
Data-Driven System Reduction and Identification from Input-Output
Time-Domain Data with the Loewner Framework

Dissertation

zur Erlangung des akademischen Grades

doctor rerum naturalium
(Dr. rer. nat.)

von M. Sc. Dimitrios S. Karachalios

geb. am 11.07.1986 in Athen, Griechenland

genehmigt durch die Fakultät für Mathematik

der Otto-von-Guericke-Universität Magdeburg

Gutachter: Prof. Dr. Athanasios C. Antoulas

Prof. Dr. Peter Benner

Dr. habil. Charles Poussot-Vassal

Dr. Ion Victor Gosea

eingereicht am: 08.03.2023

Verteidigung am: 18.07.2023





PUBLICATIONS

Some of the results of this thesis have already been published or submitted.

Chapter 3 contains results of

• [102] Karachalios, Dimitrios S., Gosea, Ion Victor and Antoulas, Athanasios C..
Chapter 6: The Loewner framework for system identification and reduction. Vol-
ume 1 System- and Data-Driven Methods and Algorithms, edited by Peter Benner,
Stefano Grivet-Talocia, Alfio Quarteroni, Gianluigi Rozza, Wil Schilders and Luís
Miguel Silveira, Berlin, Boston: De Gruyter, 2021, pp. 181-228.
https://doi.org/10.1515/9783110498967-006

• [100] Karachalios, Dimitrios S., Gosea, Ion Victor and Antoulas, Athanasios C.
Data-driven approximation methods applied to non-rational functions. Proc. Appl.
Math. Mech., 2018: e201800368. https://doi.org/10.1002/pamm.201800368

Chapter 4 contains results of

• [107] Karachalios, D.S., Gosea, I.V., Kour K., and Antoulas, A.C., Bilinear real-
ization from input-output data with neural networks. Accepted for publication in
a Springer book series, The European Consortium for Mathematics in Industry.
Preprint https://arxiv.org/abs/2208.10124

• [101] Karachalios, Dimitrios S., Gosea, Ion Victor and Antoulas, Athanasios C..
(2019), A bilinear identification-modeling framework from time domain data. Proc.
Appl. Math. Mech., 2019: e201900246.
https://doi.org/10.1002/pamm.201900246

• [104] Karachalios, Dimitrios S., Gosea, Ion Victor and Antoulas, Athanasios C. On
Bilinear Time-Domain Identification and Reduction in the Loewner Framework,
Springer International Publishing, Cham, 2021, pp. 3-30. iii,
https://doi.org/10.1007/978-3-030-72983-7_1

• [73] Gosea, Ion Victor and Karachalios, Dimitrios S. and Antoulas, Athanasios C.,
On computing reduced-order bilinear models from time-domain data Proc. Appl.
Math. Mech., 2021: e202100254. https://doi.org/10.1002/pamm.202100254

iii

https://doi.org/10.1515/9783110498967-006
https://doi.org/10.1002/pamm.201800368
https://arxiv.org/abs/2208.10124
https://doi.org/10.1002/pamm.201900246
https://doi.org/10.1007/978-3-030-72983-7_1
https://doi.org/10.1002/pamm.202100254


Chapter 5 contains results of

• [106] Karachalios, Dimitrios S., Gosea, Ion Victor, Gkimisis, Leonidas and An-
toulas, Athanasios C. (2022), Data-driven quadratic modeling in the Loewner
framework. Preprint https://arxiv.org/abs/2211.10635.

• [72] Gosea, Ion Victor, Karachalios, Dimitrios S., and Antoulas, Athanasios C.
Learning reduced-order models of quadratic dynamical systems from input-output
data, 2021 European Control Conference (ECC), 2021, pp. 1426-1431,
https://doi:10.23919/ECC54610.2021.9654993.

• [105] Karachalios, Dimitrios S., Gosea, Ion Victor and Antoulas, Athanasios C.
A framework for fitting quadratic-bilinear systems with applications to models of
electrical circuits, IFAC-PapersOnLine, Volume 55, Issue 20, 2022, Pages 7-12,
ISSN 2405-8963,
https://doi.org/10.1016/j.ifacol.2022.09.064

Chapter 6 contains results of

• [103] Karachalios, Dimitrios S., Gosea, Ion Victor and Antoulas, Athanasios C.
The Loewner framework for nonlinear identification and reduction of Hammerstein
cascaded dynamical systems. Proc. Appl. Math. Mech., 2020: e202000337.
https://doi.org/10.1002/pamm.202000337

iv

https://arxiv.org/abs/2211.10635
https://doi: 10.23919/ECC54610.2021.9654993
https://doi.org/10.1016/j.ifacol.2022.09.064
https://doi.org/10.1002/pamm.202000337


ABSTRACT

Consistent description of the physical world uses mathematics under the assumption
of computability. The development of mathematics equipped the natural sciences with
computational models capable of accurately describing each phenomenon at its scale
of action while allowing the model’s generalization without losing consistency with the
observed local behavior. Accuracy in this content may have different meanings. The
central concept of accuracy concerns the difference observed between experiment and
theory. The experiment constitutes nature’s response in which the answer may be subject
to many different sources of disturbance (noise), inevitably leading to biases. Data-
driven engineering science is the field that connects state-of-the-art theoretical methods
with experimental results that guarantee reliable conclusions. Consequently, data-driven
science aims to combine these two pillars (experiment and theory) consistently; in simple
terms, the measurement must explain the theory and vice versa.

The idea of mimicking the human brain architecture (neurons) to a finite computational
machinery for learning, predicting, and decision-making sparked the concept of artificial
intelligence through a model-free computational environment fed with data (finite data
and memory). Usually, these developments are referred to as machine learning techniques
and aim to integrate data-driven engineering science after solving the model discovery
problem (recent ultimate goal). Due to computing power and memory development,
generating, storing, and processing data has become more accessible. Thus, modern
high-performance computer environments reintroduced the idea of machine learning by
allowing access to learning processes in vast databases for today’s regimes. Consequently,
with only a simple analysis, extracting difficult conclusions for decision-making has be-
come possible and accurate (pattern recognition). Therefore, direct decision-making from
data is advantageous but needs to mature enough to stand independently and replace
data-driven engineering science when considering some guarantees on the outcome for
safe predictions. It is a significantly different regime to decide on cinematic preferences
or to understand an inaccurate translation relative to the precariousness that a plane
can fly or a patient can breathe autonomously on mechanical ventilation. Failure in the
above applications has an entirely different impact, and awareness should be raised.

Having posed some of the fundamental problems that science faces in this modern tech-
nological environment, this thesis aims to combine the advantages of the above research
directions and contribute to solutions for the robust modeling of engineering processes re-
specting the mathematical formalism of the known physical laws for imposing reliability.
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The main research directions apply to identifying dynamical systems that describe evo-
lutionary phenomena with a mathematical formulation and computationally the efficient
model order reduction of the discovered models under a finite assumed precision (known a
priori). By including methods to reduce the order of the model under-recognition (from
measurements), we arrive at applicable computational models where that adequately
predict the behavior of the actual physical model (usually partially unknown), offering
the possibility for simulation, design, control, and forecasting in the context of a reliable
digital twin.

