue curves correspond to local spin flip proposals, the red curves to proposals of
simultaneous flips of two spins connected by an HKM bond, and the purple curves to a hybrid rule
which proposes one of the previous updates randomly with equal probability. For the bond-flip rule,
configurations are restricted to the even-magnetization sector {s ∈ S | Π(s) = +1}. In all cases,
VMC estimates were performed using NMC = 103 samples.

As observed by Kitaev, the ground state of the model is unique and part of the simultaneous flux
eigenspaces corresponding to 〈Ŵp〉 = +1 for all plaquettes p (in other words, the ground state is
contained in the vortex-free sector) based on a theorem by Lieb [24, 229]. However, this argument does
not generally apply to finite-size systems. While in those cases, the Hamiltonian is still simultaneously
diagonalizable with all flux operators (since this is a consequence of the commutation relations), the
ground state is not restricted to the vortex-free sector and can be degenerate, allowing the flux expectation
values 〈Ŵp〉 to potentially vary within the ground state manifold. The flux phase and degeneracy of
the ground state can depend on the size and boundary conditions of a finite honeycomb lattice [230,
231]. For example, the ground state of a finite lattice with 2 × 2 unit cells with periodic boundaries
is non-degenerate but part of the 〈Ŵp〉 = −1 sector. Therefore, when the flux quantum numbers are
used to assess convergence to the ground state in finite systems, care must be taken to distinguish an
unconverged state from one in a superposition of different flux sectors.

5.2.2 Magnetization parity

In the Heisenberg model, the ground state is part of the zero-magnetization eigenspace, which simplifies
VMC ground state optimization. This property does not apply to the HKM, since [ĤK , M̂z] 6= 0 [where
M̂z is defined by Eq. (5.3)]. However, the magnetization parity

Π̂ = (−1)M̂z = (−1)N/2
N∏
i=1

σ̂zi , (5.23)

which is diagonal in the computational basis with Π(s) = 〈s|Π̂|s〉 = (−1)
∑N

i=1
si
2 , is still a conserved

quantity, [ĤK , Π̂] = 0, and, furthermore, [Ŵp, Π̂] = 0 holds for all plaquettes p. Thus, Π̂ can be used
as a diagonal constraint to restrict the computational basis and improve the efficiency of Monte Carlo
sampling (Section 5.1.1). The eigenvalues of Π are ±1 and, therefore, only two sectors (corresponding
to even and odd magnetization) exist.
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For illustration, Fig. 5.2 shows the dependency of the acceptance rate and effective sample size (Sec-
tion 3.3.3) for a VMC energy estimate for ĤK during a ground-state optimization. These diagnostics
show that, for single spin-flip updates in the unconstrained configuration space, the efficiency of the
MCMC estimation decreases significantly over the course of the simulation. At the same time, sampling
within a single Π symmetry sector (which is conserved by a proposal rule that only suggests simultane-
ous flips of two spins at adjacent sites) retains a reasonable acceptance rate and a high effective sample
size throughout the optimization. Using a hybrid proposal rule that at each step proposes one of the
previous updates randomly with equal probability still results in a higher acceptance rate and effective
sample size in the unconstrained configuration space.

The magnetization-parity symmetry is particularly useful because it applies to both the HKM and the
Heisenberg model on the same lattice and can, thus, be used in simulations of the combined Kitaev-
Heisenberg model. Further extensions, such as the off-diagonal exchange interaction required for
approaching realistic materials [224–226] break this symmetry. However, the application of a hybrid
sample rule can still improve MCMC performance in this case, as demonstrated above.

5.2.3 Imposing flux constraints

This section discusses the implementation of a constrained NQS ansatz for specific flux symmetry
sectors, which is based on the same ideas as the symmetry-projection approach proposed in Ref. [92]
and described in Section 5.1.3.

Single plaquette

Consider a single flux operator Ŵp for an arbitrary plaquette p with sites denoted by p1, p2, . . . , p6.The
operator Ŵp acts on a spin-1/2 basis state |s〉 = |s1 . . . sN 〉, s ∈ {±1}N , as

Ŵp|s〉 = σp(s)|wp(s)〉. (5.24)

where the sign

σp(s) = −sp2sp3sp5sp6 (5.25)

depends on the product of all spins connected by x bonds and where the exchange mapping

wp(s)i =

−si, i ∈ {p1, p2, p4, p5},
si, otherwise.

(5.26)

flips the spins of all sites connected by z bonds (Fig. 5.3). The exchange mapping is an involution, i.e.,
wp(wp(s)) = s. Therefore, the action of the flux operator Ŵp partitions the set of basis configurations
into 2N−1 equivalence classes Cj = {sj , s̄j}, each with two elements connected by exchange mapping
so that wp(sj) = s̄j and, conversely, sj = wp(s̄j).

For a quantum state |ψ〉 to be contained in the ν ∈ {±1} eigenspace of Ŵp, it must satisfy

ψν(s) = ν σp(s)ψν(wp(s)) (5.27)
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5 Symmetries in neural quantum states

Figure 5.3 | Action of Ŵp on the spin configuration of plaquette p. The spins on sites connected by z bonds (red
lines) are swapped, and the state acquires a sign determined by the product of sites connected by x
bonds (blue lines, highlighted).

and, hence, any state satisfying Eq. (5.27) is an eigenstate of Ŵp with eigenvalue ν.This condition can
be enforced analogously to the symmetry condition of Eq. (5.8). In particular, Kurita et al. [232] have
applied the symmetry-projection approach based on superposition (Section 5.1.2) to the HKM, obtaining
the symmetrized ansatz

|ψνθ〉 = 1
2(1 + νŴp)|ψ̃θ〉 (5.28)

from an unconstrained trial state |ψ̃θ〉.This ansatz satisfies Eq. (5.27) by construction. Alternatively, in
analogy with the approach discussed in Section 5.1.3, a symmetrized trial state can be constructed by
first selecting a representative spin can(s) from each class Cj so that can(s) = can(wp(s)) and, then,
using this state as the canonical input to the ansatz wave function,

ψνθ(s) = ν σp(s) ψ̃θ(can(s)). (5.29)

Compared to Eq. (5.28), this saves one evaluation of the ansatz. The canonical representative can be
selected arbitrarily. Since s and wp(s) always differ by the sign of sp0 , it is, e.g., possible to select the
configuration with sp0 = +1 as canonical for a single plaquette.

Multiple plaquettes

For multiple plaquettes, a symmetrized trial state can be constructed by superposition using a product
of the operators (5.28). To fix the flux quantum numbers of the plaquettes in the set P to the sectors
ν = {νp}p∈P , the projection operator is [232]

|ψν
θ 〉 = 1

2|P |

∏
p∈P

(1 + νpŴp)|ψ̃θ〉. (5.30)

This product can be expanded into a sum of 2|P | terms, and the ansatz thus requires the corresponding
number of evaluations of the unconstrained trial state to obtain a symmetrized probability amplitude,
limiting the amount of flux quantum numbers that can be fixed at once.

While this exponential complexity cannot be circumvented simply by using an alternative symmetry-
projection scheme, the amount of required wave function evaluations can be reduced, which is beneficial
in practical VMC calculations. Each flux operator Ŵp has an associated sign function σp and an
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5.2 Symmetry-projected NQS for the honeycomb Kitaev model

exchange mapping wp defined as in Eqs. (5.25) and (5.26). Consider the group G generated by the
exchange mappings {wp}p∈P acting on spin configurations. Since wpwp = id, any element of G can
be represented as gn =

∏
p∈P w

np
p where np ∈ {0, 1}. Note that in the presence of periodic boundary

conditions, not all distinct n determine distinct operations. However, the order of G is still exponential
in |P | [233]. As before, the orbit of a configuration s under G is denoted by sG, and can(s) denotes a
canonical configuration selected from each orbit (5.13). Then, a symmetrized state can be constructed
from an unconstrained ansatz ψ̃θ by

ψν
θ (s) = rν(s) ψ̃θ(can(s)). (5.31)

which corresponds to the symmetry sector Ŵp|ψν
θ 〉 = νp|ψν

θ 〉.The factor rν(s) ∈ {±1} needs to adjust
the sign of the symmetrized ansatz, accounting for the sign flips σp and quantum numbers νp. It can
be determined by identifying the exponents kp(s) ∈ {0, 1} so that gk(s)(s) = can(s) [i.e., identifying
the group element that connects s and can(s)] and tracking the sign changes induced by applying this
operation. In a numerical implementation, the sign changes rν corresponding to each group element
can be computed once and then cached before the start of the VMC simulation. While this approach
allows for an efficient implementation of Eq. (5.31) [requiring only one evaluation of ψ̃θ , compared to
the |G| evaluations of Eq. (5.30)], the exponential growth of the group order still affects startup and
memory costs and, thus, limits the number of flux quantum numbers that can be fixed.

5.2.4 Results

Here we present some preliminary results of applying our symmetrized NQS ansatz based on Eq. (5.31)
to the HKM, starting with a single hexagonal plaquette followed by results for extended honeycomb
lattices.

Single plaquette

As a simple proof of concept, we first consider a single, isolated hexagonal plaquette of the HKM with
N = 6 sites. On this geometry, the HKM has a four-fold degenerate ground state subspace, and all
ground states are part of the 〈Ŵ 〉 = +1 eigenspace, as verified by ED (Fig. 5.4). We optimize an RBM
ansatz with complex weights and hidden unit density α = Nh/N = 1 (i.e., the dimension of the hidden
layer is equal to the system size) of the form of Eq. (3.20) to minimize the energy using VMC with SR.

The results are shown in Fig. 5.5. Both the unconstrained and the symmetrized RBM can learn the Kitaev
ground state for a single hexagon. However, convergence is slower for the unconstrained ansatz, and
the final energy (averaged over the last 100 samples and five independent runs) is E = −3.999(2) for
the RBM versus E = −3.9999(2) for the symmetrized RBM at otherwise equal optimization parameters.
This shows that the symmetry constraints, though not crucial in this six-site toy system, can indeed
improve ground-state convergence. Both networks are initialized with random weights from a complex
normal distribution. For the unconstrained ansatz, this corresponds to a trial state in a superposition of
both symmetry sectors with 〈Ŵ 〉 ≈ 0, and it approaches the correct symmetry sector over the course of
the simulation (Fig. 5.5b). While the system under consideration is small, the RBM is still able to learn
the ground state with compression compared to the full ED state21.

21The variational state with weights and hidden bias contains M = αN(N + 1) = 42 parameters, corresponding to a
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5 Symmetries in neural quantum states

Figure 5.4 | Multiplicity of energy eigenvalues (upper panel) and corresponding values of 〈Ŵ 〉 (lower panel)
obtained from an exact simultaneous diagonalization of the HKMHamiltonian (5.21) and flux operator
Ŵ (5.22) for a single six-site hexagonal plaquette. In this case, the HKM ground state subspace is
four-fold degenerate and fully part of the 〈Ŵ 〉 = +1 sector.

Figure 5.5 | a) Relative error ∆Erel = |〈ĤK〉 − E0|/E0 of the variational energy estimate compared to the ED
result E0 and b) flux expectation value 〈Ŵ 〉 over the course of a VMC ground state optimization of
the HKM Hamiltonian on a single plaquette. Simulations have been performed for an unconstrained
RBM (blue), and a RBM projected to the 〈Ŵ 〉 = +1 sector via the ansatz described in Section 5.2.3
(red). Five independent VMC runs have been performed for each ansatz; the solid line indicates the
mean, and the shaded background indicates the spread between maximum and minimum values over
these runs. Both panels show the first 800 of the 2000 optimization steps performed in total; the inset
of Panel a) displays the same data on a logarithmic scale over the full range of steps.
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5.2 Symmetry-projected NQS for the honeycomb Kitaev model

Figure 5.6 | Lattice structure of the HKM with 2 × 2 unit cells and twisted periodic boundary conditions. The
simulation cells are shifted relative to each other by half their extent at the y direction boundary.

Honeycomb lattice

We now turn to the HKM on the extended honeycomb lattice (Fig. 5.1). Motivated by the positive effects
of enforcing lattice symmetries on ground state convergence [82, 88, 171], we choose a translation-
invariant GCNN as the basis of our ansatz22 [171] (Section 5.1.4). The flux constraints are imposed after
evaluation of the GCNN using the symmetry-projection approach of Section 5.2.3. Here, we include
results for honeycomb lattices of 3 × 3 and 4 × 4 unit cells.

In order to reduce the influence of finite-size effects, we impose twisted periodic boundary conditions
[24, 230, 231]. Specifically, our lattice vectors are shifted by bLy/2c when crossing the periodic boundary
in y direction (Fig. 5.6). Empirically, we have found this to improve the stability of our VMC optimization
runs. Furthermore, for small square systems where we could verify the ground state sector via ED, we
have found that this shift lifts the ground-state degeneracy and selects the ground state in the 〈Ŵ 〉 = +1
sector, which is consistent with the analytical arguments of Ref. [231].

Figure 5.7 shows VMC results for the HKM on a lattice with 3 × 3 unit cells (N = 18 sites). We chose a
GCNN ansatz with four hidden layers, each with four features per group element. We further restrict
Monte Carlo sampling to the even-magnetization sector (Section 5.2.2). The ansatz is then projected to
the vortex-free flux sector for a varying number of plaquettes using the approach of Section 5.2.3. In
the following, let P denote the set of all plaquettes for which the flux quantum number is constrained
by the variational ansatz, and P̄ its complement for which the quantum numbers are unconstrained.
We further denote by WP̄ = |P̄ |−1∑

p̄∈P̄ 〈Ŵp̄〉 the average flux expectation over the unconstrained
plaquettes.

As for the single plaquette case above, the initial state (which corresponds to a GCNN ansatz with
weights randomly drawn from a Gaussian distribution) is in a superposition of flux sectors withWP̄ ≈ 0.
While the fluxes trend towards the +1 sector over the course of the VMC optimization already for the
fully unconstrained GCNN (i.e., with |P | = 0), the correct sector is not reached. Instead, the simulation
converges to a state with WP̄ ≈ 0.68. Imposing flux constraints for one plaquette leads to a faster
increase inWP̄ . However, while the flux expectation value for an unconstrained plaquette increases
systematically with |P | (Fig. 5.7d), the variational energy of the state with several constrained plaquettes
increases at first, compared to the fully unconstrained state (Fig. 5.7c). This changes once the majority
of quantum numbers are fixed. Specifically, |P | = 6 achieves a lower variational energy than the

compression ratio ofM/26 ≈ 0.66.
22Note that we only enforce translation invariance in the GCNN, not invariance under the full space group (including rotations)

of the lattice.
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5 Symmetries in neural quantum states

Figure 5.7 | a) Relative error ∆Erel = |〈ĤK〉 − E0|/E0 of the variational energy estimate compared to the ED
result E0 and b) flux expectation value 〈Ŵp̄〉 for an unconstrained plaquette p̄ ∈ P̄ over the course
of a VMC ground state optimization. Simulations have been performed on a 3 × 3 honeycomb lattice
with twisted periodic boundary conditions (Fig. 5.6) using a GCNN ansatz for a varying number of
fixed flux sectors |P |. The solid curves show the mean values over three independent optimization
runs, while the shaded area indicates the span between minimum and maximum value over these
runs. Panels a) shows the first 800 of 10 000 optimization steps performed in total; the inset displays
the same data on a logarithmic scale over the full range of steps.
c) Final relative energy error and d) flux expectation value averaged over the last 500 steps. The
curves and solid markers indicate the mean, and the light markers the minimum and maximum
values over the simulation runs.
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5.2 Symmetry-projected NQS for the honeycomb Kitaev model

unconstrained state, and for |P | = 8, which corresponds to constraining all plaquettes23, convergence
to the true ground state is achieved with a relative error of ∆Erel of the order of 10−5 (Fig. 5.7a).

Figure 5.8 shows results for the same approach on a larger system of 4×4 unit cells (N = 32 sites). These
results indicate a qualitatively similar behavior, where the flux expectation value over the unconstrained
plaquettes increases with the number of fixed plaquettes (Fig. 5.8d). Furthermore, the initial increase in
energy for 1 ≤ |P | ≤ 4 compared to the fully unconstrained state after a fixed number of optimization
steps is also observed (Fig. 5.8c), as is the improvement in energy for a larger number of fixed fluxes.

5.2.5 Discussion and outlook

We have presented a symmetry-projection scheme for flux symmetries in the HKM, combining the
approaches of Refs. [92, 232] with a GCNN ansatz. Compared to an unconstrained ansatz, we have
observed that the symmetry projection approach achieves improved ground state convergence when
used with an RBM ansatz for a single-hexagon toy model. Furthermore, imposing the flux symmetries
for multiple hexagons on an extended lattice also improves convergence. However, in our simulations so
far, this has only occurred once a sufficient number of all possible flux quantum numbers have been fixed.
This potentially limits the scalability of the approach because the size of the flux symmetry group and,
thus, the computational complexity required to apply the symmetrization schemes, grows exponentially
in the number of fixed quantum numbers. Further numerical experiments are required to systematically
determine the necessary scaling.

Our current results do not rule out that obtaining more reliable ground-state convergence with an unal-
tered approach is possible by tuning the optimization hyperparameters. The representation capabilities
of the ansatz are likely not the limiting factor since, e.g., Ref. [83] has obtained an accurate ground
state using an unconstrained RBM ansatz in the 3 × 3 HKM24. Rather, the main challenge appears to
be achieving reliable convergence to the correct symmetry sector in larger systems and the significant
dependency of VMC results on the lattice geometry, particularly the choice of boundary conditions.

While the ansatz of Kurita et al. [232] was similarly limited by the exponential growth of the symmetry
group, the optimized results they have obtained with the pair-product ansatz exhibit a more systematic
improvement of the energy with the number of enforced symmetries, and such pair-product wave
functions have been successfully combined with an RBM in previous work [73]. In initial explorations,
we have found that a pair-product ansatz constrained using our symmetry-projection approach described
here shows improved ground state convergence as well; combining this approach with a (potentially
unconstrained) NQS ansatz may yield a more flexible ansatz capable of being applied beyond the pure
HKM, especially to the Kitaev-Heisenberg and further extended models relevant to realistic materials
that initially motivated our explorations [227, 228].

Acknowledgments. We acknowledge helpful discussions with Johannes Knolle and Attila Szabó. The
NQS simulation code is based on NetKet 3 [P4] using jax [234, 235]. Computational resources have
been provided by Flatiron Institute, a division of The Simons Foundation.

23In a honeycomb lattice withM unit cells and periodic boundary conditions, onlyM −1 plaquette operators are independent
due to the relation

∏
p∈P∪P̄ Ŵp = 1 [232]. Thus, constrainingM − 1 plaquettes already fixes the flux quantum number

for the remaining one as well.
24The 3 × 3 calculations of Ref. [83] have been performed by circumventing VMC optimization using full-state evaluation of

variational energy and gradients, which is not applicable to system sizes beyond ED. Therefore, whether the RBM results
of Ref. [83] scale to larger lattices is not yet clear.
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5 Symmetries in neural quantum states

Figure 5.8 | a) Variational energy 〈ĤK〉 and b) flux expectation value 〈Ŵp̄〉 for an unconstrained plaquette p̄ ∈ P̄
over the course of a VMC ground state optimization. The simulations are done on a 4 × 4 honeycomb
lattice with twisted periodic boundary conditions. Results are shown for 2800 VMC optimization
steps. Otherwise, the setup is the same as in Fig. 5.7.
c) Final variational energy and d) flux expectation value averaged over the last 500 steps for three
independent runs. The curves and solid markers indicate the mean, and the light markers the
minimum and maximum values over the runs.
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6 Representability of ground states in the
Sachdev-Ye-Kitaev model

Understanding the representation capabilities of NQS is of central importance for the development of
the field. While universal approximation theorems [140–143, 165] guarantee that any quantum wave
function can be approximated to an arbitrary degree in the limit of infinite network size, this does not
necessarily imply efficient representability, i.e., the ability of an ansatz to express relevant quantum
states with exponential compression compared to the full state vector.

Due to the wide variety of architectures that can be referred to as NQS (Section 3.2.3), it is necessary to
focus on specific architectures to provide concrete answers to the question of representability. It has been
shown that the RBM can represent some volume-law entangled states due to its nonlocal connectivity
between layers and that this scaling is already realized for an RBM with random weights [101, 102].
RBM quantum states have also been shown to be able to efficiently represent chiral topological states in
two dimensions [103–105]. Furthermore, Ref. [120] has proven that deep networks can approximate any
MPS and a subset of TNS25 to arbitrary precision with polynomial scaling of the network size.

However, besides the theoretical capability of an ansatz to represent states of interest, it is also essential
to consider the difficulty of actually learning a target state. For NQS, the expressivity of the ansatz comes
at the cost of a “rugged” energy landscape [214], which can make it difficult to find global energy minima
even when they can be represented. As discussed in Section 3.3.2, this is particularly true for target states
that exhibit a complicated sign or phase structure [88, 194, 195]. Nonetheless, several works have applied
supervised learning (Section 3.2.2) using ED amplitudes for the purpose of testing whether a given state
can be represented [106, P1]. Notably, Lin and Pollmann [106] have analyzed the scaling behavior of a
NAQS ansatz when learning amplitudes of time-evolved states in a one-dimensional transverse-field
Ising chain and found an exponential scaling of the required network size over time. While negative
results cannot rule out that a more efficient representation can be found using a different (or more
fine-tuned) optimization scheme, direct training on ED amplitudes does remove several potential sources
of error present in VMC energy optimization.

In the project presented in this chapter, we further explore the learning capabilities of NQS in a
challenging setting. Specifically, we chose the Sachdev-Ye-Kitaev (SYK) model [236, 237]. The SYK
model is a disordered model of strongly-correlated fermions with all-to-all interactions betweenN sites,
with a Hamiltonian of the form

ĤSYK ∝
∑
ijkl

Jij;klĉ
†
i ĉ

†
j ĉk ĉl. (6.1)

The couplings are random variables drawn from a Gaussian unitary ensemble (see [P2]). The ground

25Specifically, the NQS ansatz introduced in Ref. [120] can efficiently approximate those projected entangled pair states [127]
for which an efficient approximate or exact contraction algorithm exists.
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6 Representability of ground states in the Sachdev-Ye-Kitaev model

state of the SYK model is highly entangled and features volume-law entanglement scaling. Despite the
apparent complexity of the Hamiltonian for larger system sizes [which depends on O(N4) random
couplings], ground state properties of the SYK model can be derived analytically in the limit of infinite
system size. In this limit, the model exhibits the so-called self-averaging property [237], which implies
that the physical characteristics of the ground state of Eq. (6.1) become independent of the particular
realization of the couplings Jij;kl. In this sense, the effect of disorder on the ground state properties
vanishes with increasing system size. However, while several variational ansätze for the SYK model
have been investigated recently [238, 239], it is not yet clear whether the model’s large-N properties
can be exploited to efficiently obtain ground state properties at finite sizes.

Motivated by these questions and the known capabilities of RBMs and more general deep networks to
capture some forms of volume-law entanglement, we investigate whether a generic FFNN ansatz can be
used to find a representation of particular SYK ground state realizations and how the required network
size for such representations scales with the system size. A detailed discussion of our approach and
results is presented in Publication [P2] included on the following pages.
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Summary

We investigate the practical applicability of an NQS ansatz to the paradigmatic SYK model, which is
analytically solvable in the infinite-size limit but challenging to simulate at finite size [237–239]. We
choose an FFNN ansatz to connect to existing results on the representability of volume-law states [101,
102, 118]. To avoid possible sources of error from VMC energy optimization, we train the network by
optimizing the exact overlap with ground state amplitudes obtained from ED calculations for systems
with up to 18 sites. With this approach, we systematically study the accuracy of the optimized ground
state energy and its scaling with the network size. We find that our FFNN ansatz is unable to exploit
the physical structure of the SYK ground states and does not learn a compressed representation of the
exponentially large target states. This is in stark contrast to more structured lattice models, where NQS
are known to achieve accurate variational energies with polynomially scaling size [86, 240], which we
confirm for our ansatz by comparing the SYK results to the scaling achieved when learning the ground
state of a local, one-dimensional spin model. Our results show that efficient compression for structured
lattice models and the ability to capture generic volume-law entangled states does not automatically
transfer to the more challenging ground state problem in the SYK model and, thus, highlight the need
for further investigation into the scaling properties of NQS and the specific physical features that enable
quantum states to be efficiently captured by an NQS ansatz.
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This work has been published as a preprint on arXiv. It has been submitted to Physical Review Letters
and is currently under review.

The supplementary material is not included in this document and can be obtained from the arXiv version
referenced above.
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We study whether neural quantum states based on multi-layer feed-forward networks can find
ground states which exhibit volume-law entanglement entropy. As a testbed, we employ the paradig-
matic Sachdev-Ye-Kitaev model. We find that both shallow and deep feed-forward networks require
an exponential number of parameters in order to represent the ground state of this model. This
demonstrates that sufficiently complicated quantum states, although being physical solutions to rel-
evant models and not pathological cases, can still be difficult to learn to the point of intractability
at larger system sizes. This highlights the importance of further investigations into the physical
properties of quantum states amenable to an efficient neural representation.

Introduction.— The exponential complexity of repre-
senting general quantum many-body states is a key chal-
lenge in computational quantum physics. To simulate
systems beyond small sizes tractable by exact diagonal-
ization methods, it is necessary to find an efficient rep-
resentation of quantum states of interest. This is made
possible by the fact that physically relevant states usu-
ally possess a high degree of structure, compared to an
arbitrary Hilbert space vector. As a prominent example,
ground states of local, gapped Hamiltonians exhibit an
area law of the entanglement entropy, i.e., an entangle-
ment entropy that scales like the boundary of the subre-
gion instead of its volume. For systems with a low dimen-
sionality, typically 1D, the area law allows for an efficient
representation of the wave function as a matrix product
state, which can be simulated by algorithms such as the
density matrix renormalization group (DMRG) [1–5].

However, many quantum states of physical interest dis-
play a volume law scaling of the entanglement entropy
[6], for which generally applicable efficient representa-
tions are not known to this date. One class of variational
approximations that has been studied to overcome this
challenge are neural quantum states (NQS) [7], which
are based on an artificial-neural-network representation
of the wave function’s probability amplitudes [8–10] and
have shown promising results for the study of discrete lat-
tice models even beyond one dimension [11–19]. Notably,
it has been shown that a shallow NQS ansatz is able to
efficiently represent quantum states featuring volume-law
entanglement [20, 21], suggesting that this method could
complement tensor network techniques for the purpose of
uncovering the physics of highly entangled states. Nev-
ertheless, while for matrix product states and more gen-
eral tensor-network-based approaches it is known how the
entanglement scaling limits the representation capabili-
ties of the ansatz [3], there is so far no analogous phys-
ical property that directly relates to the ability of an
NQS to learn a given quantum state. Universal approx-
imation theorems, which have been proven for several

broad classes of neural networks, guarantee that, in the
limit of infinite network size, a neural network ansatz can
theoretically represent any continuous function to arbi-
trary precision [22–25]. Still, these results do not provide
bounds on the scaling of the required number of param-
eters with the system size. For practical applications of
NQS, it is thus a central question to determine which
classes of quantum many-body states can be efficiently
represented that are impossible to tackle with other es-
tablished variational ansätze.

In this Letter, we investigate the capabilities of NQS
based on shallow and deep feed-forward neural networks
(FFNNs) to represent ground states of the Sachdev-Ye-
Kitaev (SYK) model [26–28], which is a paradigmatic
model for quantum chaos and non-Fermi liquid behav-
ior [29] and which features a volume-law entanglement
in the ground state [30]. We present a systematic study
of the representation accuracy achieved by the FFNN in
dependence of the network hyperparameters. We find an
exponential dependence on the system size for the num-
ber of network parameters required to learn the SYK
ground state. This demonstrates limitations of fully gen-
eral NQS to learn complicated quantum ground states of
physical interest.
Model.— The SYK model describes strongly corre-

lated fermions on L sites and is defined by the Hamilto-
nian [26–28]

Ĥsyk (J) =
1

(2L)3/2

∑

ijkl

Jij;kl ĉ
†
i ĉ
†
j ĉk ĉl, (1)

where ĉ
(†)
i , i ∈ {1, . . . L}, are fermionic ladder operators.

The vertices Jij;kl have the symmetry J∗ij;kl = Jlk;ji and
Jij;kl = −Jji;kl and are random, uncorrelated, all-to-all
couplings that are drawn from a Gaussian unitary en-
semble (GUE) [31] with mean E [Jij;kl] = 0 and vari-
ance E

[
|Jij;kl|2

]
= 1 [29]. Consequently, quantities of

physical interest are expectation values over the ensem-
ble of couplings J , which is evaluated after the quantum-
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FIG. 1. Cartoon representation of the SYK model. Gray cir-
cles represent lattice sites and every different colour shown has
two corresponding lines in total connecting four sites. Each
color represents one element of the coupling matrix Jij;kl of
the SYK model defined by Eq. (1).

expectation value. The ground state of the SYK model
describes a strongly correlated non-Fermi liquid without
quasi-particle excitations [29], that exhibits volume-law
entanglement entropy [32, 33]. In the thermodynamic
limit the model becomes self-averaging and exactly solv-
able, but despite this exact solvability, the ground state is
not a Gaussian state, i.e. not a product of single particle
wave-functions [34]. At finite sizes, particularly studied
in the context of quantum chaos [35, 36] and experimental
realizations [37], no exact solutions are known. Different
variational ansätze to represent the ground state have
been proposed recently [34, 38]. Here the model can be
analyzed by employing approximations, or numerically,
by drawing a set of couplings {J (n)}Nn=1 from the GUE,

constructing the corresponding Hamiltonians Ĥsyk(J (n)),
and solving for the ground states |ΨGS(J (n))〉. Finally,
the properties of interest, such as expectation values, are
averaged over this ground state ensemble. Because of the
self-averaging property of the SYK model, it suffices to
evaluate expectation values for a single realization of J
in the thermodynamic limit [29].

Network architecture.— We use a fully-connected
FFNN [Figs. 2(a), 3(a)]

F (x) = f (µ) ◦ · · · ◦ f (1)(x),

f (l)(y) = φ(W (l)y + b(l))
(2)

which is a composition of µ layers f (l), each applying
an affine transformation and a scaled exponential linear
unit (SELU) activation function φ [39] as pointwise non-
linearity. Each layer has αL neurons, where α is the
fixed hidden unit density. The output of the final layer is
reduced to a (scalar) log-probability amplitude with re-
spect to the computational basis {|x〉} by an exponential

sum,

log 〈x|ψθ〉 = log
αL∑

i=1

exp[Fi(x)]. (3)

Here, θ denotes the vector of all variational parameters,
which contains all entries of the weight matrices W (l) and
bias vectors b(l). The variational parameters and there-
fore network outputs are complex numbers, with the acti-
vation function being applied separately to real and imag-
inary parts. The total number of network parameters
scales as Npar = O(µα2L2). We choose the occupation
number basis (as has been done in previous NQS stud-
ies of fermionic molecular Hamiltonians [40–42]) at half
filling, which fixes the fermion number to L/2. There-
fore, the input to the neural network (2) is a vector of
occupation numbers x ∈ {0, 1}L such that

∑
i xi = L/2.

