

Supplemental Figure S1: Formation of benzyl cyanide in tococa leaves in response to herbivory (see Figure 1). 3-4 S. littoralis caterpillars were allowed to feed on leaves for 24 h and the volatiles were collected simultaneously (light green). Afterwards, the caterpillars were removed from the leaves, put into another bag and their volatiles collected for 24h (blue). Volatiles of the damaged leaves were collected for another 24 h as well (dark green). Samples were analyzed by GC-MS (A) and quantified by GC-FID (B). IS, internal standard; c, 1, 2-hexenal; 2, 3-hexenol; 3, 1-hexanol; 4, 4-oxo-hex-2-enal and contamination; benzaldehyde; 6, 1-octen-3-ol; 7, octan-3-one; 8, benzyl alcohol, 9, β-ocimene; 10, linalool: 12, (E)-4,8-dimethyl-nonatriene (DMNT); 14, methyl salicylate; 15, indole; 16, (E)-β- α -farnesene: (E,E)-4,8,12-trimethyl-1,3,7,11carvophyllene: 17, 18. nerolidol: 19. tridecatetraene (TMTT); 20, 3-hexenal + hexanal; 21, phenylethyl alcohol; 22, α -humulene; TIC: total ion chromatogram. Means \pm SEM are shown; n = 5. Asterisk indicates significant accumulation of benzyl cyanide (> 0) based on one-tailed t-test, * = p<0.05. The absence of volatiles in the blue chromatogram (only caterpillars after feeding on tococa leaves) indicates that all volatiles detected in the headspace of herbivore-damaged tococa leaves (dark green) are actually produced by the plant and not by the caterpillars.

Supplemental Figure S2: Identification of phenylacetaldoxime glucoside (PAOx-Glc) in herbivoretreated tococa leaves. (A) Comparison of retention time and (B) fragmentation pattern of synthetic PAOx-Glc and plant-derived PAOx-Glc and PAOx (methanolic extract of *Spodoptera littoralis*-damaged leaves) analyzed by LC-qTOF-MS/MS, the upper mass spectrum is the full scan spectrum, the lower spectra are MS2 spectra after CID of *m*/*z* 298.1285 and *m*/*z* 136.0757. (C) Compounds extracted with 100% methanol from herbivore-damaged leaves were treated with a commercial (Sigma-Aldrich) β -glucosidase from almonds (glucosidase), or only incubated in the reaction buffer (ctr). Paired t-test, n=3. cps: counts per second (electron multiplier).

Phenylacetaldoxime glucoside

Supplemental Figure S3: The structure of the synthesized phenylacetaldoxime glucoside. ¹H-NMR (500 MHz,MeOH-*d*₃) for the *E*-isomer: δ ppm: 7.63 (*dd*, *J*= 6.7/6.7 Hz 1H, H-1), 7.30 (*m*, 2H, H-5, H-7), 7.20-7.27 (*m*, 3H, H-4, H-6, H-8), 4.91 (*d*, *J*= 8.2 Hz, 1H, H-1'), 3.87 (*m*, 1H, H-6'), 3.70 (*m*, 1H, H-6'), 3.54 (*d*, *J*= 6.7 Hz, 2H, H-2), 3.30-3.44 (*m*, 4H, H-2', H-3', H-4', H-5'). For the *Z*-isomer (only non-overlapped signals are shown): 6.98 (*dd*, *J*= 5.4/5.4 Hz 1H, H-1), 4.96 (*d*, *J*= 8.0 Hz, 1H, H-1'), 3.77 (*d*, *J*= 5.4 Hz, 2H, H-2). ¹³C-NMR (125 MHz, MeOH-*d*₃) *E*-isomer: δ ppm: 153.6 (C-1), 137.2 (C-3), 129.74 (C-4), 129.74 (C-8), 129.67 (C-5), 129.67 (C-7), 127.8 (C-6), 105.6 (C-1'), 78.3 (C-3'), 78.1 (C-5'), 73.56 (C-2'), 71.28 (C-4'), 62.56 (C-6'), 36.5 (C-2). *Z*-isomer: δ ppm: 153.9 (C-1), 137.8 (C-3), 129.8 (C-4), 129.8 (C-8), 129.67 (C-5), 129.67 (C-7), 127.6 (C-6), 105.7 (C-1'), 78.4 (C-3'), 78.1 (C-5'), 73.59 (C-2'), 71.3 (C-4'), 62.63 (C-6'), 33.4 (C-2). *E/Z*-configurations were assigned based on chemical shifts of the oxime protons (Karabatsos & Hsi, 1967).

Supplemental Figure S4: Phenylacetaldoxime glucoside, ¹H NMR with water suppression, full range in MeOH- d_3

Supplemental Figure S5: Phenylacetaldoxime glucoside, ¹H NMR with water suppression, aromatic range in MeOH- d_3

Supplemental Figure S6: Phenylacetaldoxime glucoside, ¹H NMR with water suppression, aliphatic range in MeOH- d_3

Supplemental Figure S7: Phenylacetaldoxime glucoside, phase sensitive HSQC, full range in MeOH- d_3

Supplemental Figure S8: Phenylacetaldoxime glucoside, phase sensitive HSQC, aromatic range in MeOH- d_3

Supplemental Figure S9: Phenylacetaldoxime glucoside, phase sensitive HSQC, aliphatic range in MeOH- d_3 . Shaded areas mark impurity and solvent, red: CH₂, black: CH, CH₃

Supplemental Figure S10: Phenylacetaldoxime glucoside, HMBC, full range in MeOH-d₃

Supplemental Figure S11: Phenylacetaldoxime glucoside, ¹³C, full range in MeOH- d_3

Supplemental Figure S12: Phenylacetaldoxime glucoside, ¹H-¹H DQF COSY with water suppression. Magnitude mode processed, aliphatic range in MeOH- d_3

Supplemental Figure S13: Quantitative reverse transcription PCR (RT-qPCR) of PAOx-GIc and benzyl cyanide biosynthesis genes. Expression was analyzed in *Spodoptera littoralis*-damaged and undamaged tococa leaves. The RNA of the treated leaves was isolated, transcribed to cDNA, and RT-qPCRs performed using the primers mentioned in Supplemental Table S12 and actin as housekeeping gene. Relative expression was calculated with the $\Delta\Delta$ Ct method (Pfaffl, 2001). Data are presented as mean ± SEM; Student's t-test: n = 5 - 7, * = p<0.05, ** = p<0.01, *** = p<0.001.

Methodology: cDNA synthesis from 800 ng RNA was performed with the RevertAid First Strand cDNA Synthesis Kit (Thermo Scientific) using oligo $(dT)_{18}$ primers according to the manufacturer's instructions. The obtained cDNA was diluted 1:8 with ddH₂O. Primer pairs were designed to amplify the respective gene (Supplemental Table S12), and their specificity confirmed by agarose gel electrophoresis, melting curve, and standard curve analysis. Samples were run in an optical 96-well plate on the CFX96 TouchTM Real-Time PCR System (Bio-Rad) with the Brilliant III Ultra-Fast SYBR Green QPCR Master Mix (Agilent). PCR conditions are given in Supplemental Table S11. All samples were run in duplicates. Normalized fold expression was calculated with the $\Delta\Delta$ CP method (Pfaffl, 2001). As internal calibrator, cDNA from all samples was pooled and run on each plate.