The main inspiration for this study comes from the assumption that, for experiments,
every unbiased and undisturbed measurement is considered the absolute truth. We
construct models using interpolation methods -"interpolating the truth"- such as the
Loewner framework for identifying/inferring/building models based on these measure-
ments as nature’s proper response under some observable process of a potentially hidden
perfect model. In addition, when the correct mathematical formalism of the model under
construction has also been assumed, or the method allows its integration into the gener-
ally accepted class (embedding in a specific non-linear class), we can discover the physical
law governing the phenomenon. The main result is the production of data-driven sur-
rogate dynamical models whose mathematical formalism has matured and can connect
with further theoretical properties for efficient simulation, design, and control, offering
robustness and verification for accurate extrapolation.
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ZUSAMMENFASSUNG

Die konsistente Beschreibung der physikalischen Welt mithilfe der Mathematik erfolgt
unter Annahme der Berechenbarkeit. Die theoretische Weiterentwicklung der Mathe-
matik stattete die Naturwissenschaften mit Rechenmodellen aus, die in der Lage sind,
jedes Phänomen in seinem Wirkungsbereich präzise zu beschreiben und gleichzeitig eine
Generalisierbarkeit des Modells zu ermöglichen, ohne die Übereinstimmung mit dem
beobachteten lokalen Verhalten zu verlieren. Genauigkeit kann in diesem Zusammen-
hang verschiedene Bedeutungen haben. Der zentrale Begriff der Genauigkeit bezieht
sich auf den Unterschied zwischen Experiment und Theorie. Das Experiment stellt
die Reaktion der Natur dar, welche vielen verschiedenen Störgrößen (Rauschen) aus-
gesetzt sein kann, was unweigerlich zu Verzerrungen führt. Datengestützte Ingenieurwis-
senschaft verbindet modernste theoretische Methoden mit experimentellen Ergebnissen,
die zuverlässige Schlussfolgerungen garantieren. Folglich zielt die datengesteuerte Wis-
senschaft darauf ab, diese beiden Säulen (Experiment und Theorie) kohärent miteinan-
der zu verbinden; einfach ausgedrückt, die Messung muss die Theorie erklären und
umgekehrt.

Die Idee, die Architektur des menschlichen Gehirns (Neuronen) mit einer endlichen
Rechenmaschine für das Lernen, die Vorhersage und die Entscheidungsfindung zu imi-
tieren, hat das Konzept der künstlichen Intelligenz durch eine modellfreie Rechenumge-
bung (endliche Datenmenge und Speicher) hervorgebracht. In der Regel werden diese
Entwicklungen als maschinelles Lernen bezeichnet und zielen darauf ab, die datenges-
teuerte Ingenieurwissenschaft nach der Lösung des Modellfindungsproblems zu integri-
eren (jüngstes Endziel). Dank des Fortschreitens von Rechenleistung und Speicherka-
pazität ist die Erzeugung, Speicherung und Verarbeitung von Daten leichter zugänglich
geworden. So haben moderne Hochleistungsrechenumgebungen die Idee des maschinellen
Lernens wieder eingeführt, indem sie den Zugang von Lernprozessen zu riesigen Daten-
banken für die heutigen Systeme ermöglichen. Folglich ist es möglich geworden, mit
einer einfachen Analyse komplizierte Schlussfolgerungen für die Entscheidungsfindung zu
ziehen (Mustererkennung). Daher ist die direkte Entscheidungsfindung auf der Grund-
lage von Daten vorteilhaft, muss aber noch so weit ausreifen, dass sie unabhängig ist und
die datengesteuerte Ingenieurwissenschaft unter der Berücksichtigung von Garantien für
sichere Vorhersagen ersetzen kann. Es hat eine ganz andere Dimension, über filmische
Vorlieben zu entscheiden oder eine ungenaue Übersetzung zu verstehen, als ein Flugzeug
zu fliegen oder einen Patienten künstlich zu beatmen. Ein Bewusstsein sollte vorhanden
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sein, dass ein Versagen bei den genannten Anwendungen ganz andere Auswirkungen nach
sich zieht.

Nachdem einige der grundlegenden Probleme, die die Wissenschaft im modernen tech-
nologischen Umfeld konfrontieren, erwähnt wurden, zielt diese Doktorarbeit darauf ab,
die Vorteile der oben genannten Forschungsrichtungen zu kombinieren und dazu beizutra-
gen, Lösungen für die robuste Modellierung von technischen Prozessen unter Beachtung
des mathematischen Formalismus der bekannten physikalischen Gesetze zum Zwecke der
Zuverlässigkeit zu gewährleisten. Die Forschungsschwerpunkte beziehen sich auf die Iden-
tifizierung dynamischer Systeme, welche evolutionäre Phänomene mit einer mathematis-
chen Formulierung beschreiben sowie auf die rechnentechnisch effiziente Reduzierung der
Modellordnung entdeckter Modelle unter einer endlichen angenommenen Genauigkeit (a
priori bekannt). Durch die Einbeziehung von Methoden zur Verringerung der Ordnung
des (aus Messungen) nicht erkannten Modells gelangen wir zu anwendbaren Rechenmod-
ellen, die das Verhalten des tatsächlichen (in der Regel teilweise unbekannten) physikalis-
chen Modells adäquat vorhersagen und damit die Möglichkeit zur Simulation, zum En-
twurf, zur Steuerung und zur Vorhersage im Rahmen eines zuverlässigen digitalen Zwill-
ings bieten.

Die Hauptinspiration für diese Studie geht von der Annahme aus, dass bei Experi-
menten jede unvoreingenommene und ungestörte Messung als absolute Wahrheit ange-
sehen wird. Wir konstruieren Modelle mit Hilfe von Interpolationsmethoden - "Inter-
polation der Wahrheit" - wie z. B. dem Loewner-Rahmenwerk, um auf der Grundlage
dieser Messungen die richtige Reaktion der Natur auf einen beobachtbaren Prozess eines
potenziell verborgenen perfekten Modells zu ermitteln/zu bestimmen/zu konstruieren.
Wenn außerdem der korrekte mathematische Formalismus des zu konstruierenden Mod-
ells angenommen wurde oder die Methode seine Integration in die allgemein akzeptierte
Klasse (Einbettung in eine spezifische nichtlineare Klasse) ermöglicht, können wir das
physikalische Gesetz entdecken, das das Phänomen erklärt. Das Hauptergebnis ist die Er-
stellung von datengesteuerten dynamischen Ersatzmodellen, deren mathematischer For-
malismus ausgereift ist und mit weiteren theoretischen Eigenschaften für eine effiziente
Simulation, Konstruktion und Steuerung verbunden werden kann, wobei Robustheit und
Verifizierung für eine genaue Extrapolation geboten werden.
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CHAPTER 1

INTRODUCTION

Contents
1.1. Motivation for data-driven identification and model order reduction . . . . 1
1.2. Dynamical systems and motivating examples . . . . . . . . . . . . . . . . 3
1.3. Outline of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.1. Motivation for data-driven identification and model
order reduction

Mathematical modeling should be consistent with the physical laws when engineering
applications are considered. Building surrogate models for robust simulation, design,
and control is a worthwhile engineering task, and methods that can interpret or discover
governing equations [40, 82] with guarantees [83] are essential and enhance modeling
reliability. Modeling with partial differential equations (PDEs) allows continuous de-
scriptions of the physical variables, and numerically, discrete approximations of PDEs
result in systems of ordinary differential equations (ODEs). Even with the recent de-
velopment of high-performance computing (HPC) environments, the resulting dynamical
models still inherit high complexity that must be handled carefully. Therefore, approx-
imation of large-scale dynamical systems [7] is pivotal for serving the scope of efficient
simulation. The technique for reducing the complexity is known as model order reduc-
tion (MOR) [33, 30, 31]. There are many ways of reducing large-scale models, and each
method is tailored to specific applications and goals for complexity reduction. A good
distinction among methods concerns the accessibility or not of a high-fidelity model (in-
trusive or non-intrusive). For the intrusive case where a model is available, methods such
as balanced truncation (BT) (see the recent survey [32]) and moment matching (MM)
(with the recent survey [24] and the references therein) for constructing surrogate mod-
els of low order that approximate the original without losing much accuracy, offering an
error bound (BT), and with a guarantee on stability (BT and some MM variants) were
extensively used. Additional MOR methods for nonlinear systems were also developed
(basically, by extending the linear counterpart of BT, MM, or others) [17, 8].
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1. Introduction

On the other hand, the ever-increasing availability of data, i.e., measurements related
to the original model, initiate non-intrusive techniques such as Machine learning (ML)
combined with model-based methods [40]. ML has demonstrated remarkable success
in specific tasks, e.g., pattern recognition. The limitations of ML methods arise when
the interpretation of the derived models is under consideration. Therefore, model-based
data assimilation through MOR techniques such as the proper orthogonal decomposition
(POD)[152], the dynamic mode decomposition. (DMD)[140, 133, 91], the operator infer-
ence (OpInf) [128, 28, 111] have become popular. In many cases, there may not be an
accurate description of the original model (the large-scale dynamical system) but only
at specific measurements (snapshots in the time domain, spectrum description, etc.).
Therefore, one of the main challenges is the reliability of the information extracted from
the data. The mentioned data-driven methods (OpInf, DMD) and others, such as the
sparse identification of dynamical systems (SINDY)[41], use state-access snapshot mea-
surements to achieve model discovery and recently to guarantee stability such as with
OpInf in [84]. Towards the same aim of model discovery without using state-access mea-
surements and building input invariant models, the Loewner framework constitutes a
non-intrusive method that deals directly with i/o data (real-world measurements used in
most of the applied sciences, e.g., frequency, velocity, voltage, charge, or concentration)
able to identify linear and nonlinear systems and simultaneously to offer the opportunity
for complexity reduction. One way to reduce the model complexity is to employ interpo-
lation. Out of the many available existing methods, we mention those based on rational
approximation. Here, we mention the Loewner framework [122], the vector fitting (VF)
[88], and the AAA algorithm [123]. We refer the reader to the extensive analysis provided
in [8] for more details on such methods.