We have verified our results for several variations of
this network architecture. In particular, we have evalu-
ated using tanh as nonlinear activation function as well
as the addition of skip connections, which can be used to
counteract the increased training complexity of networks
beyond a certain depth [43, 44]. These variations did
not achieve better results compared to those presented
in the main text. Details can be found in Section III of
the supplemental material (SM) [45].
Optimization.— The ground state of the network is

obtained by numerically minimizing the overlap differ-
ence

δO(θ, J) = 1−
∣∣∣∣
〈ψθ|ψGS(J)〉
〈ψθ|ψθ〉

∣∣∣∣ (4)

between the variational state |ψθ〉 and the ground state
|ψGS(J)〉 with respect to the variational parameters θ
using Adam [46]. We work with system sizes up to L = 18
sites, which are accessible via exact diagonalization (ED)
and thus enable training using a supervised learning (SL)
protocol targeting the overlap with the ED ground state
|ψGS(J)〉 [47]. The system size allows us to evaluate the
loss function (4) by summation over the full Hilbert space
(preventing any potential errors arising from Monte Carlo
sampling) and to assess the quality of our results using
the relative energy error

δE(θ; J) =
E(θ; J)− EGS(J)

EGS(J)
(5)

compared to the target ground state energy EGS(J) =

〈ψGS(J)|Ĥsyk(J)|ψGS(J)〉 . Details on the optimization
scheme are reported in Section II of the SM [45].
Results.— To start, we discuss the minimum energy

error δEmin = min|t∈[0,tmax]δE(θ, J) reached within a
maximum number of iterations tmax of the optimization
protocol. Figure 2(b) shows the dependence of δEmin on
the network width α for a network with a fixed num-
ber of µ = 2 layers, while Fig. 3(b) shows the results as
a function of network depth µ for deep networks with
constant width α = 4. We select δEthreshold = 10−3 as
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FIG. 2. (a) Shallow fully-connected feed-forward neural net-
work, α denotes the hidden unit density of each layer and
thus parametrizes the width of the network. (b), (c), (d) Rel-
ative ground state energy error δE as function of the network
width α for several system sizes and random initializations
after (b) 5 × 104, (c) 105, and (d) 2 × 105 simulation steps,
respectively. The color of each set of data points corresponds
to the average over four independent realizations of the net-
work initial weights, for the system size L as indicated in the
legend. The coloured areas give the maximum and minimum
values of δE for the four independent runs. Black bars indi-
cate δEthreshold = 10−3.

a threshold error to assess successful convergence to the
desired ground state. With this threshold, one can see
in Figs. 2(b) and 3(b) that at any fixed number of train-
ing iterations tmax there is a systematic improvement of
the accuracy with respect to increasing both α and µ,
as one would expect given the increased representation
capabilities of the network at larger sizes.

Next, we determine the minimum number of varia-
tional parameters at which the network is able to learn
the ground state with the desired energy of δEthreshold.
Especially for the smallest system sizes, there is a clear
transition between regimes where the network is able or
unable to learn the state (in particular as a function of
α in the shallow network). For larger system sizes, it is
somewhat more difficult to assess convergence. While
both very small and very large networks converge to
energies above or below the desired threshold within a
reasonable optimization time, there is an intermediate
regime where the energy gets close to the threshold but
only converges at very long time scales. In order to sys-
tematically identify a value of α or µ at that boundary,
we have developed a criterion used to truncate optimiza-

FIG. 3. (a) Deep fully-connected feed forward neural net-
work, µ denotes the number of layers and thus the network
depth. (b), (c), (d) Relative energy error δE as function of
the network number of layers µ for several system sizes and
random initializations after (b) 5×104, (c) 105, and (d) 2×105

simulation steps, respectively. The color of each set of data
points corresponds to the average over four independent real-
izations of the network’s initial weights, for the system size L
as indicated in the legend. The coloured areas give the max-
imum and minimum values of δE for the four independent
runs. Black bars indicate δEthreshold = 10−3.

tion runs after a reasonable optimization time when those
runs are predicted to ultimately converge to a δE(θ, J)
higher than δEthreshold. See Section II B of the SM [45] for
details. In Fig. 4 we show the number of network param-
eters at the critical αmin or µmin at which the network
is able to reach the target energy accuracy threshold.
This allows for a comparison of network expressiveness
for both varying width and depth on equal footing. We
find that for both the shallow and deep network, an ex-
ponentially growing number of parameters is needed to
achieve the target energy error. A comparison with the
Hilbert space dimension reveals that the network only
reaches this threshold once the number of variational pa-
rameters exceeds the number of probability amplitudes
contained in the respective state vector. Hence, we find
that our deep feed-forward NQS ansatz as trained here
does not learn a more efficient representation of the SYK
ground state than the full state vector representation.
It is conceivable, in particular given the fully-connected
nature of our ansatz, that there is some redundancy in
the learned variational parameters, which could be used
to achieve a degree of compression after training. In or-
der to investigate this possibility, we have performed a
low-rank approximation based on singular value decom-
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FIG. 4. Minimum number of parameters Npar required for
the FFNN to learn the ground state of the SYK model as
function of the system size L. Results are shown for the scal-
ing with network width in a shallow (µ = 2) network (blue
lines) and for the scaling with network depth for fixed α = 4
(red line). In both cases, an exponential scaling in the system
size is observed, which matches the scaling of the full Hilbert
space dimension dimH (dashed line). The Npar scaling for the
ground state of the Heisenberg model (blue) and the associ-
ated quadratic polynomial law are reported for comparison.

position of the weight matrices [48], the details of which
are reported in Section V of the SM [45]. This analysis,
however, has not revealed such an redundancy.

Our scaling results cannot be interpreted as an im-
mediate consequence of the entanglement scaling of the
SYK model, as NQS are known to be able to efficiently
represent some volume-law quantum states [20], while
they seem to fail for others (as shown here). While a
particular realization of the SYK Hamiltonian is of sig-
nificantly higher complexity than a low-dimensional local
lattice Hamiltonian (both because of its fully connected
structure and the ∝ L4 randomly drawn interaction ma-
trix elements), its ground state still exhibits more struc-
ture than a random Hilbert space vector. Since it is
well known that deep (and, in fact, already two-layer)
networks are able to memorize even completely random
data once the number of network parameters exceeds the
number of data points [49], these results provide evidence
that our FFNN ansatz does not learn to utilize any of
this structure but only manages to learn it as unstruc-
tured random data. This is in stark contrast to more
structured lattice Hamiltonians, where it is clear from
previous works that neural quantum states can approxi-
mate ground state energies with sub-exponential scaling
and thus do manage to make use of structure present
in the quantum ground state [50, 51], although expo-
nential scaling results as a function of real time have
been previously found for time-evolved states in a one-
dimensional lattice spin model [52]. We have found com-
parable sub-exponential behavior when evaluating our
training procedure on the ground state of the Heisen-

berg spin model ĤHeisb =
∑N
i=1

∑3
q=1 σ̂

(q)
i σ̂

(q)
i+1 on a one-

dimensional chain with periodic boundary conditions di-
agonalized in the same zero-magnetization subspace used
for the SYK computations. The scaling of the required
number of parameters to reach δEthreshold in this model
is also reported in Fig. 4. In this case, a relatively small
and fixed α = 1 and µ = 2 independent of the sys-
tem size are sufficient to reach this threshold, implying a
polynomial scaling of the required number of parameters
Npar = O(L2). This corresponds to an effective compres-
sion of the information contained in the exact state vec-
tor and allows to study sizes beyond those tractable by
full state simulation [7, 50]. However, the same approach
fails to be useful in the more complex SYK model case.
Discussion.— We have tackled the prototypical SYK

model using an NQS variational ansatz, presenting a sys-
tematic study of the ability of deep FFNNs to learn the
volume-law entangled ground states of this model. Focus-
ing on the scaling of the required number of parameters
to describe the ground state to a desired and fixed accu-
racy we find that the size of the FFNN ansatz needs to
grow exponentially in the system size. With this we show
explicitly that the neural network ansatz is unable to ef-
ficiently represent SYK ground states in larger systems
in spite of general results raising such hopes. We have
performed this analysis using a variety of training tech-
niques (as detailed in the SM [45]), showing that the ob-
served scaling is robust to such implementation choices.
While the proven capability of random RBMs to repre-
sent volume-law quantum states [20, 21] indicates that
NQS methods have the potential to tackle problems out
of the reach of established tensor-network based methods,
our results demonstrate that the entanglement entropy is
not the property that determines whether or not a phys-
ical quantum state can be efficiently represented by an
NQS. It remains an intriguing open question which other
properties of a physical quantum state determine the effi-
cient applicability of NQS-based methods. NQS ansätze
more specifically tailored to fermionic systems could po-
tentially achieve better scaling [42, 53]. Studies in this
direction would help elucidate to what extent the non-
local parity structure inherent to fermionic models [54]
affects the learnability of the SYK ground state. Separat-
ing this influence from other sources of complexity, such
as the lack of spatial structure and the disorder induced
by random couplings, and thereby exploring the inter-
mediate region between states that can be learned with
compression (such as in the Heisenberg and similar spin
models) and states that cannot (such as the SYK results
presented here) can provide an improved understanding
of the complexity of physical quantum states.
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have been performed using NetKet 3 [55, 56] with jax



5

[57]. Computations were performed on the HPC system
Ada at the Max Planck Computing and Data Facility
(MPCDF). The authors also gratefully acknowledge com-
puting time granted by the JARA Vergabegremium and
provided on the JARA partition part of the supercom-

puter JURECA at Forschungszentrum Jülich [58] under
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7 Simulation software for neural quantum state
methods

The availability of free, open-source software for computational tasks plays a vital role in the computa-
tional sciences. Accessible code encourages the reproduction of research (which increases confidence in
published results) and the exploration of ideas beyond the scope of the work for which an implementa-
tion was first developed. Furthermore, open software projects lower the barrier of entry for newcomers,
help to establish collaborations, and provide a setting for code review and exchange.

The meaning of the term open source goes beyond the mere availability of source code [241]. Following
the Open Source Initiative’s definition [242], the main requirement of open source software is its
availability under licensing terms that allow users free redistribution and the creation of derivative
works. Thus, the code of open-source software cannot just be read and reviewed, but also shared,
modified, and built upon26. This greatly simplifies the exchange and extension of code and stimulates
the creation of an ecosystem around open-source solutions [243].

The need for open-source implementations of algorithms in machine learning research has been for-
mulated by Sonnenburg et al. [107] in 2007, lamenting that, in their words, “the true potential of these
methods is not used, since existing implementations are not openly shared, resulting in software with
low usability, and weak interoperability.” Since that time, the machine learning field has progressed
tremendously in this regard. Nowadays, the majority of machine learning research is built on open-
source software [108] and major frameworks such as TensorFlow [244, 245] and PyTorch [246] provide
easy access to common network architectures, training algorithms, and technical features such as GPU
computing.

As in machine learning, research in computational sciences also benefits from open-source implementa-
tions of central models and algorithms [247–249]. Examples of established open-source software used
in computational quantum physics include the ALPS [250, 251] and TRIQS [252], which provide imple-
mentations of various algorithms for quantum many-body physics, ITensor [253] and TenPy [134] for
MPS/TNS calculations, and mVMC [133] for many-variable VMC calculations using pair-product states.
In the NQS community, several open-source frameworks have been published since the introduction of
the ansatz in 2017, in particular NetKet [P3, P4], which is described in the remainder of this chapter,
and jVMC [110]. More specialized frameworks, such as QuCumber [109] for QST applications, are also
available.

In the following sections, we will briefly describe key design aspects for the major releases of NetKet 2
and NetKet 3, respectively.

26The redistribution of modified works is typically subject to conditions such as requiring attribution and, in case of less
permissive open source licenses, requiring modifications or the whole derived work to retain the open-source license of
incorporated code [241].
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7.1 NetKet 2

The NetKet project was founded by Giuseppe Carleo, following the publication of the seminal work
Ref. [70], to provide the main building blocks and algorithms for studying quantum many-body systems
using NQS methods in a collaboratively developed open-source environment [254]. The initial public
version, NetKet 1.0, was released in 2018. This was followed by a period of intense development in a
growing collaboration of researchers from different institutions, leading to the release of NetKet 2 in
2019.

NetKet 2 provides high-level drivers for VMC ground state search, QST, and supervised learning
of amplitudes (Section 3.2.2). These can be customized by using various provided MCMC sampling
rules, NQS ansätze, and optimization algorithms. Furthermore, NetKet 2 provides an interface for
specifying the (discrete) Hilbert space, graph or lattice structure, and Hamiltonian of the system. Since
parallelization is crucial for efficient VMC calculations, NetKet 2 supports distributing calculations
over multiple cores and machines in an HPC environment using the message passing interface (MPI)
standard.

The framework uses a combination of code in the Python and C++ programming languages (Fig. 7.1).
The core functionality is written in C++ and then exposed to end users in Python using binding code
based on the pybind11 library [255]. Such a combination of languages is commonly employed in
scientific software frameworks [252, 256] and makes it possible to combine both languages so that their
respective strengths complement each other: The primary numerical routines and simulation loops can
be implemented in C++, which is compiled to efficient machine code. At the same time, setup and data
analysis can be performed in Python, which provides more flexibility for these tasks and allows NetKet
to be more comfortably used interactively, e.g., in notebook interfaces [257, 258]. This interactivity aids
in quick experimentation and the organization of research code. The significant performance drawbacks
of pure Python code can be accepted in this case since the heavy computations are performed within
the C++ core. This design, however, generally requires modifying the internal C++ code to add new
features such as NQS architectures or optimization schemes.

Further details on NetKet 2 are provided in the included software paper [P3].

Figure 7.1 | NetKet 2 is built on a C++ core library containing implementations of the main numerical routines.
This core functionality is made available as an internal Python module using pybind11 bindings.
The high-level interface of the NetKet 2 Python module is built around these bindings.
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7.2 NetKet 3

NetKet 3, released in 2021, represents a significant update to the framework. The most fundamental
change is the full replacement of the C++ core underlying NetKet 2 by pure Python code, which has
been made possible by the use of JAX, a Python-based framework for accelerated linear algebra [234,
235]. Using JAX, core computational routines can be written as Python functions. These functions are
then traced, i.e., their execution is recorded as a graph of primitive operations, the computational graph
[259] (see Fig. 7.2 for an example). This representation can be used to apply transformations to the
recorded computations, particularly just-in-time (JIT) compilation and automatic differentiation [235].

JIT compilation refers to the translation of source code to efficient machine code at runtime. JAX
relies on the accelerated linear algebra (XLA) compiler [260] for this task, which is developed as part
of TensorFlow and allows JAX to target CPU and GPU platforms as compilation targets. These JIT
compilation and optimization capabilities have made it possible to implement all core NetKet code in
Python and thus remove the need for a C++ core without compromising computational performance.
Distributed computations using MPI are still supported using mpi4py [261] with the help of the mpi4jax
library for JAX compatibility [262].

Automatic differentiation refers to the computation of derivatives by accumulating additional gradient
information during code execution; as such, it differs from numerical and symbolic differentiation
[263]. JAX supports automatic differentiation based on the computational graph of compatible Python
functions [235]. This is particularly useful for reducing the effort needed to implement custom NQS
models: Whereas NetKet 2 relies on hand-written implementations of gradients, which need to be
provided for every model, NetKet 3 makes it possible to write explicit code only for the forward pass
(s,θ) 7→ lnψθ(s) through the network. The log-derivatives of the ansatz can then be obtained using
JAX. Alternatively, automatic differentiation can be performed on the computational graph associated
with a higher-level operation, such as the computation of energy expectation values, to obtain relevant
gradients without explicitly relying on approaches such as the log-derivative trick (4.20).

Additional features that were introduced in NetKet 3 (over several minor releases) include a JAX-based
t-VMC implementation, an improved interface for handling lattices and their symmetry groups, and
built-in network architectures such as GCNNs and NAQS. Further details on NetKet 3 are provided in
the included software paper [P4].
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def linear(x, W, b):
    v = W @ x + b
    y = tanh(v)
    return y

Parameter 0
f32[16]

dot.4
lhs_contracting_dims={1}, rhs_contracting_dims={0}

f32[32]

1

Parameter 1
f32[32,16]{1,0}

0

Parameter 2
f32[32]

add.5
f32[32]

1
0

tanh.6
f32[32]

tuple.7
(f32[32])

ROOT

a) b)

Figure 7.2 | a) Schematic example code snippet implementing a single linear layer (3.9) with tanh activation
and b) the corresponding computational graph representation obtained using JAX, which shows the
primitive linear algebra operations recorded while tracing the execution of the function linear. In
this case, the parameters are x ∈ R16, W ∈ R32×16, and b ∈ R32, with real numbers represented by
32-bit floats.
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1. Motivation and significance

Recent years have seen a tremendous activity around the
development of physics-oriented numerical techniques based on
machine learning (ML) tools [1]. In the context of many-body
quantum physics, one of the main goals of these approaches is
to tackle complex quantum problems using compact represen-
tations of many-body states based on artificial neural networks.
These representations, dubbed neural-network quantum states
(NQS) [2], can be used for several applications. In the supervised
learning setting, they can be used, e.g., to learn existing quantum
states for which a non-NQS representation is available [3]. In
the unsupervised setting, they can be used to reconstruct com-
plex quantum states from experimental measurements, a task
known as quantum state tomography [4]. Finally, in the context
of purely variational applications, NQS can be used to find ap-
proximate ground- and excited-state solutions of the Schrödinger
equation [2,5–9], as well as to describe unitary [2,10,11] and
dissipative [12–15] many-body dynamics. Despite the increas-
ing methodological and theoretical interest in NQS and their
applications, a set of comprehensive, easy-to-use tools for re-
search applications is still lacking. This is particularly pressing
as the complexity of NQS-related approaches and algorithms is
expected to grow rapidly given these first successes, steepening
the learning curve.

The goal of NetKet is to provide a set of primitives and flexible
tools to ease the development of cutting-edge ML applications for
quantum many-body physics. NetKet also wants to help bridge
the gap between the latest and technically demanding develop-
ments in the field and those scholars and students who approach
the subject for the first time. Pedagogical tutorials are provided to
this aim. Serving as a common platform for future research, the
NetKet project is meant to stimulate the open and easy-to-certify
development of new methods and to provide a common set of
tools to reproduce published results.

A central philosophy of the NetKet framework is to provide
tools that are as simple as possible to use for the end user. Given
the huge popularity of the Python programming language and
of the many accompanying tools gravitating around the Python
ecosystem, we have built NetKet as a full-fledged Python library.
This simplicity of use however does not come at the expense of
performance. With this efficiency requirement in mind, all critical
routines and components of NetKet have been written in C++11.

2. Software description

We will first give a general overview of the structure of the
code in Section 2.1 and then provide additional details on the
functionality of NetKet in Section 2.2.

2.1. Software architecture

The core of NetKet is implemented in C++. For ease of use
and in order to facilitate the integration with other frameworks,
a Python interface is provided, which exposes all high-level func-
tionality from the C++ core via pybind11 [16] bindings. Use
of the Python interface is recommended for users building on
the library for research purposes, while the C++ code should be
modified for extending the NetKet library itself.

NetKet is divided into several submodules. The modules
graph, hilbert, and operator contain the classes necessary
for specifying the structure of the many-body Hilbert space, the
Hamiltonian, and other observables of a quantum system.

The core component of NetKet is the machine module, which
provides different variational representations of the quantum
wavefunction, particularly in the form of NQS. Encodings of mixed

states, needed to describe dissipative quantum system, are im-
plemented in the machine.densitymatrix submodule in the
form of Neural Density Operators (NDO) [17]. The variational,
supervised, and unsupervisedmodules contain driver classes
for energy optimization, supervised learning, and quantum state
tomography, respectively. These driver classes are supported by
the sampler and optimizer modules, which provide classes for
performing Variational Monte Carlo (VMC) sampling and opti-
mization steps.

The exact module provides functions for exact diagonaliza-
tion (ED) based on SciPy [18] and time propagation of the full
quantum state, in order to allow for easy benchmarking and
exploration of small systems within the NetKet framework. The
NetKet operator classes implement the SciPy linear-operator in-
terface and can also be converted to sparse and dense matrices,
providing interoperability with Python code. In particular, the
sparse and dense ED routines provided by the exact module
are implemented as thin wrappers around SciPy functionality.
The dynamics module provides basic ODE solvers for exact time
propagation.

The utility modules output, stats, and util contain some
additional functionality for output and statistics that is used
internally in other parts of NetKet.

An overview of the most important modules and their de-
pendencies is given in Fig. 1. A more detailed description of the
module contents will be given in the next section.

NetKet uses the Eigen 3 library [19] for linear algebra routines.
In the Python interface, Eigen datatypes are transparently con-
verted to and from NumPy [20] arrays by pybind11. The NetKet
driver classes provide methods to directly write the simulation
output to JSON files, which is done with the help of the nlohman-
n/json library for C++ [21]. Parallelization is implemented based
on the Message Passing Interface (MPI), allowing to substantially
decrease running time. Specifically, the Monte Carlo sampling of
expectation values implemented in the variational.Vmc class
is parallelized, with each node drawing independent samples
from the probability distribution which are averaged over all
nodes.

2.2. Software functionalities

The core feature of NetKet is the variational representation of
quantum states by artificial neural networks. Given a variational
state, the task is to optimize its parameters with regard to a
specified loss function, such as the total energy for ground state
searches or the (negative) overlap with a given target state. In
this section, we will discuss the models, types of variational
wavefunctions, and learning schemes that are available in NetKet.

2.2.1. Model specification
NetKet currently supports lattice models with a finite Hilbert

space of the form H = H⊗N
local where N denotes the number of

lattice sites and Hlocal denotes the local Hilbert space of each
site. The system is defined on a graph with a set of N sites and
a set of edges (also called bonds) between pairs of sites. This
graph structure is used to help with the definition of operators
on the lattice and to encode the spatial structure of the model,
which is necessary, e.g., to work with convolutional neural net-
works (CNNs). NetKet provides the predefined Hypercube and
Lattice graphs. Furthermore, CustomGraph supports arbitrary
edge-colored graphs, where each edge is associated with an in-
teger label called its color. This color can be used to describe
different types of bonds.

General lattice spin models can be described straightforwardly
in this manner. Bosonic lattice models can also be easily rep-
resented by truncating the local Hilbert space to only allow for
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Fig. 1. The main submodules of the netket Python module and their dependencies from a user perspective (i.e., only dependencies in the public interface are
shown). Below each submodule, examples of contained classes and functions are displayed. In a typical workflow, users will first define a quantum model, specify a
variational representation of the wavefunction as well as the Monte Carlo sampling and optimization methods, and then run the simulation using one of the driver
classes. A more detailed description of the software architecture and features is given in the main text.

occupations of up to Nlocal bosons per site [22]. NetKet currently
provides pre-defined Hamiltonians for the transverse-field Ising,
Heisenberg, and Bose–Hubbard models. Other observables and
custom Hamiltonians can also be specified: a convenient option
for common lattice models is to use the GraphOperator class,
which allows to construct a Hamiltonian from a family of 2-local
operators acting on each bond of a selected color and a family of
1-local operators acting on each site. It is also possible to specify
general k-local operators (as well as their products and sums)
using the LocalOperator class.

While fermionic Hamiltonians are not fully supported in the
present version, they can be implemented using a custom Jordan–
Wigner mapping and the LocalOperator class [23].

2.2.2. Variational quantum states
The purpose of variational states is to provide a compact and

computationally efficient representation of quantum states. Since
generally only a subset of the full many-body Hilbert space will
be covered by a given variational ansatz, the aim is to use a
parametrization that captures the relevant physical states for a
given problem.

The variational wavefunctions supported by NetKet are pro-
vided as part of the machine module, which currently includes
NQS but also Jastrow wavefunctions [24,25] and matrix-product
states (MPS) [26–28].

Broadly, there are two main types of NQS available in NetKet:
restricted Boltzmann machines (RBM) [29] and feed-forward neu-
ral networks (FFNN) [8,9,30,31]. Both types of networks are fully
complex, i.e., with both complex-valued parameters and output.

The machine module contains the RbmSpin class for spin-
1
2 systems as well as two other variants: the symmetric RBM
(RbmSpinSymm) to capture lattice symmetries such as translation
and inversion symmetries and the multi-valued RBM

(RbmMultiVal) for systems with larger local Hilbert spaces (such
as higher spins or bosonic systems).

FFNNs represent a broad and flexible class of networks and are
implemented by the FFNN class. They consist of a sequence of lay-
ers available from the layer submodule, each layer performing
either an affine transformation to the input vector or applying a
non-linear activation function. There are currently two types of
affine maps available:

• Dense fully-connected layers, which for an input x ∈ Cn and
output y ∈ Cm have the form y = Wx+ b where W ∈ Cm×n

and b ∈ Cm are called the weight matrix and bias vector,
respectively.

• Convolutional layers [30,32] for hypercubic lattices.

As activation functions, rectified linear units (Relu) [33], hy-
perbolic tangent (Tanh) [34], and the logarithm of the hyper-
bolic cosine (Lncosh) are provided. RBMs without visible bias
can be represented as single-layer FFNNs with ln cosh activa-
tion, allowing for a generalization of these machines to multiple
layers [5].

The machine module also provides more traditional varia-
tional wavefunctions, namely MPS with periodic boundary con-
ditions (MPSPeriodic) and long-range Jastrow (Jastrow) wave-
functions, which allows for comparison of NQS with results ob-
tained using these approaches.

Finally, NetKet also includes representations of mixed states
in the machine.densitymatrix submodule, which most no-
tably includes the real-valued NDO ansatz (NdmSpinPhase). For
compatibility with the rest of the package, the vectorized repre-
sentation of density matrices can be accessed through the same
interface as NQS.

Customwavefunctions may be provided by implementing sub-
classes of the AbstractMachine class in C++ or in Python by
deriving netket.machine.CxxMachine.
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2.2.3. Supervised learning
In supervised learning, a target wavefunction is given and

the task is to optimize a chosen ansatz to represent it. This
functionality is contained within the supervised module. Given
a variational state |ΨNN(α)⟩ depending on the parameters α ∈ Cm

and a target state |Ψtar⟩, the negative log overlap

L(α) = − log
⟨Ψtar|ΨNN(α)⟩

⟨Ψtar|Ψtar⟩

⟨ΨNN(α)|Ψtar⟩

⟨ΨNN(α)|ΨNN(α)⟩
(1)

is taken as the loss function to be minimized. The loss is com-
puted in a Monte Carlo fashion by direct sampling of the target
wavefunction. To minimize the loss, the gradient ∇α L of the
loss function with respect to the parameters is calculated. This
gradient is then used to update the parameters according to a
specified gradient-based optimization scheme. For example, in
stochastic gradient descent (SGD) the parameters are updated as

α → α − λ∇αL (2)

where λ is the learning rate. The different update rules supported
by NetKet are contained in the optimizermodule. Various types
of optimizers are available, including SGD, AdaGrad [35], AdaMax
and AdaDelta [36], AMSGrad [37], and RMSProp.

2.2.4. Unsupervised learning
NetKet also allows to carry out unsupervised learning of un-

known probability distributions, which in this context corre-
sponds to quantum state tomography [38]. Given an unknown
quantum state, a neural network can be trained on projective
measurement data to discover an approximate reconstruction of
the state [4]. In NetKet, this functionality is contained within the
unsupervised.Qsr class.

For some given target quantum state |Ψtar⟩, the training
dataset D consists of a sequence of projective measurements
σb in different bases b, with underlying probability distribution
P(σb) = |Ψtar(σb)|2. The quantum reconstruction of the target
state translates into minimizing the statistical divergence be-
tween the distribution of the measurement outcomes and the
distribution generated by the NQS. This corresponds, up to a
constant dataset entropy contribution, to maximizing the log-
likelihood of the network distribution over the measurement data

L =

∑
σb∈D

logπ (σb) , (3)

where π denotes the probability distribution

π (σ) =
|ΨNN(σ)|2∑
σ′ |ΨNN(σ ′)|2

. (4)

generated by the NQS wavefunction.
Note that, for every training sample where the measurement

basis differs from the reference basis |σ⟩ of the NQS, a unitary
transformation Û should be applied to appropriately change the
basis, ΨNN(σb) = ÛbΨNN(σ).

The network parameters are updated according to the gradient
of the log-likelihood L. This can be computed analytically, and
it requires expectation values over both the training data points
and the network distribution π (σ). While the first is trivial to
compute, the latter should be approximated by a Monte Carlo
average over configurations sampled from a Markov chain.

2.2.5. Variational Monte Carlo
Finally, NetKet supports ground state searches for a given

many-body quantum Hamiltonian Ĥ . In this context, the task is to
optimize the parameters of a variational wavefunction Ψ in order

Fig. 2. Variational optimization of the restricted Boltzmann machine for the
one-dimensional spin- 1

2 Heisenberg model. The main plot shows the Monte
Carlo energy estimate, which converges to the exact ground state energy up
to a relative error |(E − Eexact)/Eexact| of 4.16 × 10−5 within the 200 iteration
steps shown. The inset shows the Monte Carlo estimate of the energy variance,
which becomes zero in an exact eigenstate of the Hamiltonian.

to minimize the energy ⟨Ĥ⟩. The variational.Vmc driver class
contains the main logic to optimize a variational wavefunction
given a Hamiltonian, a sampler, and an optimizer.

The energy of a wavefunction Ψ (σ) = ⟨σ|Ψ ⟩ can be estimated
as

⟨Ĥ⟩ =

∑
σ,σ′ Ψ

∗(σ) ⟨σ| Ĥ |σ ′
⟩ Ψ (σ ′)∑

σ |Ψ (σ)|2

=

∑
σ

(∑
σ′

⟨σ| Ĥ |σ ′
⟩

Ψ (σ ′)
Ψ (σ)

)
|Ψ (σ)|2∑
σ′ |Ψ (σ ′)|2

≈

⟨∑
σ′

⟨σ| Ĥ |σ ′
⟩

Ψ (σ ′)
Ψ (σ)

⟩
σ

(5)

where in the last line ⟨ · ⟩σ denotes a stochastic expectation value
taken over a sample of configurations {σ} drawn from the proba-
bility distribution corresponding to the variational wavefunction
(4). This sampling is performed by classes from the sampler
module, which generate Markov chains of configurations using
the Metropolis algorithm [39] to ensure detailed balance. Parallel
tempering [40] options are also available to improve sampling
efficiency.

In order to optimize the parameters of a machine to minimize
the energy, a gradient-based optimization scheme can be applied
as discussed in the previous section. The energy gradient can be
estimated at the same time as ⟨Ĥ⟩ [2,25]. This requires computing
the partial derivatives of the wavefunction with respect to the
variational parameters, which can be obtained analytically for the
RBM [2] or via backpropagation [30,31,34] for multi-layer FFNNs.
In this case, the steepest descent update according to Eq. (2) is
also a form of SGD, because the energy is estimated using a sub-
set of the full data available from the variational wavefunction.
Alternatively, often more stable convergence can be achieved by
using the stochastic reconfiguration (SR) method [41,42], which
approximates the imaginary time evolution of the system on
the submanifold of variational states. The SR approach is closely
related to the natural gradient descent method used in machine
learning [43]. In the NetKet implementation, SR is performed
using either an exact or an iterative linear solver, the latter being
recommended when the number of variational parameters is
large.