TqCYP79A206 TqCYP79A207 SbCYP79A1 PtCYP79D6 PtCYP79D7 EcoCYP79D62 EcCYP79A125	MNISASAAIL MNISAYAAIL 	PNTSSLNATT PNTSSLIATT MATMEVEAAA 	VFTTIPSFLA VIKTKLSFLA ATVLAAPLLS MEYLA MEYLA MS	ASPLSAFNAF ASPLSAFNAF SSAILKLLLF PTSFTTLLSF ATSFTTLLRF LILIMIILVS SATLATINAL	LVSTFVLLYA VVSTFVVLYA VVTLSYLARA TASLLVLAII PTSLLVLAII FQALNVR LLLALVILCS	ILKSQQSSQK VLKSQQSSRK LRRPRKSTTK LFYFIQSHKN LFYFIQSHKN CNDKSN IVKQQLCRKT	SS IS CSSTTCASPP VK VK RH IR	KQLGRLPP KQLGRLPP AGVGNPPLPP KHPLPP KHPIPP QLQPP KENNPLPLPP	70 70 43 43 36 44
TqCYP79A206 TqCYP79A207 SbCYP79A1 PtCYP79D6 PtCYP79D7 EcoCYP79D62 EccYP79A125	GETFWEVLGN GEMFWEVLGN GEVFWEVVGN GEKFWEIVGC GEKFWEVIGC GETFWEVVGC	LEEMLSNKEV LEEMLSHKEV LEEMLINKPA LETMLRNKEV LETMLRNKEV AEGMLRNKEV	FROMERIMEE FROMERIMEE FROIENIMEE YROIENIMEE FROIENIMEE FROIERIMEE	MNTEIACVRL MDTEIACLRL MGTDIACVKL MNTEIACIRL MNTEIACIRL MNTEIACIRL MNTEIACIRL	STHVISVTC STHVVSVTC GVHVVSITC NVHVIPVIC NVHVIPVIC STHVIPVTS	EKIAADILKK EKIAADILKK EDIARDVLRK EDIACDFLKA ENIARDFLKS ETIAQDFLRK	QDAVFASRPE QDAVFASRPE QDANFISRPL QDNTFASRPH QDNTFASRPN QDEAFSSRPD QDSSFASRPV	SMAARSFSDG SMAARSFSDG TFASETFSGG TMTTDLISRG TMATDLISSG FMSNKLVSKR SMASSTFSSG	150 150 123 123 116 124
TqCYP79A206 TqCYP79A207 SbCYP79A1 PtCYP79D6 PtCYP79D7 EcoCYP79D62 EcCYP79A125	YKTAVIVPHG YKTAVIVPHG YRNAVISPYG YLTTAISPSG YLATIISPSG YLTAISPSG YLTAVISPYG	DOWKKMRRVL DOWKKMRRVL DOWKKMRVL DOWNKMKVL DOWNKMKVL DOWKKKKIL E <mark>OWKKM</mark> RRIL	TSEIICPARH TSEIICPARH TSEIICPSRH MTHVLSPKKH WTHVLSPKKH VTSFLSPAKH VSEVICPARH	KWLHDKRVYE KWLHDKRVDE AWLHDKRTDE QWLYSKRVEE QLFYGKRLEE KWLHDKRVGE	ADNIVRYVLA ADNIVRYVLA ADNITRYVYN ADHIVHYVYN ADHIVHYVYN ADNIVSYLYG ADNIVKYVFN	QCGVSH QCGVSR LATKAATGDV QCKKSVHQGG QCKKSVHQGG QCKNNPEKGG LCKASGH	DVNLRTAARH DVNIRTAARH AVDVRHVARH IVNLETAAQH IVNLETAAQH LVNVRLATRH QVNLRTTTRY	YSGNLIRNLM YSGNLIRNLM YCGNVIRRLM YCANLTRKML YCGNVIRKIV YSGNVIRRLM	226 226 230 203 203 196 201
TqCYP79A206 TqCYP79A207 SbCYP79A1 PtCYP79D6 PtCYP79D7 EcoCYP79D62 EcCYP79A125	eskehfekgm Fskehfekgm Fnrefeed Fnkeffeggm Fnkeffeggm Fnkenfeggr Fnkevfeggr	PDGGPGIEBE ADGGPGPMEV KDGGPGFEBE KDGGPGFEBE KDGGPGIEBK QDGGETIDE	EHVEALFTAL EHVEALFTAL LHYDAVFTSL EYVDALFSCL EHIDAIFTIL QHVDALFNAL	GYLYAFCVSD GYLYAFCISD GLLYAFCVSD NHIYAFCISD NHIYAFCISD SYLFSFCISD TYLYAFCVSD	YFECLEGLDL YFECLEGLDL YLBWLRGLDL FLESLIGLDL FLESLIGLDL YFEFLKGLDL	DGHEKIVKA DGHEKIVKA DGHEKIVKA DGHEKVVMA DGHEKVVMA EGHEKVVKA GHEKVVKA	TMTLKKYHDP TMTLKKYHDP NVAVNRHDT HRIINKYHDP HRIINKYHDP TDIVNKYHDP ARTLRTL <mark>H</mark> EP	IIDORIOOMR IIDORIOOMR VIDDRWROMK IIHERVOOMK IIHERVOOMK IIEERIOOMR IISERIKRMR	306 306 310 283 283 276 281
TqCYP79A206 TqCYP79A207 SbCYP79A1 PtCYP79D6 PtCYP79D7 EcoCYP79D62 EcCYP79A125	KSGDSNNK KSGDSNNT SGERQ DGAKK DGAKK NGMKD DDLRSESNEK	EPQDILDVLI EPQDILDVLI EMEDFLDVLI DTEDILDILI REEDLDDILI EPQDILDVLI	ALKDSNGQPS ALKDSNGRPL TLKDAQGNPL TLKDPDGNPL TLKDPLGNPL ALKDDNGNPL MLKDSKGMPV	LTSDEIKAQT LTSDEIKAQT LTIEBVKAQS LSKDEIKAQI LSKDEIKAQI LSSDEIKAQI LSIEPIKAQI LAPQBVRALT	N TE IMMAAIDN TE IMMAAIDN QDITFAAVDN TEIMVAAVDN TE IVAAVDN TE ILATVDN TE ILATVDN	P PSNVAEWAMA PSNAVEWALA PSNAVEWALA PSNACEWAFA PSNACEWAFA PSNAAEWAIA PSNAVEWAMA	EMINCPELLQ EMINRPELLQ EMVNNPEVMA EMINCPEILE EMINCPEILE EMINCPEILH EMINCPELIH	KAVEELDRVV KAVEELDRVV KAVEELDRVV KATEELDRVV KAVEELDRVV KAVEELDRVV KATEEIDRVV	384 385 358 358 351 361
TqCYP79A206 TqCYP79A207 SbCYP79A1 PtCYP79D6 PtCYP79D7 EcoCYP79D62 EcCYP79A125	GKDRLVQESD GKDRLVQESD GRERLVQESD GKERLVQESD GRERLVQESD GKERLVQESD T	IPHINYIKAC IPHINYIKAC IPKINYVKAC FAHINYVKAC FVKLOYVKAC IGDINYIKAC	ARBTFRLHPI ARBTFRLHPI IRBAFRLHPV ARBAFRLHPV ARBAFRLHPV ARBAFRLHPL ARBAFRLHPV K A	APFNVPHVAM APFNVPHVAL APFNVPHVAL APFNVPHVSA APFNVPHVSA EPFNIPHVST APFNVPHVAM	SDTTVAGYFI SDATVAGYFI ADTTIAGYRV ADTTVANYFI ADTTVANYFI VDTTVANYFI SDTVVAGYRI	PKGSHMLVSR PKGSHMLVSR PKGSHVILSR PKGSYVLLSR PKGSHVLLSR PKGSHVLLSR	LGLGRNPKVW LGLGRNPRVW TGLGRNPRVW LGLGRNPKVW MGLGRNPKVW IGLGRNPEIW	FxPER DEPLEFRER DEPLEFRER DEPLKFKER DEPLKFKER DEPLKFKER DEPLKFKER	464 465 438 438 431 441
TqCYP79A206 TqCYP79A207 SbCYP79A1 PtCYP79D6 PtCYP79D7 EcoCYP79D62 EccYP79A125	HL HLGDGYTNVV HLSDGYTNVV HLATAASDVA HLNE-MEKVV HLNE-MEKVV HLSN-GDDVV HIMSDQAEVV	S LTEPDLRFIS LTEPDLRFIS LTENDLRFIS LTENNLRFIS LTENNLRFIS LTEPLRFIS LTEPDLRFIS	FSTGRRGCIG FSTGRRGCIA FSTGRRGCIA FSTGRRGCIA FSTGRRGCIG FSTGRRGCIG FSTGRRGCIA	ASLGTTMTVM ASLGTTMTVM ASLGTAMSVM VTLGTSMTTM VSLGTSMTTM VNLGTSMTVM AMLGTTMTVM	LLARLIQGFS LLARLIQGFS LFGRLLQGFT LFARLLQAFT LFARLLQAFT LFARLLQGFS LLARLIQGFN	WEKSPQAPGI WEKSLQAPGI WSKPAGVEAV WSLPPSQSSI WSLPPRQSSI WSAPPGKLAI WSKPSNLSSI	DESESEHDLF DESESEHDLF DESESKSDTF DETIAEDSMA DETIAEDSMA NESKTGLA NESKTGLA	LVRPLNVHÆ LARPLNVRÆ MATPLVLHÆ LAKPLSALÆ LAKPLCALÆ LACPLVALÆ LACPLVALÆ	544 545 517 517 510 521
TqCYP79A206 TqCYP79A207 SbCYP79A1 PtCYP79D6 PtCYP79D7 EcoCYP79D62 EccYP79A125	PRLEVHLYPS PRLELHLYPS PRLEAHLYPS PRLEPQVYPG PRLEPQVYPG PRLEQALYQE PRLESHLYLA	F 5 F 5 ISI 5 Y 5 LTSCINHS 5 5	55 55 28 28 28 28 31						

PP

Supplemental Figure S14. Amino acid sequence alignment of CYP79A206 and CYP79A207 with representative CYP79 sequences from other plant species. The alignment was achieved with the ClustalW algorithm using BioEdit. Black shading corresponds to conserved residues, dark grey shades mark residues identical in six of the sequences, and residues with light grey shading are identical in five sequences. Conserved motifs are indicated (see Luck et al, 2016, Bak et al, 2011, Durst et al, 1995).

Supplemental Figure S15: Enzymatic activity of CYP79A206 and CYP79A207 with different amino acid substrates. The two genes were heterologously expressed in *Saccharomyces cerevisiae* and microsomes containing the recombinant enzymes were incubated with NADPH and either L-tryptophan (Trp), L-tyrosine (Tyr), L-isoleucine (IIe), or L-leucine (Leu). As negative controls, *S. cerevisiae* was transformed with an empty vector (EV) and the respective microsomes were incubated with the substrates (Phe, Trp, Tyr, Ile, Leu) as well. As a second control, microsomes containing the recombinant enzymes were incubated with Phe in the absence of NADPH. Products were extracted with methanol and detected using LC-MS/MS. cps: counts per second (electron multiplier).