The realization of linear models is introduced in [92] and has been extended further
in [99]. For the nonlinear case, extensions to the realization algorithm (i.e., employ-
ing the subspace method) in the case of discrete-time bilinear control systems can be
found in [95, 54, 44, 119] with the references within, and for linear parametric varying
(LPV) systems in [148] when the scheduling signals can be measured. Other methods for
data-driven system identification or reduction based on nonlinear autoregressive moving
average with exogenous inputs (NARMAX) models can be found in [45] and in con-
nection with Koopman operator and Wiener projection in [118]. Time discretization of
semi-discretized in space nonlinear systems have disadvantages with the structure preser-
vation for the resulting full-discretized model. A few schemes can preserve the structure,
e.g., the forward Euler and for bilinear systems, but inherit conditional numerical stabil-
ity, limiting the method to very short sampling times. A viable alternative is to devise
methods that directly learn the continuous in-time operators without adding another
discretization error due to the time mesh. The Fourier transform through the classical
Nyquist theorem provides a way to transform discrete information into perfect contin-
uous signal reconstruction from a finite spectrum if the correct sampling frequency has
been considered.

The LF is a non-intrusive interpolatory MOR technique that identifies state-space
systems for certain generalized nonlinear classes, particularly: bilinear systems [12], linear
switched systems [74], linear parameter-varying systems [76], quadratic-bilinear systems
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1.2. Dynamical systems and motivating examples

[65, 68, 9], and polynomial systems [25]. The aforementioned nonlinear variants of the
Loewner framework construct efficient surrogate models from sampled data with direct
numerical simulation (DNS) on the regular Volterra kernels derived from a prior accessible
high-fidelity model. The challenging aspect of the regular multivariate Volterra kernels
is that they cannot be inferred directly from a physical measurement setup when the
underlying model is inaccessible and only a specific structure has been assumed (e.g.,
quadratic). Therefore, in a natural measurement environment (e.g., output in the time
domain), the appropriate Volterra kernels we can measure are symmetric and can be
derived with the growing exponential approach tailored to the probing method. The LF
has already been extended to handle input-output data in the time domain for linear
systems [127]. Consequently, we highlight the aim of this thesis that reflects the title
once more next in Fig. 1.1 and in the following statement:

u(t) Σ?
input

y(t)
output

Figure 1.1.: A schematic of data-driven modeling, as the unknown to-be-discovered sys-
tem Σ of low dimension lies between the accessible/measurable input-output
data sequences through the time evolution.

The main novelty of this thesis is to devise methods that use or extend the
interpolatory method known as the Loewner framework for nonlinear
identification and reduction of dynamical systems from input-output

time-domain data.

"An experiment is a question which science poses to Nature
and a measurement is the recording of Nature’s answer

- Max Planck"

1.2. Dynamical systems and motivating examples

In this section, we introduce the types of dynamical systems investigated in this thesis
and some motivational examples tailored to the corresponding mathematical formalism.
Data-driven modeling of dynamical systems concerned with identifying the unknown
system Σ in Fig. 1.1 with a state-space control system in various structures varying from
linear to nonlinear as depends on the operators in Fig. 1.2. The reduction comes when
a finite numerical precision has been assumed and usually is the trade-off between the
complexity of the to-be-constructed model and accuracy performance.

When the identification task has been accomplished with all the validation procedures,
we result in a "white box" modeling where further analysis can be obtained in many cases.
For instance, stability analysis is handy if the identified model is linear or bilinear and
easier to analyze when it comes to a state-space representation. When dynamics are
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measured around an operational point, linear (local) systems that perform well can be
identified, but here someone should be aware that this is not white box modeling as for
other inputs; the system can be driven to a different operational point, and the dynamical
behavior can change dramatically. That is the main reason for nonlinear identification.

Next is a concise representation of state-space models starting from the linear time-
invariant1 systems and up to the quadratic state/input polynomial nonlinearity.

u(t) Σ : ẋ(t) = f(x(t),u(t))
input

y(t) = z(x(t),u(t))
output

Figure 1.2.: General state-space representation of the unknown system Σ with the time-
invariant operators f , z.

Under specific assumptions, the unknown operators f , z can be considered so to have
the following state-space representations:

• Linear control systems (Chapter 3) The simplest case is that of a continuous
linear time-invariant system

Σl :

{
Eẋ(t) = Ax(t) +Bu(t), t ∈ [0,+∞)

y(t) = Cx(t) +Du(t), x(0) = 0,
(1.1)

where E, A ∈ Rn×n, B ∈ Rn×m, C ∈ Rp×n, and D ∈ Rp×m are constant matrices
due to the time-invariant principle.
Examples: Mechanical systems, CD player, Euler Bernoulli beam, heat
equation, function approximation.

• Bilinear control systems (Chapter 4) The next generalization from an LTI
system is the class of bilinear control systems that belong to the nonlinear system
class, as bilinear systems do not satisfy the superposition and scaling principles for
general input construction. Bilinear systems are defined as:

Σb :

{
Eẋ(t) = Ax(t) +Nx(t)u(t) +Bu(t),

y(t) = Cx(t) +Du(t), x(0) = x0 = 0, t ≥ 0.
(1.2)

where E,A,N ∈ Rn×n, B ∈ Rn×m, C ∈ Rp×n, and D ∈ Rp×m.
Examples: The heat transfer model, the viscous Burgers’ bilinear ap-
proximation, the heat exchanger.

• Quadratic control systems (Chapter 5).

Σq :

{
Eẋ(t) = Ax(t) +Q (x(t)⊗ x(t)) +Bu(t),

y(t) = Cx(t) +Du(t), x(0) = x0 = 0, t ≥ 0.
(1.3)

1A time-invariant (TI) system has a time-dependent system function that is not a direct function of
time, e.g., f1(x(t),u(t)). For instance, a time-varying system is f2(x(t),u(t), t).
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1.3. Outline of the thesis

where E,A ∈ Rn×n, Q ∈ Rn×n2 , B ∈ Rn×m, C ∈ Rp×n, and D ∈ Rp×m.
Examples: The forced Lorenz attractor and the viscous Burgers’ model
with Robin boundary conditions.

• Quadratic-bilinear control systems (Chapter 5).

Σqb :

{
Eẋ(t) = Ax(t) +Q (x(t)⊗ x(t)) +Nx(t)u(t) +Bu(t),

y(t) = Cx(t) +Du(t), x(0) = x0 = 0, t ≥ 0.
(1.4)

where E,A,N ∈ Rn×n, Q ∈ Rn×n2 , B ∈ Rn×m, C ∈ Rp×n, and D ∈ Rp×m.
Examples: The nonlinear RC ladder circuit.