Information on the optimization run (sampler acceptance
rates, energy, energy variance, expectation of additional observ-
ables, and the current variational parameters) for each iteration
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1 import netket as nk
2
3 # Define the graph : a 1D chain of 20 s i t e s with periodic
4 # boundary conditions
5 g = nk . graph . Hypercube ( length =20 , n_dim=1 , pbc=True )
6
7 # Define the Hi lbert Space : spin ha l f degree of freedom at each
8 # s i t e of the graph , r e s t r i c t ed to the zero magnetization sector
9 hi = nk . h i lbe r t . Spin ( s =0 .5 , to ta l _ sz =0 .0 , graph=g )

10
11 # Define the Hamiltonian : spin ha l f Heisenberg model
12 ha = nk . operator . Heisenberg ( h i lbe r t =hi )
13
14 # Define the ansatz : Restr ic ted Boltzmann machine
15 # with 20 hidden units
16 ma = nk . machine . RbmSpin( h i lbe r t =hi , n_hidden=20)
17
18 # I n i t i a l i s e with machine parameters
19 ma. init_random_parameters ( seed=1234 , sigma=0.01)
20
21 # Define the Sampler : metropolis sampler with loca l
22 # exchange moves , i . e . nearest neighbour spin swaps
23 # which preserve the to t a l magnetization
24 sa = nk . sampler . MetropolisExchange ( graph=g , machine=ma)
25
26 # Define the optimiser : Stochast ic gradient descent with
27 # learning rate 0 .01 .
28 opt = nk . optimizer . Sgd ( learning_rate =0.01)
29
30 # Define the VMC object : Stochast ic Reconfiguration " Sr " i s used
31 gs = nk . va r i a t iona l .Vmc( hamiltonian=ha , sampler=sa ,
32 optimizer=opt , n_samples=1000 ,
33 use_ i te ra t ive =True , method= ’ Sr ’ )
34
35 # Run the VMC simulation for 1000 i t e ra t i ons
36 # and save the output into f i l e s with pref ix " tes t "
37 # The machine parameters are stored in " tes t . wf"
38 # while the measurements are stored in " tes t . log "
39 gs . run ( output_prefix= ’ t e s t ’ , n_ i ter =1000)

Listing 1: Example script for finding the ground state of the one-dimensional spin- 12 Heisenberg model using an RBM ansatz.

can be written to a log file in JSON format. Alternatively, they can
be accessed directly inside the simulation loop in Python to allow
for more flexible output.

3. Illustrative examples

NetKet is available as a Python package and can be obtained
from the Python package index (PyPI) [44]. Assuming a properly
configured Python environment, NetKet can be installed via the
shell command

pip install netket

which will download, compile, and install the package. A working
MPI environment is required to run NetKet. In case multiple MPI
installations are present on the system and in order to avoid po-
tential conflicts, we recommend to run the installation command
as

CC=mpicc CXX=mpicxx pip install netket

with the desired MPI environment loaded in order to perform the
build with the correct compiler. After a successful installation, the
NetKet module can be imported in Python scripts.

Alternatively to installing NetKet locally, NetKet also uses the
deployment of BinderHub from mybinder.org [45] to build and
deploy a stable version of the software, which can be found at
https://mybinder.org/v2/gh/netket/netket/v.2.0. This allows users
to run the tutorials or other small jobs without installing NetKet.

Fig. 3. Supervised learning of the ground state of the one-dimensional spin- 1
2

transverse field Ising model with 10 sites from ED data, using an RBM with 20
hidden units. The blue line shows the overlap between the RBM wavefunction
and the exact wavefunction for each iteration.

3.1. One-dimensional Heisenberg model

As a first example, we present a Python script for obtaining a
variational RBM representation of the ground state of the spin-
1
2 Heisenberg model on a one-dimensional chain with periodic
boundary conditions. The code for this example is shown in
Listing 1. Fig. 2 shows the evolution of the energy expectation
value over the course of the optimization run. We see that for
a small chain of 20 sites and an RBM with 20 hidden units, the

https://mybinder.org/v2/gh/netket/netket/v.2.0
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1 import netket as nk
2 from numpy import log
3
4 # 1D La t t i ce
5 g = nk . graph . Hypercube ( length =10 , n_dim=1 , pbc=True )
6
7 # Hilbert space of spins on the graph
8 hi = nk . h i lbe r t . Spin ( s =0 .5 , graph=g )
9

10 # Is ing spin Hamiltonian
11 ha = nk . operator . I s ing (h=1.0 , h i lbe r t =hi )
12
13 # Perform Exact Diagonal izat ion to get lowest eigenvector
14 res = nk . exact . lanczos_ed (ha , f i r s t _n =1 , compute_eigenvectors=True )
15
16 # Store eigenvector as a l i s t of t ra in ing samples and targets
17 # The samples would be the Hi lbert space conf igurat ions and
18 # the targets should be wavefunction amplitudes .
19 hind = nk . h i lbe r t . HilbertIndex ( hi )
20 h_size = hind . n_states
21 targets = [ [ log ( res . eigenvectors [ 0 ] [ i ] ) ] for i in range ( h_size ) ]
22 samples = [ hind . number_to_state ( i ) for i in range ( h_size ) ]
23
24 # Machine : Restr ic ted Boltzmann machine
25 # with 20 hidden units
26 ma = nk . machine . RbmSpin( h i lbe r t =hi , n_hidden=20)
27 ma. init_random_parameters ( seed=1234 , sigma=0.01)
28
29 # Optimizer
30 op = nk . optimizer . AdaMax( )
31
32 # Supervised Learning module
33 spvsd = nk . supervised . Supervised (machine=ma,
34 optimizer=op ,
35 batch_size =400 ,
36 samples=samples ,
37 targets = targets )
38
39 # Run the optimization for 2000 i t e ra t i ons
40 spvsd . run ( n_ i ter =2000 , output_prefix= ’ t e s t ’ ,
41 loss_funct ion="Overlap_phi " )

Listing 2: Example script for supervised learning. A RBM ansatz is optimized to represent the ground state of the one-dimensional
spin- 12 transverse field Ising model obtained by ED for this example.

energy converges to a relative error of the order 10−5 within
about 100 iteration steps.

3.2. Supervised learning

As a second example, we use the supervised learning module
in NetKet to optimize an RBM to represent the ground state of
the transverse field Ising model. The example script is shown in
Listing 2. The exact ground state wavefunction is first obtained by
exact diagonalization and then used for training the RBM state by
minimizing the overlap loss (1). Fig. 3 shows the evolution of the
overlap over the training iterations.

4. Impact

Given the flexibility of NetKet, we envision several poten-
tial applications of this library both in data-driven experimental
research and in more theoretical, problem-driven research on
interacting quantum many-body systems. For example, several
important theoretical and practical questions concerning the ex-
pressibility of NQS, the learnability of experimental quantum
states, and the efficiency at finding ground states of k-local Hamil-
tonians, can be directly addressed using the current functionality
of the software.

Moreover, having an easy-to-extend set of tools to work with
NQS-based applications can propel future research in the field,
without researchers having to pay a significant cost of entry in

terms of algorithm implementation and testing. Since its early
release in April 2017, NetKet has already been used for research
purposes by several groups worldwide [5,22,23,46–48]. We also
hope that, building upon a common set of tools, practices like
publishing accompanying codes to research papers, largely pop-
ular in the ML community, can become standard practice also for
ML applications in quantum physics.

Finally, for a fast-growing community like ML for quantum
science, it is also crucial to have pedagogical tools available that
can be conveniently used by new generations of students and
researchers. Benefiting from a growing set of tutorials and step-
by-step explanations, NetKet can be comfortably used in schools
and lectures.

5. Conclusions and future directions

We have introduced NetKet, a comprehensive open source
framework for the study of many-body quantum systems us-
ing machine learning techniques. Central to this framework are
variational parameterizations of many-body wavefunctions in the
form of artificial neural networks. NetKet is a Python framework
implemented in C++11, designed with efficiency as well as ease
of use in mind. Several examples, tutorials, and notebooks are
provided with our software in order to reduce the learning curve
for newcomers.
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The NetKet project is meant to continuously evolve in fu-
ture releases, welcoming suggestions and contributions from its
users. For example, future versions may provide a natural in-
terface with general ML frameworks such as PyTorch [49] and
Tensorflow [50]. On the algorithmic side, future goals include
the extension of NetKet to incorporate unitary dynamics [11,
51], convenient Fermionic operators, as well as full support for
density-matrix tomography [17].
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Abstract

We introduce version 3 of NETKET, the machine learning toolbox for many-body quantum
physics. NETKET is built around neural quantum states and provides efficient algorithms
for their evaluation and optimization. This new version is built on top of JAX, a differen-
tiable programming and accelerated linear algebra framework for the Python program-
ming language. The most significant new feature is the possibility to define arbitrary
neural network ansätze in pure Python code using the concise notation of machine-
learning frameworks, which allows for just-in-time compilation as well as the implicit
generation of gradients thanks to automatic differentiation. NETKET 3 also comes with
support for GPU and TPU accelerators, advanced support for discrete symmetry groups,
chunking to scale up to thousands of degrees of freedom, drivers for quantum dynamics
applications, and improved modularity, allowing users to use only parts of the toolbox
as a foundation for their own code.
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1 Introduction

During the last two decades, we have witnessed tremendous advances in machine learning
(ML) algorithms which have been used to solve previously difficult problems such as image
recognition [1, 2] or natural language processing [3]. This has only been possible thanks to
sustained hardware development: the last decade alone has seen a 50-fold increase in avail-
able computing power [4]. However, unlocking the full computational potential of modern
arithmetic accelerators, such as GPUs, used to require significant technical skills, hampering
researchers in their efforts. The incredible pace of algorithmic advances must therefore be
attributed, at least in part, to the development of frameworks allowing researchers to tap into
the full potential of computer clusters while writing high-level code [5,6].

In the last few years, researchers in quantum physics have increasingly utilized machine-
learning techniques to develop novel algorithms or improve on existing approaches [7]. In
the context of variational methods for many-body quantum physics in particular, the method
of neural quantum states (NQS) has been developed [8]. NQS are based on the idea of using
neural networks as an efficient parametrization of the quantum wave function. They are of
particular interest because of their potential to represent highly entangled states in more than
one dimension with polynomial resources [9], which is a significant challenge for more estab-
lished families of variational states. NQS are also flexible: they have been successfully used to
determine variational ground states of classical [10] and quantum Hamiltonians [11–17] as
well as excited states [13], to approximate Hamiltonian unitary dynamics [8, 18–23], and to
solve the Lindblad master equation [24–26]. In particular, NQS are currently used in the study
of frustrated quantum systems [13,15–17,27–30], which have so far been challenging to opti-
mize by established numerical techniques. They have also been used to perform tomographic
state reconstruction [31] and efficiently approximate quantum circuits [32].

A complication often encountered when working with NQS is, however, that standard ML
frameworks like TensorFlow [33] or PyTorch [34] are not geared towards these kind of quan-
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tum mechanical problems, and it often takes considerable technical expertise to use them for
such non-standard tasks. Alternatively, researchers sometimes avoid those frameworks and
implement their routines from scratch, but this often leads to sub-optimal performance. We
believe that it is possible to foster research at this intersection of quantum physics and ML by
providing an easy-to-use interface exposing quantum mechanical objects to ML frameworks.
We therefore introduce version 3 of the NETKET framework [35].1 NETKET 3 is an open-
source Python toolbox expressing several quantum mechanical primitives in the differentiable
programming framework JAX [5,36].

NETKET provides an easy-to-use interface to high-performance variational techniques with-
out the need to delve into the details of their implementations, but customizability is not sac-
rificed and advanced users can inspect, modify, and extend practically every aspect of the
package. Moreover, integration of our quantum object primitives with the JAX ecosystem al-
lows users to easily define custom neural-network architectures and compute a range of quan-
tum mechanical quantities, as well as their gradients, which are auto-generated through JAX’s
tracing-based approach. JAX provides the ability to write numerical code in pure Python using
NUMPY-like calls for array operations, while still achieving high performance through just-in-
time compilation using XLA, the accelerated linear algebra compiler that underlies TensorFlow.
We have also integrated JAX and MPI with the help of MPI4JAX [37] to make NETKET scale to
hundreds of computing nodes.

1.1 What’s new

With the release of version 3, NETKET has moved from internally relying on a custom C++
core to the JAX framework, which allows models and algorithms to be written in pure Python
and just-in-time compiled for high performance on both CPU and GPU platforms.2 By using
only Python, the installation process is greatly simplified and the barrier of entry for new
contributors is lowered.

iFrom a user perspective, the most important new feature is the possibility of writing cus-
tom NQS wave functions using JAX, which allows for quick prototyping and deployment, frees
users from having to manually implement gradients due to JAX’s support for automatic differ-
entiation, and makes models easily portable to GPU platforms. Other prominent new features
are

• support for (real and imaginary time) unitary and Markovian dissipative dynamics;

• support for continuous systems;

• support for composite Hilbert spaces;

• efficient implementations of the quantum geometric tensor and stochastic reconfigura-
tion, which scale to models with millions of parameters;

• group-invariant and group-equivariant layers and architectures which support arbitrary
discrete symmetries.

A more advanced feature is an extension mechanism built around multiple dispatch [38],
which allows users to override algorithms used internally by NETKET without editing the source
itself. This can be used to make NETKET work with custom objects and algorithms to study
novel problems that do not easily fit what is already available.

1This manuscript refers to NETKET v3.5, released in August 2022.
2Google’s Tensor Processing Units (TPUs) are also, in principle, supported. However, at the time of writing they

only support half-precision float16 . Some modifications would be necessary to work-around loss of precision
and gradient underflow.
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ð
JAX fluency. Using NETKET’s high-level interface and built-in neural network ar-
chitectures does not require the user to be familiar with JAX and concepts such as
just-in-time compilation and automatic differentiation. However, when defining
custom classes such as neural network architectures, operators, or Monte Carlo
samplers, some proficiency with writing JAX-compatible code will be required.
We refrain from discussing JAX in detail and instead point the reader towards its
documentation at jax.readthedocs.io.

1.2 Outline

NETKET provides both an intuitive high-level interface with sensible defaults to welcome begin-
ners, as well as a complete set of options and lower-level functions for flexible use by advanced
users. The high-level interface is built around quantum-mechanical objects such as Hilbert
spaces ( netket.hilbert ) and operators ( netket.operator ), presented in Section 2.

The central object in NETKET 3 is the variational state, discussed in Section 3, which bring
together the neural-network ansatz, its variational parameters, and a Monte-Carlo sampler.
In Section 3.2, we give an example on how to define an arbitrary neural network using a
NETKET/JAX-compatible framework, while Section 3.4 presents the new API of stochastic sam-
plers. In Section 3.5, we show how to compute the quantum geometric tensor (QGT) with
NETKET, and compare the different implementations.

Section 4 shows how to use the three built-in optimization drivers to perform ground-
state, steady-state, and dynamics calculations. Section 5 discusses NETKET’s implementation
of spatial symmetries and symmetric neural quantum states, which can be exploited to lower
the size of the variational manifold and to target excited states in nontrivial symmetry sectors.
In Section 6, we also show how to study a system with continuous degrees of freedom, such
as interacting particles in one or more spatial dimensions.

The final sections present detailed workflow examples of some of the more common use
cases of NETKET. In Section 7, we show how to study the ground state and the excited state
of a lattice Hamiltonian. Section 9 gives examples of both unitary and Lindbladian dynamical
simulations.

To conclude, Section 10 presents scaling benchmarks of NETKET running across multiple
devices and a performance comparison with jVMC [39], another library similar in scope to
NETKET.

Readers who are already familiar with the previous version of NETKET might be especially
interested in the variational state interface described in Section 3.1, which replaces what was
called machine in NETKET 2 [35], the QGT interface described in Section 3.5, algorithms for
dynamics (Section 4.3 and Section 9), and symmetry-aware NQS (Section 5).

1.3 Installing NETKET

NETKET is a package written in pure Python; it requires a recent Python version, currently at
least version 3.7. Even though NETKET itself is platform-agnostic, JAX, its main dependency,
only works on MacOS and Linux at the time of writing.3 Installing NETKET is straightforward
and can be achieved running the following line inside a python environment:� �

1 pip install --upgrade netket� �
3In principle, JAX runs on Windows, but users must compile it themselves, which is not an easy process.
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To enable GPU support, Linux with a recent CUDA version is required and a special version
of JAX must be installed. As the appropriate installation procedure can change between JAX

versions, we refer the reader to the official documentation4 for detailed instructions.
NETKET by default does not make use of multiple CPUs that might be available to the

user. Exploiting multiple processors, or even running across multiple nodes, requires MPI
dependencies, which can be installed using the command� �

1 pip install --upgrade "netket[mpi]"� �
These dependencies, namely mpi4py and mpi4jax , can only be installed if a working MPI
distribution is already available.

Once NETKET is installed, it can be imported in a Python session or script and its version
can be checked as� �

1 >>> import netket as nk
2 >>> print(nk.__version__)
3 3.5.0� �

We recommend that users use an up-to-date version when starting a new project. In code
listings, we will often refer to the netket module as nk for brevity.

NETKET also comes with a set of so-called experimental functionalities which are pack-
aged into the netket.experimental submodule which mirrors the structure of the standard

netket module. Experimental APIs are marked as such because they are relatively young
and we might want to change the function names or options keyword arguments without guar-
anteeing backward compatibility as we do for the rest of NETKET. In general, we import the
experimental submodule as follows� �

1 >>> from netket import experimental as nkx� �
and use nkx as a shorthand for it.

2 Quantum-mechanical primitives

In general, when working with NETKET, the workflow is the following: first, one defines the
Hilbert space of the system (Section 2.1) and the Hamiltonian or super-operator of interest
(Section 2.2). Then, one builds a variational state (Section 3.1), usually combining a neural-
network model and a stochastic sampler. In this section, we describe the first step in this
process, namely, how to define a quantum-mechanical system to be modeled.

2.1 Hilbert spaces

Hilbert-space objects determine the state space of a quantum system and a specific choice of
basis. Functionality related to Hilbert spaces is contained in the nk.hilbert module; for

brevity, we will often leave out the prefix nk.hilbert in this section.

All implementations of Hilbert spaces derive from the class AbstractHilbert and fall
into two classes:

• discrete Hilbert spaces, which inherit from the abstract class DiscreteHilbert and

include spin ( Spin ), qubit ( Qubit ), Fock ( Fock ) as well as fermionic orbitals

( SpinOrbitalFermions ) Hilbert spaces. Discrete spaces are typically used to describe

4https://github.com/google/jax#installation
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lattice systems. The lattice structure itself is, however, not part of the Hilbert space class
and can be defined separately.

• continuous Hilbert spaces, which inherit from the abstract class ContinuousHilbert .

Currently, the only concrete continuous space provided by NETKET is Particle .

Continuous Hilbert spaces are discussed in Section 6. A general discrete space with N sites
has the structure

Hdiscrete = span{|s0〉 ⊗ · · · ⊗ |sN−1〉 | si ∈ Li , i ∈ {0, . . . , N − 1}} , (1)

where Li is the set of local quantum numbers at site i (e.g., L = {0, 1} for a qubit, L = {±1}
for a spin-1/2 system in the σz basis, or L= {0, 1, . . . , Nmax} for a Fock space with up to Nmax
particles per site). Constraints on the allowed quantum numbers are supported, resulting in
Hilbert spaces that are subspaces of Eq. (1). For example, Spin(1/2, total_sz=0) creates

a spin-1/2 space which only includes configurations {si} that satisfy
∑N

i=1 si = 0. The corre-
sponding basis states |s〉 span the zero-magnetization subspace. Similarly, constraints on the
total population in Fock spaces are also supported.

Different spaces can be composed to create coupled systems by using the exponent operator
( ** ) and the multiplication operator ( * ). For example, the code below creates the Hilbert
space of a bosonic cavity with a cutoff of 10 particles at each site, coupled to 6 spin−1

2 degrees
of freedom.� �

1 >>> hi = nk.hilbert.Fock(10) * nk.hilbert.Spin(1/2)**6
2 >>> print("Size of the hilbert space: ", hi.n_states)
3 Size of the hilbert space: 704
4 >>> print("Size of the basis: ", hi.size)
5 Size of the basis: 7
6 >>> hi.random_state(jax.random.PRNGKey(0), (2,))
7 DeviceArray([[10., -1., 1., -1., 1., -1., -1.],
8 [ 9., 1., -1., -1., 1., -1., 1.]], dtype=float32)� �

All Hilbert objects can generate random basis elements through the function
random_state(rng_key, shape, dtype) , which has the same signature as standard ran-

dom number generators in JAX. The first argument is a JAX random-generator state as re-
turned by jax.random.PRNGKey , while the other arguments specify the number of output
states and optionally the JAX data type. In this example, an array with two state vectors has
been returned. The first entry of each corresponds to the Fock space and is thus an integer in
{0, 1, . . . , 10}, while the rest contains the spin quantum numbers.

Custom Hilbert spaces can be constructed by defining a class inheriting either from
ContinuousHilbert for continuous spaces or DiscreteHilbert for discrete spaces. In

the rest of the paper, we will always be working with discrete Hilbert spaces unless stated
otherwise.

NETKET also supports working with super-operators, such as the Liouvillian used to define
open quantum systems, and variational mixed states. The density matrix is an element of the
space of linear operators acting on a Hilbert space, B(H). NETKET represents this space using
the Choi–Jamilkowski isomorphism [40,41] convention B(H)∼H⊗H; this “doubled” Hilbert
space is implemented as DoubledHilbert . Doubled Hilbert spaces behave largely similarly
to standard Hilbert spaces, but their bases have double the number of degrees of freedom; for
example, super-operators can be defined straightforwardly as operators acting on them.
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2.2 Linear operators

NETKET is designed to allow users to work with large systems, beyond the typically small
system sizes that are accessible through exact diagonalization techniques. In order to com-
pute expectation values 〈Ô〉 on such large spaces, we must be able to efficiently represent the
operators Ô and work with their matrix elements 〈σ| Ô |η〉 without storing them in memory.

NETKET provides different implementations for the operators, tailored for different use
cases, which are available in the netket.operator submodule. NETKET operators are al-
ways defined relative to a specific underlying Hilbert space object and inherit from one of the
abstract classes DiscreteOperator or ContinuousOperator , depending on the classes of
supported Hilbert spaces. We defer the discussion of operators acting on a continuous space
to Section 6 and focus on discrete-space operators in the remainder of this section.

An operator acting on a discrete space can be represented as a matrix with some matrix
elements 〈σ| Ô |η〉. As most of those elements are zero in physical systems, a standard ap-
proach is to store the operator as sparse matrices, a format that lowers the memory cost by
only storing non-zero entries. However, the number of non-zero matrix elements still scales
exponentially with the number of degrees of freedom, so sparse matrices cannot scale to the
thousands of lattice sites that we want to support, either. For this reason, NETKET uses one of
three custom formats to represent operators:

• LocalOperator is an implementation that can efficiently represent sums of K-local
operators, that is, operators that only act nontrivially on a set of K sites. The memory
cost of this format grows linearly with the number of operator terms and the number of
degrees of freedom, but it scales exponentially in K .

• PauliStrings is an implementation that efficiently represents a product of Pauli X , Y, Z
operators acting on the whole system. This format only works with qubit-like Hilbert
spaces, but it is extremely efficient and has negligible memory cost.

• FermionOperator2nd is an efficient implementation of second-quantized fermionic

operators built out of the on-site creation and annihilation operators f †
i , fi . It works

together with SpinOrbitalFermions and the equivalent Fock spaces.

• Special implementations like Ising , which hard-code the matrix elements of the op-
erator. Those are the most efficient, though they cannot be customized at all.

The nk.operator submodule also contains ready-made implementations of commonly used
operators, such as Pauli matrices, bosonic ladder or projection operators, and common Hamil-
tonians such as the Heisenberg, or the Bose–Hubbard models.

2.2.1 Manipulating operators

Operators can be manipulated similarly to standard matrices: they can be added, subtracted,
and multiplied using standard Python operators. In the example below we show how to con-
struct the operator

Ô =
�

σ̂x
0 + σ̂

x
1

�2
= 2(σ̂x

0 σ̂
x
1 + 1) , (2)

starting from the Pauli X operator acting on the i-th site, σx
i , given by the function

nk.operator.spin.sigmax(hi, i) :
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� �
1 >>> hi = nk.hilbert.Spin(1/2)**2
2 >>> op = nk.operator.spin.sigmax(hi,0) + nk.operator.spin.sigmax(hi,1)
3 >>> op = op * op
4 >>> op
5 LocalOperator(dim=2, acting_on=[[0], [0, 1], [1]], constant=0,

dtype=float64)
6 >>> op.to_dense()
7 array([[2., 0., 0., 2.],
8 [0., 2., 2., 0.],
9 [0., 2., 2., 0.],

10 [2., 0., 0., 2.]])� �
Note that each operator requires the Hilbert space object hi as well as the specific sites it acts
on as constructor arguments. In the last step (line 6), we convert the operator into a dense
matrix using the to_dense() method; it is also possible to convert an operator into a SciPy

sparse matrix using to_sparse() .
While it is possible to inspect those operators and (if the Hilbert space is small enough) to

convert them to dense matrices, NETKET’s operators are built in order to support efficient row
indexing, similar to row-sparse (CSR) matrices. Given a basis vector |σ〉 in a Hilbert space,
one can efficiently query the list of basis states |η〉 and matrix elements O(σ,η) such that

O(σ,η) = 〈σ| Ô |η〉 6= 0 , (3)

using the function operator.get_conn(sigma) , which returns both the vector of non-zero

matrix elements and the corresponding list of indices |η〉, stored as a matrix.5

3 Variational quantum states

In this section, we first introduce the general interface of variational states, which can be used
to represent both pure states (vectors in the Hilbert space) and mixed states (positive-definite
density operators). We then present how to define variational ansätze and the stochastic sam-
plers needed that generate Monte Carlo states.

3.1 Abstract interface

A variational state describes a parametrized quantum state that depends on a (possibly
large) set of variational parameters θ . The quantum state can be either pure (denoted as
|ψθ 〉) or mixed (written as a density matrix ρ̂θ ). NETKET defines an abstract interface,
netket.vqs.VariationalState , for such objects; all classes that implement this interface

will automatically work with all the high-level drivers (e.g., ground-state optimization or time-
dependent variational dynamics) discussed in Section 4. The VariationalState interface
is relatively simple, as it has only four requirements:

• The parameters θ of the variational state are exposed through the attribute parameters
and should be stored as an array or a nested dictionary of arrays.

5This querying is currently performed in Python code, just-in-time compiled using NUMBA [42], which runs
on the CPU. If you run your computations on a GPU with a small number of samples, this might introduce a
considerable slowdown. We are aware of this issue and plan to adapt our operators to be indexed directly on the
GPU in the future.
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• The expectation value 〈Â〉θ of an operator Â can be computed or estimated by the method
expect .

• The gradient of an expectation value with respect to the variational parameters,
∂ 〈Â〉θ/∂ θ j , is computed by the method expect_and_grad 6.

• The quantum geometric tensor (Section 3.5) of a variational state can be constructed
with the method quantum_geometric_tensor .

At the time of writing, NETKET exposes three types of variational state:

• nk.vqs.ExactState represents a variational pure state |ψθ 〉 and computes expecta-
tion values, gradients and the geometric tensor by performing exact summation over the
full Hilbert space.

• nk.vqs.MCState (short for Monte Carlo state) represents a variational pure state and
computes expectation values, gradients and the geometric tensor by performing Markov
chain Monte Carlo (MCMC) sampling over the Hilbert space.

• nk.vqs.MCMixedState represents a variational mixed state and computes expectation
values by sampling diagonal entries of the density matrix.

Variational states based on Monte Carlo sampling are the main tools that we expose to users,
together with a wide variety of high-performance Monte Carlo samplers. More details about
stochastic estimates and Monte Carlo sampling will be discussed in Section 3.3 and Section 3.4.

Dispatch and algorithm selection. With three different types of variational state and sev-
eral different operators supported, it is hard to write a well-performing algorithm that works
with all possible combinations of types that users might require. In order not to sacrifice per-
formance for generic algorithms, NETKET uses the approach of multiple dispatch based on the
PLUM module [38]. Combined with JAX’s just-in-time compilation, this solution bears a strong
resemblance to the approach commonly used in the Julia language [6].

Every time the user calls VariationalState.expect or .expect_and_grad , the types
of the variational state and the operator are used to select the most specific algorithm that
applies to those two types. This allows NETKET to provide generic algorithms that work for all
operators, but keeps it easy to supply custom algorithms for specific operator types if desired.

This mechanism is also exposed to users: it is possible to override the algorithms used by
NETKET to compute expectation values and gradients without modifying the source code of
NETKET but simply by defining new dispatch rules using the syntax shown below.� �

1 @nk.vqs.expect.dispatch
2 def expect(vstate: MCState, operator: Ising):
3 # more efficient implementation than default one
4 #
5 # expectation_value = ...
6 #
7 return expectation_value� �

6For complex-valued parameters θ j ∈ C, expect_and_grad returns the conjugate gradient ∂ 〈Â〉θ/∂ θ ∗j in-

stead. This is done because the conjugate gradient corresponds to the direction of steepest ascent when optimizing
a real-valued function of complex variables [43].
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3.2 Defining the variational ansatz

The main feature defining a variational state is the parameter-dependent mapping of an input
configuration to the corresponding probability amplitude or, in other words, the quantum wave
function (for pure states)

(θ , s) 7→ψθ (s) = 〈s|ψθ 〉 , (4)

or quantum density matrix (for mixed states)

(θ , s, s′) 7→ ρθ (s, s′) = 〈s| ρ̂θ
�

�s′
�

. (5)

In NETKET, this mapping is called a model (of the quantum state).7 In the case of NQS, the
model is given by a neural network. For defining models, NETKET primarily relies on FLAX [44],
a JAX-based neural-network library8. Ansätze are implemented as FLAX modules that map in-
put configurations (the structure of which is determined by the Hilbert space) to the corre-
sponding log-probability amplitudes. For example, pure quantum states are evaluated as

lnψθ (s) = module.apply (θ , s) . (6)

The use of log-amplitudes has the benefit that the log-derivatives ∂ lnψθ (s)/∂ θ j , often needed
in variational optimization algorithms, are directly available through automatic differentiation
of the model. It also makes it easier for the model to learn amplitudes with absolute values
ranging over several orders of magnitude, which is common for many types of quantum states.

,
Real and complex amplitudes. NETKET supports both real-valued and complex-
valued model outputs. However, since model outputs correspond to log-
amplitudes, real-valued networks can only represent states that have exclusively
non-negative amplitudes, lnψθ (s) ∈ R⇒ψθ (s)≥ 0.
Since the input configurations s are real, in many pre-defined NETKET models the
data type of the network parameters (θ ∈ RNp or θ ∈ CNp) determines whether
an ansatz represents a general or a real non-negative state. This should be kept
in mind in particular when optimizing Hamiltonians with ground states that can
have negative amplitudes.

3.2.1 Custom models using Flax

The recommended way to define a custom module is to subclass flax.linen.Module and

to provide a custom implementation of the __call__ method. As an example, we define a
simple one-layer NQS with a wave function of the form

lnψ(s) =
M
∑

j=1

tanh[Ws+ b] j , (7)

7The notion of “model” in NETKET 3 is related to the “machine” classes in NETKET 2 [35]. However, while
NETKET 2 machines both define the mapping (4) and store the current parameters, this has been decoupled in
NETKET 3. The model only specifies the mapping, while the parameters are stored in the variational state classes.

8While our primary focus has been the support of FLAX, NETKET can in principle be used with any JAX-compatible
neural network model. For example, NETKET currently includes a compatibility layer which ensures that models
defined using the HAIKU framework by DeepMind [45] will work automatically as well. Furthermore, any model
represented by a pair of init and apply functions (as used, e.g., in the STAX framework included with JAX) is

also supported.