TqCYP71E76 PtCYP71B40v3 PtCYP71B41v2 FsCYP71AT96 SbCYP71E1	MSSTIISFPL MALYVVPLWL MALYVVPLWL MHLFLQ MATTATPQLL	DNF PF P GGSVPQQWQT	ILLATFALLI -LILLALLL -LILLALLL -LLLILVIVI CLLVLLPVLL	IPIIFITFLK LFMKKMEVKR LFMKKMEVKR SLLFLIQKTR VSYYLLTSRS	RRNKQQC Q Q K RNRSRSGKLG	DGVRLAESP SEQLLPESP SEQLLPESP DVTKQPEGPP GAPRLPEGPA	TLPIIGNLHQ KLPILGNLHQ KLPILGNLHQ RLPIIGNLHQ QLPILGNLHL	LG-KLPHRSL LG-SLPHQSL LG-SLPHQSL FPSSCPHLWL LG-PLPHKNL	69 60 60 56 79
TqCYP71E76 PtCYP71B40v3 PtCYP71B41v2 FsCYP71AT96 SbCYP71E1	WELSLRYGEV WQLSKKYGEV WQLSKKYGEV HELSKKYGEL RELARRYGEV	MMLR LG DVFV MLIR LG RIPT MLIRLGRIPT IFLKLGFIST MQLRLGTVPT	LVVSSAEMAK VVISSAEAAR VVISSAEAAR LVVSSARMAK VVVSSAEAAR	EVLKTHDVDT EVLKVHDLAF EVLKVHDVAF QVMKTQDQTF EVLKVHDVDC	CSRPASPGTG CSRPLLAGTG CSRPLLAGTG CSRPSLAAQR CSRPASPCPK	RLSYDYLDVA RLTYNYLDIA RLTYNYLDIA KLSYNALDVV RLSYDLKNVG	FSPYTEYMRE FSPYSDHWRN FSPYSDHWRN FAPYGGCWKQ FAPYGEYWRE	VRKLFMFEMM MRKIVTLELF MRKILTLELF LKKICVLHLF MRKLFALELL	149 140 140 136 159
TqCYP71E76 PtCYP71B40v3 PtCYP71B41v2 FsCYP71AT96 SbCYP71E1	STKRVHSLWH SLKRVQSFRF SLKRVQSFRF SSKKVQSFSS SMRRVKAACY	VREAEVDALI IREEEVSLLV IREEEVSLLV VRQEEVCEMM AREQEMDRLV	GFLRKNAGN- NFISESSALA NFISESSALA KEISRLSGEG ADLDRAAASK	-AVEMNERIF APVDLTQKLY APVDLTQKLY RVVDLSEMMM ASIVLNDHVF	ALTDGIVGTV ALVANITFRM ALVANITFRM SLTCTVICRI ALTDGIIGTV	AFGKMYGRDK AYGFNYRGTS AYGFNYRGTS AFGKRYDGVT AFGNIYASKQ	FGSKS-5QCV FDRDK-5HEV FDRDK-5HEV SRCRWS5RDL FAHKER5QHV	LDEAMNMLAR VHDTKAVAGS VHDTVAVVGS LKDAQVMLAT LDDAMDMMAS	226 219 219 216 239
TqCYP71E76 PtCYP71B40v3 PtCYP71B41v2 FsCYP71AT96 SbCYP71E1	FSAEEVFP-R ISADESIP-Y ISADESIP-Y LSFSDYFP FSAEDFFENA	WGRTIDRITG LGWIVDRITG LGWIVDRITG GMGWIDKITG AGRLADRISG	LTS <mark>RLE</mark> KIIK HRARTERVFH HRARTERVFH MSARLDKVFM FLARRERIFN	DLDKYYEYVI ELDTFFQHLI EVDTFFQHLI ELNNFYEEII ELDVFFEKVI	EEHRKPSRDN DNHLKPGRIK DNHLKPGRIK EEHLNTIEPM DQHMDPARPV	EQEIG-DFVD EHDDMVD EHDDMVD AKSGQEDIVD PDNGG-DLVD	VLINLQSD VLIRIEKEQT VLIRIEKEQT VLIKLQRE VLINLCKE	PKNKLALTDN ELGASQFTKD ELGASQFTKD GSLGFDITTD HDGTLRFTRD	302 295 295 292 316
TqCYP71E76 PtCYP71B40v3 PtCYP71B41v2 FsCYP71AT96 SbCYP71E1	HIKAILMDTF NIKAILLNLF NIKAILLNLF HIKAILMNII HVKAIVLDTF	T TS IGAISTSSIT MAGVDTSSLT LGGVDTSSLT VGATETTTAT IGAIDTSSVT	MLWAMSELVR VNWAMAELVR VNWAMAELVR VVWVMTELMR ILWAMSELMR	NPRVLKKACD NPRVMKKVOD NPRVMKKVOD NPEAMKRLOE KPQVLRKAOA	EIRNRIGK-K EVRKCVGN-K EVRKCVGN-K ETRTFMMRKK EVRAAVCDDK	PRVESD GRVTESD GRVTESD TSDMMIKGED PRVNSED	MAKLPYLRMV IDQLEYLRMV IDQLEYLRMV FEKLVYLKAV AAKIPYLKMV	VKETLRLHPP IKETIRLHPP IKETIRLHPP VKET <mark>M</mark> RLHPP VKETIRLHPP	378 371 371 372 393
TqCYP71E76 PtCYP71B40v3 PtCYP71B41v2 FsCYP71B41v2 SbCYP71E1	LALL PRETI GPLLI PRETM APLLI PRETM APLLI PRETI ATLLVPRETM	RPCKIGCYDV SHCKVSCHNI SHCKVSCHNI GKCVIECYEI RDTTICCYDV	PARTRVFVNA YPKMLVQINV YPKMLVQINV QEKTLVFVNA PANTRVFVNA	W <mark>G</mark> IGRDPRSW WAIGRDPRYW WAIGRDPTYW WAIGRDPEFW WAIGRDPASW	D FxPER EREEKFDEDR KDEEFFER KDEEFFER ENEEFTER PAEDEENEDR	F EE-VLERDFK EL-DRSIDYK EL-DSSIDYK ELSDKAVDFR EV-GSDVDYY	PFG CODFELIPFG COSFEYLPFG COSFEYLPFG CODFELIPFG CSHFELIPFG	A T SGRRICPG SGRRICPGMT SGRRICPGMH SGRRICPGMQ AGRRICPGLT	457 450 450 452 472
TqCYP71E76 PtCYP71B40v3 PtCYP71B41v2 FsCYP71AT96 SbCYP71E1	MGVTTIEFTL MGSITMEIIL MGFITMEIIL MGLAMVELAL MGETNVTFTL	ANLLYGFDWK ANLLYCFDWV ANLLFCFDWV VNLIGLFDWA ANLLYCYDWA	LPEGTKVEDF FPDGMKKEDI FPDGMKKEDI LPAGMEEENL LPGAMKPEDV	SMEEEGGL NMEEKAGVSL NMEEKAGVSL DLNMLPGI SMEETGAL	AIYRKM <mark>PL</mark> RL TTSKKTPLIL TTSKKTPLIL AVHKEIPLRL TFHRKTPLVV	VPTKYN VPVNYLQ VPVNYLQ IAMKFCC VPTKYKNRRA	- 511 - 507 - 507 - 507 A 531		

Supplemental Figure S16: Amino acid sequence alignment of CYP71E76 with sequences of other nitrile-forming CYP71s and CYP71E1 from *Sorghum bicolor*. The alignment was achieved with the ClustalW algorithm using BioEdit. Black shading corresponds to conserved residues, dark grey shades mark residues identical in four of the sequences, and residues with light grey shading are identical in three of the sequences. Conserved motifs are indicated (Durst and Nelson 1995, Bak et al. 2011)

Supplemental Figure S17: Formation of benzyl cyanide by CYP71E76 *in vitro*. Genes were expressed in *S. cerevisiae* and microsomes containing the respective enzymes were used for activity assays with phenylacet-aldoxime (PAOx) as substrate. The hexane phase was analyzed via GC-MS/FID. While benzyl cyanide is always formed from PAOx due to thermal degradation during GC injection, recombinant CYP71E76 in the presence of NADPH was able to generate amounts of benzyl cyanide significantly higher compared to the background. Boxplots (center line, median; box limits, upper and lower quartiles; whiskers, 1.5x interquartile range; open circle, mean). One-Way ANOVA ($F_{5,18} = 238.1$, p<0.001) Tukey HSD *posthoc* test: p<0.05; n=4, EV = empty vector.

Supplemental Figure S18: CYP71E76 has narrow substrate specificity. The gene was expressed in *S. cerevisiae* and microsomes containing the CYP71E76 were used for activity assays with benzaldoxime (BAOx), salicylaldoxime (SAOx), and acetaldoxime (AcAOx) as potential substrates. The hexane phase was analyzed via GC-MS/FID. Salicylonitrile was always formed from SAOx likely due to thermal degradation during GC injection. The amounts produced in the sample with recombinant CYP71E76 were not higher than the background, indicating no enzyme activity. In addition, no activity was detectable when the microsomes were incubated with BAOx or AcAOx. EV = empty vector.