• Hammerstein-Wiener control system (Chapter 6)

ΣHW :

{
Eẋ(t) = Ax(t) +Bh(u(t)), t ∈ [0,+∞)

y(t) = Cw(x(t)) +Dh(u(t)), x(0) = 0,
(1.5)

where E, A ∈ Rn×n, B ∈ Rn×m, C ∈ Rp×n, D ∈ Rp×m and h, w are the Ham-
merstein and Wiener operators respectively. This cascaded system treats nonlinear
effects from the input or output maps and assumes the internal dynamics to be
linear.
Examples: Artificial examples to illustrate the methods of Hammerstein
and Wiener system identification.

1.3. Outline of the thesis

In Chapter 2, we include some mathematical preliminaries from linear algebra and system
theory. The experienced reader with linear algebra and system theory can go directly to
the rest of the chapters.

In Chapter 3, we review the Loewner framework for identification and reduction in
the linear case for the single-input, single-output (SISO), and multi-input multi-output
(MIMO) cases with detailed introductory examples. We investigate descriptor system
realizations with the Moore-Penrose pseudo inverse that extends the applicability of the
Loewner framework to rectangular and singular systems. We introduce a new Loewner
algorithm based on the CUR factorization that preserves the original data structure
regarding sparsity and physical meaning. Also, analysis and some advances are given
to technical issues such as data selection and splitting. We apply the aforementioned
Loewner methods to various linear models and report the performance of reduction and
accuracy. Approximation results are presented for infinite dimensional linear systems
too. Applying the Laplace transformation to the PDE level, in most cases, we result
in a non-rational transfer function. With the Loewner rational approximants, we could
approximate the non-rational within the interpolation interval with high precision. The
method is compared with other various methods, such as the adaptive Antoulas Anderson
(AAA), the vector fitting (VF), and the iterative rational Krylov algorithm (IRKA) that
can reach optimality in H2 norm.
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In Chapter 4, we focus on identifying and reducing bilinear systems from time-domain
data. We start with the continuous formulation of bilinear systems, and a method based
on the Volterra series and the Loewner framework is proposed. Examples are presented
for the identification and reduction goal of the proposed time bilinear Loewner. A com-
parison is offered with the developed bilinear Loewner that uses abstract frequency do-
main data as samples of higher Volterra kernels. To this effort, we propose combining the
two bilinear Loewner frameworks by connecting different types of Volterra kernels. That
was theoretically successful, but as detailed, it is numerically very challenging. Having
the spectral information of the state evolution, we identify bilinear systems from state
access information invariant of the input. This contrasts with other state access identi-
fication methods that are input-dependent. We continue with the discrete formulation
of bilinear systems to achieve the same goals. We developed an algorithm for input-
output bilinear identification from time-domain discrete data based on Isidori’s work.
We compared it with other various methods as the subspace bilinear identification meth-
ods. Moreover, we relax the number of simulations needed by utilizing machine learning
techniques, particularly the neural network architecture, due to its power in learning
input-output maps through the universal approximation theorem. The novelty is that
we construct a reduced bilinear model from a single sequence of input-output data and
the resulting system, which is an interpretable bilinear system suitable for white box
modeling with ease of use and stability guarantees for robust control performance.

In Chapter 5, we extend the time domain bilinear Loewner method to quadratic control
nonlinear systems and to quadratic-bilinear control systems for the reduction and identi-
fication scopes from time-domain input-output data. For the quadratic case, the novelty
is that we achieve quadratic identification for low-order systems when more Volterra ker-
nels are involved. In addition, we achieved global quadratic control identification for a
quadratic system when bifurcated to its non-trivial equilibrium points that measurements
held. An operator alignment problem had to be solved to identify the global quadratic
system. Thus, another novelty to this effort is the solution algorithm that solves a con-
strained quadratic matrix equation by aligning two quadratic models without the access
of the linear operator. Further, and more to the reduction performance, we test the
proposed method for a larger scale example, and 98% reduction has been achieved with
an overall normalized accuracy of more than 5 digits for measuring the velocity field
of a flow. A similar method has been applied to a quadratic-bilinear application for a
large-dimension nonlinear benchmark circuit.

In Chapter 6, we extend the Loewner framework to the Hammerstein cascaded system
case. Also, some applications were provided for the Wiener cascaded system case.
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CHAPTER 2

MATHEMATICAL PRELIMINARIES AND BASIC CONCEPTS
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2.2.2. Approximation by moment matching . . . . . . . . . . . . . . . . . 13
2.2.3. Rational interpolation by Petrov-Galerkin projection . . . . . . . . 13
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2.2.5. Interpolatory model order reduction . . . . . . . . . . . . . . . . . 16

2.3. Nonlinear system theory with Volterra series representation . . . . . . . . 17
2.3.1. A single-tone input . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.3.2. The kernel separation method . . . . . . . . . . . . . . . . . . . . . 20

2.4. Representation of nonlinear systems with structured embeddings . . . . . 21
2.4.1. Carleman linearization . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.4.2. Quadratization of nonlinear systems . . . . . . . . . . . . . . . . . 24

2.1. Linear algebra

2.1.1. The singular value decomposition

The SVD is arguably one of the most useful and commonly used tools in numerical linear
algebra. It is listed as one of the main matrix decompositions and can be efficiently
computed through various numerically stable algorithms. It is widely used for different
high-dimensional reduction and approximation methods.

Any complex-valued matrix A ∈ Cn×m has a singular value decomposition given by
A = YΣX∗ where Y ∈ Cn×n, X ∈ Cm×m are unitary matrices, i.e., Y∗Y = In and
X∗X = Im. The left and right singular vectors are collected as columns of matrices X,
and Y, respectively.

7



2. Mathematical preliminaries and basic concepts

Additionally, the matrix Σ ∈ Cn×m is defined as Σi,i = σi and zero elsewhere. Here,
the ordered non-negative scalars σ1 ⩾ σ2 ⩾ · · ·σn ⩾ 0 are the singular values (for n ⩽ m).

It is assumed that matrix A has a low rank, i.e., rank(A) = r ⩽ n ⩽ m. Let k be
a positive integer so that k < r. The singular value decomposition of matrix A can be
additively split as follows:

A = Y · Σ ·X∗ = (Yk Yn−k)︸ ︷︷ ︸
n×n

·
(

Σk 0k,m−k

0n−k,k Σn−k,m−k

)
︸ ︷︷ ︸

n×m

·
(

X∗
k

X∗
m−k

)
︸ ︷︷ ︸

m×m

(2.1)

= YkΣkX
∗
k︸ ︷︷ ︸

:=Ak

+Yn−kΣn−k,m−kX
∗
m−k (2.2)

where Yk ∈ Cn×k, Σk ∈ Ck×k and Xk ∈ Rm×k. Note that the matrix

Ak := YkΣkX
∗
k ∈ Cm×n

can be written in terms of the truncated dyadic decomposition, i.e.,

Ak =
k∑

i=1

σiyix
∗
i ,

where yi and xi are the ith column of matrices Y, and X, respectively. A problem of
interest is to approximate the original matrix A with a rank k matrix T so that the
approximation error is minimal with respect to the 2-induced norm or the Frobenius
norm. From the Schmidt-Eckart-Young-Mirsky theorem (see Theorem 3.6 in [7]), follows
that (given σk > σk+1)

min
T∈Rn×m, rank(T)≤k

∥A−T∥2 = σk+1. (2.3)

Moreover, it turns out that the unique solution to the minimization problem in (2.3) is
given by T = Ak. If we replace the 2-induced norm with the Frobenius norm, it follows
that

min
T∈Rn×m, rank(T)≤k

∥A−T∥F =

(
n∑

i=k+1

σ2
i

) 1
2

. (2.4)

As before, the unique solution to the minimization problem in (2.4) is again given by
T = Ak. For more details on the singular value decomposition (SVD), we refer the
reader to [7], pages 31-41.