11

https://scipost.org
https://scipost.org/SciPostPhysCodeb.7


SciPost Phys. Codebases 7 (2022)

with the number of visible units N matching the number of physical sites, a number of hidden
units M , and complex parameters W ∈ CM×N (the weight matrix) and b ∈ CM (the bias
vector). Using NETKET and FLAX, this ansatz can be implemented as follows:� �

1 import netket as nk
2 import jax.numpy as jnp
3 import flax
4 import flax.linen as nn
5

6 class OneLayerNQS(nn.Module):
7 # Module hyperparameter:
8 n_hidden_units: int
9

10 @nn.compact
11 def __call__(self, s):
12 n_visible_units = s.shape[-1]
13 # define parameters
14 # the arguments are: name, initializer, shape, dtype
15 W = self.param(
16 "weights",
17 nn.initializers.normal(),
18 (self.n_hidden_units, n_visible_units),
19 jnp.complex128,
20 )
21 b = self.param(
22 "bias",
23 nn.initializers.normal(),
24 (self.n_hidden_units,),
25 jnp.complex128,
26 )
27

28 # multiply with weight matrix over last dimension of s
29 y = jnp.einsum("ij,...j", W, s)
30 # add bias
31 y += b
32 # apply tanh activation and sum
33 y = jnp.sum(jnp.tanh(y), axis=-1)
34

35 return y� �
The decorator flax.linen.compact used on __call__ (line 10) makes it possible to de-

fine the network parameters directly in the body of the call function via self.param as done
above (lines 15 and 21). For performance reasons, the input to the module is batched. This
means that, instead of passing a single array of quantum numbers s of size N , a batch of mul-
tiple state vectors is passed as a matrix of shape (batch_size, N) . Therefore, operations
like the sum over all feature indices in the example above need to be explicitly performed over
the last axis.
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ð
Just-in-time compilation. Note that the network will be just-in-time (JIT) com-
piled to efficient machine code for the target device (CPU, GPU, or TPU) using
jax.jit , which means that all code inside the __call__ method needs to

written in a way compatible with jax.jit .

In particular, users should use jax.numpy for NumPy calls that need to happen

at runtime; explicit Python control flow, such as for loops and if statements,
should also be avoided, unless one explicitly wants to have them evaluate once
at compile time. We refer users to the JAX documentation for further information
on how to write efficient JIT-compatible code.

The module defined above can be used by first initializing the parameters using
module.init and then computing log-amplitudes through module.apply :� �

1 >>> module = OneLayerNQS(n_hidden_units=16)
2 # init takes two arguments, a PRNG key for random initialization
3 # and a dummy array used to determine the input shape
4 # (here with a batch size of one):
5 >>> params = module.init(nk.jax.PRNGKey(0), jnp.zeros((1, 8)))
6 >>> module.apply(params, jnp.array([[-1, 1, -1, 1, -1, 1, -1, 1]]))
7 DeviceArray([-0.00047843+0.07939122j], dtype=complex128)� �

3.2.2 Network parametrization and pytrees

Parameter data types. NETKET supports models with both real-valued and complex-valued
network parameters. The data type of the parameters does not determine the output type. It
is possible to define a model with real parameters that produces complex output. A simple
example is the sum of two real-valued and real-parameter networks, representing real and
imaginary part of the log-amplitudes (and thus phase and absolute value of the wave func-
tion) [29,31]:

lnψ(θ ,η)(s) = fθ (s) + i gη(s) ⇔ |ψ(θ ,η)(s)|= exp[ fθ (s)] , argψ(θ ,η)(s) = gη(s) , (8)

(where all θi ,ηi ∈ R and f (s), g(s) ∈ R).
More generally, any model with Np complex parameters θ = α+ iβ can be represented by a

model with 2Np real parameters (α,β). While these parametrizations are formally equivalent,
the choice of complex parameters can be particularly useful in the case where the variational
mapping is holomorphic or, equivalently, complex differentiable with respect to θ . This is the
case for many standard network architectures such as RBMs or feed-forward networks, since
both linear transformations and typical activation functions are holomorphic (such as tanh,
cosh, and their logarithms) or piecewise holomorphic (such as ReLU), which is sufficient in
practice. Note, however, that there are also common architectures, such as autoregressive
networks, that are not holomorphic. In the holomorphic case, the computational cost of dif-
ferentiating the model, e.g., to compute the quantum geometric tensor (Section 3.5), can be
reduced by exploiting the Cauchy–Riemann equations [46],

i∇αψ(α,β)(s) =∇βψ(α,β)(s) . (9)

Note that NETKET generally supports models with arbitrary parametrizations (i.e., real and
both holomorphic and non-holomorphic complex parametrizations). The default assumption
is that models with complex weights are non-holomorphic, but some objects (most notably the
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quantum geometric tensor) accept a flag holomorphic=True to enable a more efficient code
path for holomorphic networks.

,
It is the user’s responsibility to only set holomorphic=True for models that
are, in fact, holomorphic. If this is incorrectly specified, NETKET code may give
incorrect results. To check whether a specific architecture is holomorphic, one
can verify the condition

∂ψθ (s)/∂ θ
∗
j = (∂ /∂ α j + i∂ /∂ β j)ψθ (s) = 0 , (10)

which is equivalent to Eq. (9).

Pytrees. In NETKET, model parameters do not need to be stored as a contiguous vector.
Instead, models can support any collection of parameters that forms a so-called pytree. Pytree
is JAX terminology for collections of numerical tensors stored as the leaf nodes inside layers of
nested standard Python containers (such as lists, tuples, and dictionaries).9 Any object that is
not itself a pytree, in particular NumPy or JAX arrays, is referred to as a leaf. Networks defined
as FLAX modules store their parameters in a (potentially nested) dictionary, which provides
name-based access to the network parameters.10 For the OneLayerNQS defined above, the
parameter pytree has the structure:� �

1 # For readability, the actual array data has been replaced with ...
below.

2 >>> print(params)
3 FrozenDict({
4 params: {
5 weights: DeviceArray(..., dtype=complex128),
6 bias: DeviceArray(..., dtype=complex128),
7 },
8 })� �

The names of the entries in the parameter dictionary correspond to those given in the param
call when defining the model. NETKET functions often work directly with both plain arrays and
pytrees of arrays. Furthermore, any Python function can be applied to the leaves of a pytree
using jax.tree_map . For example, the following code prints a pytree containing the shape

of each leaf of params , preserving the nested dictionary structure:� �
1 >>> print(jax.tree_map(jnp.shape, params))
2 FrozenDict({
3 params: {
4 weights: (16, 8),
5 bias: (16,),
6 },
7 })� �

Functions accepting multiple leaves as arguments can be mapped over the correspond-
ing number of pytrees (with compatible structure) using jax.tree_map . For exam-
ple, the difference of two parameter pytrees of the same model can be computed using

9See https://github.com/google/jax/blob/jax-v0.2.28/docs/pytrees.md for a detailed introduction of
pytrees.

10Specifically, FLAX stores networks parameters in an immutable FrozenDict object, which otherwise has the
same semantics as a standard Python dictionary and, in particular, is also a valid pytree. The parameters can be

modified by converting to a standard mutable dict via flax.core.unfreeze(params) .

14

https://scipost.org
https://scipost.org/SciPostPhysCodeb.7
https://github.com/google/jax/blob/jax-v0.2.28/docs/pytrees.md


SciPost Phys. Codebases 7 (2022)

Table 1: List of models included in NETKET’s nk.models submodule, together with
relevant references.

Name NETKET class References

Jastrow ansatz Jastrow [47,48]

Restricted Boltzmann machine
(RBM)

RBM , RBMMultiVal ,

RBMModPhase
[8]

Symmetric RBM RBMSymm [8]

Group-Equivariant Convolutional
Neural Network GCNN Section 5

[49]

Autoregressive Neural Network

ARNNDense , ARNNConv1D ,

ARNNConv2D , FastARNNConv1D ,

FastARNNConv2D

[50]

Neural Density Matrix NDM [24,51]

delta = jax.tree_map(lambda a, b: a - b, params1, params2) . NETKET provides
an additional set of utility functions to perform linear algebra operations on such pytrees in
the nk.jax submodule.

3.2.3 Pre-defined ansätze included with NETKET

NETKET provides a collection of pre-defined modules under nk.models , which allow quick
access to many commonly used NQS architectures (Table 1):

• Jastrow: The Jastrow ansatz [47, 48] is an extremely simple yet effective many-body
ansatz that can capture some inter-particle correlations. The log-wavefunction is the
linear function logψ(σ) =

∑

i σiWi, jσ j . Evaluation of this ansatz is very fast but it is
also the least powerful model implemented in NETKET;

• RBM: The restricted Boltzmann machine (RBM) ansatz is composed by a dense layer
followed by a nonlinearity. If the Hilbert space has N degrees of freedom of size d,
RBM has αN features in the dense layer. This ansatz requires param_dtype=complex

to represent states that are non-positive valued. RBMMultiVal is a one-hot encoding

layer followed by an RBM with αdN features in its dense layer. Finally, RBMModPhase
consists of two real-valued RBMs that encode respectively the modulus and phase of
the wavefunction as logψ(σ) = RBM (σ) + i RBM (σ). This ansatz only supports real
parameters. If considering Hilbert spaces with local dimension d > 2, plain RBMs usually
require a very large feature density α and RBMMultiVal s perform better.

• RBMSymm: A symmetry-invariant RBM. Only symmetry groups that can be represented
as permutations of the computational basis are supported (see Section 5). This architec-
ture has fewer parameters than an RBM, but it is more expensive to evaluate. It requires
param_dtype=complex to represent states that are non-positive valued.
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• GCNN: A symmetry-equivariant feed-forward network (see Section 5.2). Only symme-
try groups that can be represented as permutations of the computational basis are sup-
ported. This model is much more complex and computationally intensive than RBMSymm ,
but can also lead to more accurate results. It can also be used to target an excited state
of a lattice Hamiltonian. When working with states that are real but non-positive, one
can use real parameters together with complex_output=True . If the states are to have

a complex phase, param_dtype=complex is required.

• Autoregressive networks: ARNNs are models that can produce uncorrelated samples
when sampled with nk.sampler.ARNNSampler . Those architectures can be efficiently
sampled on GPUs, but they are much more expensive than traditional RBMs.

• NDM: A positive-semidefinite density matrix ansatz, comprised of a component describ-
ing the pure part and one describing the mixed part of the state. The pure part is equiv-
alent to an RBM with feature density α, while the mixed part is an RBM with feature
density β . This network only supports real parameters.

3.2.4 Custom layers included with Flax and NETKET

The nk.nn submodule contains generic modules such as masked dense, masked convolu-
tional and symmetric layers to be used as building blocks for custom neural networks. Those
layers are complementary to those provided by FLAX and can be combined together to develop
novel neural-network architectures.11

As an example, a multi-layer NQS with two convolutional and one final dense layer acting
as a weighted sum can be defined as follows:� �

1 class MultiLayerCNN(nn.Module):
2 features1: int
3 features2: int
4 kernel_size: int
5

6 @nn.compact
7 def __call__(self, s):
8 # define layers
9 layer1 = nn.Conv(

10 features=self.features1,
11 kernel_size=self.kernel_size,
12 )
13 layer2 = nn.Conv(
14 features=self.features2,
15 kernel_size=self.kernel_size,
16 )
17 weighted_sum = nn.Dense(features=1)
18

19 # apply layers and tanh activations
20 y = jnp.tanh(layer1(s))
21 y = jnp.tanh(layer2(y))
22 y = weighted_sum(y)
23 # last axis only has one entry, so we just return that
24 # but keep the batch dimension

11In the past FLAX had minor issues with complex numbers and therefore NETKET included versions of some
standard layers, such as Dense and Conv , that handle complex numbers properly. Starting with FLAX version
0.5, released in May 2022, those issues have been addressed and we now recommend the use of FLAX layers also
with complex numbers.
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25 return y[..., 0]� �
FLAX network layers are available from the flax.linen submodule (imported as nn in

the example above), NETKET layers from netket.nn .

3.3 Estimating observables

For any variational ansatz, it is crucial to also have efficient algorithms for computing quantities
of interest, in particular observables and their gradients. Since evaluating the wave function
on all configurations is infeasible for larger Hilbert spaces, NQS approaches rely on Monte
Carlo sampling of quantum expectation values.

Pure states. The quantum expectation value of an operator Â on a non-normalized pure state
|ψ〉 can be written as a classical expectation value over the Born distribution p(s)∝ |ψ(s)|2

using the identity

〈Â〉=
〈ψ|Â|ψ〉
〈ψ|ψ〉

=
∑

s

|ψ(s)|2

〈ψ|ψ〉
Ã(s) =

∑

s

p(s)Ã(s) = E[Ã] , (11)

where Ã is the local estimator

Ã(s) =
〈s|Â|ψ〉
〈s|ψ〉

=
∑

s′

ψ(s′)
ψ(s)

〈s|Â|s′〉 , (12)

also known as the local energy when Â is the Hamiltonian [52]. Even though the sum in
Eq. (12) runs over the full Hilbert space basis, the local estimator can be efficiently computed
if the operator is sufficiently sparse in the given basis, i.e., all but a tractable number of matrix
elements 〈s|Â|s′〉 are zero. Thus, an efficient algorithm is required that, given s, yields all
connected configurations s′ together with their respective matrix elements, as described in
Section 2.2. Given the derivatives of the log-amplitudes

Oi(s) =
∂ lnψθ (s)
∂ θi

, (13)

gradients of expectation values can also be evaluated. Define the force vector as the covariance

f̃i = Cov[Oi , Ã] = E[O∗i (Ã−E[Ã])] . (14)

Then, if θi ∈ R is a real-valued parameter,

∂ 〈Â〉
∂ θi

= 2Re[ f̃i] . (15)

If θi ∈ C and the mapping θi 7→ψθ (s) is complex differentiable (holomorphic),

∂ 〈Â〉
∂ θ ∗i

= f̃i . (16)

In case of a non-holomorphic mapping, Re[θi] and Im[θi] can be treated as two independent
real parameters and Eq. (15) applies to each.

The required classical expectation values are then estimated by averaging over a sequence
{si}

Ns
i=1 of configurations distributed according to the Born distribution p(s)∝ |ψ(s)|2; e.g.,

Eq. (11) becomes

E[Ã]≈
1
Ns

Ns
∑

i=1

Ã(s) . (17)
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For some models, in particular autoregressive neural networks [50], one can efficiently draw
samples from the Born distribution directly. For a general ansatz, however, this is not possible
and Markov-chain Monte Carlo (MCMC) sampling methods [52]must be used: these generate
a sequence (Markov chain) of samples that asymptotically follows the Born distribution. Such
a chain can be generated using the Metropolis–Hastings algorithm [53], which is implemented
in NETKET’s sampler interface, described in the next section.

Mixed states. When evaluating observables for mixed states, it is possible to exploit a slightly
different identity,

〈Â〉=
Tr
�

ρ̂Â
�

Tr[ρ̂]
=
∑

s

ρ(s, s)
Tr[ρ̂]

Ãρ(s) = E[Ãρ] , (18)

which rewrites the quantum expectation value as a classical expectation over the probability
distribution defined by the diagonal of the density matrix p(s)∝ ρ(s, s). Here, Ãρ denotes
the local estimator of the observable over a mixed state,

Ãρ(s) =
〈s|ρ̂Â|s〉
〈s| ρ̂ |s〉

=
∑

s′

ρ(s, s′)
ρ(s, s)

〈s′|Â|s〉 . (19)

It is then possible to follow the same procedures detailed in the previous paragraph for pure
states to compute the gradient of an expectation value of an operator over a mixed state by
replacing the probability distribution over which the average is computed and the local esti-
mator.

3.3.1 Reducing memory usage with chunking

The number of variational state evaluations required to compute the local estimators (12)
typically scales superlinearly12 in the number of sites N . For optimal performance, NETKET by
default performs those evaluations in a single call using batched inputs. However, for large
Hilbert spaces or very deep models it might be impossible to fit all required intermediate buffers
into the available memory, leading to out-of-memory errors. This is encountered particularly
often in calculations on GPUs, which have more limited memory.

To avoid those errors, NETKET’s nk.vqs.VariationalState exposes an attribute called

chunk_size , which controls the maximum number of configurations for which a model is

evaluated at the same time13. The chunk size effectively bounds the maximum amount of
memory required to evaluate the variational function at the expense of an increased compu-
tational cost in some operations involving the derivatives of the model. For this reason, we
suggest using the largest chunk size that fits in memory.

Chunking is supported for the majority of operations, such as computing expectation values
and their gradients, as well as the evaluation the quantum geometric tensor. If a chunk size
is specified but an operation does not support it, NETKET will print a warning and attempt to
perform the operation without chunking.

3.4 Monte Carlo samplers

The sampling algorithm used to obtain a sequence of configurations from the probability
distribution defined by the variational ansatz is specified by sampler classes inheriting from

12The exact scaling depends on the sparsity of the observable in the computational basis (which in a lattice model
primarily depends on the locality of the operator and the dimension of the lattice).

13The chunk size can be specified at model construction and freely changed later. Chunking can also be disabled
at any time by setting VariationalState.chunk_size = None .
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nk.sampler.AbstractSampler . Following the purely functional design of JAX, we define
the sampler to be a stateless collection of settings and parameters, while storing all mutable
state such as the PRNG key and the statistics of acceptances in an immutable sampler state
object. Both the sampler and the sampler state are stored in the variational state, but they can
be used independently, as they are decoupled from the rest of NETKET.

The Metropolis–Hastings algorithm is used to generate samples from an arbitrary proba-
bility distribution. In each step, it suggests a transition from the current configuration s to a
proposed configuration s′. The proposal is accepted with probability

Pacc(s→ s′) =min
�

1,
P(s′)
P(s)

g(s | s′)
g(s′ | s)

�

, (20)

where P is the distribution being sampled from and g(s′ | s) is the conditional probability of
proposing s′ given the current s. We use L(s, s′) = log[g(s | s′)/g(s′ | s)] to denote the correct-
ing factor to the log probability due to the transition kernel. This factor is needed for asym-
metric kernels that might propose one move with higher probability than its reverse. Simple
kernels, such as a local spin flip or exchange, are symmetric, therefore L(s, s′) = L(s′, s) = 1,
but other proposals, such as Hamiltonian sampling, are not necessarily symmetric and need
this factor.

At the time of writing, NETKET exposes four types of rules to use with the Metropolis sam-
pler: MetropolisLocal , which changes one discrete local degree of freedom in each transi-

tion; MetropolisExchange , which exchanges two local degrees of freedom respecting a con-

served quantity (e.g., total particle number or magnetization); MetropolisHamiltonian ,
which transitions the configuration according to the off-diagonal elements of the Hamilto-
nian; and MetropolisGaussian , which moves a configuration with continuous degrees of
freedom according to a Gaussian distribution.

The different transition kernels in these samplers are represented by MetropolisRule
objects. To define a Metropolis sampling algorithm with a new transition kernel, one only
needs to subclass MetropolisRule and implement the transition method, which gives

s′ and L(s, s′) in each transition. For example, the following transition rule changes the local
degree of freedom on two sites at a time:� �

1 from netket.hilbert.random import flip_state
2 from netket.sampler import MetropolisRule
3 from netket.utils.struct import dataclass
4

5 # To be jax-compatible, it must be a dataclass
6 @dataclass
7 class TwoLocalRule(MetropolisRule):
8 def transition(rule, sampler, machine, parameters, state, key, σ):
9 # Deduce the number of MCMC chains from input shape

10 n_chains = σ.shape[0]
11 # Load the Hilbert space of the sampler
12 hilb = sampler.hilbert
13 # Split the rng key into 2: one for each random operation
14 key_indx, key_flip = jax.random.split(key, 2)
15 # Pick two random sites on every chain
16 indxs = jax.random.randint(
17 key_indx, shape=(n_chains, 2), minval=0, maxval=hilb.size
18 )
19 # flip those sites
20 σp, _ = flip_state(hilb, key_flip, σ, indxs)
21
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Table 2: List of samplers in NETKET with their class names and a description.

Type Name Usage

MCMC (Metropolis)

MetropolisLocal discrete Hilbert spaces

MetropolisExchange
permutations of local states, conserv-
ing total magnetization in spin sys-
tems

MetropolisHamiltonian preserving symmetries of the Hamil-
tonian

MetropolisGaussian continuous Hilbert spaces

Direct
ExactSampler small Hilbert spaces, performs MC

sampling from the exact distribution

ARDirectSampler autoregressive models

22 # If this transition had a correcting factor L, it’s possible
23 # to return it as a vector in the second value
24 return σp, None� �

Once a custom rule is defined, a MCMC sampler using such rule can be constructed with the
command sampler = MetropolisSampler(hilbert, TwoLocalRule()) . Besides Metro-
polis algorithms, more advanced Markov chain algorithms can also be implemented as NETKET

samplers. Currently, parallel tempering is provided as an experimental feature.
Some models allow us to directly generate samples that are exactly distributed accord-

ing to the desired probability, without the use of Markov chains and the issue of autocor-
relation, which often leads to more efficient sampling. In this case, direct samplers can be
implemented with an interface similar to Markov chain samplers. Currently NETKET has im-
plemented ARDirectSampler to be used with ARNNs. For benchmarking purposes, NETKET

also provides ExactSampler , which allows direct sampling from any model by computing

the full Born distribution |ψ(s)|2 for all s. Table 2 is a list of all the samplers.

3.5 Quantum geometric tensor

The quantum geometric tensor (QGT) [54] of a pure state is the metric tensor induced by the
Fubini–Study distance [55,56]

d(ψ,φ) = cos−1

√

√〈ψ|φ〉〈φ|ψ〉
〈ψ|ψ〉〈φ|φ〉

, (21)

which is the natural and gauge-invariant distance between two pure quantum states |ψ〉 and
|φ〉. The QGT is commonly used for time evolution (see Section 4.3) and for quantum natural
gradient descent [57], which was originally developed in the VMC community under the name
of stochastic reconfiguration (SR) [58]. Quantum natural gradient descent is directly related
to the natural gradient descent developed in the machine learning community [59].

From now on, we assume that the state |ψθ 〉 is parametrized by a set of parameters θ .
Assuming further that |φ〉 = |ψθ+δθ 〉, the distance (21) can be expanded to second order
in the infinitesimal parameter change δθ as d(ψθ ,ψθ+δθ )2 = (δθ )†G(δθ ), where G is the
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quantum geometric tensor. For a holomorphic mapping θ 7→ |ψθ 〉, the QGT is given by

Gi j(θ ) =

¬

∂θi
ψθ

�

�

�∂θ j
ψθ

¶

〈ψ|ψ〉
−

¬

∂θi
ψθ

�

�

�ψθ

¶¬

ψθ

�

�

�∂θ j
ψθ

¶

〈ψ|ψ〉2
, (22)

where the indices i, j label the parameters and



x
�

�∂θi
ψθ
�

= ∂θi
〈x |ψθ 〉. Similar to expectation

values and their gradients, Eq. (22) can be rewritten as a classical covariance with respect to
the Born distribution∝ |ψ(s)|2:

Gi j(θ ) = Cov[Oi , Oj] = E
�

O∗i (Oj −E[Oj])
�

, (23)

where Oi are the log-derivatives (13) of the ansatz.14 This allows the quantum geometric
tensor to be estimated using the same sampling procedure used to obtain expectation values
and gradients. The QGT or its stochastic estimate is also commonly known as the S matrix [52]
or quantum Fisher matrix (QFM) in analogy to the classical Fisher information matrix [57,59,
60].

For applications such as quantum natural gradient descent or time-evolution it is usually
not necessary to access the full, dense matrix representation Gi j(θ ) of the quantum geometric
tensor, but only to compute its product with a vector, ṽi =

∑

j Gi j(θ ) v j . When the variational
ansatzψθ has millions of parameters, the QGT can indeed be too large to be stored in memory.
Exploiting the Gram matrix structure of the geometric tensor [61], we can directly compute
its action on a vector without ever calculating the full matrix, trading memory requirements
for an increased computational cost.

Given a variational state vs , a QGT object can be obtained by calling:� �
1 >>> qgt = vs.quantum_geometric_tensor()� �

This qgt object does not store the full matrix, but can still be applied to a vector with the
same shape as the parameters:� �

1 >>> vec = jax.tree_map(jnp.ones_like, vs.parameters)
2 >>> qgt_times_vec = qgt @ vec� �

It can be converted to a dense matrix by calling to_dense :� �
1 # get the matrix (2d array) of the qgt
2 >>> qgt_dense = qgt.to_dense()
3 # flatten vec into a 1d Array
4 >>> grad_dense, unravel = nk.jax.tree_ravel(vec)
5 >>> qgt_times_vec = unravel(qgt_dense @ vec_dense)� �

The QGT can then be used together with a direct solver, such as jnp.linalg.eigh ,

jnp.linalg.svd , or jnp.linalg.qr .

Mixed states. When working with mixed states, which are encoded in a density matrix, it is
necessary to pick a suitable metric to induce the QGT. Even if the most physical distances for
density matrices are the spectral norm or other trace-based norms [62,63], it is generally hard
to use them to define an expression for the QGT that can be efficiently sampled and computed
at polynomial cost. While this might be regarded as a barbaric choice, it leads to an expression
equivalent to Eq. (23), where the expectation value is over the joint-distribution of the of row

14Strictly speaking, this estimator is only correct if ψθ (s) = 0 =⇒ ∂θk
ψθ (s) = 0. This is because we multiplied

and divided by ψθ (s) in the derivation of the estimator, which is only valid if ψθ (s) 6= 0.
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and column labels (s, s′) of the squared density matrix∝
�

�ρ(s, s′)
�

�

2
. Therefore, when working

with mixed states, we resort to the L2 norm, which is equivalent to treating the density matrix
as a vector (“pure state”) in an enlarged Hilbert space.

3.5.1 Implementation differences

There is some freedom in the way one can calculate the QGT, each different implementation
taking a different tradeoff between computational and memory cost. In the example above,
we have relied on NETKET to automatically select the best implementation according to some
internal heuristics, but if one wants to push variational methods to the limits, it is useful to
understand the two different implementations on offer:

• QGTJacobian , which computes and stores the Jacobian Oi(s) of the model (cf. Ap-
pendix B.1) at initialization (using reverse-mode automatic differentiation) and can be
applied to a vector by performing two matrix-vector multiplications;

• QGTOnTheFly , which lazily computes the application of the quantum geometric tensor
on a vector through automatic differentiation.

QGTOnTheFly is the most flexible and can be scaled to arbitrarily large systems. It is based
on the observation that the QGT is the Jacobian of the model multiplied with its conjugate,
which means that its action can be calculated by combining forward and reverse-mode au-
tomatic differentiation. At initialization, it only computes the linearization (forward pass),
and then it effectively recomputes the gradients every time it is applied to a vector. However,
since it never has to store these gradients, it is not limited by the available memory, which also
makes it perform well for shallow neural-network models like RBMs. This method works with
both holomorphic and non-holomorphic ansätze with no difference in performance.

QGTJacobian. For deep networks with ill-conditioned15 quantum geometric tensors, recom-
puting the gradients at every step in an iterative solver might be very costly. QGTJacobian
can therefore achieve better performance at the cost of considerably higher memory require-
ments because it precomputes the Jacobian at construction and stores it. The downside
is that it has to store a matrix of shape Nsamples × Nparameters, which might not fit in the

memory of a GPU. We note that there are two different implementations of QGTJacobian :

QGTJacobianDense and QGTJacobianPyTree . The difference among the two is that in the
former the Jacobian is stored contiguously in memory, leading to a better throughput on GPUs,
while the latter stores them in the same structure as the parameters (so each parameter block
is separated from the others). Converting from the non-contiguous ( QGTJacobianPyTree )

to the contiguous ( QGTJacobianDense ) format has, however, a computational and mem-
ory cost which might shadow its benefit. Moreover, the dense format does not work with
non-homogeneous parameter data types. The basic QGTJacobian algorithm supports both
holomorphic and non-holomorphic NQS, but a better performing algorithm for holomorphic
ansätze can be accessed instantiating it with the option holomorphic=True .

Key differences between the different QGT implementations are summarized in Table 3.
Implementations can be selected, and options passed to them, as shown below:

15The number of steps required to find a solution with an iterative linear solver grows with the condition number
of the matrix. Therefore, an ill-conditioned matrix requires many steps of iterative solver. For a discussion on this
issue, see the paragraph on Linear Systems of this section.
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Table 3: Overview of the three QGT implementations currently provided by NETKET

with their respective options and limitations.

Implementation Extra arguments Use-cases Limitations

QGTOnTheFly None

shallow networks,
large numbers of
parameters and
samples, few solver
steps

Might be more
computationally
expensive for deep
networks compared
to QGTJacobian .

QGTJacobianDense
mode

holomorphic

rescale_shift

deep networks with
narrow layers

requires homoge-
neous parameter
types, memory
bound

QGTJacobianPyTree
deep networks
with heterogeneous
parameters

memory bound

� �
1 >>> from netket.optimizer.qgt import (
2 ... QGTJacobianPyTree, QGTJacobianDense, QGTOnTheFly
3 ... )
4 >>> qgt1 = vs.quantum_geometric_tensor(QGTOnTheFly)
5 >>> qgt2 =

vs.quantum_geometric_tensor(QGTJacobianPyTree(holomorphic=True))
6 >>> qgt3 = vs.quantum_geometric_tensor(QGTJacobianDense)� �

Holomorphicity. When performing time evolution or natural gradient descent, one does not
always need the full quantum geometric tensor: for ansätze with real parameters, as well as
in the case of non-holomorphic wave functions,16 only the real part of the QGT is used. The
real and imaginary parts of the QGT are only required when working with a holomorphic
ansatz. (An in-depth discussion of why this is the case can be found at [64, Table 1].) For this
reason, NETKET’s QGT implementations return the full geometric tensor only for holomorphic
complex-parameter ansätze, and its real part in all other cases.

3.5.2 Solving linear systems

For most applications involving the QGT, a linear system of equations of the kind
∑

j

Gi jδ j = fi , (24)

needs to be solved, where Gi, j is the quantum geometric tensor of a NQS, and fi is a gradient.
This can be done using the standard JAX/NumPy functions, assuming f is a pytree with the
same structure as the variational parameters:� �

1 >>> # iterative solver
2 >>> x, info = jax.scipy.sparse.linalg.cg(qgt, f)
3 >>> # direct solver, acting on the dense matrix
4 >>> x, info = jax.numpy.linalg.cholesky(qgt.to_dense(), f)� �
16Non-holomorphic functions of complex parameters are internally handled by both JAX and NETKET as real-

parameter functions that take the real and imaginary parts of the “complex parameters” separately.
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However, we recommend that users call the solve method on the QGT object, which allows
some additional optimization that may improve performance:� �

1 >>> x, info = qgt.solve(jax.scipy.sparse.linalg.cg, f)
2 >>> x, info = qgt.solve(nk.optimizer.solver.cholesky, f)� �

While this works with any of the representations it is advisable to only use Jacobian based
implementations ( QGTJacobianPyTree or QGTJacobianDense ) with direct solvers, since

constructing the QGT matrix from QGTOnTheFly requires multiplication with all basis vec-
tors, which is not as efficient. Finally, we highlight the fact that users can write their own
functions to solve the linear system (24) using advanced regularization schemes (see for in-
stance ref. [21]) and use them together with qgt.solve , as long as they respect the standard
NumPy solver interface.

When working with iterative solvers such as cg, gmres or minres, the number of steps
required to find a solution grows with the condition number of the matrix. Therefore, an
ill-conditioned geometric tensor requires many steps of iterative solver, increasing the compu-
tational cost. Even then or when using non-iterative methods such as singular value decom-
position (SVD), the high condition number can cause instabilities by amplifying noise in the
right-hand side of the linear equation [20,21,23]. This is especially true for NQS, which typ-
ically feature QGTs with a spectrum spanning many orders of magnitude [60], often making
QGT-based algorithms challenging to stabilize [15,21,23].