UGT85A122	MARDS	-AVEALPGTK	PHAIIVPY <mark>P</mark> A	QG HINPLLKL	A KI L HGRG <mark>G</mark> F	HV T FVNTEYN	ARRLLRSRGP	TSLDDMPG	72
UGT85A123	MSSEQEQS	MKTHVHPNPK	PHAVFIPY <mark>P</mark> A	QG HINPILKL	AKLLHRCH G F	HV T FVHTEYN	HRRLLRSRGP	DSLLGLPG	76
SbUGT85B1		MGSNAPPPPT	PHVVLVPF <mark>P</mark> G	QGHVAPLMQL	ARLLHAR-GA	RV T FVYTQYN	YRRLLRAKGE	AAVRPPATSS	69
UGT75AB1		MAP	PNFLLVTFPG	QGHINPSLRF	AERLIR-IGC	HV T FTTALSA	RRRMSDSKSP	PP	54
AtUGT75B1		MAP	PHFLLVTF <mark>P</mark> A	QGHVNPSLRF	a rr l ikrt g a	RVTCVSV	FHNSMIANHN	KV	55
UGT76AH1	MGTTSSQDFS	TLNQPNIINY	HKVILFPL <mark>P</mark> F	QGHMNSMLQL	AQILHSQ-GF	SV <mark>T</mark> VLHIRYN	PPRPSDHPG-		68
AtUGT76C1		EKRNE	RQVILFPL <mark>P</mark> L	QGCINPMLQL	AKILYSR-GF	SITIIHTRFN	APKSSDHPL-		53
	BUDDWIDD					01100			1 4 0
UGT85A122	FHFETIPD	GLPPVD	ADVMQDVPAL	SDSLSRTCFE	PFVELVSKVN	QHGG	PPATCEVYDA	MMPFVADAAE	140
UGT85A123	FRFETIPD	GLPPTPEDAS	DDVTQDIPSL	CDSTSRTCTA	PFISLVRRLN	AEEGG	PPVSCVVFDG	AMSFALDAME	149
SEUGT85B1	ARFRIEVIDD	GLSL	SVPQNDVGGL	VDSLRKNCLH	PFRALLRRLG	QEVEGQDA	PPVTCVVGDV	VMTFAAAAAR	141
UGT/5AB1	EGLSFATFSD	GYDEGI	KEAELDLDVY	MKEITRRGPE	TLRELILEKR	DRG	TNFTHIFFTI	LMPWAADVAQ	123
Atugr/5B1	ENLSFLTFSD	GEDDGG	ISTYEDROKK	SVNLKVNGDK	ALSDFIEATK	N=====GD	SPVTCLIYTI	LLNWAPKVAR	124
UGT/6AH1	FDFHPVDVPS	PVAEL	EAVEGDTMAL	ISLLNVTCVV	PFRESLENLM	GESSDGGD	-HVACLITDI	CWHFTQAIAD	140
AtUGT/6C1	F.I.FTÖIKD	GLSES	QTQSRDLLLQ	LTLLNNNCQI	PERECLARLI	KPSSDSGTED	RKISCVIDDS	GWVETQSVAE	126
UGT85A122	KFGLPAVAFW	PPAACAIWGV	AQYPKLIEKG	LVPLKDSSYL	SNG-FLDTVI	EWI <mark>P</mark> GIDN-F	RLRDIPTFIQ	TTDPNDIMVH	218
UGT85A123	EFGVPGVAYW	TPSACGVLAY	SYYHKLVEKG	LSPLKDSSYL	TNG-YLDTVV	DWIPGMKKNI	CLRDLPSFIR	TTDPNDVMVN	228
SbUGT85B1	EAGIPEVQFF	TASACGLLGY	LHYGELVERG	LVPFRDASLL	ADDDYLDTPL	EWVPGMSH-M	RLRDMPTFCR	TTDPDDVMVS	220
UGT75AB1	SLGLRSTLVW	IQPATVFDIY	YYHFNGYDQL	IRSSADAAAA	DNGDSRE	IRL <mark>P</mark> GMLP-M	TSSYFPSFLA	SGNQYHFSLP	199
AtUGT75B1	RFQLPSALLW	IQPALVFNIY	YTHFMG		NKSV	FEL <mark>P</mark> NLSS-L	EIRDLPSFLT	PSNTNKGAYD	183
UGT76AH1	EVGIPRMVLR	TTSIGSISAF	SAVSRLQKNG	LLPLPES	QIE	EVI P EVAP-L	RWKDLPIV	PTR-NPKDFF	206
AtUGT76C1	SFNLPRFVLC	AYKFSFFLGH	FLVPQIRREG	FLPVPDS	EAD	DLV P EFPP-L	RKKDLSRIMG	TSA-QSKPLD	194
TTOMO E 3 1 0 0	WATEGUERICO	1/1/2 A			VDQ TVEVCE	INTUI DD W	DEPET MANCO	NUWEDNOOI	200
UGT85A122	IMIRSVEVSS	KKACA	VVFNTFDALE	ADVLRALKSI	IPS-IITVGP	LNLVLDR1	PEEELTAVGS	NLWKEDNSCL	290
OGT85A123	IVIGEIQRIS	QRSSA	LVLNTFDKE	KDVLDALSAI	FPS-VIAIGP	INLMLDRV	SDEDLDSIGS	NLWKEENWCL	300
SDUGT85B1	ATLQQMESAA	G-SKA	LILNTLIELE	ADAVKATORI	FPP-IITVGP	LAEVIASSUS	ASAGLAAMDI	SIWQEDIRCL	293
UGT/SABI	VIKRHFEILN	SERTGIMERK	VLVNTFEELE	AEAVKAIDEL	NVIPVGPFIP	LAFLDEQH	PTDTSLGGDL	FURSEDLDII	2//
Atugr/SBI	AFQEMMEFLI	KETKPK	LINTEDSE	PEALTAPPNI	DMVAVGPLLP	TEIFSG	STNKSV	KDQSSSIT	249
OGT/6AHI	RLLADIDRAT	KACAG	LISNSFELLE	LVALAESERS	TETEFFLIGE	FHARFPS	SSTPVA	GKLLQDQSCI	2/4
ALUGI/6CI	AILLAILDAI	KPASG	TIVMSCKE	RUSLALSNAV	FSIFIFFIG	FRINDVP	A555	STIFFDÖSCI	200
UGT85A122	KWLDSOEHGS	VVYVNFCSIT	VATAEOMT	AWGLANSRMP	FLWVIR	-PDLVVCES-	-AVLPPGFTD	ETS-DRCMIS	362
UGT85A123	HWLDSODLGS	VIYVNFGSIT	VATKEOITDF	AWGLADSKKP	FLWVIR	-PDLVI <mark>G</mark> ES-	-AVLPPGFGD	ATE-GRGILS	372
SbUGT85B1	SWLDGKPAGS	VVYVNF G SMA	VMTAAOAR	ALGLASCGSP	FLWVKR	-PDVVE <mark>G</mark> EE-	-VLLPEALLD	EVARGRGLVV	366
UGT75AB1	DWLNKOOAAS	VIYISFGSLS	LFSRPOKEDM	AKALIAMGRP	FLWVIR	KRMGEEE	EEDDKLS-YE	EELSKLGMIV	349
AtUGT75B1	LWLDSKTESS	VIYVSFGTMV	ELSKKOIEDL	ARALIEGKRP	FLWVITDKSN	RETKTEGEEE	TEIEKIAGFR	HELEEVGMIV	329
UGT76AH1	AWLDKOSPKS	TIYVSFGSIA	SIDERDFLDI	VRGLANSGVP	FLWVVR	-PGSVR <mark>G</mark> HEW	LVTLPPGLLE	GKGHIV	345
AtUGT76C1	PWLDMRETRS	VVYVSLGSIA	SLNESDFL <mark>E</mark> I	ACGLRNTNQS	FLWVVR	-pgsvh <mark>g</mark> rdw	IESLPSGFME	SLD-GKGKIV	334
		pc	PG Box		N				
1107853122	CMCPOFFWIK	HPSTACHITH	SAMMATINGM	SACUDMUCMD	FEADOTNCW	VCKNSMCTCM	FIDHDWKPDK	VECMVKEIME	112
UCT852123	GNCLOEPALK	HPSICCELTH	COUNSMARSV	CSCUPUTCWP	FEAFOOTNCW	VCKNAWGICM	EIDNEVKEDE	VEGNVREIMD	452
CGICTREP1	DUCDONAVIK		COMMENTER	A A CODVI AND	CUCEOTTINCE	OLCEVIICNO	OIDREVERCA	VEGHVRELMD	4.52
3D0G183B1	DUCCOVEVIC	NDGVCCEVEL	COMMODELLEAT	VCCUDMUCED	OWSDOOTNAK	TVEEVMONGA	QUEREVESGA	VENCETERCI	120
A HICH 7 EP1		UDAVCCEVTH	COMCONTROL	VCGVI HVGFI	MMCDODINAK	LIFECHKECK	DUDE NUDCI	VERGEIERCE	100
HCUGI/JBI	VWADODEVIA	UDGVCARWTH	NCWNSTTEAT	CECUDMISSD	MECDODUNAD	UVGDVMDVGT	NVKE-NKDGL	TANCTORING	400
A+UCT76C1			NOWNSTINGT	CECUPMICIP	CKWDOEUNAR	FIGENMENCI	NIEGELGKDE	TEDAVIDIMU	42.0
ACOGI/OCI	AWAFQLDVLA		Consens			FISEV AND	ILLGRIERRE	IERRVIRDAV	414
			consens						
UGT85A122	GEKG	KIMKRRAAGW	RSAAEKAVAP	GGSSYKNLEK	LLSLLLPKK-		485		
UGT85A123	GEKG	KOMKRRAAEW	KAAAEEAAAP	GGSSHQNLEK	LVALLLSEQ-		495		
SbUGT85B1	GDLG	KIKRAKAAEW	KAAAEAAARK	GGASWRNVER	VVNDLLLVGG	KQ	492		
UGT75AB1	EVVLGDGEKG	RELRGNAKKW	GELAKKAAKD	GGSSDNNLRR	FVDGL	VKGTASSE	482		
AtUGT75B1	EAVMEEKS	VILRENAKKW	KRLAMEAGRE	GGSSDKNMEA	FVEDICGESL	IQNLCEAEEV	KVK 469		
UGT76AH1	DSSSSKER	EDMMKRVMDL	KMKVDGCLKP	GGSSYKSLQK	LTCYLFSSCQ	PEKL	477		
AtUGT76C1	ESKG	EBIRGRIKVL	RDEVRRSVKQ	GGSSYRSLDE	LVDRISIIIE	PLVPT	463		

Supplemental Figure S19: Amino acid sequence alignment of candidate UGTs and characterized UGTs from Sorghum and Arabidopsis. The alignment was achieved with the ClustalW algorithm using BioEdit. Black shading corresponds to conserved residues, dark grey shades mark residues identical in six of the sequences, and residues with light grey shading are identical in five of the sequences. Conserved motifs are indicated (Gachon et al., 2005), PSPG: plant secondary product glycosyltransferase.

Substrate	Structure	UGT85A122	UGT85A123	UGT75AB1	UGT76AH1
PAOx	N. OH	yes	yes	yes	no
salicylaldoxime	OH N'OH	yes	yes	yes	no
benzaldoxime	N [*] OH	yes	yes	yes	no
β -mandelonitrile	C C C	yes	yes	no	no
salicylic acid	ОНОН	no	no	yes	no
4-OH-benzoic acid	ОН	no	no	yes	no
gallic acid	но он но он	no	no	yes	no
quercetin	HO OH OH OH	no	no	yes	yes
epicatechin	ОН НО ОН ОН ОН ОН	no	no	no	no
geraniol	ОН	yes	yes	no	yes
oct-1-en-3-ol	OH	yes	yes	no	yes

Supplemental Figure S20: Activity of UGT85A122, UGT85A123, UGT75AB1, and UGT76AH1 towards various substrates. Candidate UGT genes were heterologously expressed in *Escherichia coli* and the purified enzymes used for activity assays with various substrates. Compounds were detected with LC-qTOF-MS.

Supplemental Figure S21: Substrate affinity of UGT85A122, UGT85A123, and UGT75AB1 towards PAOx. Heterologous expression in *E. coli* and activity assays showed that three candidate UGTs were able to use PAOx as substrate. To compare their substrate affinities, 10 μ g of the purified enzymes were incubated with various concentrations of PAOx for 30 min. Product formation was detected with targeted LC-MS/MS. Means ± SEM are shown (n = 3).