The advantage of the SVD is that it offers optimal low-rank solutions in both the
2-induced and Frobenius norms. At the same time, one disadvantage is given by the
fact that the method (full SVD) has cubic complexity with respect to min(m,n) (in the
classical set-up when applied to dense matrices). Considering this possible downside,
we seek ways to circumvent the usage of the classical SVD and investigate other matrix
decompositions. It is worth mentioning that SVD complexity can be faster than cubic
for low-rank approximation with an iterative algorithm. A randomized version of SVD
(r-SVD) will reveal this robust behavior in the latter.
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2.1. Linear algebra

2.1.2. A data-preserving matrix decomposition

A challenging aspect of data-driven approximation methods is the choice of a relevant and
meaningful low-dimensional subset of the (usually large-scale) data set. In some cases,
this subset can preserve relevant dynamics characteristics for the model described by the
original data. In this framework, it is interesting to devise procedures to extract relevant
information from large-scale measurements. The end goal is to construct reduced-order
models suitable for control, design, and simulation tasks. Nowadays, the dimension of
data sets for various applications can easily reach ≈ O(106). In such cases, computing
the SVD of large and full matrices becomes prohibitive.

One appealing alternative to SVD is the so-called CUR decomposition. As before, the
goal is to approximate the original matrix A ∈ Cn×m, by a product of three low-rank
matrices Â = CUR. Here, the columns of the matrix C ∈ Cn×c represent a subset of
the columns of A while the rows of the matrix R ∈ Cr×m form a subset of the rows of
A. Finally, the matrix U ∈ Cc×r is constructed such that the factorization Â = CUR
holds.

In this new setup, the left and right singular vectors appearing in the SVD are replaced
by columns and rows of the initial matrix A. Hence, the CUR factorization identifies
essential rows and columns of a matrix A. For more details on the CUR decomposition
and some of its applications, we refer the reader to [62, 124, 63, 61, 121, 50, 146, 113].

The CUR factorization is hence an important tool for analyzing large-scale data sets,
which offers the following advantages over SVD:

1. If the matrix A is sparse, then the matrices C and R are also sparse (unlike the
matrices X and Y in the SVD approach).

2. The CUR factorization computes an approximation of A in terms of some of the
rows and columns of A. In contrast, the SVD computes approximants in terms of
linear combinations of orthonormal bases generated by the rows and columns of A.

3. Consider A ∈ Rm×n, m > n. The complexity for computing the full SVD of A is
O(n3) flops, using, for instance, the QR factorization, O(mn2) flops, using itera-
tive methods as in ARPACK, and O ((m+ n)k) flops per iteration, for approximate
incremental methods where the k dominant singular triples are determined approx-
imately (for details see [16]). On the other hand, the CUR factorization of order k
requires O(k3 + k2(m+ n)) flops per iteration (for details, see [113]).

Remark 2.1 (Implementation algorithms for CUR):
In Chapter 3, we will investigate algorithms that implement the CUR factorization based
on the Cross Approximation and discrete empirical interpolation method (DEIM). ♢

2.1.3. The generalized inverse approach

Given the (rectangular) matrix M ∈ Rq×k, the Moore-Penrose generalized inverse, de-
noted by MMP ∈ Rk×q, satisfies the following properties:

• (a)MMMPM = M,

9



2. Mathematical preliminaries and basic concepts

• (b) MMPMMMP = MMP ,

• (c)
[
MMMP

]T
= MMMP ,

• (d)
[
MMPM

]T
= MMPM,

This generalized inverse always exists and is unique. We will be concerned with rect-

angular q × k polynomial matrices, which have an explicit (rank revealing) factorization
as follows:

M = X∆YT ,

where X, ∆, Y have dimension q × n, n× n, k × n, n ≤ q, k, and all have full rank n.
In such cases, the Moore-Penrose generalized inverse is:

MMP = Y(YTY)−1∆−1(XTX)−1XT .

2.2. Linear systems theory

Time-domain formalism of a linear time-invariant dynamical system with m inputs,
n internal variables (known as "states" in the case E is non-singular), and p outputs, is
given as

Σl :

{
Eẋ(t) = Ax(t) +Bu(t), t ∈ [0,+∞)

y(t) = Cx(t) +Du(t), x(0) = 0,
(2.5)

where E, A ∈ Rn×n, B ∈ Rn×m, C ∈ Rp×n, and D ∈ Rp×m are constant matrices due
to the time-invariant principle. Usually, the focus in considering systems of the form
Eq. (2.5) treats them as defining maps from a vector space of inputs u(t) ∈ U to a
vector space of outputs y(t) ∈ Y, e.g., F : U → Y. Generally, the system is linear when
the operator F satisfies the superposition and scaling principles. The description of the
internal variable x(t) may or may not be interesting. Equation (2.5) describes a system
that can be realized from the matrices (E, A, B, C, D) without this representation
to be unique. The invertible matrices S, T ∈ Rn×n can produce a variety of different
realizations (SET, SAT, SB, CT, D) with identical input-output maps F. That is
important for the next description of linear time-invariant systems.

Concentrating in the ordinary differential equation Eq. (2.5), with a non-singular (e.g.,
invertible) E matrix, we have the following explicit solution

ẋ(t) = E−1Ax(t) +E−1Bu(t) ⇒ d

dt

[
e−E−1Atx(t)

]
= e−E−1AtE−1Bu(t) ⇒∫ t

0

d

dτ

[
e−E−1Aτx(τ)

]
dτ =

∫ t

0

e−E−1AτE−1Bu(τ)dτ ⇒

e−E−1Atx(t)− e−E−1A·0x(0) =

∫ t

0

e−E−1AτE−1Bu(τ)dτ ⇒

x(t) = eE
−1Atx(0) +

∫ t

0

eE
−1A(t−τ)E−1Bu(τ)dτ ⇒ (with σ = t− τ)

y(t) = CeE
−1Atx0 +

∫ t

0

CeE
−1AσE−1B︸ ︷︷ ︸
h1(σ)

u(t− σ)dσ +Du(t).

(2.6)
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The input-output solution of an LTI system with zero-initial conditions x0 = 0 and a
zero feed-forward term D = 0, results to the known convolution integral

y(t) =

∫ t

0
h1(σ)u(t− σ)dσ = (h1 ∗ u)(t), t ≥ 0. (2.7)

In practice, even the explicit solution is given, and integration is quite challenging for
large-scale systems. Therefore, many research directions try to circumvent these nu-
merical issues by providing more robust and accurate algorithms. One way to avoid
integration is to transform the problem with a nonlinear map. Such transformations
usually belong to the class of spectral methods. Next, we introduce the Laplace trans-
form, for which a particular case (integration over the imaginary axis jω, ω > 0) is the
well-known Fourier transform.

Frequency domain formalism of a linear time-invariant dynamical system in Eq. (2.5),
with u(t) exponentially bounded, and under stability assumptions of σl, the x(t), y(t)
will be exponentially bounded as well. Therefore, we may apply a Laplace transform
L{·} to Eq. (2.5) and solve for ŷ(s) (denotes the Laplace transform of y(t)) in terms of
û(s) (denotes the Laplace transform of u(t)).

{
L [Eẋ(t)] = L [Ax(t)] + L [Bu(t)] ,

L [y(t)] = L [Cx(t)] + L [Du(t)] ,
⇒
{
sEx̂(s)−Ex0 = Ax̂(s) +Bû(s),

ŷ(s) = Cx̂(s) +Dû(s).
(2.8)

Solving the algebraic equation Eq. (2.8) in terms of x̂(s) (denotes the Laplace transform
of x(t)), and substituting to the output equation above, we conclude to

ŷ(s) =
[
C(sE−A)−1B+D

]
û(s). (2.9)

This defines the transfer function of Eq. (2.5):

H(s) := C(sE−A)−1B+D, (2.10)

whereby denoting the resolvent as

Φ(s) := (sE−A)−1 ∈ Cn×n, (2.11)

we can conclude to: H(s) = CΦ(s)B + D ∈ Cp×m. H(s) is a p × m matrix-valued
rational function of the complex variable s and will uniquely determine the input-output
map. As explained, the transfer function Eq. (2.10) remains the same under all equivalent
descriptor realizations.

Remark 2.2 (The D-term):
No explicit D terms will be considered in the following system representations. The
reason is that such terms can be incorporated in the remaining matrices of the realiza-
tion, thus yielding what is known as a descriptor realization. Consider a rank-revealing
factorization.