To counter that, there is empirical evidence that in some situations, increasing the number
of samples used to estimate the QGT and gradients helps to stabilize the solution [23]. Fur-
thermore, it is possible to apply various regularization techniques to the equation. A standard
option is to add a small diagonal shift ε to the QGT matrix before inverting it, thus solving the
linear equation

∑

j

(Gi, j + ε)δ
′
j = fi . (25)

When ε is small, the solution δ′ will be close to the desired solution. Otherwise it is biased
towards the plain force f , which is still acceptable in gradient-based optimization. To add this
diagonal shift in NETKET, one of the following approaches can be used:� �

1 >>> qgt_1 = vs.quantum_geometric_tensor(QGTOnTheFly(diag_shift=0.001))
2 QGTOnTheFly(diag_shift=0.001)
3 >>> qgt_2 = qgt_1.replace(diag_shift=0.005)
4 QGTOnTheFly(diag_shift=0.005)
5 >>> qgt_3 = qgt_2 + 0.005
6 QGTOnTheFly(diag_shift=0.01)� �

Regularizing the QGT with a diagonal shift is an effective technique that can be used when
performing SR/natural gradient descent for ground state search (see Section 4.1). Note, how-
ever, that since the diagonal shift biases the solution of the linear equation towards the plain
gradient, it may bias the evolution of the system away from the physical trajectory in cases
such as real-time evolution. In those cases, non-iterative solvers such as those based on SVD
can be used, the stability of which can be controlled by suppressing smaller singular values.
It has also been suggested in the literature to improve stability by suppressing particularly
noisy gradient components [21,39]. This is not currently implemented in NetKet, but planned
for a future release. SVD-based regularization also comes at the cost of potentially suppress-
ing physically relevant dynamics [23], making it necessary to find the right balance between
stabilization and physical accuracy, and increased computational time as SVD is usually less
efficient than iterative solvers.
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4 Algorithms for variational states

The main use case of NETKET is variational optimization of wave function ansätze. In the
current version NETKET, three algorithms are provided out of the box via high-level driver
classes: variational Monte Carlo (VMC) for finding ground states of (Hermitian) Hamiltonians,
time-dependent variational Monte Carlo (t-VMC) for real- and imaginary-time evolution, and
steady-state search of Liouvillian open-system dynamics.

These drivers are part of the nk.driver module but we also export them from the nk
namespace. They are constructed from the relevant physical model (e.g., a Hamiltonian), a
variational state, and other objects used by the optimization method. They all support the
run method, which performs a number of optimization steps and logs their progress (e.g.,

variational energies and network parameters) in a variety of output formats.
We highlight that these drivers are built on top of the functionalities described in Sec-

tions 2 and 3, and users are free to implement their own drivers or optimization loops, as
demonstrated in Section 4.4.

4.1 Ground-state search

NETKET provides the variational driver nk.VMC for searching for minimal-energy states using

VMC [52]. In the simplest case, the VMC constructor takes three arguments: the Hamilto-
nian, an optimizer and the variational state (see Section 3.1). NETKET makes use of optimizers
provided by the JAX-based OPTAX library [65],17 which can be directly passed to VMC , allow-
ing the user to build complex training schedules or custom optimizers. In each optimization
step, new samples of the variational state are drawn and used to estimate the gradient of the
Hamiltonian with respect to the parameters θ of the ansatz [52] based on the force vector
[compare Eq. (14)]

f̃i = Cov[Oi , H̃] = E[O∗i (H̃ −E[H̃])] , (26)

where H̃ is the local estimator (12) of the Hamiltonian, known as the local energy, and Oi is
the log-derivative (13) of the wave function. All expectation values in Eq. (26) are evaluated
over the Born distribution ∝ |ψ( · )|2 and can therefore be estimated by averaging over the
Monte Carlo samples. Given the vector f̃ , the direction of steepest descent is given by the
energy gradient

f ≡∇θ 〈Ĥ〉= 2Re[ f̃ ] (real) , (27)

or complex co-gradient [43]

f ≡∇θ ∗〈Ĥ〉= f̃ (complex holomorphic) . (28)

Here we have distinguished the case of i) real parameters and ii) complex parameters with a
variational mapping that is holomorphic with respect to θ . For non-holomorphic ansätze (cf.
Section 3.2.2), complex parameters can be treated pairs of separate real-valued parameters
(real and imaginary part) in the sense of eq. (27). Therefore, this case can be considered
equivalent to the real parameter case.

The gradients are then passed on to the OPTAX optimizer, which may transform them (using,
e.g., Adam) further before updating the parameters θ . Using the simple stochastic gradient
descent optimizer optax.sgd (alias nk.optimizer.Sgd ), the update rule is

θi 7→ θi −η fi , (29)

17The nk.optimizer submodule includes a few optimizers for ease of use and backward compatibility: these

are simply re-exports from OPTAX.
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where the gradient f is given by Eq. (27) or (28) as appropriate.
Below we give a short snippet showing how to use the VMC driver to find the ground-

state of the Ising Hamiltonian.� �
1 # Define the geometry of the lattice
2 g = nk.graph.Hypercube(length=10, n_dim=1, pbc=False)
3 # Hilbert space of spins on the graph
4 hi = nk.hilbert.Spin(s=1 / 2, N=g.n_nodes)
5 # Construct the Hamiltonian
6 hamiltonian = nk.operator.Ising(hi, graph=g, h=0.5)
7

8 # define a variational state with a Metropolis Sampler
9 sa = nk.sampler.MetropolisLocal(hi)

10 vstate = nk.vqs.MCState(sa, nk.models.RBM())
11

12 # Construct the VMC driver
13 vmc = nk.VMC(hamiltonian,
14 nk.optimizer.Sgd(learning_rate=0.1),
15 variational_state=vstate)
16

17 # run the optimisation for 300 steps
18 output = vmc.run(300)� �

To improve on plain stochastic gradient descent, the VMC interface allows passing a key-

word argument preconditioner . This must be a function that maps a variational state and
the gradient vector fi to the vector δi to be passed to the optimizer as gradients instead of fi .
An important use case is stochastic reconfiguration [52], where the gradient is preconditioned
by solving the linear system of equations

∑

j

Re[Gi j]δ j = fi = 2Re[ f̃i] (real) , (30)

or

∑

j

Gi jδ j = fi (complex holomorphic) . (31)

The corresponding preconditioner can be created from a QGT class and a JAX-compatible linear
solver (the default is jax.scipy.sparse.linalg.cg ) using nk.optimizer.SR :� �

1 # Construct the SR object with the chosen algorithm
2 sr = nk.optimizer.SR(
3 qgt = nk.optimizer.qgt.QGTOnTheFly,
4 solver=jax.scipy.sparse.linalg.bicgstab,
5 diag_shift=0.01,
6 )
7

8 # Construct the VMC driver
9 vmc = nk.VMC(

10 hamiltonian, # The Hamiltonian to optimize
11 nk.optimizer.sgd(learning_rate=0.1), # The optimizer
12 variational_state=vstate, # The variational state
13 preconditioner=sr, # The preconditioner
14 )� �
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4.2 Finding steady states

In order to study open quantum systems, NETKET provides the nk.SteadyState variational
driver for determining the variational steady-state ρ̂ss defined as the stationary point of an
arbitrary super-operator L,

0=
dρ̂
d t
= Lρ̂ . (32)

The search is performed by minimizing the Frobenius norm of the time-derivative [24], which
defines the cost function

C(θ ) =
‖Lρ̂‖22
‖ρ̂‖22

=
Tr
�

ρ̂†L†Lρ̂
�

Tr [ρ̂†ρ̂]
, (33)

which has a global minimum for the steady state. The stochastic gradient is estimated over
the probability distribution of the entries of the vectorized density matrix according to the
formula:

fi ≡
∂

∂ θ ∗i

‖Lρ̂‖22
‖ρ̂‖22

= E
�

L̃∇∗i L̃
�

−E[O∗i L̃
2] , (34)

where L̃(s, s′) =
∑

m,m′ L(s, s′; m, m′)ρ(m, m′)/ρ(s, s′) is the local estimator proposed in [24],
and the expectation values are taken with respect to the “Born distribution” of the vectorized
density matrix, p(s, s′)∝ |ρ(s, s′)|2. The optimization works like the ground-state optimiza-
tion provided by nk.VMC : the gradient is passed to an OPTAX optimizer, which may transform

it further before updating the parameters θ . The simplest optimizer, optax.sgd , would up-
date the parameters according to the equation

θi → θi −η fi . (35)

To improve the performance of the optimization, it is possible to pass the keyword argument
preconditioner to specify a gradient preconditioner, such as stochastic reconfiguration that

uses the quantum geometric tensor to transform the gradient. The geometric tensor is com-
puted according to the L2 norm of the vectorized density matrix (see Section 3.5).

As an example, we provide a snippet to study the steady state of a transverse-field Ising
chain with 10 spins and spin relaxation corresponding to the Lindblad master equation

Lρ̂ = −i
�

Ĥ, ρ̂
�

+
∑

i

σ̂−i ρ̂σ̂
+
i −

1
2

�

σ̂+i σ̂
−
i , ρ̂

	

. (36)

We first define the Hamiltonian and a list of jump operators, which are stored in a
LocalLiouvillian object, which is a lazy representation of the super-operator L. Next,

a variational mixed state is built by defining a sampler over the doubled Hilbert space and
optionally a different sampler for the diagonal distribution p(s) ∝ ρ(s, s), which is used to
estimate expectation values of operators. The number of samples used to estimate super-
operators and operators can be specified separately, as shown in the example by specifying
n_samples and n_samples_diag .� �

1 # Define the geometry of the lattice
2 g = nk.graph.Hypercube(length=10, n_dim=1, pbc=False)
3 # Hilbert space of spins on the graph
4 hi = nk.hilbert.Spin(s=1 / 2, N=g.n_nodes)
5

6 # Construct the Liouvillian Master Equation
7 ha = nk.operator.Ising(hi, graph=g, h=0.5)
8 j_ops = [nk.operator.spin.sigmam(hi, i) for i in range(g.n_nodes)]
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9 # Create the Liouvillian with Hamiltonian and jump operators
10 lind = nk.operator.LocalLiouvillian(ha, j_ops)
11

12 # Observable
13 sz = sum([nk.operator.spin.sigmam(hi, i) for i in range(g.n_nodes)])
14

15 # Neural Density Matrix
16 sa = nk.sampler.MetropolisLocal(lind.hilbert)
17 vs = nk.vqs.MCMixedState(
18 sa, nk.models.NDM(beta=1), n_samples=2000, n_samples_diag=500
19 )
20 # Optimizer
21 op = nk.optimizer.Sgd(0.01)
22 sr = nk.optimizer.SR(diag_shift=0.01)
23

24 ss = nk.SteadyState(lind, op, variational_state=vs, preconditioner=sr)
25 out = ss.run(n_iter=300, obs={"Sz": sz})� �

4.3 Time propagation

Time propagation of variational states can be performed by incorporating the time dependence
in the variational parameters and deriving an equation of motion that gives a trajectory in pa-
rameters space θ (t) that approximates the desired quantum dynamics. For real-time dynamics
of pure and mixed NQS, such an equation of motion can be derived from the time-dependent
variational principle (TDVP) [64, 66, 67]. When combined with VMC sampling to estimate
the equation of motion (EOM), this is known as time-dependent variational Monte Carlo (t-
VMC) [52,68] and is the primary approach currently used in NQS literature [8,18,19,21–23].
For complex holomorphic parametrizations18, the TDVP equation of motion is

∑

j

Gi j(θ ) θ̇ j = γ fi(θ , t) , (37)

with the QGT G and force vector f defined in Sections 4.1 and 4.2. After solving Eq. (37), the
resulting parameter derivative θ̇ can be passed to an ODE solver. The factor γ determines the
type of evolution:

• For γ= −i, the EOM approximates the real-time Schrödinger equation on the variational
manifold, the simulation of which is the main use case for the t-VMC implementation
provided by NETKET.

• For γ= −1, the EOM approximates the imaginary-time Schrödinger equation on the vari-
ational manifold. When solved using the first-order Euler scheme θ (t+d t) = θ (t)+θ̇ d t,
this EOM is equivalent to stochastic reconfiguration with learning rate d t. Imaginary-
time propagation with higher-order ODE solvers can therefore also be used for ground
state search as an alternative to VMC. This can result in improved convergence in some
cases [17].

• For γ = 1 and with the Lindbladian super-operator taking the place of the Hamiltonian
in the definition of the force f , this ansatz yields the dissipative real-time evolution
according to the Gorini-Kossakowski-Lindblad-Sudarshan master equation [69]. Our
implementation uses the QGT induced by the vector norm [25] as discussed in the last
paragraph of Section 3.5.

18The TDVP can be implemented for real-parameter wavefunctions by taking real parts of the right-hand side
and QGT similar to VMC (Section 4.1) [39,46]. This is not yet available in the current version of NETKET, but will
be added in a future release.
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The current version of NETKET provides a set of Runge–Kutta (RK) solvers based on JAX

and a driver class TDVP implementing the t-VMC algorithm for the three use cases listed
above. At the time of writing, these features are provided as a preview version in the
netket.experimental namespace as their API is still subject to ongoing development. The

ODE solvers are located in the submodule netket.experimental.dynamics , the driver un-

der netket.experimental.TDVP .

Runge-Kutta solvers implement the propagation scheme [70]

θ (t + d t) = θ (t) + d t
∑L

l=1
bl kl , (38)

using a linear combination of slopes

kl = F
�

θ (t) +
∑l−1

m=1
almkm, t + cl d t

�

, (39)

each determined by the solution F(θ , t) = θ̇ of the equation of motion (37) at an intermediate
time step. The coefficients {alm}, {bl}, and {cl} determine the specific RK scheme and its order.
NETKET further supports step size control when using adaptive RK schemes. In this case, the
step size is dynamically adjusted based on an embedded error estimate that can be computed
with little overhead during the RK step (38) [70]. Step size control requires a norm on the
parameters space in order to estimate the magnitude of the error. Typically, the Euclidean norm
‖δ‖=

Æ
∑

i |δi|2 is used. However, since different directions in parameters space influence the

quantum state to different degrees, it can be beneficial to use the norm ‖δ‖G =
q
∑

i δ
∗
i Gi jδ j

induced by the QGT G as suggested in Ref. [21], which takes this curvature into account and
is also provided as an option with the NETKET time-evolution driver.

An example demonstrating the use of NETKET’s time evolution functionality is provided in
Sec. 9.

4.4 Implementing custom algorithms using NETKET

While key algorithms for energy optimization, steady states, and time propagation are pro-
vided out of the box in the current NETKET version, there are many more applications of NQS.
While we wish to provide new high-level driver classes for additional use cases, such as quan-
tum state tomography [31] or general overlap optimization [32], it is already possible and
encouraged for users to implement their own algorithms on top of NETKET. For this reason,
we provide the core building blocks of NQS algorithms in a composable fashion.

For example, it is possible to write a simple loop that solves the TDVP equation of mo-
tion (37) for a holomorphic variational ansatz and using a first-order Euler scheme [i.e.,
θ (t + d t) = θ (t) + θ̇ (t) d t] very concisely, making use of the elementary building blocks
provided by the VariationalState class:� �

1 def custom_simple_tdvp(
2 hamiltonian: AbstractOperator, # Hamiltonian
3 vstate: VariationalState, # variational state
4 t0: float, # initial time
5 dt: float, # time step
6 t_end: float, # end time
7 ):
8 t = t0
9 while t < t_end:

10 # compute the energy gradient f
11 energy, f = vstate.expect_and_grad(hamiltonian)
12 G = vstate.quantum_geometric_tensor()
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13 # multiply the gradient by -1.0j for unitary dynamics
14 gamma_f = jax.tree_map(lambda x: -1.0j * x, f)
15 # Solve the linear system using any solver, such as CG
16 # (or write your own regularization scheme)
17 dtheta, _ = G.solve(jax.scipy.sparse.linalg.cg, gamma_f)
18 # update the parameters (theta = theta + dt * dtheta)
19 vs.parameters = jax.tree_map(
20 lambda x, y: x + dt * y, vs.parameters, dtheta
21 )
22 t = t + dt� �

While the included TDVP driver (Section 4.3) provides many additional features (such as
error handling, step size control, or higher-order integrators) and makes use of JAX’s just-in-
time compilation, this simple implementation already provides basic functionality and shows
how NETKET can be used for quick prototyping.

5 Symmetry-aware neural quantum states

NETKET includes a powerful set of utilities for implementing NQS ansätze that are symmetric
or transform correctly under the action of certain discrete symmetry groups. Only groups
that are isomorphic to a set of permutations of the computational basis are supported. This
is useful for modeling symmetric (e.g., lattice) Hamiltonians, whose eigenstates transform
under irreducible representations of their symmetry groups. Restricting the Hilbert space to
individual symmetry sectors can improve the convergence of variational optimization [71] and
the accuracy of its result [14,16,49,72]. Additionally, symmetry restrictions can be used to find
excited states [13,16,30], provided they are the lowest energy level in a particular symmetry
sector.

While there is a growing interest for other symmetry groups, such as continuous ones
like SU(2) or SO(3), they cannot be compactly represented in the computational basis and
therefore the approach described in this chapter cannot be used. Finding efficient encodings
for continuous groups is still an open research problem and it’s not yet clear which strategy
will work best [16].

NETKET uses group convolutional neural networks (GCNNs) to build wave functions that are
symmetric over a finite group G. GCNNs generalize convolutional neural networks, invariant
under the Abelian translation group, to general symmetry groups G which may contain non-
commuting elements [73]. GCNNs were originally designed to be invariant, but they can be
modified to transform under an arbitrary irreducible representation (irrep) of G, using the
projection operator [74]

|ψχ〉=
dχ
|G|

∑

g∈G

χ∗g g|ψ〉 , (40)

where g runs over all symmetry operations in G, with corresponding characters χg . Under the
trivial irrep, where all characters are unity, the invariant model is recovered.

NETKET can infer the full space group of a lattice, defined as a set of permutations of lattice
sites, starting from a geometric description of its point group. It can also generate nontrivial
irrep characters [to be used in (40) for states with nonzero wave vectors or transforming non-
trivially under point-group symmetries] using a convenient interface that approximates stan-
dard crystallographic formalism [75]. In addition, NETKET provides powerful group-theoretic
algorithms for arbitrary permutation groups of lattice sites, allowing new symmetry elements
to be easily defined.
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Pre-built GCNNs are then provided in the nk.models submodule, which can be con-
structed by specifying few parameters, such as the number of features in each layer, and the
lattice or permutation group under which the network should transform. Symmetric RBMs [8]
are also implemented as one-layer GCNNs that aggregate convolutional features using a prod-
uct rather than a sum. These pre-built network architectures are made up of individual layers
found in the nk.nn submodule, which can be used directly to build custom symmetric an-
sätze.

Section 5.1 describes the NETKET interface for constructing space groups of lattices and
their irreps. Usage of GCNNs is described in Section 5.2, while appendix A provides mathe-
matical and implementation details.

5.1 Symmetry groups and representation theory

NETKET supports symmetry groups that act on a discrete Hilbert space defined on a lattice. On
such a Hilbert space, space-group symmetries act by permuting sites; most generally, there-
fore, arbitrary subgroups of the symmetric group SN of a lattice of N sites are supported. A
symmetry group can be specified directly as a list of permutations, as in the following example,
which enforces the symmetry ψ(s0, s1, s2, s3) = ψ(s3, s1, s2, s0) for all four-spin configurations
s = (s0, . . . , s3), si = ±1:� �

1 hi = nk.hilbert.Spin(1/2, N=4)
2 symms = [
3 [0, 1, 2, 3], # identity element
4 [3, 1, 2, 0], # swap first and last site
5 ]
6 model = nk.models.RBMSymm(symms, alpha=1)� �

The listed permutations are required to form a group and, in particular, the identity operation
e : s 7→ s must always be included as the first element.

It is inconvenient and error-prone to specify all space-group symmetries of a large lattice
by their indices. Therefore, NETKET provides support for abstract representations of permu-
tation and point groups through the nk.utils.group module, complete with algorithms

to compute irreducible representations [76–78]. The module also contains a library of two-
and three-dimensional point groups, which can be turned into lattice-site permutation groups
using the graph class nk.graph.Lattice (but not general Graph objects, for they carry no
geometric information about the system):� �

1 from netket.utils.group.planar import D
2 from netket.graph import Lattice
3

4 # construct a centred rectangular lattice
5 lattice = Lattice(
6 basis_vectors = [[2,0], [0,1]], # each row is a lattice vector
7 extent = (5,5),
8 site_offsets = [[0,0], [1,0.5]], # each row is the position of a

site in the unit cell
9 point_group = D(2) # the point group of the lattice, here Z_2 x Z_2

10 )� �
NETKET contains specialized constructors for some lattices (e.g., Square or Pyrochlore ),
which come with a default point group; however, these can be overridden in methods like
Lattice.space_group :� �

1 from netket.utils.group.planar import rotation, reflection_group, D
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2 from netket.utils.group import PointGroup, Identity
3 from netket.graph import Honeycomb
4

5 # construct the D_6 point group of the honeycomb lattice by hand
6 cyclic_6 = PointGroup(
7 [Identity()] + [rotation(360 / n * i) for i in range(1, n)],
8 ndim=2,
9 )

10 # the @ operator returns the Cartesian product of groups
11 # but doesn’t check for group structure
12 dihedral_6 = reflection_group(angle=0) @ cyclic_6
13

14 assert dihedral_6 == D(6)
15

16 lattice = Honeycomb([6,6])
17

18 # returns the full space group of ‘lattice‘ as a PermutationGroup
19 space_group = lattice.space_group()
20 # the space group is spanned by 6^2 translations and 12 point-group

symmetries
21 assert len(space_group) == 12 * 6 * 6
22

23 # do this if the Hamiltonian breaks reflection symmetry
24 # can also be used for generic Lattices that have no default point group
25 space_group = lattice.space_group(cyclic_6)� �

Irreducible representation (irrep) matrices can be computed for any point or permutation
group object using the method irrep_matrices() . Characters (the traces of these matri-

ces) are returned by the method character_table() as a matrix, each row of which lists the
characters of all group elements. Character tables closer to the format familiar from quantum
chemistry texts are produced by character_table_readable() . Irrep matrices and char-
acter tables are calculated using adaptations of Dixon’s [76] and Burnside’s [77] algorithms,
respectively.

It would, however, be impractical to inspect irreps of a large space group directly to
specify the symmetry sector on which to project a GCNN wave function. Exploiting the
semidirect-product structure of space groups [78], space-group irreps are usually19 described
in terms of a set of symmetry-related wave vectors (known as a star) and an irrep of the
subgroup of the point group that leaves the same invariant (known as the little group) [75].
Irreps can be constructed in this paradigm using SpaceGroupBuilder objects returned by

Lattice.space_group_builder() :� �
1 from netket.graph import Triangular
2

3 lattice = Triangular([6,6])
4 momentum = [0,0]
5 # space_group_builder() takes an optional PointGroup argument
6 sgb = lattice.space_group_builder()
7

8 # choosing a representation
9 # this one corresponds to the B_2 irrep at the Gamma point

10 chi = sgb.space_group_irreps(momentum)[3]� �
19Representation theory for wave vectors on the surface of the Brillouin zone in a nonsymmorphic space group

is much more complicated [78] and is not currently implemented in NETKET.
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The irrep chi , generated using the little group, is equivalent to one of the irreps

in Lattice.space_group().character_table() and can thus be used for symmetry-
projecting GCNN ansätze. The order in which irreps of the little group are returned can readily
be checked in an interactive session:� �

1 >>> sgb.little_group(momentum).character_table_readable()
2 ([’1xId()’, ’2xRot(60)’, ’2xRot(120)’, ’1xRot(180)’, ’3xRefl(0)’,

’3xRefl(-30)’],
3 array([[ 1., 1., 1., 1., 1., 1.], # this is irrep A1
4 [ 1., 1., 1., 1., -1., -1.], # A2
5 [ 1., -1., 1., -1., 1., -1.], # B1
6 [ 1., -1., 1., -1., -1., 1.], # B2
7 [ 2., 1., -1., -2., 0., 0.], # E1
8 [ 2., -1., -1., 2., 0., 0.]])) # E2� �

The main caveat in using this machinery is that the point groups predefined in NETKET

all leave the origin invariant (except for cubic.Fd3m which represents the “nonsymmorphic
point group” of the diamond/pyrochlore lattice) and thus only work well with lattices in which
the origin has full point-group symmetry. This behaviour can be changed (see the definition
of cubic.Fd3m for an example), but it is generally safer to define lattices using the proper
Wyckoff positions [75], of which the origin is usually maximally symmetric.

5.2 Using group convolutional neural networks (GCNNs)

NETKET uses GCNNs [49,73] to create NQS ansätze that are symmetric under space groups of
lattices. These networks consist of alternating group convolutional layers and pointwise nonlin-
earities. The former can be thought of as a generalization of convolutional layers to a generic
finite group G. They are equivariant, that is, if their inputs are transformed by some space-
group symmetry, features in all subsequent layers are transformed accordingly. As a result, the
output of a GCNN can be understood as amplitudes of the wave functions g|ψ〉 for all g ∈ G,
which can be combined into a symmetric wave function using the projection operator (40).
Further details about equivariance and group convolutions are given in Appendix A.1.

GCNNs are constructed by the function nk.models.GCNN . Symmetries are specified ei-

ther as a PermutationGroup or a Lattice . In the latter case, the symmetry group is given

by space_group() ; an optional point_group argument to GCNN can be used to override
the default point group. By default, output transforms under the trivial irrep χg ≡ 1, that is, all
output features are averaged together to obtain a wave function that is fully symmetric under
the whole space group. Other irreps can be specified through the characters argument,
which takes a vector of the same size as the space group.� �

1 from netket.graph import Triangular
2 from netket.models import GCNN
3 from netket.utils.group.planar import C
4

5 lattice = Triangular([6,6])
6 momentum = [0,0]
7 sgb = lattice.space_group_builder()
8 chi = sgb.space_group_irreps(momentum)[3]
9

10 # This transforms as the trivial irrep Gamma A_1
11 gcnn1 = GCNN(lattice, layers = 4, features=4)
12

13 # This transforms as Gamma B_2
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Table 4: Comparison of GCNN implementations. fin,out stands for the number of
input and output features, |G|, |P|, |T | for the sizes of the space group, point group,
and translation group, respectively. da are the dimensions of irreps of G; in a large
space group,

∑

a d3
a scales as |G||P|.

mode="irreps" mode="fft"

Can be used for any group only space groups

Symmetries can be specified
by

• Lattice

• PermutationGroup
• Symmetry permutations
and irrep matrices

• Lattice

• PermutationGroup and
shape of translation group
• Symmetry permutations,
product table, and shape of
translation group

Kernel memory footprint
per layer

O( fin fout|G|) O( fin fout|G||P|)

Evaluation time per layer
per sample

O[( fin + fout)|G|2 +
fin fout

∑

a d3
a ]

O[( fin + fout)|G| log |T |+
fin fout|G||P|]

Preferable for • large point groups
• if expanded "fft" ker-
nels don’t fit in memory

• small point groups
• very large batches (see
App. A.2)

14 gcnn2 = GCNN(lattice.space_group(), characters=chi, layers=4,
features=4)

15

16 # This does not enforce reflection symmetry
17 gcnn3 = GCNN(lattice, point_group=C(6), layers=4, features=4)� �

NETKET currently supports two implementations of GCNNs, one based on group Fourier
transforms ( mode="irreps" ), the other using fast Fourier transforms on each coset of the

translation group ( mode="fft" ): these are discussed in more detail in Appendix A.2. Their
behavior is equivalent, but their performance and calling sequence is different, as explained in
Table 4. A default mode="auto" is also available. For spin models, parity symmetry (taking
σz to −σz) is a useful extension of the U(1) spin symmetry group enforced by fixing mag-
netization along the σz axis. Parity-enforcing GCNNs can be constructed using the parity
argument, which can be set to ±1.

In addition to deep GCNNs, fully symmetric RBMs [8] are implemented in nk.models.

RBMSymm as a single-layer GCNN from which the wave function is computed as

ψ=
∏

i,g∈G

cosh f (i)g =⇒ logψ=
∑

i,g∈G

ln cosh f (i)g . (41)

Due to the products (rather than sums) used, this ansatz only supports wave functions that
transform under the trivial irrep. An RBM-like structure closer to that of ref. [72] can be
achieved using a single-layer GCNN:� �

1 from netket.models import GCNN, RBMSymm
2 from netket.nn import logcosh
3

4 # fully symmetric RBM
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5 rbm1 = RBMSymm(group, alpha=4)
6

7 # symmetrized RBM similar to (Nomura, 2021)
8 rbm2 = GCNN(group, layers=1, features=4, output_activation=logcosh)� �

6 Quantum systems with continuous degrees of freedom

In this section we will introduce the tools provided by NETKET to study systems with continuous
degrees of freedom. The interface is very similar to the one introduced in Section 2 for discrete
degrees of freedom.

6.1 Continuous Hilbert spaces

Similar to the discrete Hilbert spaces, the bosonic Hilbert space of N particles in continuous
space has the structure

Hcontinuous = span{|x0〉 ⊗ · · · ⊗ |xN−1〉 : x i ∈ Li , i ∈ {0, . . . , N − 1}} , (42)

where Li is the space available to each individual boson: for example, Li is Rd for a free par-
ticle in d spatial dimensions, and [0, L]d for particles confined to a d-dimensional box of side
length L. In the case of finite simulation cells, the boundaries can be equipped with periodic
boundary conditions.

In the following snippet, we define the Hilbert space of five bosons in two spatial dimen-
sions, confined to [0,10]2 with periodic boundary conditions:� �

1 >>> hilb = nk.hilbert.Particle(N=5, L=(10.0, 10.0), pbc=True)
2 >>> print("Size of the basis: ", hilb.size)
3 Size of the basis: 10
4 >>> hilb.random_state(nk.jax.PRNGKey(0), (2,))
5 [[0.02952452 0.21660899 2.836163 3.5628846 4.5622005 5.9473248
6 6.104126 8.14864 9.163713 9.263418 ]
7 [9.85617 0.4667458 2.211265 4.1587596 4.250165 6.69916
8 6.5165453 7.3764215 8.508119 0.08060825]]� �

As we discussed in Section 2.1, the Hilbert objects only define the computational basis. For
that reason, the flag pbc=True only affects what configurations can be generated by samplers
and how to compute the distance between two different sets of positions. This option does not
enforce any boundary condition for the wave-function, which would have to be accounted for
into the variational ansatz.

6.2 Linear operators

Similar to the discrete-variable case, expectation values of operators can be estimated as clas-
sical averages of the local estimator

Õ(x) =
〈x | Ô |ψ〉
〈x |ψ〉

(43)

over the (continuous) Born distribution p(x) ∝ |ψ(x)|2. NETKET provides the base class
ContinuousOperator to write custom (local) operators and readily implements Hamiltoni-

ans of the form (ħh= 1 in our units)

Ĥ = −
1
2

∑

i

1
mi
∇2

i + V̂
�

{xi}
�

, (44)
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Figure 1: VMC energy estimate as a function of the optimization step for a
continuous-space system of N = 10 particles in d = 3 spatial dimensions subject
to a harmonic confinement.

using the predefined operators KineticEnergy and PotentialEnergy . For example, a

harmonically confined system described by Ĥ = −1
2

∑

i∇
2
i +

1
2

∑

i x̂2
i can be implemented as� �

1 # This function takes a single vector and returns a scalar
2 def v(x):
3 return 0.5*jnp.linalg.norm(x) ** 2
4

5 # Construct the Kinetic energy term with unit mass
6 H_kin = nk.operator.KineticEnergy(hilb, mass=1.0)
7 # Construct the Potential energy term using the potential defined above
8 H_pot = nk.operator.PotentialEnergy(hilb, v)
9

10 # Sum the two objects into a single Operator
11 H = H_kin + H_pot� �

Operators defined on continuous Hilbert spaces cannot be converted to a matrix form or
used in exact diagonalization, in contrast to those defined on discrete Hilbert spaces. Con-
tinuous operators can still be used to compute expectation values and their gradients with a
variational state.