Supplemental Figure S22: Reconstitution of the formation of benzyl cyanide and phenylacetaldoxime glucoside in *Nicotiana benthamiana* by overexpression of tococa *CYP79*, *CYP71* and *UGT* genes. *N. benthamiana* was transformed with different combinations of recombinant *Agrobacterium tumefaciens* strains possessing CYP79A206, CYP79A207, CYP71E76, or UGT85A123, respectively. Accumulation of compounds was detected with targeted LC-MS/MS and GC-MS/FID. Means \pm SEM are shown; n = 4-7. One-Way ANOVA ($F_{PAOx} = 372.2$, p<0.001; $F_{benzyl cyanide} = 32.34$, p<0.001) or linear (gls) model (L-ratio_{PAOx-Glc} = 144.0, p<0.001) and Tukey *post hoc* test on log transformed data, different letters indicate p<0.05; n.d., not detectable. (A) Overview of the pathway and quantification of the compounds of interest in the different plants. (B) Chromatogram from GC-MS analysis of the samples. FW, fresh weight. TIC: total ion chromatogram. IS: internal standard.

Supplemental Figure S23: Relative temporal distribution of PAOx and PAOx-Glc in herbivore-damaged *Tococa quadrialata* leaves (see Figure 5). Leaves were exposed to herbivory by *Spodoptera littoralis* caterpillars for 24 hours and the accumulation of PAOx and PAOx-Glc was monitored for ten days. Compounds were extracted with methanol from leaf powder and analyzed using targeted LC-MS/MS. Here, we show the levels of PAOx and PAOxGlc relative to the respective concentration at the start of the experiment (t = 0d). Asterisks indicate significant differences to respective control (0d) based on One-Way ANOVA on log-transformed data ($F_{5,18,PAOx} = 41.03$, $F_{5,18,PAOxGlc} = 12.96$, $p_{PAOx,PAOxGlc} \leq 0.001$) and Dunnett's *post hoc* test. Means ± SEM are shown; n = 3-5.

Supplemental Figure S24: Gene expression of CYP71E76, CYP79A206/207, and UGT85A123, and formation of benzyl cyanide in tococa leaves in response to different treatments (see Figure 6). Leaves were sprayed with jasmonic acid (JA), oral secretion (OS), or water (H₂O) after mechanical wounding or without further treatment. *S. littoralis* feeding served as a positive control. Volatiles were collected throughout the 24 h (after the) treatment, and quantified by GC-FID (**A**). Means ± SEM are shown; n = 6-11. Asterisk indicates significant accumulation of benzyl cyanide (> 0) based on Wilcoxon signed rank test, * = p<0.05. All leaves were harvested 24 h after the (beginning of the) respective treatment, RNA extracted from leaf tissue, transcribed to cDNA, and RT-qPCRs performed (for primers see Supplemental Table S12) with actin as housekeeping gene (**B**,**C**,**D**,**E**). Relative expression was calculated with the $\Delta\Delta$ Ct method (Pfaffl, 2001). Different letters indicate significant differences (p<0.05) between treatments based on One Way ANOVAs ($F_{CYP71E76} = 5.842$, p = 0.001; $F_{UGT85A123} = 10.66$, p < 0.001) or GLS linear models (L-ratio_{CYP79A206} = 33.36, L-ratio_{CYP79A207} = 40.15, p < 0.001) analyses on log transformed data and subsequent Tukey *post hoc* tests.

Methodology: cDNA synthesis from 900 ng RNA was performed with the SuperScriptTM III First-Strand Synthesis Kit (Thermo Scientific) using oligo $(dT)_{12-18}$ primers according to the manufacturer's instructions. The obtained cDNA was diluted 1:10 with ddH₂O. Primer pairs were designed to amplify the respective gene (Supplemental Table S12), and their specificity confirmed by agarose gel electrophoresis, melting curve, and standard curve analysis. Samples were run in an optical 96-well plate on the CFX Connect Real-Time PCR System (Bio-Rad) with the Brilliant III Ultra-Fast SYBR Green QPCR Master Mix (Agilent). PCR conditions are given in Supplemental Table S11. All samples were run in triplicates. Normalized fold expression was calculated with the $\Delta\Delta$ CP method (PfaffI, 2001).

Supplemental Figure S25: Deglycosylation of amygdalin by gut enzymes of different caterpillars. Gut extracts of *Heliothis virescens*, *Spodoptera littoralis*, and *Lymantria dispar* were tested for their ability to form prunasin from amygdalin. Targeted LC-MS/MS analysis revealed glucosidase activities for all tested gut extracts. Boiled extracts were used as negative controls. Cps: counts per second.

Supplemental Figure S26: Deglycosylation of amygdalin but not PAOx-Glc by crude enzyme extracts of various plant species. Plant extracts of herbivore-damaged leaves of *Glycine max* (A), *Tococa quadrialata* (B), and *Tabernaemontana divaricata* (C) were tested for their ability to form prunasin from amygdalin and PAOx from PAOx-Glc. Targeted LC-MS/MS analysis revealed glucosidase activities towards amygdalin for these extracts. Boiled extracts served as negative controls. Cps: counts per second.

poplar leaves

Supplemental Figure S27: Identification of PAOx-GIc in different plant species upon biotic stress. Blue: PAOx-GIc accumulation in Western balsam poplar (*Populus trichocarpa*) leaves upon *Lymantria dispar and Chrysomela populi* feeding. Leaves were extracted with methanol and PAOx(-GIc) detected using LC-MS/MS. One-Way ANOVA ($F_{PAOx} = 411.2$, p<0.001; $F_{PAOx-GIc} = 125.1$, p<0.001) with Tukey *post hoc* on log transformed data, different letters indicate significant differences (p<0.05); Means ± SEM are shown; n = 8; DW, dry weight. Yellow: soybean cell cultures release PAOx and PAOx-GIc upon induction with raw elicitor (RE) from the oomycete *Phytophthora sojae*. The supernatant of the cell cultures was analyzed using LC-MS/MS. Student's t-test; **: p<0.01; Means ± SEM are shown; n = 6. Green, brown: *Spodoptera littoralis*-wounded leaves of crape jasmine (*Tabernaemontana divaricata*) produce PAOx and PAOx-GIc. Leaves were extracted with methanol and PAOx(-GIc) detected using LC-MS/MS. One-Way-ANOVA ($F_{PAOx} = 58.06$, p<0.001; $F_{PAOx-GIc} = 34.38$, p<0.001) with Tukey *post hoc* on log transformed data, different letters indicate significant differences (p<0.05); Means ± SEM are shown; n = 3; FW, fresh weight.

Supplemental Figure S28: Negative effects of PAOx on the growth of several plant pathogenic bacteria. The effect of PAOx on gram-negative (*Agrobacterium tumefaciens*, *Pseudomonas syringae*) and gram-positive (*Curtobacterium flaccumfaciens*, *Clavibacter michiganensis*) bacteria strains was tested in a bacterial growth assay in microtiter plates. Growth of the cultures was monitored over 22 h by measuring the OD₆₀₀ every 30 min. Data are shown as means ± SD; n = 3-6. Different letters indicate significant differences (p<0.05) between treatments after 22 h. *C. michiganensis*: log transformed; one-way ANOVA ($F_{c.michiganenis} = 1771$, p <0.001; $F_{A.tumefaciens} = 184.1$, p <0.001, $F_{P.syringae} = 108.8$, p <0.001) with Tukey HSD posthoc test or Kruskal-Wallis test ($\chi^2_{C.flaccumfaciens}$ (highconc) = 20.98, p <0.001; $\chi^2_{C.flaccumfaciens}$ (lowconc) = 3.317, p = 0.19) followed by multiple pairwise comparisons using Wilcoxon rank sum tests with a Holm correction.

Supplemental Figure S29: Several plant pathogenic bacteria are able to deglycosylate PAOx-Glc. Gram-negative (*Agrobacterium tumefaciens*) and gram-positive (*Curtobacterium flaccumfaciens*, *Clavibacter michiganensis*) bacteria strains were tested for their ability to deglycosylate PAOx-Glc. Bacteria were grown in the presence of PAOx-Glc for 24 h in a microtiter plate, and the LB-medium was analyzed afterwards using liquid chromatography-tandem mass spectrometry (LC-MS/MS).

Supplemental Figure S30: Phylogenetic tree of candidate UGTs from tococa. The phylogenetic relationship of 7 putative *Tococa quadrialata* UGTs with already characterized UGTs of the respective subfamilies from other plants is shown. The tree was inferred with the Neighbor-joining method and n = 1000 replicates for bootstrapping. Bootstrap values are shown next to each node. The scale indicates in the number of substitutions per site. Putative UGTs from tococa are shown in italics, the characterized ones in bold. GjUGT94E5 (BAK55744.1) was used as an outgroup. UGT: family 1 UDP-glycosyltransferase.

Supplemental Figure S31: Phylogenetic tree of characterized UGTs of the subfamily 85. The phylogenetic relationship of UGT85s involved in the biosynthesis of hydroxynitrile-glucosides with UGT85 using other substrates is shown. The tree was inferred with the Maximum-Likelihood method and n = 1000 replicates for bootstrapping. Bootstrap values are shown next to each node. The scale indicates in the number of substitutions per site. The characterized UGT85s from tococa are shown in bold, UGTs involved in the biosynthesis of cyanogenic glucosides in green, of non-cyanogenic hydroxynitrile-glucosides in blue, and those using different compound classes as substrates in grey. PfA5GT (Q9ZR27) was used as an outgroup. UGT: family 1 UDP-glycosyltransferase.

Supplemental Table S1: UGT candidate genes for the glycosylation of PAOx-Glc.