D = D1D2 where D1 ∈ Rp×ρ, D2 ∈ Rρ×m,
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2. Mathematical preliminaries and basic concepts

and ρ = rankD. It readily follows that:

Ê =

[
E

0ρ×ρ

]
, Â =

[
A
−Iρ

]
, B̂ =

[
B
D2

]
, Ĉ =

[
C D1

]
,

is a descriptor realization of the same system with no explicit D-term. The reason
for not considering explicit D terms is that the Loewner framework yields descriptor
realizations with the D term incorporated in the rest of the realization. For more details
on considering a non-zero feed-forward D term, see Chapter 2 in [8]. ♢

2.2.1. Moments of a linear system

Given a matrix-valued function of time h : R→ Rp×m, its kth moment is:

ηk =

∫ ∞

0
tkh(t) dt, k = 0, 1, 2, · · · . (2.12)

If this function has a Laplace transform defined by H(s) = L(h)(s) =
∫∞
0 h(t)e−stdt, the

kth moment of h is, up to a sign, the kth derivative of H evaluated at s = 0:

ηk = (−1)k dk

dsk
H(s)

∣∣∣∣
s=0

∈ Rp×m, k = 0, 1, 2, · · · . (2.13)

In the sequel, we will also make use of a generalized notion of moments, namely the
moments of h around an arbitrary point s0 ∈ C:

ηk(s0) =

∫ ∞

0
tkh(t)e−s0tdt. (2.14)

These generalized moments turn out to be (up to a sign) the derivatives of H(s) evaluated
at s = s0:

ηk(s0) = (−1)k dk

dsk
H(s)

∣∣∣∣
s=s0

∈ Rp×m, k = 0, 1, 2, · · · . (2.15)

In this context, assuming for simplicity that E = I, the moments of h at s0 ∈ C are:

ηk(s0) = −kC(s0I−A)−(k+1)B, k = 0, 1, 2, · · · ,

provided that s0 is not an eigenvalue of A. Notice that the moments determine the coef-
ficients of the Laurent series expansion of the transfer function H(s) in the neighborhood
of si ∈ C; in particular

H(s) = H(s0) +H(1)(s0)
(s− s0)

1!
+ · · · +H(k)(s0)

(s− s0)
k

k!
+ · · ·

= η0(s0) + η1(s0)
(s− s0)

1!
+ · · · + ηk(s0)

(s− s0)
k

k!
+ · · · .
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2.2.2. Approximation by moment matching

Given Σ = (C,E,A,B), consider the expansion of the transfer function around si,
i = 1, . . . , r, as above. Approximation-by-moment matching consists of finding

Σ̂ = (Ĉ, Ê, Â, B̂), Ê, Â ∈ Rk×k, B̂ ∈ Rk×m, Ĉ ∈ Rp×k, (2.16)

such that the expansion of the transfer function

Ĥ(s) = η̂0(si) + η̂1(si)
(s− si)

1!
+ η̂2(si)

(s− si)
2

2!
+ η̂3(si)

(s− si)
3

3!
+ · · · ,

for appropriate si ∈ C, and ℓi, r ∈ N, satisfies:

ηj(si) = η̂j(si), j = 1, 2, . . . , ℓi and i = 1, . . . , r.

This problem can be seen as rational interpolation.

2.2.3. Rational interpolation by Petrov-Galerkin projection

A common way to reduce a system’s complexity is through Petrov-Galerkin projections.
Such projections are defined by means of two matrices V, W ∈ Rn×k, k < n, satisfying
the condition that WTV ∈ Rk×k is invertible1.

Definition 2.3 (Gelerkin & Petrov-Galerkin projectors):
Consider vi, wi ∈ Rn, i = 1, . . . , k, and let V = [v1, . . . ,vk], W = [w1, . . . ,wk] ∈ Rn×k.
The map defined by Π1 = V(VTV)−1VT , is an orthogonal projection onto the span
of the columns of V. If WTV is non-singular, Π2 = V(WTV)−1WT , is an oblique
projector onto the span of the columns of V, along the columns of W. Π1 and Π2 are
usually referred to in the model reduction literature as Galerkin and Petrov-Galerkin
projectors, respectively. ♢

Reducing the system Σ = (C,E,A,B) defined above, by means of a Petrov-Galerkin
projection, we obtain the reduced system Σ̂ =

(
Ĉ, Ê, Â, B̂

)
with the reduced-order

matrices given by:

Ĉ = CV ∈ Rp×k, Ê = WTEV, Â = WTAV ∈ Rk×k, B̂ = WTB ∈ Rk×m. (2.17)

There are many ways of choosing Petrov-Galerkin projectors to achieve various goals.
Here we will restrict our attention to interpolatory projections. Such projectors yield
reduced models that match the moments of the original system. These moments are
values of transfer functions at selected frequencies referred to as interpolation points.

Rational interpolation by projection was originally proposed in the work of Skelton
and co-workers; see [151, 156, 155]. Contributions were also made by Grimme, Gallivan,
and van Dooren [85, 57, 58].

1The notation (·)T indicates transposition of (·), while the notation (·)∗ indicates transposition of (·)
followed by complex conjugation.
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2. Mathematical preliminaries and basic concepts

Suppose that we are given a system Σ = (C,E,A,B), assumed SISO (single-input
single-output, i.e., m = p = 1) for simplicity. We wish to find lower-dimensional models
Σ̂ = (Ĉ, Ê, Â, B̂), defined as in Eq. (2.17), k < n, such that Σ̂ approximates the original
system in an appropriate way.

Consider k distinct points sj ∈ C. Define V as a generalized controllability matrix:

V =
[
(s1E−A)−1B, · · · , (skE−A)−1B

]
∈ Cn×k, (2.18)

and let W∗ be any left inverse of V. Then:
Proposition 2.4 (Rational interpolation via projection):
Σ̂ interpolates the transfer function of Σ at the points sj , that is

H(sj) = C(sjE−A)−1B = Ĉ(sjÊ− Â)−1B̂ = Ĥ(sj), j = 1, · · · , k.

Proof. Denoting by ej = [0 · · · 0 1︸︷︷︸
j

0 · · · 0]T , the jth unit vector, we obtain the string

of equalities below which leads to the desired result:

Ĉ(sjÊ− Â)−1B̂ = CV(sjW
∗EV −W∗AV)−1W∗B

= CV (W∗(sjE−A)V)−1W∗B

= CV ([∗ · · · ∗ W∗B ∗ · · · ∗])−1W∗B

=
[
C(s1E−A)−1B, · · · , C(skE−A)−1B

]
ej

= C(sjE−A)−1B.

Next, we are concerned with matching the value of the transfer function at a given point
s0 ∈ C, together with k − 1 derivatives. We define:

V =
[
(s0E−A)−1B, (s0E−A)−2B, · · · , (s0E−A)−kB

]
∈ Cn×k, (2.19)

together with any left inverse W. The following holds.
Proposition 2.5 (Higher moment rational interpolation):
Σ̂ interpolates the transfer function of Σ at s0, together with k − 1 derivatives at the
same point:

(−1)j

j!

dj

dsj
H(s)

∣∣∣∣
s=s0

= C(s0E−A)−(j+1)B = Ĉ(s0Ê− Â)−(j+1)B̂ =
(−1)j

j!

dj

dsj
Ĥ(s)

∣∣∣∣
s=s0

,

for j = 0, 1, · · · , k − 1. ♢

Proof. Let V be as defined in (2.19), and W be such that WTV = Ik. It readily follows
that the ℓth power of the projected matrix s0Ê− Â satisfies:

(s0Ê− Â)ℓ = [ ∗ · · · ∗︸ ︷︷ ︸
ℓ−1

W∗B ∗ · · · ∗︸ ︷︷ ︸
k−ℓ

].

Consequently [WT (s0E−A)V]−ℓWTB = eℓ, which finally implies

Ĉ(s0Ê− Â)−ℓB̂ = CV [WT (s0E−A)V]−ℓWTB = CVeℓ = C(s0E−A)−ℓB,

for ℓ = 1, 2, · · · , k.
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2.2. Linear systems theory

Since any V̄ that spans the same column space as V achieves the same objective,
projectors composed of combinations of the cases (2.18) and (2.19) achieve matching of
an appropriate number of moments. To formalize this, we will make use of the following
matrices:

Rk(E,A,B;σ) =
[
(σE−A)−1B (σE−A)−2B · · · (σE−A)−kB

]
.