6.3 Samplers

Out of the built-in samplers in the current version of NETKET (Section 3.4), only the
Markov chain Monte Carlo sampler MetropolisSampler supports continuous degrees

of freedom, as both ExactSampler and the autoregressive ARNNSampler rely on the
sampled basis being countable. For continuous spaces, we provide the transition rule
sampler.rules.GaussianRule which proposes new states by adding a random shift to ev-

ery degree of freedom sampled from a Gaussian of customizable width. More complex transi-
tion rules can be defined following the instructions provided in Section 3.4.
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6.4 Harmonic oscillators

As a complete example of how to use continuous-space Hilbert spaces, operators, variational
states, and the VMC driver together, consider 10 particles in three-dimensional space, confined
by a harmonic potential V (x) = x2/2. The exact ground-state energy of this system is known
to be E0 = 15. We use the multivariate Gaussian ansatz logψ(x) = −xTΣ−1 x , where Σ= T Tᵀ

and T is randomly initialized using a Gaussian with zero mean and variance one. Note that
the form of Σ ensures that it is positive definite.� �

1 import netket as nk
2 import jax.numpy as jnp
3

4 def v(x):
5 return 0.5*jnp.linalg.norm(x) ** 2
6

7 hilb = nk.hilbert.Particle(N=10, L=(jnp.inf,jnp.inf,jnp.inf), pbc=False)
8 ekin = nk.operator.KineticEnergy(hilb, mass=1.0)
9 pot = nk.operator.PotentialEnergy(hilb, v)

10 ha = ekin + pot
11

12 sa = nk.sampler.MetropolisGaussian(hilb, sigma=0.1, n_chains=16,
n_sweeps=32)

13 model = nk.models.Gaussian(param_dtype=float)
14 vs = nk.vqs.MCState(sa, model, n_samples=10 ** 4, n_discard=2000)
15

16 op = nk.optimizer.Sgd(0.05)
17 sr = nk.optimizer.SR(diag_shift=0.01)
18

19 gs = nk.VMC(ha, op, sa, variational_state=vs, preconditioner=sr)
20 gs.run(n_iter=100, out="HO_10_3d")� �

We show the training curve of above snippet in Fig. 1; exact ground-state energy is recovered
to a very high accuracy.

6.5 Interacting system with continuous degrees of freedom

In this example we want to tackle an interacting system of bosonic Helium particles in one
continuous spatial dimension. The two-body interaction is given by the Aziz potential which
qualitatively resembles a Lennard-Jones potential [79–81]. The Hamiltonian reads

H = −
ħh2

2m

∑

i

∇2
i +

∑

i< j

VAziz(ri j) . (45)

We will examine the system at a density ρ = N
L = 0.3Å

−1
with N = 10 particles in units where

ħh = m = kb = 1. To confine the system it is placed in a box of size L equipped with periodic
boundary conditions. The Hilbert space and sampler are initialized as shown above (rm is the
length-scaled defined in the Aziz potential):� �

1 import netket as nk
2

3 N = 10
4 d = 0.3 # 1/Angstrom
5 rm = 2.9673 # Angstrom
6 L = N / (0.3 * rm)
7 hilb = nk.hilbert.Particle(N=N, L=L, pbc=True)
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8 sab = nk.sampler.MetropolisGaussian(hilb, sigma=0.05, n_chains=16,
n_sweeps=32)� �

6.5.1 Defining the Hamiltonian

We can define the Hamiltonian through the action of the interaction-potential on a sample of
positions x , and combine it with the predefined kinetic energy operator. Since we are using
periodic boundary conditions, we will use the Minimum Image Convention (MIC) to compute
distances between particles. In the following snippet the Aziz potential (in the units above) is
defined and the Hamiltonian is instantiated:� �

1

2 def minimum_distance(x, sdim):
3 """Computes distances between particles using mimimum image

convention"""
4 n_particles = x.shape[0] // sdim
5 x = x.reshape(-1, sdim)
6

7 distances = (-x[jnp.newaxis, :, :] + x[:, jnp.newaxis, :])[
8 jnp.triu_indices(n_particles, 1)
9 ]

10 distances = jnp.remainder(distances + L / 2.0, L) - L / 2.0
11

12 return jnp.linalg.norm(distances, axis=1)
13

14 def potential(x, sdim):
15 """Compute Aziz potential for single sample x"""
16 eps = 7.846373
17 A = 0.544850 * 10 ** 6
18 alpha = 13.353384
19 c6 = 1.37332412
20 c8 = 0.4253785
21 c10 = 0.178100
22 D = 1.241314
23

24 dis = minimum_distance(x, sdim)
25 return jnp.sum(
26 eps
27 * (
28 A * jnp.exp(-alpha * dis)
29 - (c6 / dis ** 6 + c8 / dis ** 8 + c10 / dis ** 10)
30 * jnp.where(dis < D, jnp.exp(-((D / dis - 1) ** 2)), 1.0)
31 )
32 )
33

34 ekin = nk.operator.KineticEnergy(hilb, mass=1.0)
35 pot = nk.operator.PotentialEnergy(hilb, lambda x: potential(x, 1))
36 ha = ekin + pot� �

6.5.2 Defining and training the variational Ansatz

There are two properties that the variational Ansatz for this system must obey:

1. It must be invariant with respect to the permutations of its particles, because they are
bosons;
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2. As the interaction resembles a Lennard-Jones potential we have a strong divergence in
the potential energy when particles get close to each other. This divergence must be
compensated by the kinetic energy.

We satisfy the permutation-invariance by using a neural network architecture called DeepSets.
DeepSets exploit the fact that any function f (x1, ..., xN ) which is invariant under permutations
of its inputs can be decomposed as [82]:

f (x1, ..., xN ) = ρ

�

∑

i

φ(x i)

�

, (46)

where ρ and φ are arbitrary functions. In this specific example, x i denotes a single-particle
position and ρ and φ are parameterized with dense feed forward neural networks.

The second requirement is fulfilled by using Kato’s cusp condition which states that [83]

lim
r→0

�

∇2ψc(r)
ψc(r)

+ V (r)

�

<∞ , (47)

where r denotes the distance between the particles and ψc is the cusp wave-function. For the
case of a Lennard-Jones potential (∝ r−12-divergence), we have

ψc(r) = exp

�

−
1
2

�

b
r

�5
�

, (48)

where b is a variational parameter.
We also need to handle the periodic conditions, making sure that the wave-function does

not exhibit divergent behaviour at the edges of the (periodic) box. To this end we will use a sur-
rogate distance function for the minimum image convention, namely dsin(x i , x j) =

L
2 sin

�

π
L ri j

�

in the variational Ansatz. Additionally we replace the single-particle coordinates in Eq. (46)
by the two-particle distances dsin(x i , x j)2, such that all in all our variational Ansatz reads

ψ(x1, ..., xN ) = exp



ρ

 

∑

i< j

φ(dsin(x i , x j)
2)

!



 · exp

�

−
1
2

�

b
dsin(x i , x j)

�5�

. (49)

The variational ansatz we described here is implemented in NETKET as DeepSeetRelDistance ,

and a more in-depth discussion can be found in this reference [84].
Having defined the ansatz, we run the VMC driver with the given variatianal Ansatz to find

an estimation of the ground-state energy of the system. This is done as follows:� �
1 model = nk.models.DeepSetRelDistance(
2 hilbert=hilb,
3 cusp_exponent=5,
4 layers_phi=2,
5 layers_rho=3,
6 features_phi=(16, 16),
7 features_rho=(16, 16, 1),
8 )
9 vs = nk.vqs.MCState(sab, model, n_samples=4096, n_discard_per_chain=128)

10

11 op = nk.optimizer.Sgd(0.001)
12 sr = nk.optimizer.SR(diag_shift=0.01)
13

14 gs = nk.VMC(ha, op, sab, variational_state=vs, preconditioner=sr)
15 gs.run(n_iter=1000, out="Helium_10_1d")� �

The result of this optimization and a comparison to literature results is displayed in Fig. 2.
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Figure 2: VMC energy estimate as a function of the optimization step for a
continuous-space system of N = 10 particles in d = 1 spatial dimensions subject
to a LJ-like interaction potential placed within a periodic box. The green dashed line
is the result given in the supplementary material of [80].

7 Example: Finding ground and excited states of a lattice model

In this example, we define the J1–J2 Heisenberg Hamiltonian

H = J1

∑

〈i j〉

~σi · ~σ j + J2

∑

〈〈i j〉〉

~σi · ~σ j , (50)

on a 10×10 square lattice and use the VMC code introduced in Section 4.1 to find a variational
approximation of its ground state. This model gives rise to several phases of matter, including
magnetically ordered states, a valence bond solid, and a quantum spin liquid. Here, we set
J1 = 1, J2 = 0.5, inside the spin liquid phase [30,85].

Our example is optimized to run on a single GPU with 16 GB of memory. We will make
note of what should be changed when running the simulation on CPUs.

7.1 Defining the lattice and the Hamiltonian

We use the Lattice class to define the square lattice and generate its space-group sym-

metries. By passing max_neighbor_order=2 to the constructor, we generate graph edges

for both nearest and next-nearest neighbours. The pre-defined Heisenberg class supports
passing different coupling constants for both types of edge.� �

1 import netket as nk
2 import numpy as np
3 import json
4 from math import pi
5

6 L = 10
7 # Build square lattice with nearest and next-nearest neighbor edges
8 lattice = nk.graph.Square(L, max_neighbor_order=2)
9 hi = nk.hilbert.Spin(s=1 / 2, total_sz=0, N=lattice.n_nodes)

10 # Heisenberg with coupling J=1.0 for nearest neighbors
11 # and J=0.5 for next-nearest neighbors
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12 H = nk.operator.Heisenberg(hilbert=hi, graph=lattice, J=[1.0, 0.5])� �
7.2 Defining and training a symmetric ansatz

To enforce all spatial symmetries of (50), we use the GCNN ansatz described in Section 5.
By default, the GCNN projects onto the symmetric representation, which contains the ground
state for this geometry. We select singlet states by only sampling basis states with

∑

i Sz
i = 0

and setting spin parity using parity=1 . We use a model with four layers, each contain-

ing four feature vectors (i.e., four hidden units for each of the 8L2 space-group symme-
tries). To exploit the high degree of parallelism of GPUs, we set sampler.n_chains equal

to vstate.n_samples 20. When using CPUs, n_chains should be set to a smaller value.� �
1 machine = GCNN(
2 symmetries=lattice,
3 parity=1,
4 layers=4,
5 features=4,
6 param_dtype=np.complex128,
7 )
8 sampler = nk.sampler.MetropolisExchange(
9 hilbert=hi,

10 n_chains=1024,
11 graph=lattice,
12 d_max=2,
13 )
14 opt = nk.optimizer.Sgd(learning_rate=0.02)
15 sr = nk.optimizer.SR(diag_shift=0.01)
16 vstate = nk.vqs.MCState(
17 sampler=sampler,
18 model=machine,
19 n_samples=1024,
20 n_discard_per_chain=0,
21 chunk_size=4096,
22 )
23 gs = nk.VMC(H, opt, variational_state=vstate, preconditioner=sr)
24 gs.run(n_iter=200, out="ground_state")
25

26 data = json.load(open("ground_state.log"))
27 print(np.mean(data["Energy"]["Mean"]["real"][-20:])/400)
28 # Output: -0.49562531096409457
29 print(np.std(data["Energy"]["Mean"]["real"][-20:])/400)
30 # Output: 0.0002492304032505182� �

We specify chunk_size=4096 in the variational state in order to reduce memory con-

sumption. As we have L2 = 100 sites, at every VMC step we will need to evaluate the network
for O(Nsamples L2) = O(103 · 102) different configurations, but the memory available on com-
mercial GPUs will not be enough to perform this computation in a single pass. Instead, by

20Note that this results in a somewhat non-standard MC scheme where, instead of an ensemble of chains with
generally non-zero internal autocorrelation, the sampler produces an ensemble of independently drawn single
configurations ( n_samples_per_chain==1 ). Since the sampler state of the previous VMC step is used as initial

state for the next step, there can still be a residual autocorrelation with the previous samples, which is, however,
alleviated by the sampler performing Nsites intermediate updates before yielding the single requested sample with
the settings used here.
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Figure 3: Energy evolution of variational ground states (green) and excited states
after transfer learning (blue), compared to the lowest known variational energy for
the 10× 10 square-lattice J1–J2 model [30] (black). The variational energies can be
further improved by allowing more training steps, Monte Carlo samples, etc. The
plot on the right zooms in on the lowest energies.

setting chunk_size NETKET will split the calculation in many smaller sub-calculations (see
Section 3.3.1 for more details).

This calculation, which takes about 30 minutes on an NVIDIA A100 GPU, already delivers
a fairly accurate variational energy. The evolution of variational energy during the training
procedure is shown in Fig. 3.

We note that a typical initialization of a GCNN gives rise to ferromagnetic correlations,
which can make training an antiferromagnetic Hamiltonian unstable [15, 49]. Therefore, it
is often good practice to pre-optimize the phases by restricting all amplitudes to unity by
setting equal_amplitudes=True switch and training only the phases of the network. These

parameters can then be loaded into a model with equal_amplitudes=False .

7.3 Finding an excited state

We can also find low-lying excited states using this procedure, by projecting the wavefunction
onto a different irrep. Here, we consider the first gapless mode in the Anderson tower of states
of the Néel antiferromagnet [86], a triplet at wave vector (π,π) that transforms trivially under
all point-group symmetries. This mode is still gapless in the quantum spin liquid; we project
out spin-singlets by focusing on parity odd states.

We expedite this calculation by using parameters optimized for the ground-state sector as
an initial guess. The resulting wave function will already have a low variational energy (as
shown in Fig. 3) and correlations typical for low-energy eigenstates.� �

1 # store the optimized ground-state parameters
2 saved_params = vstate.parameters
3 # Compute the characters of the first excited state
4 characters = lattice.space_group_builder().space_group_irreps(pi, pi)[0]
5 # Construct a model respecting the first-excited state symmetries
6 machine = GCNN(
7 symmetries=lattice,
8 characters=characters,
9 parity=-1,

10 layers=4,
11 features=4,
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12 param_dtype=complex,
13 )
14 vstate = nk.vqs.MCState(
15 sampler=sampler,
16 model=machine,
17 n_samples=1024,
18 n_discard_per_chain=0,
19 chunk_size=4096,
20 )
21 # assign the old parameters to the new variational state
22 vstate.parameters = saved_params
23 gs = nk.VMC(H, opt, variational_state=vstate, preconditioner=sr)
24 gs.run(n_iter=50, out=’excited_state’)
25

26 data = json.load(open("excited_state.log"))
27 print(np.mean(data["Energy"]["Mean"]["real"][-10:])/400)
28 # Output: -0.49301426054097885
29 print(np.std(data["Energy"]["Mean"]["real"][-10:])/400)
30 # Output: 0.0003802670752071611� �

8 Example: Fermions on a lattice

NETKET can also be used to simulate fermionic systems with a finite number of orbitals. Func-
tionality related to fermions is kept in the netket.experimental in order to signal that some
parts of the API might still slightly change while we gather feedback from the community. We
usually import this namespace as nkx as follows:� �

1 from netket import experimental as nkx� �
and then use nkx freely.

The Hilbert space for discrete fermionic systems is called SpinOrbitalFermions . It
supports fermions, with and without a spin- degree of freedom, which occupy a set of orbitals
(such as the sites of a lattice). Internally, it uses a tensor product of a Fock space for each spin
component. For a set of spin-1/2 fermions, we can fix the number of fermions with up (↑) and
down (↓) spins through the n_fermions keyword argument. The SpinOrbitalFermions

generates samples that correspond to occupation numbers |n〉 =
�

�n1,↑, ..., nNo ,↑, n1,↓, ..., nNo ,↓
�

,
for a given ordering of the No orbitals (or sites).

In the example below, we determine the ground state of the Fermi-Hubbard model on a
square lattice

Ĥ = −t
∑

〈i, j〉

∑

σ={↑,↓}

f †
i,σ f j,σ + h.c.+ U

∑

i

ni,↑ni,↓ , (51)

where ni,σ = f †
i,σ fi,σ.

NETKET implements a class FermionOperator2nd that represents an operator in sec-
ond quantization. This class does not separate spin and orbital indices. Internally, the
FermionOperator2nd computes matrix elements of a fermion operator f †

i on an orbital i
through the Jordan-Wigner transformation

f †
i →

�

⊗

j<i

Z j

�

�

X i + iYi

2

�

, (52)

43

https://scipost.org
https://scipost.org/SciPostPhysCodeb.7


SciPost Phys. Codebases 7 (2022)

or in terms of occupation numbers




n
�

� f †
i

�

�n′
�

= (−1)
∑

j<i n jδn′i+1,ni

∏

j 6=i

δn j ,n
′
j
. (53)

One can create a FermionOperator2nd object from an external FermionOperator object
from the OPENFERMION library, which is popular for symbolic manipulation of fermionic oper-
ators [87]. The small intermezzo code below shows how this works in practice for an operator
f †
1 f2 + 4 f3 f †

0� �
1 from openfermion import FermionOperator
2 from netket.operator import FermionOperator2nd
3

4 of_operator = FermionOperator("1^ 2") + 4*FermionOperator("3 0^")
5 nk_operator1 = FermionOperator2nd.from_openfermion(of_operator)
6

7 nk_operator2 = FermionOperator2nd("1^ 2") + 4*FermionOperator2nd("3 0^")� �
where nk_operator1 and nk_operator2 are equivalent.

The mapping between fermions and qubit degrees of freedom is not unique [88], and
the Jordan-Wigner transformation is one well-know example of such a transformation. How-
ever, by interfacing with toolboxes specialized in symbolic manipulation, we open up a range
of possibilities, especially in combination with PauliStrings.from_openfermion , which

converts openfermion.QubitOperator from OPENFERMION to a PauliStrings object in
NETKET. This allows one to, for example, use a wider range of alternatives to the Jordan-
Wigner transformation implemented in OPENFERMION, or other variations.

Going back to our example of the Fermi-Hubbard model, NETKET also implements a more
easy to use set of creation and annihilation operators that clearly separate the orbitals and spin
indices

• f †
i,σ: nkx.operator.fermion.create

• fi,σ: nkx.operator.fermion.destroy

• ni,σ: nkx.operator.fermion.number

Each operator takes a site and spin projection ( sz ) in order to find the right position in the
Hilbert space samples. We will create a helper function to abbreviate the creation, annihilation
and number operators in the example below.� �

1 from netket import experimental as nkx
2 from netket.experimental.operator.fermion import (
3 create as c, destroy as cdag, number as nc)
4

5 # create the graph our fermions can hop on
6 L = 4
7 g = nk.graph.Hypercube(length=L, n_dim=2, pbc=True)
8 n_sites = g.n_nodes
9

10 # create a hilbert space with 2 up and 2 down spins
11 hi = nkx.hilbert.SpinOrbitalFermions(n_sites, s=1 / 2, n_fermions=(2,

2))
12

13 t = 1 # tunneling/hopping
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14 U = 0.01 # coulomb
15

16 up, down = +0.5, -0.5
17 ham = 0.0
18 for sz in (up, down):
19 for u, v in g.edges():
20 ham += -t * (cdag(hi, u, sz) * c(hi, v, sz) +
21 cdag(hi, v, sz) * c(hi, u, sz))
22 for u in g.nodes():
23 ham += U * nc(hi, u, up) * nc(hi, u, down)� �

Sampling: To run a VMC optimization, we need a proper sampling algorithm that takes
into account the constraints of the computational basis we are working with. As the
SpinOrbitalFermions basis consereves total spin-magnetization, we cannot use samplers

like MetropolisLocal which randomly change the population ni,σ on a site, thus changing

the total spin. We can instead use MetropolisExchange , which moves fermions around
according to the physical lattice graph of L × L vertices, but the computational basis defined
by the Hilbert space contains (2s+ 1)L2 occupation numbers. By taking a disjoint copy of the
lattice, we can move the fermions around independently for both spins and therefore conserve
the number of fermions with up and down spin. Notice that in the chosen representation,
where is no need to anti-symmetrize our ansatz.� �

1 sa = nk.sampler.MetropolisExchange(hi,
2 graph=nk.graph.disjoint_union(g, g),
3 n_chains=16)
4

5 ma = nk.models.RBM(alpha=1, param_dtype=complex)
6 vs = nk.vqs.MCState(sa, ma, n_discard_per_chain=100, n_samples=512)
7

8 opt = nk.optimizer.Sgd(learning_rate=0.01)
9 sr = nk.optimizer.SR(diag_shift=0.1)

10

11 gs = nk.driver.VMC(ham, opt, variational_state=vs, preconditioner=sr)
12 gs.run(500, out=’fermions’)� �

9 Example: Real-time dynamics

We demonstrate the simulation of NQS dynamics in the transverse-field Ising model (TFIM)
on an L site chain with periodic boundaries, using a restricted Boltzmann machine (RBM) as
the NQS ansatz. The Hamiltonian reads

ĤIsing = J
∑

〈i j〉

σ̂z
i σ̂

z
j − h

∑

i

σ̂x
i , (54)

with J = 1 and h = 1 and periodic boundary conditions. We will estimate the expectation
value of the transverse magnetization Ŝ x =

∑

i σ̂
x
i along the way.

We simulate the dynamics starting from an initial state |ψ(t0)〉 that is the ground state for
the TFIM Hamiltonian with h = 1/2. The random weight initialization of a neural network
yields a random initial state. Therefore, we determine the weights corresponding to this initial
state by performing a ground-state optimization. Even though the TFIM ground state can be
parametrized using an RBM ansatz with real-valued weights, we need to use complex-valued
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Figure 4: Comparison between the exact (dashed line) and variational dynamics
of a quench on the transverse-field Ising model. (Left): Expectation value of the
quenched Hamiltonian, which is conserved by the unitary dynamics. The shaded
area represents the uncertainty due to Monte Carlo sampling. (Right): Expectation
value of the total magnetization along the x axis during the evolution.

weights here, in order to describe the complex-phase of the wave function that arises during
the time evolution21. In this example, we work with a chain of L = 20 sites, which can be
easily simulated on a typical laptop with the parameters below.� �

1 import netket as nk
2 import netket.experimental as nkx
3

4 # Spin Hilbert space on 20-site chain with PBC
5 L = 20
6 chain = nk.graph.Chain(L)
7 hi = nk.hilbert.Spin(s=1/2) ** L
8

9 # Define RBM ansatz and variational state
10 rbm = nk.models.RBM(alpha=1, param_dtype=complex)
11 sampler = nk.sampler.MetropolisLocal(hi)
12 vstate = nk.vqs.MCState(sampler, rbm, n_samples=4096)
13

14 # Hamiltonian at J=1 (default) and external field h=1/2
15 ha0 = nk.operator.Ising(hi, chain, h=0.5)
16 # Observable (transverse magnetization)
17 obs = {"sx": sum(nk.operator.spin.sigmax(hi, i) for i in range(L))}
18

19 # First, find the ground state of ha0 to use it as initial state
20 optimizer = nk.optimizer.Sgd(0.01)
21 sr = nk.optimizer.SR()
22 vmc = nk.VMC(ha0, optimizer, variational_state=vstate,

preconditioner=sr)
23 # We run VMC with SR for 300 steps
24 vmc.run(300, out="ising1d_groundstate_log", obs=obs)� �
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Figure 5: Comparison between the exact (dashed line) and variational dynamics of
a random initial density matrix evolved according to the Lindblad Master equation.
(Left): Expectation value of the 〈〈ρ|L†L|ρ〉〉 convergence estimator. (Right): Ex-
pectation value of the total magnetization along the x̂ axis during the evolution. We
remark that the evolution is near-exact in the region where the dissipative terms
dominate the dynamics, while there is a sizable error when the unitary dynamics
starts to play a role. The error could be reduced by considering smaller time steps.

9.1 Unitary dynamics

Starting from the ground state, we can compute the dynamics after a quench of the transverse
field strength to h = 1. We use the second-order Heun scheme for time stepping, with a step
size of d t = 0.01, and explicitly specify a QGT implementation (compare Sec. 3.5) in order to
make use of the more efficient code path for holomorphic models.� �

1 # Quenched Hamiltonian
2 ha1 = nk.operator.Ising(hi, chain, h=1.0)
3 # Heun integrator configuration
4 integrator = nkx.dynamics.Heun(dt=0.001)
5 # QGT options
6 qgt = nk.optimizer.qgt.QGTJacobianDense(holomorphic=True)
7 # Creating the time-evolution driver
8 te = nkx.TDVP(ha1, vstate, integrator, qgt=qgt)
9 # Run the t-VMC solver until time T=1.0

10 te.run(T=1.0, out="ising1d_quench_log", obs=obs)� �
In Fig. 5 we show the results of this calculation, comparing against an exact solution com-

puted using QuTiP [89,90].

9.2 Dissipative dynamics (Lindblad master equation)

In Section 4.3 we have shown that the time-dependent variational principle can also be used to
study the dissipative dynamics of an open quantum system. In this section we give a concrete
example, studying the transverse-field Ising model coupled to a zero-temperature bath. The
coupling is modeled through the spin depolarization operators σ̂−i acting on every site i.

As the dissipative dynamics converges to the steady state, which is also an attractor of
the non-unitary dynamics, we will use a weak-simulation of the dynamics22 to determine

21It is possible to first use a real-weight RBM for the initial state preparation and then switch to complex-valued
weights for the dynamics. For the sake of simplicity, we leave out this extra step in the present example.

22We use weak and strong simulation in the sense of the theory of numerical SDE schemes [91]. This means
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the steady-state more efficiently than using the natural gradient descent scheme proposed
in ref. [24]. This scheme is similar to what was proposed in Ref. [25].

We employ the positive-definite RBM ansatz proposed in Ref. [51]. A version of that net-
work with complex-valued parameters is provided in NETKET with the name nk.models.NDM .� �

1 # The graph of the Hamiltonian
2 g = nk.graph.Chain(L, pbc=False)
3 # Hilbert space
4 hi = nk.hilbert.Spin(0.5)**g.n_nodes
5 # The Hamiltonian
6 ha = nk.operator.Ising(hi, graph=g, h=-1.3, J=0.5)
7 # Define the list of jump operators
8 j_ops = [nk.operator.spin.sigmam(hi, i) for i in range(g.n_nodes)]
9 # Construct the Liouvillian

10 lind = nk.operator.LocalLiouvillian(ha, j_ops)
11

12 # observable
13 Sx = sum([nk.operator.spin.sigmax(hi, i) for i in

range(g.n_nodes)])/g.n_nodes
14

15 # Positive-definite RBM-like ansatz (Torlai et al.)
16 ma = nk.models.NDM(alpha=2, beta=3)
17 # MetropolisLocal sampling on the Choi’s doubled space.
18 sa = nk.sampler.MetropolisLocal(lind.hilbert, n_chains=16)
19 # Mixed Variational State. Use less samples for the observables.
20 vs = nk.vqs.MCMixedState(
21 sa, ma, n_samples=12000, n_samples_diag=1000,

n_discard_per_chain=100
22 )
23 # Setup the ODE integrator and QGT.
24 integrator = nkx.dynamics.Heun(dt=0.01)
25 # The NDM ansatz is not holomorphic because it uses conjugation
26 qgt = nk.optimizer.qgt.QGTJacobianPyTree(holomorphic=False,

diag_shift=1e-3)
27 te = nkx.TDVP(lind, variational_state=vs, integrator=integrator,

qgt=qgt)
28

29 # run the simulation and compute observables
30 te.run(T=6.0, obs={"Sx": Sx, "LdagL": lind.H @ lind})� �

In the listing above, we first construct the Liouvillian by assembling the Hamiltonian and
the jump operators, then we construct the variational mixed state. We chose a different num-
ber of samples for the diagonal, used when sampling the observables, as that happens on
a smaller space with respect to the full system. For the geometric tensor, we choose the
QGTJacobianPyTree and specify that the ansatz is non-holomorphic (while this is already

the default, a warning would be printed otherwise, asking the user to be explicit). The choice
is motivated by the fact that the TDVP driver by default uses an SVD-based solver, which works
best QGTJacobian -based implementations. However, NDM uses a mix of complex and real

parameters which is not supported by QGTJacobianDense , and would throw an error. Nor-
mally, to simulate a meaningful dynamics you’d want to keep the diagonal shift small, but
since we are striving for a weak simulation a large value helps stabilize the dynamics.

that weak integration is an integration which is not accurate at finite times but which converges to the right state
at long times. A strong integration yields the correct state at every time t.
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Figure 6: (Left): Benchmark of NETKET’s VMC implementation. Each data point
shows the minimum time spent (out of 5 repetitions) to evolve a DNN with depth
d layers and complex weights over 100 VMC steps for the 1D transverse-field Ising
model with L = 256 and Nsamples = 214 = 16384. (Right): Scaling behavior of the
required computational time as a function of the number of MPI ranks on a single
node. We repeat 5 VMC optimizations and report the minimum time required for
100 steps for the 1D Ising model with L = 256 and an RBM with α= 1 with complex
weights. The black line represents ideal scaling behavior.

10 Benchmarks

10.1 Variational Monte Carlo

We benchmark NETKET by measuring its performance on the 1D/2D transverse-field Ising
model defined as in Eq. (54) with J = 1 and h= 1 and periodic boundary conditions.

We first monitor the scaling behavior of NETKET’s VMC implementation by running an
energy optimization consisting of 100 steps. In order to carry out a meaningful benchmark,
we run a first VMC step to trigger the JIT-compiler on the relevant JAX and NUMBA functions,
while all reported timings are for the evaluation of JIT compiled functions only. The left panel
of Fig. 6 depicts the scaling behavior of the computational time as a function of the complexity
of the NQS model, using three implementations of the QGT. Hereby, we increase the complexity
of the NQS by optimizing a DNN with an increasing amount of layers, where depth d represents
the number of dense layers (with α= 1), each followed by a sigmoid activation function. Such
a DNN with d layers has O((d − 1)L2 + L) free parameters.

10.2 MPI for NETKET

We benchmark the scaling behavior of NETKET as a function of the computational resources
available to perform parallel computations. Therefore, NETKET uses MPI for JAX through
MPI4JAX [37]. The effectiveness of the MPI implementation is illustrated in Fig. 7 for a VMC
optimization with and without Stochastic Reconfiguration (SR). Throughout our analyses, we
provide each MPI rank with 2 CPU cores. We introduce the speedup factor τr = ∆t1/∆tr
where ∆tr refers to the time required to perform the computations on r MPI ranks. Similarly,
we define τn as the speedup factor when using n nodes. The right panel of Fig. 7 demonstrates
that even on a single node, our MPI implementation can introduce significant speedups by run-
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Figure 7: (Left): Speedup factor τ observed by increasing the number of MPI ranks r
on a single node while keeping the problem size constant (strong scaling). (Center):
Speedup factor observed by scaling across multiple nodes n, and scaling the number
of samples accordingly (weak scaling). (Right): Scatter plot of the absolute wall
clock time in seconds for the runs reported in the weak scaling (center) plot. There
are 4 points for every color, but they overlap for most implementations because of the
almost-ideal weak scaling. We repeat 5 iterations of constructing the QGT and 1000
matrix multiplications with the gradient vector for the 2D Ising model with L = 8 and
a DNN with 9 layers and complex weights. In the left panel, we keep the number of
samples Nsamples = 214 constant, while in the center panel, we increase the number
of samples to 214× n, while we correct the timing by the number of nodes n to show
the speedup factor for a constant number of 214 samples. We remark that while
the speedup factor is resistant to changes in the network architecture, the absolute
timing might favor one or another implementation depending on several details and
can change depending on the architecture and problem at hand.

ning multiple Markov Chain samplers in parallel. This is consistent with the fact that JAX is
not able to make use of multiple CPU cores unless working on very large matrices.