Feature ID	P- value	Fold change	ctr - Mean RPKM	herb - Mean RPKM	UGT sub- family	Length	SWISSPROT: Description	NCBI: Description
contig_533	0.000	7	32	221	UGT85	1928	UGT2_GARJA ame: Full=7- deoxyloganetin glucosyltransferase ame: Full=Genipin glucosyltransferase ame: Full=UDP-glucose glucosyltransferase 2 Short= 2 ame: Full=UDP- glycosyltransferase 85A24	7-deoxyloganetin glucosyltransferase- like
contig_7014	0.000	4	15	67	UGT85	2692	UGT2_GARJA ame: Full=7- deoxyloganetin glucosyltransferase ame: Full=Genipin glucosyltransferase ame: Full=UDP-glucose glucosyltransferase 2 Short= 2 ame: Full=UDP- glycosyltransferase 85A24	7-deoxyloganetin glucosyltransferase- like isoform X1
contig_4253	0.002	2	16	38	UGT85	1657	UGT2_GARJA ame: Full=7- deoxyloganetin glucosyltransferase ame: Full=Genipin glucosyltransferase ame: Full=UDP-glucose glucosyltransferase 2 Short= 2 ame: Full=UDP- glycosyltransferase 85A24	7-deoxyloganetin glucosyltransferase
contig_24179	0.001	6	3	16	UGT85	1176	U85A3_ARATH ame: Full=UDP- glycosyltransferase 85A3	7-deoxyloganetin glucosyltransferase
contig_9632	0.022	5	1	5	UGT85	1630	UGT2_GARJA ame: Full=7- deoxyloganetin glucosyltransferase ame: Full=Genipin glucosyltransferase ame: Full=UDP-glucose glucosyltransferase 2 Short= 2 ame: Full=UDP- glycosyltransferase 85A24	7-deoxyloganetin glucosyltransferase
contig_23826	0.001	15	0	6	UGT76	1597	U76B1_ARATH ame: Full=UDP- glycosyltransferase 76B1	UDP- glycosyltransferase 76C2
contig_329	0.012	2	7	15	UGT76	2943	UGT7_CATRO ame: Full=UDP-glucose iridoid glucosyltransferase ame: Full=UDP-glucose glucosyltransferase 7 Short= 7 ame: Full=UDP- glycosyltransferase 76A2	UDP-glucose iridoid glucosyltransferase
contig_20911	0.007	4	67	237	UGT75	1978	UGT1_GARJA ame: Full=Crocetin chloroplastic ame: Full=UDP-glucose glucosyltransferase 1 Short= 1 ame: Full=UDP-glycosyltransferase 75L6 Flags: Precursor	crocetin chloroplastic
contig_11576	0.045	3	1	5	UGT75	1121	UGT1_GARJA ame: Full=Crocetin chloroplastic ame: Full=UDP-glucose glucosyltransferase 1 Short= 1 ame: Full=UDP-glycosyltransferase 75L6 Flags: Precursor	crocetin chloroplastic
contig_5159	0.000	3	17	54	UGT73	1855	SCGT_TOBAC ame: Full=Scopoletin glucosyltransferase ame: Full=Phenylpropanoid:glucosyltransferase	scopoletin glucosyltransferase
contig_5158	0.000	5	8	44	UGT73	1042	SCGT_TOBAC ame: Full=Scopoletin glucosyltransferase ame: Full=Phenylpropanoid:glucosyltransferase 1	scopoletin glucosyltransferase
contig_9912	0.045	2	3	8	UGT73	1858	SCGT_TOBAC ame: Full=Scopoletin glucosyltransferase ame: Full=Phenylpropanoid:glucosyltransferase 1	scopoletin glucosyltransferase
contig_9005	0.021	3	3	7	UGT83	1627	U83A1_ARATH ame: Full=UDP- glycosyltransferase 83A1	UDP- glycosyltransferase 83A1
contig_8815	0.003	2	21	47	UGT89	1638	U89A2_ARATH ame: Full=UDP- glycosyltransferase 89A2	UDP- glycosyltransferase 89A2-like

All contigs of the *de novo* assembly encoding glycosyltransferase family 1 type glycosyltransferases with a minimum sequence length of 1000 bp that are significantly upregulated upon herbivore damage (p<0.05, fold change ≥ 2) are listed. Sequences chosen for further characterization are in bold. Selection was based on UGT subfamily, RPKM values and fold change in herbivore-damaged samples.

Supplemental Table S2: Growth cone	ditions for Tococa quadrialata.
------------------------------------	---------------------------------

Greenhouse cond	itions				
Temperature					
Day:	23-25 °C				
Night:	16-18 °C				
Humidity	70%				
Light/dark cycle	16 h/8 h				
composition of the soil					
Percentage	Material				
25%	Klasmann potting substrate (Klasman-Deilmann, Geeste, Germany)				
25%	Latvian white peat				
25%	pine bark (7-15 mm)				
12.5%	Legaton (5-7 mm)				
12.5%	sand				
Inoculated with	BioMyc [™] Vital Mykorrhiza (BioMyc, Brandenburg, Germany).				

Gradient	HPLC	Solvents	Flow	Time	Temperature	Solvent A	Solvent B
		(A/B)	(µl/min)	(min)	(°C)	(%)	(%)
A1	Agilent	0.2% FA in	1100	0	25 °C	90	10
	1200	ddH ₂ O (A),		4		30	70
		Acetonitrile		4.1		0	100
		(B)		5		0	100
				5.1		90	10
				8		90	10
A2	Agilent	0.05% FA	1100	0	20 °C	90	10
	1260	in ddH₂O,		4		30	70
		Acetonitrile		4.1		0	100
		(B)		5		0	100
				5.1		90	10
				8		90	10
В	Agilent	0.05% FA	1100	0	20 °C	95	5
	1260	in ddH₂O,		0.5		95	5
		Acetonitrile		4		50	50
		(B)		4.1		0	100
				4.5		0	100
				4.6		95	5
				7		95	5
С	Agilent	0.05% FA	1100	0	20 °C	95	5
	1260	in ddH₂O,		0.5		95	5
		Acetonitrile		6		62.6	37.4
		(B)		6.02		80	80
				7.5		0	100
				9.5		0	100
				9.52		95	5
				12		95	5

Supplemental Table S3: Chromatographic gradients for the analysis of jasmonates, aldoximes, and prunasin using an LC-TripleQuad-MS system.

All separations were achieved on a Zorbax Eclipse XDB C18 column (50 mm 4.6 mm, 1.8 µm, Agilent Technologies). For MS parameters, see Supplemental Table S4.

Supplemental Table S4: MRM parameters for the LC-MS/MS analysis of jasmonates, aldoximes, and prunasin using an LC-TripleQuad-MS system.

•	· ·		•		•			
compound	Mass	mode	HPLC	Q1	Q3	DP	CE	Retention
	spectrometer		gradient			(V)	(V)	time (min)
(<i>E/Z</i>)-phenyl-	API5000	pos	A1	136.1	119.1	56	17	3.5; 3.7
acetaldoxime	API6500	pos	A2	136.1	119.1	30	17	3.4; 3.6
Phenylacetald-	API5000	pos	A1	298.0	136.0	70	13	2.5
oxime glucoside	API6500	pos	A2	298.0	136.0	30	13	2.5
Prunasin	API6500	neg	В	340.0	59.0	-40	-56	3.4
JA	API6500	neg	С	209.1	59.0	-30	-24	7.2
D ₆ -JA	API6500	neg	С	215.1	59.0	-30	-24	7.2
D ₅ -JA	API6500	neg	С	214.1	59.0	-30	-24	7.2
JA-Ile	API6500	neg	С	322.2	130.1	-30	-30	7.3
D ₆ -JA-IIe	API6500	neg	С	328.2	130.1	-30	-30	7.3
D ₅ -JA-Ile	API6500	neg	С	327.2	130.1	-30	-30	7.3

All separations were achieved according to Supplemental Table S3.

Supplemental Table S5: Non-target metabolite analysis by LC-ESI-Q-ToF-MS.

Chromatographic gradients for untargeted metabolite analysis using ultra-high-performance liquid chromatography–electrospray ionization– high resolution mass spectrometry (UHPLC– ESI–HRMS)

	,						
HPLC	column	Solvents	Flow	Time	Temperature	Solvent	Solvent B
		(A/B)	(µl/min)	(min)	(°C)	A (%)	(%)
Dionex	Zorbax	0.1% FA in	300	0	25 °C	95	5
Ultimate	Eclipse	ddH ₂ O (A),		0.5		95	5
3000	XDB-C18	Acetonitrile		11		40	60
series	column	(B)		11.1		0	100
UHPLC	(100 mm ×			12		0	100
(Thermo	2.1 mm,			12.1		95	5
Scientific)	1.8 µm,			15		95	5
	Agilent)						
Parameter	s of the Brul	ker timsToF n	nass spectro	ometer (Br	uker Daltonics, E	Bremen, Ge	rmany)
Mode	Capillary	End plate	Nebulizer	Drying	Acquisition	Mass	Data
	voltage	offset (V)	pressure	gas	(Hz)	range	processing
	(kV)		(bar)	_		(m/z)	software
positive	4.5	500	2.8	Nitrogen	12	50-1500	MetaboScape
-				(8L/min,			(Bruker
				280°C)			Daltonics)
negative	-3.5	500	2.8	Nitrogen	12	50-1500	MetaboScape
_				(8L/min,			software
				280°C)			(Bruker
				/			Daltonics)

At the beginning of each chromatographic analysis 10μ L of a sodium formate-isopropanol solution (10 mM solution of NaOH in 50/50 (*v*/*v*) isopropanol- water containing 0.2% formic acid) was injected into the dead volume of the sample injection for recalibration of the mass spectrometer using the expected cluster ion *m*/*z* values.

	hexane extracts					
Initial temperature	60°C	2 min				
Ramp I	60°C					
	\downarrow	6°C/min				
	160°C					
Ramp II	160°C					
	\downarrow	60°C/min				
	300°C					
Final temperature	300 °C	2 min				

Supplemental Table S6: Temperature profile of benzyl cyanide measurements by GC-FID and GC-MS.

Supplemental Table S7: Parameters used for the *de novo* assembly.