Corollary 2.6 (Mixed moment matching):
(a) If V as defined above is replaced by V̄ = RV, R ∈ Rk×k, detR ̸= 0, and W by
W̄ = R−TW, the same matching results hold true.
(b) Let V be such that span colV = span col [Rm1(E,A,B;σ1) · · · Rmℓ

(E,A,B;σℓ)] ,
and W be any left inverse of V. The reduced system matches mi moments at σi ∈ C,
i = 1, · · · , ℓ. ♢

2.2.4. Two-sided projections

The above results can be strengthened if the row span of the matrix WT is chosen
to match the row span of a generalized observability matrix. In such a case, twice as
many moments can be matched with a reduced system of the same dimension. Here, in
addition to points s1, . . . , sk, and the associated Eq. (2.18), we are given k additional
distinct points sk+1, . . . , s2k. These points are used to define a generalized observability
matrix:

W =
[
(sk+1E

T −AT )−1CT · · · (s2kE
T −AT )−1CT

]
∈ Cn×k. (2.20)

Proposition 2.7 (Double sided rational interpolation):
Assuming that WTV has full rank, the projected system Σ̂, interpolates the transfer
function of Σ at the points si, i = 1, · · · , 2k. ♢

Proof. The string of equalities that follows proves the desired result:

Ĉ(siÊ− Â)−1B̂ = CV
(
siW

TEV −WTAV
)−1

WTB

= CV
(
WT (siE−A)V

)−1

WTB

= CV
(
WT [· · · B · · · ]

)−1

WTB

= CVei = C(siE−A)−1B, for i = 1, . . . , k,

= CV




...
C
...

V


−1

WTB

= eT
i W

TB = C(siE−A)−1B, for i = k + 1, . . . , 2k.

As shown next, the projectors (see [145]) discussed in the previous section satisfy
Sylvester equations.
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2. Mathematical preliminaries and basic concepts

Proposition 2.8 (Sylvester equations):
With Λ = diag [λ1, · · · , λk], M = diag [µ1, · · · , µq], where λi and µj are mutually
distinct, R =

[
1 · · · 1

]
∈ Rk, and L =

[
1 · · · 1

]T ∈ Rq, the matrices V and W
satisfy the Sylvester equations:

EVΛ−AV = BR and MWTE−WTA = LC. (2.21)
♢

2.2.5. Interpolatory model order reduction

In MIMO (multi-input multi-output) systems, the moments are p × m matrices. So,
in the case of rational matrix interpolation, the most appropriate way to proceed is to
interpolate along specific directions; otherwise, the dimension will scale with the lengths
of the input-output spaces. To avoid this dimensionality enlargement, a good way is to
solve the so-called tangential interpolation problem (see, e.g., [13, 59, 52]).

More precisely, we are given a set of input/output response measurements specified by
left driving frequencies {µi}qi=1 ⊂ C, using left input or tangential directions: {ℓi}qi=1 ⊂
Cp, producing left responses: {vi}qi=1 ⊂ Cm, and right driving frequencies: {λi}ki=1 ⊂ C,
using right input or tangential directions: {ri}ki=1 ⊂ Cm, producing right responses:
{wi}ki=1. We are thus given the left data: (µj ; ℓj

T ,vT
j ), j = 1, . . . , q, and the right data:

(λi; ri,wi), i = 1, . . . , k. The problem is to find a rational p×m matrix H(s), such that:

H(λi)ri = wi, i = 1, . . . , k, ℓTj H(µj) = vT
j , j = 1, . . . , q. (2.22)

The left data is rearranged compactly as:

M =

 µ1

. . .
µq

∈Cq×q, L =

 ℓT1
...
ℓTq

∈Cq×p, V =

 vT
1
...
vT
q

 ∈ Cq×m, (2.23)

while the right data as:

Λ =

 λ1

. . .
λk

 ∈ Ck×k,
R = [r1 r2 · · · rk] ∈ Cm×k,

W = [w1 w2 · · · wk] ∈ Cp×k.
(2.24)

Interpolation points and tangential directions are determined by the problem or are
selected to realize given model reduction goals.

ℓTj Ĥ(µj) = ℓTj H(µj)⇒ ℓTj Ĥ(µj) = vj , j = 1, · · · , q,
Ĥ(λi)ri = H(λi)ri ⇒ Ĥ(λi)ri = wi, i = 1, · · · , k.

}
(2.25)

For SISO systems, i.e., m = p = 1, left and right directions can be taken equal to one
(ℓj = 1, ri = 1), and hence the conditions above become:

Ĥ(µj) = H(µj)⇒ Ĥ(µj) = vj , j = 1, · · · , q,
Ĥ(λi) = H(λi)⇒ Ĥ(λi) = wi, i = 1, · · · , k.

}
(2.26)
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2.3. Nonlinear system theory with Volterra series representation

2.3. Nonlinear system theory with Volterra series
representation

In this section, we introduce the Volterra series, which approximates nonlinear systems
from a systems-theoretic perspective that keeps consistency with the concepts in the
linear system theory unified and extends the transfer function in the nonlinear case
appropriately. Here, we present the core concepts from Volterra’s theory that will be
the primary matter for supporting the aim of this thesis. For more details, the reader is
advised to follow the books [137, 8, 139, 96].

Consider the following nonlinear system{
Eẋ(t) = Ax(t) + F(x) +G(x)u(t),

y(t) = m(x), t ∈ [0,+∞),
(2.27)

where E, A ∈ Rn×n are constant matrices; x(t) ∈ Rn is the state, u(t) ∈ R is an external
forcing (scalar input), and y(t) ∈ R is a scalar output; and F : Rn → Rn, G : Rn → R,
and m : Rn → R. Extension to the MIMO systems is straightforward. Assume that the
above operators F(·), G(·), and m(·) are analytic functions of their argument. In many
applications, this is not a restrictive assumption. For instance, in most cases the map
m is linear, thus m(x(t)) = Cx(t), where C ∈ Rn is a constant vector. Moreover, for
various flow problems, F is quadratic in x, e.g., x ⊗ x. Such systems are called linear-
analytic systems since they are linear in the input, and the nonlinearities are analytic
in x. Now assume that the solution to unforced dynamics, i.e., u(t) = 0 in Eq. (2.27),
exists in a time interval [0, T ]. Then, there exists a scalar α > 0 such that for all
continuous bounded input function u(t) with ∥u(t)∥ < α, for t ∈ [0, T ], the output y(t)
can be written in terms of a Volterra series representation: There exist locally bounded,
piecewise continuous functions hn : Rn → R such that the next infinite series converges
absolutely and uniformly on [0, T ].

y(t) =

N∑
n=1

yn(t), yn(t) =

∫ t

0
· · ·
∫ t

0
hn(τ1, . . . , τn)

n∏
i=1

u(t− τi)dτi, (2.28)

where hn(τ1, . . . , τn) is a real-valued function of τ1, . . . , τn known as the nth-order time-
domain Volterra kernel. After a multivariate Laplace transform to the time-domain
kernels hn(τ1, . . . , τn), the nth-order generalized frequency response function (GFRF) is
defined as

Hn(s1, . . . , sn) =

∫ ∞

0
· · ·
∫ ∞

0
hn(τ1, . . . , τn)e

−
∑n

i=1 siτidτ1 · · · dτn. (2.29)

The above time-domain kernels hn are considered causal. Thus, integration can be
considered to the whole real line R. The nth Volterra operator is defined as:

Vn(u1, u2, ..., un) =

∫ ∞

−∞
· · ·
∫ ∞

−∞
hn(τ1, ..., τn)

n∏
i=1

ui(t− τi)dτi, (2.30)

so that yn = Vn(u, u, ..., u) holds true.
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2. Mathematical preliminaries and basic concepts

Remark 2.9 (Homogeneity of the Volterra operator):
The map u(t) → yn(t) is homogeneous of degree n, that is, αu → αnyn, α ∈ C. Each
Volterra kernel hn(t) determines a symmetric multi-linear operator. Small amplitudes
(e.g., |α| < ϵ) will allow ordering the nonlinear terms in such a way that the terms
having large powers of the amplitude (αn) can be neglected. That is precisely the sense
of approximating weakly nonlinear systems with the Volterra series. ♢

The mathematical formulations above are for general nonlinear systems. Therefore, one
way to derive specific kernels is to assume some structure of the underlying system
that will explain the measurements due to some knowledge of physics, such as inflow
problems, e.g., Navier-Stokes equation, where the dynamics are described from quadratic
models. Further, many engineering examples that are driven with general analytical
nonlinearities, after applying lifting techniques [64], can be represented with polynomial
nonlinearities (in the state variables) into the lifted space and the quadratic structure.
As explained in [86], lifting strategies can result in polynomial systems of quadratic order
in systems with ODEs or DAEs2 where the non-invertible E in the latter case makes the
problem quite challenging and is not the scope of this thesis.