The performance of NETKET on challenging Hamiltonians, as well as its scalability with
both system size and model complexity depends on the implementation details of the quan-
tum geometric tensor [see Eq. (22)] and its matrix multiplication with the gradient vector,
as discussed in Section 3.5. We therefore isolate these operations and benchmark the QGT
constructor, combined with 1000 matrix multiplications with the gradient vector (where the
latter imitates many steps in the iterative solver). In Fig. 7, we show the scaling behavior of
these operations with respect to both the number of ranks (on a single node), and its scaling
behavior with respect the number of nodes (thereby including communication over the Infini-
band network). One can observe that the scaling behavior is close to optimal, especially when
the number of samples per rank is sufficiently large.

10.3 Comparison with jVMC

We compare NETKET with jVMC [39], another open-source Python package supporting VMC
optimization of NQS. Results are shown in Fig. 6. We remark that since both NETKET and
jVMC are JAX-based, performance on sampling, expectation values and gradients is roughly
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Table 5: Comparison of performance between NETKET and jVMC. All times are
indicated in seconds and have been taken on a workstation with an AMD Ryzen
Threadripper 3970X 32-Core processor and 2xNvidia RTX 3090 GPUs. Tim-
ings are for one VMC step using a complex-valued RBM model with hidden unit
density of α = Nhidden/L = 1 on the 1-dimensional TFIM model (54) with L = 64
sites. Other parameters are: 214 total samples, 210 independent Markov chains
per GPU (or across all CPUs). Calculations for NETKET where performed using
QGTJacobianDense(holomorphic=True) . NETKET multi-GPU calculations use

CUDA-enabled MPI for inter-process communication, while jVMC uses JAX built-in
mechanism. The run labeled with (MPI×16) is run on the same workstation but 16
MPI processes are used to better take advantage of the multiple cores of the proces-
sors.

NETKET jVMC

SVD solver

CPU (32 cores) 48 337

GPU (×1) 24 44

GPU (×2) 20 36

CG solver

CPU (32 cores) 86 N/A

CPU (32 cores, MPIx16) 7.5 N/A

GPU (×1) 3.9 N/A

GPU (×2) 1.7 N/A

equivalent when using the same hyperparameters [39]. However, a performance difference
arises in algorithms requiring the use of the QGT, such as TDVP or natural gradient (SR). Such
difference will vanish in cases where the cost of solving the QGT linear system is small with
respect to the cost of computing the energy and its gradient.

At the time of writing, jVMC only implements a singular-value decomposition (SVD) solver
to invert the QGT matrix. The same type of solver can be used also in NETKET (for a detailed
discussion, see Section 3.5). We limit the computations to models with less than 7000 pa-
rameters in order for the QGT to have less than 49 ·103 elements, which is approximately the
maximum matrix size that can be diagonalized in reasonable time on the GPUs we have access
to23. For that reason we chose the size of L = 64 spins.

As shown in Table 5, NETKET outperforms by almost an order of magnitude jVMC on a
32-core CPU using SVD-based solvers. On GPU, jVMC requires significantly less computational
time than on CPU, yet, NETKET outperforms jVMC by about 50% in a full VMC iteration. We
remark that in this benchmark both packages scale poorly when going from a single GPU to
two. This is because the diagonalization of the QGT, in this case the bottleneck, cannot be
parallelized.

In order to scale efficiently to many GPUs, our QGT implementations can be combined with
iterative solvers to scale up to potentially millions of parameters, as well as significantly larger
system sizes. As expected from Fig. 7, increasing the number of MPI ranks reduces the total
time by a factor nearing the number of ranks (with eventually a saturation in the speedup).
Notice also that the CG-solver becomes significantly more efficient on GPU.

23Using distributed linear-algebra libraries such as ScaLaPack [92], ELPA [93] or the recent [94] would allow
us to avoid this barrier, however we are not aware of any Python binding for those libraries. Regardless, if those
libraries exposed a distributed linear solver to Python, using it with NETKET would be as simple as using it as the
linear solver for the QGT.
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11 Discussion and conclusion

We have presented NETKET 3, a modular Python toolbox to study complex quantum-mechanical
problems with machine learning-inspired tools. Compared to version 2 [35], the major new
feature is the ability to define arbitrary neural-network ansätze for either wave functions or
density matrices using the flexible JAX framework; we believe this makes NETKET much more
useful to non-technical users. Another significant improvement is that NETKET is now com-
pletely modular. Users of NETKET 3 can decide to use only the neural-network architectures,
the stochastic samplers, the quantum geometric tensor, or the operators without necessarily re-
quiring the VariationalState interface, which is convenient but geared towards the most
common applications of variational NQS. Care has been taken to ensure that the algorithms
implemented can scale to very large systems and models with millions of parameters thanks
to more efficient implementations of the geometric tensor and other algorithmic bottlenecks.
Thanks to its JAX foundations, NETKET 3 can now also make effective use of GPU hardware,
without any need for manual low-level programming for these platforms.

Even with all the new features that have been introduced with this version, there are many
things that we would like to see integrated into NETKET in the future. To name a few: native
support for fermionic systems; support for more general geometries in continuous systems;
improvements to the dynamics submodule in order to support a wider variety of ODE solvers
and more advanced regularization and diagnostic schemes [21,23]; new drivers for quantum
state reconstruction [31] and overlap optimization [32]; a more general way to define arbi-
trary cost functions to be optimized. However, we think that our new JAX-based core is very
welcoming to contributors, and we believe that this constitutes a solid foundation upon which
to build in the future. Moreover, we are now explicitly committed to stability of the user-facing
API, in order to make sure that code written today will keep working for a reasonable time,
while we iterate and refine NETKET.

Since a project is only as big as its community, the most important developments are prob-
ably those related to documentation, learning material, and developing a community where
users answer each other’s questions in the spirit of open, shared science. We are taking steps
to make all of this happen.
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A Details of group convolutions

A.1 Group convolutions and equivariance

As explained in Section 5.2, GCNNs generate the action of every element g of the symmetry
group G on a wave function |ψ〉, written as |ψg〉 = g|ψ〉, which are then combined into a
symmetric wave function using the projection operator (40). Amplitudes of the computational
basis states |σ〉 are related to one another in these wave functions as

ψg(σ) = 〈σ|g|ψ〉=ψ(g−1σ) . (55)

Therefore, feature maps inside the GCNN are indexed by group elements rather than lattice
sites, and all layers must be equivariant: that is, if their input is transformed by a space-group
symmetry, their output must be transformed the same way, so that (55) would always hold.
Pointwise nonlinearities clearly fit this bill [73]; we now consider what linear transformations
are allowed.

First, input feature maps naturally defined on lattice sites must be embedded into group-
valued features:

fg =
∑

~r

Wg−1~rσ~r =
∑

~r

Wrσg~r =
∑

~r

W~r(g
−1σ)~r , (56)

consistent with (55). We also see that the embedding (56) is equivariant: if the input is
transformed by some symmetry operation u, the output transforms as

∑

~r

Wg−1~rσu~r =
∑

~r

Wg−1u−1~rσ~r = fug . (57)

This layer is implemented in NETKET as nk.nn.DenseSymm .
To build deeper GCNNs, we also need to map group-valued features onto one another in

an equivariant fashion. This is achieved by group convolutional layers, which transform input
features as24

φ g =
∑

h∈G

Wh−1 g fh . (58)

This layer is implemented in NETKET as nk.nn.DenseEquivariant . It is equivariant under
multiplying with a group element u from the left:

∑

h∈G

Wh−1 g fuh =
∑

h∈G

Wh−1ug fh = φug , (59)

which is consistent with how the embedding layer (56) is equivariant, cf. (57). Indeed, it can
be composed with (56):

φ g =
∑

h

Wh−1 g

∑

~r

W′h−1~rσ~r =
∑

~r

�

∑

h

Wh−1W′h−1 g−1~r

�

σ~r ≡
∑

~r

W′′g−1~rσ~r , (60)

as the expression in brackets only depends on g−1~r.
Finally, the output features of the last layer of the GCNN are turned into the wave functions

ψg(σ) =
∑

i exp
�

f (i)g

�

and projected on an irrep using (40) (we drop the irrelevant constant
prefactor):

ψ(σ) =
∑

i,g

χ∗g exp
�

f (i)g

�

, (61)

24Our convention differs from that of Ref. [73], which in fact implements group correlation rather than con-
volution. The two conventions are equivalent (the indexing of the kernels differs by taking the inverse of each
element); we use convolutions to simplify the Fourier transform-based implementations of Sec. A.2.
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where χg are the characters of the irrep. In addition to allowing nontrivial symmetries, our
choice of summing a large number of terms in the ansatz appears to improve the stability of
variational optimization for sign-problematic Hamiltonians [15,30,49,72].

A.2 Fast group convolutions using Fourier transforms

The simplest implementation of a group convolutional layer is expanding each of the fin fout
kernels, containing |G| entries, to a |G| × |G| matrix defined as

W̃ (a,b)
g,h =W (a,b)

g−1h , (62)

where a, b index input and output features, respectively. The resulting tensor of size fin fout|G|2

can then be contracted straightforwardly with the input features:

φ
(b)
h =

∑

a,g

W̃ (a,b)
g,h f (a)g (63)

is equivalent to (58). Embedding layers (56) can be constructed analogously. This method
is the easiest to interpret and code, serving as a useful check on other methods; however,
the enlarged kernels require substantial amounts of memory, which already becomes a serious
problem on modestly sized lattices and networks. Furthermore, evaluating a convolution using
this method takes O( fin fout|G|2) time. NETKET implements two approaches to improve on this
scaling.

The first approach uses group Fourier transforms, which generalize the usual discrete Fourier
transform for arbitrary finite groups. The forward and backward transformations are defined
by

f̂ (ρ) =
∑

g∈G

f (g)ρ(g) , f (g) =
1
|G|

∑

ρ

dρ Tr
�

f̂ (ρ)ρ(g−1)
�

. (64)

In the forward transformation, ρ is a representation of the group G; f (g) is a function defined
on group elements, while f̂ (ρ) is a matrix of the same shape as the representatives ρ(g). The
sum in the backward transformation runs over all inequivalent irreps ρ, of dimension dρ, of
the group. Since

∑

ρ d2
ρ = |G|, this transformation does not increase the amount of memory

needed to store inputs, outputs, or kernels.25 Group convolutions can readily be implemented
by multiplying the Fourier transform matrices (we drop feature indices for brevity):

φ̂(ρ) =
∑

g

φgρ(g) =
∑

g,h

fhWh−1 gρ(h)ρ(h
−1 g) = f̂ (ρ)Ŵ (ρ) . (65)

To calculate a convolution using this approach, the input features are Fourier transformed
[O( fin|G|2) as there is no generic fast Fourier transform algorithm for group Fourier trans-
forms], multiplied with the kernel Fourier transform for each irrep [O( fin foutd

3
ρ) for an irrep

of dimension dρ], and the output is transformed back [O( fout|G|2)], yielding the total runtime
O[( fin+ fout)|G|2+ fin fout

∑

ρ d3
ρ]. In a large space group, most irreps are defined on a star of |P|

wave vectors (P is the point group) and thus have dimension |P|; accordingly,
∑

ρ d3
ρ ≈ |G||P|.

The second approach, based on Ref. [73], exploits the fact that the translation group T is
a normal subgroup of the space group G, so each g ∈ G can be written as tg pg , where tg is a
translation and pg is a fixed coset representative (in symmorphic groups, we can choose these

25If some irreps cannot be expressed as matrices with real entries, the Fourier transform of real in-
puts/outputs/kernels is complex too, temporarily doubling the amount of memory used.
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to be point-group symmetries). Now, we can define the expanded kernels (we drop feature
indices again to reduce clutter)

W̃
(pg ,ph)
t ≡Wp−1

g t ph
, (66)

such that
φh =

∑

g

fgWg−1h =
∑

tg ,pg

ftg pg
Wpg t−1

g thph
≡
∑

tg ,pg

f̃
(pg )
tg

W̃
(pg ,ph)
th−tg

. (67)

In the last form, we split the space-group feature map f into cosets of the translation group
and observe that the latter is Abelian. In fact, the translation group is equivalent to the set of
valid lattice vectors, so the sum over tg in (67) is a standard convolution. Ref. [73] proposes to
perform this convolution using standard cuDNN routines. However, we are usually interested
in convolutions that span the entire lattice in periodic boundary conditions: these can be
performed more efficiently using fast Fourier transforms (FFTs) as the Fourier transform of
a convolution is the product of Fourier transforms. Therefore, we FFT the kernels W̃ and
features f̃ , contract them as appropriate, and FFT the result back:

φ̃(b,ph) = F−1
�

∑

a,pg

F
�

f̃ (a,pg )
�

F
�

W̃ (a,b;pg ,ph)
�

�

, (68)

where the Fourier transform is understood to act on the omitted translation-group indices, and
the Fourier transforms are multiplied pointwise.

Calculating a convolution in this approach involves fin|P| forward FFTs [O(|T | log |T |)
each], |T | tensor inner products [O( fin fout|P|2 each], and fout|P| backward FFTs; as |G|= |T ||P|,
this yields a total of O[( fin + fout)|G| log |T | + fin fout|G||P|]. For large lattices, which bring
out the better asymptotic scaling of FFTs, this improves significantly on the runtime of the
group Fourier transform-based approach, especially in the pre- and postprocessing stages. By
contrast, the group Fourier transform approach is better for large point groups, as it avoids
constructing the |P|2 reshaped kernels W̃ pg ph , which can be prohibitive for large lattices.

In practice, as both FFTs and group Fourier transforms involve steps more complicated
than simple tensor multiplication, their performance is hard to assess beyond asymptotes, es-
pecially on a GPU. On CPUs, the FFT-based approach tends to be faster. On GPUs, computation
time tends to scale sub-linearly with the number of operations so long as the process is effi-
ciently parallelized. As all operations of the group Fourier transform implementation involve
multiplications of large matrices, it can fully exploit the large GPU registers even with rela-
tively few samples. By contrast, FFTs cannot be fully vectorized, meaning that larger batches
are required to make full use of the computing power of the GPU. In practice therefore, the
FFT-based approach may not perform better until most of the GPU memory becomes involved
in evaluating a batch.

B Implementation details of the quantum geometric tensor

In the following, we discuss our implementations of the quantum geometric tensor, introduced
in section 3.5, in more detail. In particular, we show how the action of the quantum geometric
tensor on a vector can be computed efficiently without storing the full matrix. Appendix B.1
introduces relevant automatic-differentiation concepts in general terms; the concrete algo-
rithms used by QGTJacobian and QGTOnTheFly are discussed in Appendices B.2 and B.3,
respectively.
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B.1 Jacobians and their products

We assume that our NQS is modeled by the scalar parametric function f (s) = lnψθ (s), where
θ is a vector of variational parameters and s is a basis vector of the Hilbert space. Consistent
with the notation of the main text, Oj(s) = ∂θ j

lnψθ (s) are the log-derivatives (13) of the NQS.
We also assume that f can be vectorized and evaluated for a batch of inputs {sk}k=1...Ns

,
yielding the vector fk = lnψθ (sk). The Jacobian of this function is therefore the matrix

Jkl = Ol(sk) =
∂ lnψθ (sk)
∂ θl

, (69)

each row corresponds to the gradient of f evaluated at a different input sk, so k = 1 . . . Ns and
l = 1 . . . Nparameters.

The Jacobian matrix can be computed in JAX with jax.jacrev(log_wavefunction)(s) ,

which returns a matrix.26 However, it is often not needed to have access to the full Jacobian:
for example, when computing the gradient (26) of the variational energy, we only need the
product of the Jacobian with a vector, namely ∆Eloc(sk) = H̃(sk)−E[H̃].

A vector can be contracted with the Jacobian along its dimension corresponding to either
parameters or outputs:

• Jacobian–vector products (Jvp), ṽ= Jv, can be computed using forward-mode automatic
differentiation;

• vector–Jacobian products (vJp), ṽ = vT J , can be computed through backward-mode au-
tomatic differentiation (backward propagation).

Modern automatic-differentiation frameworks like that of JAX implement primitives that eval-
uate Jvp and vJp, and construct higher-level functions such as jax.grad or jax.jacrev
on top of those functions; that is, one can extract the best performance from JAX by making
use of vJp and Jvp as much as possible [95].

B.2 QGTJacobian

Writing the estimator (23) of the quantum geometric tensor explicitly in terms a finite number
of samples sk, we obtain

Gi j = E
�

O∗i Oj

�

−E [Oi]
∗E
�

Oj

�

≈
1
Ns

Ns
∑

k=1

Oi(sk)
∗Oj(sk)−

1
Ns

2

� Ns
∑

k=1

Oi(sk)
�∗� Ns

∑

k=1

Oj(sk)
�

=
1
Ns

Ns
∑

k=1

�

Oi(sk)−
Ns
∑

k=1

Oi(sk)
Ns

�∗�

Oj(sk)−
Ns
∑

k=1

Oj(sk)

Ns

�

=
1
Ns

Ns
∑

k=1

�

Jki −
Ns
∑

k=1

Jki

Ns

�∗�

Jk j −
Ns
∑

k=1

Jk j

Ns

�

=
1
Ns

Ns
∑

k=1

(∆Jki)
∗ �∆Jk j

�

, (70)

26More precisely, it returns a PyTree with a structure similar to the PyTree that stores the parameters; each leaf
gains an additional dimension of length Ns.
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where we have defined the centered Jacobian ∆Jki ≡ Jki −
∑Ns

k=1
Jki
Ns

. In matrix notation, this
is equivalent to

G =
∆J†

p

Ns

∆J
p

Ns
. (71)

The Jacobian-based implementation of the quantum geometric tensor computes27 and
stores28 the full Jacobian matrix Jkl for the given samples upon construction.Then, QGT–vector
products ṽ= Gv are computed without finding the full matrix G, in two steps:

∆w=
∆J
p

Ns
v , ṽ=

∆J†

p

Ns
∆w=

�

∆J
p

Ns
∆w†

�†

, (72)

the final form has the advantage that the Hermitian transpose of a vector is simply its conju-
gate. Evaluating Eq. (72) is usually less computationally expensive than constructing the full
quantum geometric tensor.

B.3 QGTOnTheFly

In some cases one might have so many parameters or samples that it is impossible to store
the full Jacobian matrix in memory. In that case, we still evaluate a set of equations similar
to Eq. (72), but without pre-computing the full Jacobian, only using vector–Jacobian and
Jacobian–vector products.

It would be impractical to perform a vJp using the centered Jacobian; however, Eq. (23)
can be rewritten as Gi j = E

�

O∗i
�

Oj −E
�

Oj

���

, which yields

G =
1
Ns

J†∆J , (73)

where we have substituted one of the two centered Jacobians with a plain Jacobian. Then, we
note that the centered-Jacobian–vector product can be expressed as

∆w≡∆J v=

�

J −
1T J
Ns

�

v=w−
1T w
Ns

, (74)

where 1T is a row vector all entries of which are 1, used to express averaging the columns
of the Jacobian in the matrix formalism. Therefore, QGTOnTheFly performs the following
calculations:

w=
1
Ns

Jv , ∆w=w− 〈w〉 , ṽ= J†∆w , (75)

where the first and the last step are implemented with jax.vjp and jax.jvp , respectively.
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8 Discussion and outlook

In this thesis, we have investigated several aspects of neural quantum states (NQS) as a variational
approach for the study of quantum many-body systems.

In Chapter 4 and Publication [P1], we have systematically studied the influence of stochastic effects
on the stability of time-dependent variational Monte Carlo (t-VMC) time propagation. To this end, we
have used the two-leg antiferromagnetic Heisenberg ladder as a benchmark system. We have found
that instabilities become apparent already at small system sizes and are particularly strong compared to
the square-lattice version of the same model. Our results illustrate that the geometric structure of the
time-dependent variational principle (TDVP), which manifests itself in the broad spectrum and thus the
high condition number of the quantum Fisher matrix (QFM), plays an important role in the formation of
instabilities by amplifying stochastic noise introduced by the Monte Carlo sampling. These observations
are in agreement with related literature, where numerical stability was also identified as the main
challenge for NQS+t-VMC simulations [78, 111, 112]. Based on our proposed validation-set TDVP error,
we have been able to quantify this effect and demonstrate the importance of regularization methods for
stabilizing the t-VMC dynamics. This error diagnostic also applies to other regularization methods, such
as the noise-based regularization of Ref. [78], and may help to optimize other hyperparameters, such as
the Monte Carlo sample size.

In Chapter 5, we have reviewed several approaches for imposing symmetry constraints on NQS ansätze
and proposed a specific symmetry-projection approach for flux quantum numbers in the honeycomb
Kitaev model (HKM). We have found that the projection to eigenspaces of a subset of the flux operators
improves the convergence of the trial state to the correct global flux eigenspace. However, a clear
improvement in variational energy is only observed once a significant fraction of flux quantum numbers
is fixed. Since the projection approach has an exponentially scaling computational cost in the number
of plaquettes, our results are not yet conclusive on whether reliable convergence can be achieved in a
scalable fashion. Further experimentation with network or optimization hyperparameters may provide
significant improvements, as has been observed in other frustrated spin systems [88, 89]. Additionally,
improvements might be achieved by modifying the NQS ansatz through combination with pair-product
states [73, 232] or approaching the HKM in its fermionic representation using a fermionic NQS ansatz
[96, 99].

In Chapter 6 and Publication [P2], we have studied the capabilities and scaling properties of NQS
based on feed-forward neural networks (FFNNs) for representing highly entangled ground states in the
Sachdev-Ye-Kitaev (SYK) model using a supervised-learning approach. In this investigation, we have
found that our FFNN ansatz does not learn these ground states with compression beyond the exponential
state-vector representation. Thus, while NQS can represent classes of random volume-law entangled
states [101, 102], our results show that this capability is not immediately applicable to volume-law
ground states of sufficiently complex models. These findings contrast with efficient scaling results for
lattice models that are significantly more ordered and spatially structured [86, 240]. Exploring the
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systems between these two extreme cases (such as spatially structured disordered models) by systematic
scaling analyses is an intriguing challenge for future research and may yield important insights into the
capabilities and limitations of NQS.

Finally, in Chapter 7, we have discussed the importance of open-source software for the development of
computational methods, with a focus on the NetKet framework on which the numerical work of this
thesis has been based and which is presented in detail in the software publications [P3, P4]. A primary
change in the transition from NetKet 2 to NetKet 3 has been the move from an architecture relying
on a C++ core with a Python interface to a pure-Python implementation based on the JAX framework,
making use of its just-in-time (JIT) compilation and automatic differentiation capabilities. This has
resulted in performance improvements compared to previous hand-optimized code and made it possible
to run NQS simulations on CPU and GPU platforms with a reduced overhead in code development. The
availability of automatic differentiation simplifies the implementation of custom variational states and
thus encourages experimentation and rapid prototyping. Furthermore, none of these computational
considerations are restricted to NQS andmachine-learning-based approaches. The capabilities of NetKet
can also be used to implement and optimize other variational ansätze.

In summary, the results presented in this thesis have highlighted important challenges for NQS methods
and we have discussed approaches to overcome those challenges. In our view, the key questions for
current and future NQS research are:

1. Understanding what determines the learnability of quantum states and identifying which classes
of states and parent Hamiltonians are efficiently treatable using NQS approaches, particularly
concerning highly entangled states that are out of reach of established methods. Given the
diversity of network architectures falling under the umbrella of the term NQS, it is unlikely that a
specific answer can be given in this generality. However, for specific classes of states, answers
may be obtainable. Such answers would be of great value to researchers evaluating whether NQS
are the right tool for a specific physical use case.

2. Systematic investigation of the effect of network architecture and simulation hyperparameters on
the reliability and accuracy of variational Monte Carlo (VMC) optimization. Results concerning
the ability of NQS to learn ground states with complicated sign structures have shown that the
difficulty of this problem strongly depends on details of the network architecture and training
scheme [88, 89, 194, 195]. These studies have paved the way towards formulating best practices for
NQS training in specific systems. Further research of this kind would greatly benefit the practical
application of NQS simulation methods.

Beyond these general directions, there are many specific advances that would be valuable: NQS can be
used to study composite systems, such as bosonic modes coupled to a spin or fermionic lattice model.
Such composite systems are particularly relevant for the study of light-matter coupled systems [1, 2] and
the flexibility of NQS could be beneficial in those scenarios. Potential ansätze for bosonic modes include
standard networks such as the restricted Boltzmann machine (RBM) [91], more specifically tailored
architectures such as neural coherent states [94], or potential future extensions based on Gaussian states
or their generalizations [129, 130]. Similarly, further exploring fermionic NQS [100] or the combination
of pair-product wave functions with NQS for spin systems [73, 81] could yield significant improvements
in learning quantum spin liquid (QSL) phases.
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Regarding nonequilibrium dynamics, refinement of the diagnostic proposed in Publication [P1] and its
combination with other measures, such as noise-based regularization [78] and the detection of spurious
modes [115], could be a solid basis for adaptive t-VMC algorithms in the future. This would be valuable
for the simulation of quantum dynamics in systems that are challenging to treat using other methods, in
particular Kitaev spin liquids [220, 227, 228]. Algorithms to derive spectral properties via an optimization
scheme that circumvents explicit time evolution have also been proposed [77, 80] and may complement
t-VMC simulation schemes.

Over the years since their introduction, NQS have shown much promise for extending the toolbox of
quantum many-body simulation methods towards systems out of reach of other variational approaches.
The field has moved past the proof-of-concept stage in several areas, particularly for frustrated quantum
systems. The crucial tasks are now to understand what determines the learnability of quantum states,
develop best practices for network architecture and simulation schemes, and implement reliable and
stable optimization algorithms. If this can be achieved, the potential of NQS can be fully realized, and
they can become an integral part of modern quantum simulation in the long term.
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A Summary and publications

A short summary of the results in English and German and a list of publications are provided in this
appendix on the following pages. The content is identical to the abstract and list of publications on the
first pages of this dissertation and repeated in the appendix in fulfillment of the formal requirements of
the applicable doctoral degree regulations.

Summary

Computational methods for the efficient simulation of quantum many-body systems are crucial for the study of condensed
matter physics.

In this thesis, we investigate numerical properties of neural quantum states (NQS), a machine-learning-inspired variational
ansatz based on using an artificial neural network to represent the quantum wave function. This representation can be used to
stochastically estimate quantum expectation values, and the NQS ansatz can be trained to approximate ground states as well
as real-time dynamics of quantum systems by classical optimization algorithms.

First, we investigate the stability of NQS time propagation with the time-dependent variational Monte Carlo method. Using the
antiferromagnetic Heisenberg ladder as a benchmark system, we find that stochastic noise inherent to Monte Carlo sampling
can be amplified by the variational equation of motion which can cause numerical instabilities. We propose an error diagnostic
that can be used to quantify this effect and demonstrate the influence of regularization methods for the equation of motion
on the stability of the dynamics. Subsequently, we discuss the importance of symmetries for improving NQS ground state
calculations and propose a symmetry-projection scheme for the honeycomb Kitaev model. Furthermore, we present results of
a systematic study of the capabilities of NQS based on feed-forward neural networks to represent highly entangled ground
states in the Sachdev-Ye-Kitaev model. In this case, we find that this NQS ansatz does not learn a more efficient representation
compared to the exponential scaling of the exact quantum states. This observation highlights the importance of further study
to determine which properties decide whether a quantum state is amenable to an efficient approximation by neural quantum
states. Finally, we present NetKet, an open-source project and software framework for numerical calculations in quantum
many-body systems based on the NQS ansatz and variational Monte Carlo.

Altogether, our work highlights important challenges for the NQS approach and presents ways to help overcome those
challenges and develop NQS into a reliable part of the toolbox for simulating quantum many-body physics.

Zusammenfassung

Rechenmethoden zur effizienten Simulation von Quantenvielteilchensystemen sind von essentieller Bedeutung für die Erfor-
schung der Physik kondensierter Materie.

In dieser Arbeit werden numerische Eigenschaften von Neural-Quantum-States (NQS) untersucht, einem von Machine-
Learning-Methoden inspirierten Variationsansatz, der auf der Darstellung der quantenmechanischen Wellenfunktion durch
ein künstliches neuronales Netz basiert. Diese Darstellung kann verwendet werden, um mittels stochastischer Methoden
quantenmechanische Erwartungswerte abzuschätzen. Der NQS-Ansatz kann mit klassischen Optimierungsverfahren trainiert
werden, um Grundzustände sowie die Realzeitentwicklung von Quantensystemen zu approximieren.

Zunächst untersuchen wir die Stabilität von NQS-Zeitentwicklung unter Verwendung der zeitabhängigen Variational-Monte-
Carlo-Methode. Wir zeigen mithilfe der antiferromagnetischen Heisenberg-Leiter als Benchmarksystem, dass stochastisches
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Rauschen, welches als natürliche Konsequenz des Monte-Carlo-Verfahrens auftritt, durch die variationelle Bewegungsgleichung
verstärkt werden und dadurch numerische Instabilitäten verursachen kann. Wir stellen ein Diagnoseverfahren vor, um diesen
Effekt zu quantifizieren und betrachten den Einfluss von Regularisierungsmethoden für die Bewegungsgleichung auf die
Stabilität der Zeitentwicklung. Anschließend diskutieren wir die Bedeutung von Symmetrien für die Verbesserung von
NQS-Grundzustandsrechnungen und schlagen ein Symmetrie-Projektionsverfahren für das Honeycomb-Kitaev-Modell vor.
Weiterhin zeigen wir Ergebnisse einer systematischen Untersuchung der Fähigkeit von auf Feed-Forward-Neural-Networks
basierenden NQS zur Darstellung stark verschränkter Grundzustände im Sachdev-Ye-Kitaev-Modell. In diesem Fall zeigt sich,
dass dieser NQS-Ansatz im Vergleich zu den exponentiell skalierenden exakten Zuständen keine effizientere Darstellung lernt.
Diese Beobachtung unterstreicht die Notwendigkeit weiterer Forschung im Hinblick auf die Frage, welche Eigenschaften eines
Quantenzustands dafür entscheidend sind, ob er effizient durch NQS approximiert werden kann. Schlussendlich wird NetKet
vorgestellt, ein Open-Source-Projekt und Software-Framework für numerische Rechnungen in Quantenvielteilchensystemen
mit Variational-Monte-Carlo und dem NQS-Ansatz.

Insgesamt zeigt diese Arbeit wichtige Herausforderungen für die Anwendung von NQS-Methoden auf und stellt Wege vor, die
dabei helfen können, diese zu überwinden und so NQS zu einem zuverlässigen Werkzeug zur Simulation der Quantenvielteil-
chenphysik zu entwickeln.
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Jeffrey H. Shapiro, and Seth Lloyd. “Gaussian quantum information.” In: Reviews of Modern
Physics 84.2 (May 2012), pp. 621–669. doi: 10.1103/RevModPhys.84.621.

[38] Bennet Windt, Alexander Jahn, Jens Eisert, and Lucas Hackl. “Local optimization on pure
Gaussian state manifolds.” In: SciPost Physics 10.3 (Mar. 2021). doi: 10.21468/SciPostPhys.
10.3.066.

[39] Giuseppe Carleo, Ignacio Cirac, Kyle Cranmer, Laurent Daudet, Maria Schuld, Naftali Tishby,
Leslie Vogt-Maranto, and Lenka Zdeborová. “Machine learning and the physical sciences.” In:
Reviews of Modern Physics 91.4 (Dec. 2019). doi: 10.1103/RevModPhys.91.045002.

[40] Juan Carrasquilla. “Machine learning for quantum matter.” In: Advances in Physics: X 5.1 (Jan.
2020), p. 1797528. doi: 10.1080/23746149.2020.1797528.

[41] Titus Neupert, MarkH Fischer, Eliska Greplova, KennyChoo, andM.Michael Denner. Introduction
to Machine Learning for the Sciences. 2021. doi: 10.48550/arXiv.2102.04883.