Assembly parameters		
Word size	35	—
Bubble size	650	
Quality of the de novo assen	nbly	
total contigs	49,957	
N50	1,659	
Complete BUSCOs*	78.5%	
Missing BUSCOs*	10.2%	
Annotation		
BLAST2GO [#]	Swiss-Prot, NCBI	
*Benchmarking Universal Single	e-Copy Orthologs (BUSCO) ar	nalysis (https://busco.ezlab.org/, last

accessed on 04.02.2022; (Simao et al., 2015))

#(Gotz et al., 2008)

Name	Sequence	Usage
CYP79A206_subc_fwd	ATGAATATTTCTGCTTCCGCC	cloning, in pJET1.2/blunt
CYP79A206_subc_rev	CTAGAATGACGGGTAAAGGTG	cloning, in pJET1.2/blunt
CYP79A207_subc_fwd	ATGAATATTTCCGCTTACGC	cloning, in pJET1.2/blunt
CYP79A207_subc_rev	CTAGAATGATGGGTAAAGGTG	cloning, in pJET1.2/blunt
CYP71E76_subc_fwd	ATGTCTTCTACAATTATTTCCTTC	cloning, in pJET1.2/blunt
CYP71E76_subc_rev	TTAATTATATTTAGTTGGAACCAAACG	cloning, in pJET1.2/blunt
UGT85A123_subc_fwd	ATGAGTTCTGAACAAGAACAGAGC	cloning, in pJET1.2/blunt
UGT85A123_subc_rev	TCATTGCTCGGAAAGAAGCAGTG	cloning, in pJET1.2/blunt
CYP79A206_ Notl_fwd	CAA <u>GCGGCCGC</u> AATGAATATTTCTGCTTCCG	cloning, in pESC-Leu2d
CYP79A206_Pacl_rev	GTC <u>TTAATTAA</u> CTAGAATGACGGGTAAAGGTG	cloning, in pESC-Leu2d
CYP79A207_ Spel_fwd	AAGACTAGTAATGAATATTTCCGCTTACGC	cloning, in pESC-Leu2d
CYP79A207_Sacl_rev	ACA <u>GAGCTC</u> CTAGAATGATGGGTAAAGGTG	cloning, in pESC-Leu2d
CYP71E76_Spel_fwd	TAA <u>ACTAGT</u> AATGTCTTCTACAATTATTTCCTTC	cloning, in pESC-Leu2d
CYP71E76_Sacl_rev	ACG <u>GAGCTC</u> TTAATTATATTTAGTTGGAACCAAAC	cloning, in pESC-Leu2d
CYP79A206_USER_fwd	GGCTTAAU ATGAATATTTCTGCTTCCGCCG	cloning, in pCAMBIA2300U
CYP79A206_USER_rev	GGTTTAAU CTAGAATGACGGGTAAAGGTGC	cloning, in pCAMBIA2300U
CYP79A207_USER_fwd	GGCTTAAU ATGAATATTTCCGCTTACGCCG	cloning, in pCAMBIA2300U
CYP79A207_USER_rev	GGTTTAAU CTAGAATGATGGGTAAAGGTGC	cloning, in pCAMBIA2300U
CYP71E76_USER_fwd	GGCTTAAU ATGTCTTCTACAATTATTTCCTTCCC	cloning, in pCAMBIA2300U
CYP71E76_USER_rev	GGTTTAAU TTAATTATATTTAGTTGGAACCAAACGC	cloning, in pCAMBIA2300U
UGT85A123_USER_fwd	GGCTTAAU ATGAGTTCTGAACAAGAACAGAGC	cloning, in pCAMBIA2300U
UGT85A123_USER_rev	GGTTTAAU TCATTGCTCGGAAAGAAGCAGTG	cloning, in pCAMBIA2300U
UGT76AH1_pET100_fwd		cloning, in pET100
UGT76AH1_pET100_rev	TTATAATTTTTCCGGTTGGCATGAG	cloning, in pET100

Supplemental Table S8: Primers used for cloning.

Primer name indicates the gene to be amplified. The important sequence motif for cloning in the respective vector is underlined or in bold

Supplemental Table S9: Codon-optimized ORF of tococa UGTs for expression in *Escherichia coli*.

Encoded	Codon optimized nucleotide sequence
enzyme	
UGT85A122	ATGGCACGTGATAGCGCAGTTGAAGCACTGCCTGGCACCAAACCGCATGCAATTATTGTTCCGTATCCG
00100/(122	GCACAGGGTCATATTAATCCGCTGCTGAAACTGGCAAAAATTCTGCATGGTCGTGGTGGTTTTCATGTGA
	CCTTTGTTAATACCGAATATAACGCACGTCGTCTGCTGCGTAGCCGTGGTCCGACCAGCCTGGATGATAT
	GCCAGGTTTTCATTTTGAAACCATTCCGGATGGTCTGCCTCCGGTTGATGCAGATGTTATGCAGGATGTT
	CCGGCACIGAGCGATAGCCIGAGCCGIACCIGITIGAACCGIIIGIIGAACGGIIAGCAAAGIGAATC
	ACCGTGATTGAATGGATTCCGGGTATTGATAATTTTCGCCTGCGTGATATTCCGACCTTTATTCAGACCAC
	CGATCCGAATGATATTATGGTGCATTACATGATTCGTAGCGTTGAAGTGAGCAGCAAAAAAGCATGTGCC
	GTTGTGTTTAATACCTTTGATGCACTGGAAGCAGATGTTCTGCGTGCACTGAAAAGCATTTATCCGAGCAT
	TTATACCGTTGGTCCGCTGAATCTGGTTCTGGATCGTTATCCGGAAGAAGAACTGACCGCAGTTGGTAGC
	AATCTGTGGAAAGAAGATAATAGCTGTCTGAAATGGCTGGATAGCCAAGAACATGGTAGCGTTGTTTAG
	TTTACCGATGAAACCAGCGGTCGTTGTATGATTACCGGTGGTGGTGCGCAAGAAGAAGTCTGAAACA
	CCGAGTATTGGTGGCTTTCTGACCCATAGTGGTTGGAATAGCACCCTGGAAAGCATGAGTGCCCGGTGTT
	CCGATGGTTTGTTGGCCGTTTTTTGCCGATCAGCAGACCAATTGTTGGTATGGTAAAAATAGCTGGGGTA
	TCGGCATGGAAATTGATCATGATGTGAAACGCGATAAAGTGGAAGGTATGGTTAAAGAACTGATGGAAGG
	TGAAAAGGGCAAAGAAATGAAACGTCGTGCAGCAGGTTGGCGTAGCGCAGCCGAAAAAGCAGTTGCCC
UGT85A123	
	CTGCTGGGTCTGCCTGGTTTTCGTTTTGAAACCATTCCGGATGGTCTGCCTCCGACCCGGAAGATGCA
	AGTGATGATGTTACCCAGGATATTCCGAGCCTGTGTGATAGCACCAGCCGTACCTGTACCGCACCGTTTA
	TTAGCCTGGTGCGTCGTCTGAATGCCGAAGAAGGTGGTCCGCCTGTTAGCTGTGTTGTTTTTGATGGTG
	CAATGAGCTTTGCACTGGATGCAGCCGAAGAATTTGGTGTTCCGGGTGTTGCATATTGGACCCCGAGCG
	CATGTGGTGTTCTGGCATATAGCTATTATCATAAGCTGGTCGAAAAAGGTCTGAGTCCGCTGAAAGATAG
	TTAGTGATGAAGATCTGGATAGCATTGGTAGCAATCTGTGGAAAGAAGAAAATTGGTGTCTGCATTGGCT
	GGATAGCCAGGATCTGGGTAGCGTTATTTATGTTAATTTTGGCAGCATTACCGTGGCAACCAAAGAGCAG
	ATTACCGAATTTGCATGGGGTTTAGCAGATAGCAAAAAACCGTTTCTGTGGGTTATTCGTCCGGATCTGG
	TTATTGGTGAAAGGCGCAGTTCTGCCTCCAGGTTTTGGTGATGCAACCGAAGGTCGTGGTATTCTGAGCG
	GIIGGIGICGCAAGAACIGGIGCIGAAACAICCGAGCAIIGGIGGIIIIICIGACCCAIIGIGGIIGGAA
	AATGTTGGTAGGTAAAAATGCCTGGGGTATTGGCATGGAAATGAAGTGAAACGCGACGAG
	TTGAAGGTATGGTTCGTGAACTGATGGGTGGCGAAAAAGGCAAAGAAATGAAACGTCGTGCAGCAGAAT
	GGAAAGCAGCCGCAGAAGAGGCAGCAGCACCTGGTGGTAGCAGCCATCAGAATCTGGAAAAACTGGTT
	GCACTGCTGCTGAGCGAACAGTAA
UGT75AB1	ATGGCACCGCCTAATTTTCTGCTGGTTACCTTTCCTGGTCAGGGTCATATTAATCCGAGCCTGCGTTTTG
	CAGAACGTCTGATTCGTATTGTCATGTTACCTTTACCACCGCACGTCGTCGTCGTCGTCGTATGAG
	GACTGATTCTGGAAAAACGTGATCGTGATCGTGCACCAATTTTACCCACATCTTTTTACCATCTGATGCGGG
	GGCAGCAGATGTTGCACAGAGCCTGGGTCTGCGTAGCACCCTGGTTTGGATTCAGCCTGCAACCGTTTT
	TGATATCTACTACTACCACCTCAACGGCTATGACCAGCTGATTCGTTCAAGCGCAGATGCAGCAGCAGCA
	GATAATGGTGATAGCCGTGAAATTCGTCTGCCTGGTATGCTGCCGATGACCAGCAGCTATTTTCCGAGCT
	TTCTGGCAAGCGGTAATCAGTATCATTTTTCACTGCCGGTGATCAAACGCCATTTTGAAATTCTGAATAGC
	GAAAAAAACCGGCACCA I GAAACCGGAAAG I I CI GG I I AA I ACC I I I GAAGAAC I GGAAGAAGACCG I I A
	AATAAACAGCAGGCAGGCAGCGTTATCTATATTAGCTTGGTAGCCTGAGCCTGTTAGCCGGCCG
	AAGAAGAAATGGCAAAAGCACTGATTGCAATGGGTCGTCCGTTTCTGTGGGTTATTCGTAAACGTATGGG
	TGAAGAAGAGGAAGAGGACGATAAACTGAGCTATGAAGAAGAACTGAGCAAACTGGGTATGATTGTTCC
	GTGGTGTAGCCAGGTTGAAGTTCTGAGCAATCCGAGCGTTGGTTG
	AGCACCAGCGAAAGCCTGGTTTGTGGTGTTCCGATGGTTGGT
	ATCTGCGTCGTTTTGTTGATGGTCTGGTTAAAGGCACCGCAAGCAGCGAATAA

Supplemental Table S10: Buffers.

Name	Ingredients	рН	
UGT	50 mM disodium hydrogen phosphate	7.4	
resuspension	500 mM sodium chloride		
buffer	10 mM imidazole		
	10% glycerol		
	10 ⁻² v/v protease inhibitor Mix HP (SERVA, Heidelberg,		
	Germany)		
	10 ⁻⁴ v/v Novagen® Benzonase® Nuclease (Merck)		
	25,000 U/ml lysozyme (AppliChem, Darmstadt, Germany)		
UGT assay	50 mM Tris-HCI	7.5	
buffer	10% glycerol		
Gut protein	50 mM citric acid	6.5	
extraction buffer	100 mM disodium hydrogen phosphate		
	5x10 ⁻³ v/v protease inhibitor Mix HP (SERVA)		
Tococa protein	25 mM HEPES	7.2	
extraction buffer	3% PVPP		
	1% PVP		
	4% Amberlite XAD4		
	1 mM EDTA		
	5 mM Na ₂ HSO ₃		
	5 mM DTT		
	5x10 ⁻³ v/v protease inhibitor cocktail III (Calbiochem)		
Glucosidase	50 mM citric acid	6.5	
assay buffer	100 mM disodium hydrogen phosphate		
Infiltration buffer	10mM MES	5.7	
	10mM MgCl ₂		
	100 µM acetosyringone		
LB selection	LB media	n.a.	
media	50 µg/ml kanamycin		
	10 µg/ml rifampicin		
	25 µg/ml gentamicin		

		<u> </u>		
Phase	Time Temperatur		Temperature	
	Figure S24	Figure S13		
Initial denaturation	3 min	3 min	95 °C	
denaturation	10 s	20 s	95 °C]	
Annealing and extension	10 s	20 s	60 °C -	40×
Plate read				
Final denaturation	1 min	1 min	95 °C	
Melting curve	5 s	5 s	55 °C→ 95 °C	

Supplemental Table S11: Thermocycler program for RT-qPCR.

Name	Sequence	Amplicon length
CYP79A206_qPCR_fwd	CGACCTTCGTGTTACTTTACGC	140 bp
CYP79A206_qPCR_rev	ACGGGCTTGTTAGAGAGCATC	140 bp
CYP79A207_qPCR_fwd	ACCTTCGTCGTGCTTTACGC	150 bp
CYP79A207_qPCR_rev	TCCAACGGAACACTGGCTTG	150 bp
CYP71E76_qPCR_fwd	CGGAAACCTTCACCAACTCGG	140 bp
CYP71E76_qPCR_rev	GCACCTCCTTAGCCATCTCG	140 bp
UGT85A123_qPCR_fwd	CCCCCGTTAGTTGCGTAGTG	200 bp
UGT85A123_qPCR_rev	CGACCGTGTCCAAGTATCCGT	200 bp
UGT85A122_qPCR_fwd	ATCCCCACATTCATCCAGACGACC	140 bp
UGT85A122_qPCR_rev	CGACTTCAAGGCACGCAGAAC	140 bp
UGT75AB1_qPCR_fwd	TTCAACCCGCCACCGTCTTC	300 bp
UGT75AB1_qPCR_rev	GCCTTCACCGCTTCTGCCT	300 bp
Actin_fwd	CTCTGGTGATGGTGTCAGTCAC	140 bp
Actin_rev	TGTAACCCCTTTCGGTGAGG	140 bp

Supplemental Table S12: List of primers used for RT-qPCR.

Name	Accession	Plant species	Name	Accession	Plant species
	number			number	
CYP79 enzym	CYP79 enzymes				
AtCYP79A2	ANM70027.1	Arabidopsis thaliana	MeCYP79D1	AAF27289	Manihot esculenta
AtCYP79B2	AEE87143.1	Arabidopsis thaliana	PtCYP79D6	AHF20912	Populus trichocarpa
AtCYP79F1	AEE29448	Arabidopsis thaliana	PtCYP79D7	AHF20913	Populus trichocarpa
AtCYP79F2	AAG24796	Arabidopsis thaliana	JaCYP79A68	BAP15883.1	Prunus mume
EcoCYP79D62	AOW44274	Erythroxylum coca	JaCYP79D16	BAP15884.1	Prunus mume
EfCYP79D60	KX344462	Erythroxylum fischeri	SaCYP79B1	AAD03415	Sinabis alba
EcCYP79A125	AYN73067	Eucalyptus cladocalyx	SbCYP79A1	AAA85440.1	Sorghum bicolor
LjCYP79D4	AAT11921.1	Lotus japonicus	TmCYP79E1	AAF66543	Triglochin maritima
MeCYP79D2	AAV97888.1	Manihot esculenta	TmCYP79E2	AAF66544	Triglochin maritima
CYP71 enzym	es				
EcCYP706C55	AYN73068	Eucalyptus cladocalyx	PtCYP71B40v3	AIU56748	Populus trichocarpa
FsCYP71AT96	BAU59406	Fallopia sachalinensis	PtCYP71B41v2	AIU56747	Populus trichocarpa
HvCYP71C113	AK250744	Hordeum vulgare L.	PmCYP71AN24	BAP15888.1	Prunus mume
HvCYP71L1	AK248375	Hordeum vulgare L.	SbCYP71E1	AAC39318	Sorghum bicolor
MeCYP71E7	AAP57704.1	Manihot esculenta			
UGT enzymes	; ;				
AtUGT76E1	AED97208.1	Arabidopsis thaliana	AtUGT75B1	AEE27854.1	Arabidopsis thaliana
AtUGT76C1	AAP21281.1	Arabidopsis thaliana	AtUGT75B2	AEE27849.1	Arabidopsis thaliana
CrUGT76A2	BAO01108.1	Catharanthus roseus	AtUGT75C1	AAM47973.1	Arabidopsis thaliana
SIUGT76E1	NP001348276.1	Solanum lycopersicum	PfA5GT	Q9ZR27	Perilla frutescens
SrUGT76G1	AAR06912.1	Stevia rebaudiana	RcUGT75L20	AWU66062.1	Rubus chingii
AtUGT85A2	BAA34687	Arabidopsis thaliana	LuUGT85Q1	ADV36300	Linum unsitatissimum
AtUGT85A5	AAF87255	Arabidopsis thaliana	LjUGT85K3	CM0241.610 (gene)	Lotus japonicus
AtUGT85A7	AAF87257	Arabidopsis thaliana	MeUGT85K4	AEO45781.1	Manihot esculenta
AtUGT85A1	AAF18537	Arabidopsis thaliana	MeUGT85K5	AEO45782.1	Manihot esculenta
CrUGT85A23	BAK55749.1	Catharanthus roseus	MtUGT85H2	ABI94024.1	Medicago truncatula
EcUGT85A59	AYN73070.1	Eucalyptus cladocalyx	PIUGT85K31	VVC51334.1	Phaseolus lunatus
GjUGT85A24	BAK55737.1	Gardenia jasminoides	PdUGT85A19	ABV68925.1	Prunus dulcis
GjUGT94E5	BAK55744.1	Gardenia jasminoides	PmUGT85A47	BBE52863.1	Prunus mume
HvUGT85F22	AK252107	Hordeum vulgare L.	SbUGT85B1	AAF17077.1	Sorghum bicolor
HvUGT85F23	AK250769	Hordeum vulgare L.	SrUGT85C2	AAR06916.1	Stevia rebaudiana

Supplemental Table S13: Accession numbers of known enzymes that were used for the construction of the phylogenetic trees.

Sequence data for all characterized enzymes can be found under the respective Genbank identifier.

Literature:

Bak S, Kahn RA, Nielsen HL, Moller BL, Halkier BA (1998) Cloning of three A-type cytochromes P450, CYP71E1, CYP98, and CYP99 from *Sorghum bicolor* (L.) Moench by a PCR approach and identification by expression in *Escherichia coli* of CYP71E1 as a multifunctional cytochrome P450 in the biosynthesis of the cyanogenic glucoside dhurrin. Plant Mol Biol **36**: 393-405

Durst F, Nelson DR (1995) Diversity and Evolution of Plant P450 and P450-Reductases. Drug Metabolism and Drug Interactions **12:** 189-206

Gachon CMM, Langlois-Meurinne M, Saindrenan P (2005) Plant secondary metabolism glycosyltransferases: the emerging functional analysis. Trends in Plant Science 10: 542-549

Gotz S, Garcia-Gomez JM, Terol J, Williams TD, Nagaraj SH, Nueda MJ, Robles M, Talon M, Dopazo J, Conesa A (2008) High-throughput functional annotation and data mining with the Blast2GO suite. Nucleic Acids Res **36**: 3420-3435

Karabatsos GJ, Hsi N (1967) Structural studies by nuclear magnetic resonance—XI: Conformations and configurations of oxime o-methyl ethers. Tetrahedron **23:** 1079-1095

Luck K, Jirschitzka J, Irmisch S, Huber M, Gershenzon J, Kollner TG (2016) CYP79D enzymes contribute to jasmonic acid-induced formation of aldoximes and other nitrogenous volatiles in two *Erythroxylum* species. BMC Plant Biol **16:** 215

PfaffI MW (2001) A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res **29**: e45

Simao FA, Waterhouse RM, Ioannidis P, Kriventseva EV, Zdobnov EM (2015) BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics **31:** 3210-3212