[42] AnnaDawid, Julian Arnold, Borja Requena, Alexander Gresch,Marcin Płodzień, KaelanDonatella,
Kim A. Nicoli, Paolo Stornati, Rouven Koch, Miriam Büttner, Robert Okuła, Gorka Muñoz-Gil,
Rodrigo A. Vargas-Hernández, Alba Cervera-Lierta, Juan Carrasquilla, Vedran Dunjko, Marylou
Gabrié, Patrick Huembeli, Evert van Nieuwenburg, Filippo Vicentini, Lei Wang, Sebastian J.
Wetzel, Giuseppe Carleo, Eliška Greplová, Roman Krems, Florian Marquardt, Michał Tomza,
Maciej Lewenstein, and Alexandre Dauphin.Modern applications of machine learning in quantum
sciences. 2022. doi: 10.48550/arXiv.2204.04198.

[43] Mario Krenn, Jonas Landgraf, Thomas Foesel, and Florian Marquardt. “Artificial intelligence
and machine learning for quantum technologies.” In: Physical Review A 107.1 (Jan. 2023). doi:
10.1103/PhysRevA.107.010101.

[44] Valentin Gebhart, Raffaele Santagati, Antonio Andrea Gentile, Erik Gauger, David Craig, Natalia
Ares, Leonardo Banchi, Florian Marquardt, Luca Pezzè, and Cristian Bonato. Learning Quantum
Systems. 2022. doi: 10.48550/arXiv.2207.00298.

[45] Amber Boehnlein, Markus Diefenthaler, Nobuo Sato, Malachi Schram, Veronique Ziegler, Cris-
tiano Fanelli, MortenHjorth-Jensen, TanjaHorn,Michelle P. Kuchera, Dean Lee,Witold Nazarewicz,
Peter Ostroumov, Kostas Orginos, Alan Poon, Xin-Nian Wang, Alexander Scheinker, Michael S.
Smith, and Long-Gang Pang. “Colloquium: Machine learning in nuclear physics.” In: Reviews of
Modern Physics 94.3 (Sept. 2022). doi: 10.1103/RevModPhys.94.031003.

[46] Jürgen Schmidhuber. “Deep learning in neural networks: An overview.” In: Neural Networks 61
(Jan. 2015), pp. 85–117. doi: 10.1016/j.neunet.2014.09.003.

191

https://doi.org/10.1103/PhysRevB.73.094423
https://doi.org/10.1080/14789940801912366
https://doi.org/10.1016/j.aop.2010.09.012
https://doi.org/10.26421/qic5.3-3
https://doi.org/10.1103/RevModPhys.84.621
https://doi.org/10.21468/SciPostPhys.10.3.066
https://doi.org/10.21468/SciPostPhys.10.3.066
https://doi.org/10.1103/RevModPhys.91.045002
https://doi.org/10.1080/23746149.2020.1797528
https://doi.org/10.48550/arXiv.2102.04883
https://doi.org/10.48550/arXiv.2204.04198
https://doi.org/10.1103/PhysRevA.107.010101
https://doi.org/10.48550/arXiv.2207.00298
https://doi.org/10.1103/RevModPhys.94.031003
https://doi.org/10.1016/j.neunet.2014.09.003


Bibliography

[47] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. “Deep learning.” In: Nature 521.7553 (May
2015), pp. 436–444. doi: 10.1038/nature14539.

[48] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. http://www.deeplearn
ingbook.org. MIT Press, 2016. isbn: 978-0262035613.

[49] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. “ImageNet classification with deep
convolutional neural networks.” In: Communications of the ACM 60.6 (May 2017), pp. 84–90. doi:
10.1145/3065386.

[50] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. “Deep Residual Learning for Image
Recognition.” In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 2016,
pp. 770–778. doi: 10.1109/CVPR.2016.90.

[51] Tom B. Brown et al. Language Models are Few-Shot Learners. 2020. doi: 10.48550/arXiv.2005.
14165.

[52] John Jumper et al. “Highly accurate protein structure prediction with AlphaFold.” In: Nature
596.7873 (July 2021), pp. 583–589. doi: 10.1038/s41586-021-03819-2.

[53] Alhussein Fawzi, Matej Balog, Aja Huang, Thomas Hubert, Bernardino Romera-Paredes, Mo-
hammadamin Barekatain, Alexander Novikov, Francisco J. R. Ruiz, Julian Schrittwieser, Grzegorz
Swirszcz, David Silver, Demis Hassabis, and Pushmeet Kohli. “Discovering faster matrix multi-
plication algorithms with reinforcement learning.” In: Nature 610.7930 (Oct. 2022), pp. 47–53.
doi: 10.1038/s41586-022-05172-4.

[54] David Silver, Aja Huang, Chris J. Maddison, Arthur Guez, Laurent Sifre, George van denDriessche,
Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam, Marc Lanctot, Sander Dieleman,
Dominik Grewe, John Nham, Nal Kalchbrenner, Ilya Sutskever, Timothy Lillicrap, Madeleine
Leach, Koray Kavukcuoglu, Thore Graepel, and Demis Hassabis. “Mastering the game of Go
with deep neural networks and tree search.” In: Nature 529.7587 (Jan. 2016), pp. 484–489. doi:
10.1038/nature16961.

[55] David Silver, Thomas Hubert, Julian Schrittwieser, Ioannis Antonoglou, Matthew Lai, Arthur
Guez, Marc Lanctot, Laurent Sifre, Dharshan Kumaran, Thore Graepel, Timothy Lillicrap, Karen
Simonyan, and Demis Hassabis. “A general reinforcement learning algorithm that masters
chess, shogi, and Go through self-play.” In: Science 362.6419 (Dec. 2018), pp. 1140–1144. doi:
10.1126/science.aar6404.

[56] Oriol Vinyals et al. “Grandmaster level in StarCraft II using multi-agent reinforcement learning.”
In: Nature 575.7782 (Oct. 2019), pp. 350–354. doi: 10.1038/s41586-019-1724-z.

[57] Juan Carrasquilla and Roger G. Melko. “Machine learning phases of matter.” In: Nature Physics
13.5 (Feb. 2017), pp. 431–434. doi: 10.1038/nphys4035.

[58] Evert P. L. van Nieuwenburg, Ye-Hua Liu, and Sebastian D. Huber. “Learning phase transitions
by confusion.” In: Nature Physics 13.5 (Feb. 2017), pp. 435–439. doi: 10.1038/nphys4037.

[59] Pengfei Zhang, Huitao Shen, and Hui Zhai. “Machine Learning Topological Invariants with
Neural Networks.” In: Physical Review Letters 120.6 (Feb. 2018). doi: 10.1103/PhysRevLett.
120.066401.

[60] Benno S. Rem, Niklas Käming, Matthias Tarnowski, Luca Asteria, Nick Fläschner, Christoph
Becker, Klaus Sengstock, and Christof Weitenberg. “Identifying quantum phase transitions using
artificial neural networks on experimental data.” In: Nature Physics 15.9 (July 2019), pp. 917–920.
doi: 10.1038/s41567-019-0554-0.

192

https://doi.org/10.1038/nature14539
http://www.deeplearningbook.org
http://www.deeplearningbook.org
https://doi.org/10.1145/3065386
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.48550/arXiv.2005.14165
https://doi.org/10.48550/arXiv.2005.14165
https://doi.org/10.1038/s41586-021-03819-2
https://doi.org/10.1038/s41586-022-05172-4
https://doi.org/10.1038/nature16961
https://doi.org/10.1126/science.aar6404
https://doi.org/10.1038/s41586-019-1724-z
https://doi.org/10.1038/nphys4035
https://doi.org/10.1038/nphys4037
https://doi.org/10.1103/PhysRevLett.120.066401
https://doi.org/10.1103/PhysRevLett.120.066401
https://doi.org/10.1038/s41567-019-0554-0


[61] Annabelle Bohrdt, Christie S. Chiu, Geoffrey Ji, Muqing Xu, Daniel Greif, Markus Greiner, Eugene
Demler, Fabian Grusdt, and Michael Knap. “Classifying snapshots of the doped Hubbard model
with machine learning.” In: Nature Physics 15.9 (July 2019), pp. 921–924. doi: 10.1038/s41567-
019-0565-x.

[62] Niklas Käming, Anna Dawid, Korbinian Kottmann, Maciej Lewenstein, Klaus Sengstock, Alexan-
dre Dauphin, and Christof Weitenberg. “Unsupervised machine learning of topological phase
transitions from experimental data.” In: Machine Learning: Science and Technology 2.3 (July 2021),
p. 035037. doi: 10.1088/2632-2153/abffe7.

[63] Marin Bukov, Alexandre G. R. Day, Dries Sels, Phillip Weinberg, Anatoli Polkovnikov, and Pankaj
Mehta. “Reinforcement Learning in Different Phases of Quantum Control.” In: Physical Review X
8.3 (Sept. 2018). doi: 10.1103/PhysRevX.8.031086.

[64] Thomas Fösel, Murphy Yuezhen Niu, Florian Marquardt, and Li Li. Quantum circuit optimization
with deep reinforcement learning. 2021. doi: 10.48550/arXiv.2103.07585.

[65] Jianwei Wang, Stefano Paesani, Raffaele Santagati, Sebastian Knauer, Antonio A. Gentile, Nathan
Wiebe, Maurangelo Petruzzella, Jeremy L. O’Brien, John G. Rarity, Anthony Laing, and Mark G.
Thompson. “Experimental quantum Hamiltonian learning.” In: Nature Physics 13.6 (Mar. 2017),
pp. 551–555. doi: 10.1038/nphys4074.

[66] Agnes Valenti, Evert van Nieuwenburg, Sebastian Huber, and Eliska Greplova. “Hamiltonian
learning for quantum error correction.” In: Physical Review Research 1.3 (Nov. 2019). doi: 10.
1103/PhysRevResearch.1.033092.

[67] Agnes Valenti, Guliuxin Jin, Julian Léonard, Sebastian D. Huber, and Eliska Greplova. “Scalable
Hamiltonian learning for large-scale out-of-equilibrium quantum dynamics.” In: Physical Review
A 105.2 (Feb. 2022). doi: 10.1103/PhysRevA.105.023302.

[68] Mario Krenn, Manuel Erhard, and Anton Zeilinger. “Computer-inspired quantum experiments.”
In: Nature Reviews Physics 2.11 (Sept. 2020), pp. 649–661. doi: 10.1038/s42254-020-0230-4.

[69] Alba Cervera-Lierta, Mario Krenn, and Alán Aspuru-Guzik. “Design of quantum optical exper-
iments with logic artificial intelligence.” In: Quantum 6 (Oct. 2022), p. 836. doi: 10.22331/q-
2022-10-13-836.

[70] Giuseppe Carleo and Matthias Troyer. “Solving the quantum many-body problem with artificial
neural networks.” In: Science 355.6325 (Feb. 2017), pp. 602–606. doi: 10.1126/science.aag
2302.

[71] W. M. C. Foulkes, L. Mitas, R. J. Needs, and G. Rajagopal. “Quantum Monte Carlo simulations of
solids.” In: Reviews of Modern Physics 73.1 (Jan. 2001), pp. 33–83. doi: 10.1103/RevModPhys.
73.33.

[72] Federico Becca and Sandro Sorella. Quantum Monte Carlo Approaches for Correlated Systems.
Cambridge University Press, Nov. 2017. doi: 10.1017/9781316417041.

[73] Yusuke Nomura, Andrew S. Darmawan, Youhei Yamaji, and Masatoshi Imada. “Restricted Boltz-
mann machine learning for solving strongly correlated quantum systems.” In: Physical Review B
96.20 (Nov. 2017). doi: 10.1103/PhysRevB.96.205152.

[74] Sirui Lu, Xun Gao, and L.-M. Duan. “Efficient representation of topologically ordered states
with restricted Boltzmann machines.” In: Physical Review B 99.15 (Apr. 2019). doi: 10.1103/
PhysRevB.99.155136.

193

https://doi.org/10.1038/s41567-019-0565-x
https://doi.org/10.1038/s41567-019-0565-x
https://doi.org/10.1088/2632-2153/abffe7
https://doi.org/10.1103/PhysRevX.8.031086
https://doi.org/10.48550/arXiv.2103.07585
https://doi.org/10.1038/nphys4074
https://doi.org/10.1103/PhysRevResearch.1.033092
https://doi.org/10.1103/PhysRevResearch.1.033092
https://doi.org/10.1103/PhysRevA.105.023302
https://doi.org/10.1038/s42254-020-0230-4
https://doi.org/10.22331/q-2022-10-13-836
https://doi.org/10.22331/q-2022-10-13-836
https://doi.org/10.1126/science.aag2302
https://doi.org/10.1126/science.aag2302
https://doi.org/10.1103/RevModPhys.73.33
https://doi.org/10.1103/RevModPhys.73.33
https://doi.org/10.1017/9781316417041
https://doi.org/10.1103/PhysRevB.96.205152
https://doi.org/10.1103/PhysRevB.99.155136
https://doi.org/10.1103/PhysRevB.99.155136


Bibliography

[75] Kenny Choo, Titus Neupert, and Giuseppe Carleo. “Two-dimensional frustrated J1-J2 model
studied with neural network quantum states.” In: Physical Review B 100.12 (Sept. 2019). doi:
10.1103/PhysRevB.100.125124.

[76] Giammarco Fabiani and Johan Mentink. “Investigating Ultrafast Quantum Magnetism with
Machine Learning.” In: SciPost Physics 7.1 (July 2019), p. 004. issn: 2542-4653. doi: 10.21468/
SciPostPhys.7.1.004.

[77] Douglas Hendry and Adrian E. Feiguin. “Machine learning approach to dynamical properties
of quantum many-body systems.” In: Physical Review B 100.24 (Dec. 2019). doi: 10.1103/
PhysRevB.100.245123.

[78] Markus Schmitt and Markus Heyl. “Quantum Many-Body Dynamics in Two Dimensions with
Artificial Neural Networks.” In: Physical Review Letters 125.10 (Sept. 2020). doi: 10.1103/
PhysRevLett.125.100503.

[79] G. Fabiani, M. D. Bouman, and J. H. Mentink. “Supermagnonic Propagation in Two-Dimensional
Antiferromagnets.” In: Physical Review Letters 127.9 (Aug. 2021). doi: 10.1103/PhysRevLett.
127.097202.

[80] Douglas Hendry, Hongwei Chen, Phillip Weinberg, and Adrian E. Feiguin. “Chebyshev expansion
of spectral functions using restricted Boltzmann machines.” In: Physical Review B 104.20 (Nov.
2021). doi: 10.1103/PhysRevB.104.205130.

[81] Yusuke Nomura and Masatoshi Imada. “Dirac-Type Nodal Spin Liquid Revealed by Refined
QuantumMany-Body Solver Using Neural-NetworkWave Function, Correlation Ratio, and Level
Spectroscopy.” In: Physical Review X 11.3 (Aug. 2021). doi: 10.1103/PhysRevX.11.031034.

[82] Yusuke Nomura. “Helping restricted Boltzmann machines with quantum-state representation by
restoring symmetry.” In: Journal of Physics: Condensed Matter 33.17 (Apr. 2021), p. 174003. doi:
10.1088/1361-648x/abe268.

[83] Mohammadreza Noormandipour, Sun Youran, and Babak Haghighat. “Restricted Boltzmann
machine representation for the groundstate and excited states of Kitaev Honeycomb model.”
In: Machine Learning: Science and Technology 3.1 (Dec. 2021), p. 015010. doi: 10.1088/2632-
2153/ac3ddf.

[84] Eric Zou, Erik Long, and Erhai Zhao. “Learning a compass spin model with neural network
quantum states.” In: Journal of Physics: Condensed Matter 34.12 (Jan. 2022), p. 125802. doi:
10.1088/1361-648x/ac43ff.

[85] Agnes Valenti, Eliska Greplova, Netanel H. Lindner, and Sebastian D. Huber. “Correlation-
enhanced neural networks as interpretable variational quantum states.” In: Physical Review
Research 4.1 (Jan. 2022). doi: 10.1103/PhysRevResearch.4.l012010.

[86] Luciano Loris Viteritti, Francesco Ferrari, and Federico Becca. “Accuracy of restricted Boltzmann
machines for the one-dimensional J1-J2 Heisenberg model.” In: SciPost Physics 12.5 (May 2022).
doi: 10.21468/SciPostPhys.12.5.166.

[87] Markus Schmitt, Marek M. Rams, Jacek Dziarmaga, Markus Heyl, and Wojciech H. Zurek.
“Quantum phase transition dynamics in the two-dimensional transverse-field Ising model.” In:
Science Advances 8.37 (Sept. 2022). doi: 10.1126/sciadv.abl6850.

[88] Christopher Roth, Attila Szabó, and Allan MacDonald. High-accuracy variational Monte Carlo for
frustrated magnets with deep neural networks. 2022. doi: 10.48550/arXiv.2211.07749.

194

https://doi.org/10.1103/PhysRevB.100.125124
https://doi.org/10.21468/SciPostPhys.7.1.004
https://doi.org/10.21468/SciPostPhys.7.1.004
https://doi.org/10.1103/PhysRevB.100.245123
https://doi.org/10.1103/PhysRevB.100.245123
https://doi.org/10.1103/PhysRevLett.125.100503
https://doi.org/10.1103/PhysRevLett.125.100503
https://doi.org/10.1103/PhysRevLett.127.097202
https://doi.org/10.1103/PhysRevLett.127.097202
https://doi.org/10.1103/PhysRevB.104.205130
https://doi.org/10.1103/PhysRevX.11.031034
https://doi.org/10.1088/1361-648x/abe268
https://doi.org/10.1088/2632-2153/ac3ddf
https://doi.org/10.1088/2632-2153/ac3ddf
https://doi.org/10.1088/1361-648x/ac43ff
https://doi.org/10.1103/PhysRevResearch.4.l012010
https://doi.org/10.21468/SciPostPhys.12.5.166
https://doi.org/10.1126/sciadv.abl6850
https://doi.org/10.48550/arXiv.2211.07749


[89] Moritz Reh, Markus Schmitt, and Martin Gärttner. Optimizing Design Choices for NeuralQuantum
States. 2023. doi: 10.48550/arXiv.2301.06788.

[90] Pascal M. Vecsei, Christian Flindt, and Jose L. Lado. Lee-Yang theory of quantum phase transitions
with neural network quantum states. 2023. doi: 10.48550/arXiv.2301.09923.

[91] Hiroki Saito. “Solving the Bose–Hubbard Model with Machine Learning.” In: Journal of the
Physical Society of Japan 86.9 (Sept. 2017), p. 093001. doi: 10.7566/jpsj.86.093001.

[92] Kenny Choo, Giuseppe Carleo, Nicolas Regnault, and Titus Neupert. “Symmetries and Many-
Body Excitations with Neural-Network Quantum States.” In: Physical Review Letters 121.16 (Oct.
2018). doi: 10.1103/PhysRevLett.121.167204.

[93] Kristopher McBrian, Giuseppe Carleo, and Ehsan Khatami. “Ground state phase diagram of
the one-dimensional Bose-Hubbard model from restricted Boltzmann machines.” In: Journal of
Physics: Conference Series 1290.1 (Oct. 2019), p. 012005. doi: 10.1088/1742-6596/1290/1/
012005.

[94] Wojciech Rzadkowski, Mikhail Lemeshko, and Johan H. Mentink. “Artificial neural network
states for nonadditive systems.” In: Physical Review B 106.15 (Oct. 2022). doi: 10.1103/PhysRevB.
106.155127.

[95] Ziyan Zhu, Marios Mattheakis, Weiwei Pan, and Efthimios Kaxiras. HubbardNet: Efficient Pre-
dictions of the Bose-Hubbard Model Spectrum with Deep Neural Networks. 2022. doi: 10.48550/
arXiv.2212.13678.

[96] Di Luo and Bryan K. Clark. “Backflow Transformations via Neural Networks for Quantum
Many-Body Wave Functions.” In: Physical Review Letters 122.22 (June 2019). doi: 10.1103/
PhysRevLett.122.226401.

[97] Kenny Choo, Antonio Mezzacapo, and Giuseppe Carleo. “Fermionic neural-network states for ab-
initio electronic structure.” In: Nature Communications 11.1 (May 2020). doi: 10.1038/s41467-
020-15724-9.

[98] James Stokes, Javier Robledo Moreno, Eftychios A. Pnevmatikakis, and Giuseppe Carleo. “Phases
of two-dimensional spinless lattice fermions with first-quantized deep neural-network quantum
states.” In: Physical Review B 102.20 (Nov. 2020). doi: 10.1103/PhysRevB.102.205122.

[99] Javier Robledo Moreno, Giuseppe Carleo, Antoine Georges, and James Stokes. “Fermionic
wave functions from neural-network constrained hidden states.” In: Proceedings of the National
Academy of Sciences 119.32 (Aug. 2022). doi: 10.1073/pnas.2122059119.

[100] Jan Hermann, James Spencer, Kenny Choo, Antonio Mezzacapo, W. M. C. Foulkes, David Pfau,
Giuseppe Carleo, and Frank Noé. Ab-initio quantum chemistry with neural-network wavefunctions.
2022. doi: 10.48550/arXiv.2208.12590.

[101] Dong-Ling Deng, Xiaopeng Li, and S. Das Sarma. “Quantum Entanglement in Neural Network
States.” In: Physical Review X 7 (2 May 2017), p. 021021. doi: 10.1103/PhysRevX.7.021021.

[102] Xiao-Qi Sun, Tamra Nebabu, Xizhi Han, Michael O. Flynn, and Xiao-Liang Qi. “Entanglement
features of random neural network quantum states.” In: Physical Review B 106 (11 Sept. 2022),
p. 115138. doi: 10.1103/PhysRevB.106.115138.

[103] Ivan Glasser, Nicola Pancotti, Moritz August, Ivan D. Rodriguez, and J. Ignacio Cirac. “Neural-
Network Quantum States, String-Bond States, and Chiral Topological States.” In: Physical Review
X 8.1 (Jan. 2018). doi: 10.1103/PhysRevX.8.011006.

195

https://doi.org/10.48550/arXiv.2301.06788
https://doi.org/10.48550/arXiv.2301.09923
https://doi.org/10.7566/jpsj.86.093001
https://doi.org/10.1103/PhysRevLett.121.167204
https://doi.org/10.1088/1742-6596/1290/1/012005
https://doi.org/10.1088/1742-6596/1290/1/012005
https://doi.org/10.1103/PhysRevB.106.155127
https://doi.org/10.1103/PhysRevB.106.155127
https://doi.org/10.48550/arXiv.2212.13678
https://doi.org/10.48550/arXiv.2212.13678
https://doi.org/10.1103/PhysRevLett.122.226401
https://doi.org/10.1103/PhysRevLett.122.226401
https://doi.org/10.1038/s41467-020-15724-9
https://doi.org/10.1038/s41467-020-15724-9
https://doi.org/10.1103/PhysRevB.102.205122
https://doi.org/10.1073/pnas.2122059119
https://doi.org/10.48550/arXiv.2208.12590
https://doi.org/10.1103/PhysRevX.7.021021
https://doi.org/10.1103/PhysRevB.106.115138
https://doi.org/10.1103/PhysRevX.8.011006


Bibliography

[104] Stephen R Clark. “Unifying neural-network quantum states and correlator product states via
tensor networks.” In: Journal of Physics A:Mathematical andTheoretical 51.13 (Feb. 2018), p. 135301.
doi: 10.1088/1751-8121/aaaaf2.

[105] Raphael Kaubruegger, Lorenzo Pastori, and Jan Carl Budich. “Chiral topological phases from
artificial neural networks.” In: Physical Review B 97.19 (May 2018). doi: 10.1103/PhysRevB.
97.195136.

[106] Sheng-Hsuan Lin and Frank Pollmann. “Scaling of Neural-Network Quantum States for Time
Evolution.” In: physica status solidi (b) 259.5 (Jan. 2022), p. 2100172. doi: 10 . 1002 / pssb .
202100172.

[107] Sören Sonnenburg, Mikio L. Braun, Cheng Soon Ong, Samy Bengio, Léon Bottou, Geoffrey
Holmes, Yann LeCun, Klaus-Robert Müller, Fernando Pereira, Carl Edward Rasmussen, Gunnar
Rätsch, Bernhard Schölkopf, Alexander J. Smola, Pascal Vincent, Jason Weston, and Robert C.
Williamson. “The Need for Open Source Software in Machine Learning.” In: J. Mach. Learn. Res.
8 (2007), pp. 2443–2466. url: https://dl.acm.org/doi/10.5555/1314498.1314577.

[108] Max Langenkamp and Daniel N. Yue. “How Open Source Machine Learning Software Shapes
AI.” In: Proceedings of the 2022 AAAI/ACM Conference on AI, Ethics, and Society. ACM, July 2022.
doi: 10.1145/3514094.3534167.

[109] Matthew J. S. Beach, Isaac De Vlugt, Anna Golubeva, Patrick Huembeli, Bohdan Kulchytskyy,
Xiuzhe Luo, Roger G. Melko, Ejaaz Merali, and Giacomo Torlai. “QuCumber: wavefunction
reconstruction with neural networks.” In: SciPost Physics 7 (1 2019), p. 9. doi: 10 . 21468 /
SciPostPhys.7.1.009.

[110] Markus Schmitt and Moritz Reh. “jVMC: Versatile and performant variational Monte Carlo
leveraging automated differentiation and GPU acceleration.” In: SciPost Physics Codebases 2
(2022). doi: 10.21468/SciPostPhysCodeb.2.

[111] Stefanie Czischek, Martin Gärttner, and Thomas Gasenzer. “Quenches near Ising quantum
criticality as a challenge for artificial neural networks.” In: Physical Review B 98.2 (July 2018).
doi: 10.1103/PhysRevB.98.024311.

[112] Irene López Gutiérrez and Christian B. Mendl. “Real time evolutionwith neural-network quantum
states.” In: Quantum 6 (Jan. 2022), p. 627. doi: 10.22331/q-2022-01-20-627.

[113] Kaelan Donatella, Zakari Denis, Alexandre Le Boité, and Cristiano Ciuti. Dynamics with autore-
gressive neural quantum states: application to critical quench dynamics. 2022. doi: 10.48550/
arXiv.2209.03241.

[114] Robert J. Webber and Michael Lindsey. “Rayleigh-Gauss-Newton optimization with enhanced
sampling for variational Monte Carlo.” In: Physical Review Research 4.3 (Aug. 2022). doi: 10.
1103/PhysRevResearch.4.033099.

[115] Huan Zhang, Robert J. Webber, Michael Lindsey, Timothy C. Berkelbach, and Jonathan Weare.
Understanding and eliminating spurious modes in variational Monte Carlo using collective variables.
2022. doi: 10.48550/arXiv.2211.09767.

[116] Giuseppe Carleo, Yusuke Nomura, and Masatoshi Imada. “Constructing exact representations of
quantum many-body systems with deep neural networks.” In: Nature Communications 9.1 (Dec.
2018). doi: 10.1038/s41467-018-07520-3.

[117] Jing Chen, Song Cheng, Haidong Xie, Lei Wang, and Tao Xiang. “Equivalence of restricted
Boltzmann machines and tensor network states.” In: Physical Review B 97.8 (Feb. 2018). doi:
10.1103/PhysRevB.97.085104.

196

https://doi.org/10.1088/1751-8121/aaaaf2
https://doi.org/10.1103/PhysRevB.97.195136
https://doi.org/10.1103/PhysRevB.97.195136
https://doi.org/10.1002/pssb.202100172
https://doi.org/10.1002/pssb.202100172
https://dl.acm.org/doi/10.5555/1314498.1314577
https://doi.org/10.1145/3514094.3534167
https://doi.org/10.21468/SciPostPhys.7.1.009
https://doi.org/10.21468/SciPostPhys.7.1.009
https://doi.org/10.21468/SciPostPhysCodeb.2
https://doi.org/10.1103/PhysRevB.98.024311
https://doi.org/10.22331/q-2022-01-20-627
https://doi.org/10.48550/arXiv.2209.03241
https://doi.org/10.48550/arXiv.2209.03241
https://doi.org/10.1103/PhysRevResearch.4.033099
https://doi.org/10.1103/PhysRevResearch.4.033099
https://doi.org/10.48550/arXiv.2211.09767
https://doi.org/10.1038/s41467-018-07520-3
https://doi.org/10.1103/PhysRevB.97.085104


[118] Yoav Levine, Or Sharir, Nadav Cohen, and Amnon Shashua. “Quantum Entanglement in Deep
Learning Architectures.” In: Physical Review Letters 122.6 (Feb. 2019). doi: 10.1103/PhysRevLe
tt.122.065301.

[119] Yichen Huang and Joel E. Moore. “Neural Network Representation of Tensor Network and Chiral
States.” In: Physical Review Letters 127.17 (Oct. 2021). doi: 10.1103/PhysRevLett.127.170601.

[120] Or Sharir, Amnon Shashua, and Giuseppe Carleo. “Neural tensor contractions and the expressive
power of deep neural quantum states.” In: Physical Review B 106.20 (Nov. 2022). doi: 10.1103/
PhysRevB.106.205136.

[121] Abhay Ashtekar and Troy A. Schilling. Geometrical Formulation of Quantum Mechanics. 1997.
doi: 10.48550/arXiv.gr-qc/9706069.

[122] Alexander Wietek and Andreas M. Läuchli. “Sublattice coding algorithm and distributed memory
parallelization for large-scale exact diagonalizations of quantummany-body systems.” In: Physical
Review E 98.3 (Sept. 2018). doi: 10.1103/PhysRevE.98.033309.

[123] Edwin Pednault, John A. Gunnels, Giacomo Nannicini, Lior Horesh, Thomas Magerlein, Edgar
Solomonik, Erik W. Draeger, Eric T. Holland, and Robert Wisnieff. Pareto-Efficient Quantum
Circuit Simulation Using Tensor Contraction Deferral. 2017. doi: 10.48550/arXiv.1710.05867.

[124] Hans De Raedt, Fengping Jin, Dennis Willsch, Madita Willsch, Naoki Yoshioka, Nobuyasu Ito,
Shengjun Yuan, and Kristel Michielsen. “Massively ParallelQuantumComputer Simulator, Eleven
Years Later.” In: Computer Physics Communications 237 (Apr. 2019), pp. 47–61. issn: 00104655.
doi: 10.1016/j.cpc.2018.11.005.

[125] Edwin Pednault, John A. Gunnels, Giacomo Nannicini, Lior Horesh, and Robert Wisnieff. Lever-
aging Secondary Storage to Simulate Deep 54-Qubit Sycamore Circuits. 2019. doi: 10.48550/
arXiv.1910.09534.

[126] John Preskill. Quantum computing and the entanglement frontier. 2012. doi: 10.48550/arXiv.
1203.5813.
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List of acronyms

CNN convolutional neural network

DMRG density matrix renormalization group

ED exact diagonalization

FFNN feed-forward neural network

GCNN group-convolutional neural network

HKM honeycomb Kitaev model
HPC high-performance computing

irrep irreducible representation

JIT just-in-time (compilation)

MC-CLT Markov chain central limit theorem
MCMC Markov chain Monte Carlo
MCSE Monte Carlo standard error
MPI message passing interface
MPS matrix-product state

NAQS neural autoregressive quantum state
NDO neural density operator

NGD natural gradient descent
NQS neural quantum state

QFM quantum Fisher matrix
QGT quantum geometric tensor
QMC quantum Monte Carlo
QSL quantum spin liquid
QST quantum state tomography

RBM restricted Boltzmann machine

SR stochastic reconfiguration
SYK Sachdev-Ye-Kitaev (model)

t-VMC time-dependent variational Monte Carlo
TDSE time-dependent Schrödinger equation
TDVP time-dependent variational principle
TNS tensor-network state

VMC variational Monte Carlo
VP variational principle

XLA accelerated linear algebra (compiler)
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