2.3.1. A single-tone input

Consider the excitation of a system with an input consisting of two complex exponentials
as in Eq. (2.31). Such inputs are typically used in electrochemical engineering applica-
tions as [129].

u(t) = A cos(ωt) =

(
A

2

)
ejωt +

(
A

2

)
e−jωt. (2.31)

By using the above input in Eq. (2.28), we can derive the first Volterra term with n = 1
as:

y1(t) =

∫ ∞

−∞
h1(τ1)[u(t− τ1)]dτ1

=
A

2
ejωt

∫ ∞

−∞
h1(τ1)e

−jωτ1dτ1︸ ︷︷ ︸
H1(jω)

+
A

2
e−jωt

∫ ∞

−∞
h1(τ1)e

jωτ1dτ1︸ ︷︷ ︸
H1(−jω)

⇒

y1(t) =
A

2

(
ejωtH1(jω) + e−jωtH1(−jω)

)
.

(2.32)

Similarly, for the 2nd term, we can derive the following:

y2(t) =

(
A

2

)2[
e2jωH2(jω, jω) + 2e0H2(jω,−jω) + e−2jωH2(−jω,−jω)

]
. (2.33)

Remark 2.10 (Conjugate symmetry):
H∗

2 (jω,−jω) = H2(−jω, jω), ∀ω ∈ R. ♢

2DAEs: Differential algebraic equations
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2.3. Nonlinear system theory with Volterra series representation

The input amplitude is A, the angular frequency is ω, the imaginary unit is j, the
first order response function is H1(jω), and Hn(jω, ..., jω), for n ≥ 2, are the higher-
order frequency response functions (FRFs) or generalized frequency response functions
(GFRFs). Then, the nth Volterra term can be written as:

yn(t) =

(
A

2

)n ∑
p+q=n

nCqH
p,q
n (jω)ejωp,qt, ωp,q = (p− q)ω. (2.34)

Where the following notations have been used:

Hp,q
n (jω) = Hn(jω, ..., jω︸ ︷︷ ︸

p−times

;−jω, ...,−jω︸ ︷︷ ︸
q−times

), ωp,q = (p− q)ω, nCq =
n!

q!(n− q)!
. (2.35)

Time-domain representation of harmonics

• 0th harmonic-DC term: Could be a shift to the output by a constant non-
periodic term, known as DC term-yDC

3.

yDC =

∞∑
n=1

(
A

2

)2n
2nCnH

n,n
2n (jω). (2.36)

• 1st harmonic: By collecting all the terms with frequency ω we can derive the 1st
harmonic as yI .

yI(t) =

(
A

2
H1(jω) + 3

(
A

2

)3

H3(jω, jω,−jω) + ...

)
ejωt + c.t. (2.37)

where c.t. stands for the "conjugate terms."

• 2nd harmonic: By collecting all the terms with frequency 2ω we can derive the
2nd harmonic as yII .

yII(t) =

((
A

2

)2

H2(jω, jω)+4

(
A

2

)4

H4(jω, jω, jω,−jω)+ ...

)
e2jω+ c.t. (2.38)

• mth harmonic: The mth harmonic in the time-domain can be computed by col-
lecting the identical exponential power coefficients from Eq. (2.39) and by setting
p− q = m, with p = m+ i− 1 and q = i− 1 in Eq. (2.34). Hence, it follows that:

ymth(t) =
∞∑
i=1

(
A

2

)m+2i−2
m+2i−2Ci−1H

m+i−1,i−1
m+2i−2 (jω)ejmωt. (2.39)

3DC: Direct Current
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2. Mathematical preliminaries and basic concepts

Frequency-domain representation of harmonics The mth harmonic in the frequency-
domain by applying single-sided Fourier transform in Eq. (2.39) is the following:

Ymth(jmω) =
∞∑
i=1

(
A

2

)m+2i−2
m+2i−2Ci−1H

m+i−1,i−1
m+2i−2 (jω)δ(jmω). (2.40)

where δ(·) is the Dirac delta distribution. When a single-tone input excites a nonlinear
dynamical system, the steady-state frequency response is characterized by a spectrum
with higher harmonics (as can be seen, for example, in Fig. 2.1). This behavior is not
observed in the linear case, where only one harmonic appears at the input frequency.
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Figure 2.1.: An instance of the single-sided power spectrum with a singleton input. The
underlying system is nonlinear; as a result, higher harmonics appeared with
a DC (Direct Current, i.e., non-periodic) term.

2.3.2. The kernel separation method

One way to deduce Volterra kernels is by using interpolation. This problem is equivalent
to that of estimating a polynomial with noisy coefficients. This interpolation scheme
builds a linear system with an invertible Vandermonde matrix since the amplitudes are
distinct and non-zero. The inverse of a Vandermonde matrix can be explicitly computed,
and there are stable ways to solve these equations [37]. The recently proposed method
presented in [39] solves the exponentially ill-condition problem of the Vandermonde ma-
trix with Arnoldi orthogonalization. The frequency domain’s mth harmonic is derived
using a (single-sided) Fourier transform. More precisely, the explicit formulation is as
follows:

Ymth(jmω) =
∞∑
i=1

(
A

2

)m+2i−2
m+2i−2Ci−1︸ ︷︷ ︸

αm+2i−2

Hm+i−1,i−1
m+2i−2 (jω)δ(jmω)

=

∞∑
i=1

αm+2i−2Hm+i−1,i−1
m+2(i−1) (jω)δ(jmω).

(2.41)
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2.4. Representation of nonlinear systems with structured embeddings

We simplify the notation to reveal the adaptive method to help us estimate the GFRFs
up to a specific order. Next, write the linear system of equations that connects the
harmonic information with the higher Volterra kernels as follows:

Y0(0jω)

Y1(1jω)

Y2(2jω)

Y3(3jω)

...
Ym(mjω)


︸ ︷︷ ︸

Y(α,ω)

=

{


α0 α2 α4 . . .

α1 α3 α5 . . .

α2 α4 α6 . . .

α3 α5 α7 . . .

...
...

...
...

αm αm+2 αm+4 . . .


︸ ︷︷ ︸

Mα

⊙



H0,0
0 H1,1

2 H2,2
4 . . .

H1,0
1 H2,1

3 H3,2
5 . . .

H2,0
2 H3,1

4 H4,2
6 . . .

H3,0
3 H4,1

5 H5,2
7 . . .

...
...

...
...

Hn,0
n Hn+1,1

n+2 Hn+2,2
n+4 . . .


︸ ︷︷ ︸

Pω

}


1

1

1

1

...
1


︸ ︷︷ ︸
en+1,1

.

(2.42)
By introducing the Hadamard product notation4 and by substituting the δ’s with ones,

we can compactly rewrite the above system in the following form:

Y(α,ω) = [Mα ⊙Pω] · en+1,1. (2.43)

The above system offers the level of approximation we want to achieve. As we neglect
higher-order Volterra kernels, the measurement set tends to be corrupted by noise. Note
that the frequency response Y depends both on the amplitude and the frequency, while
the right-hand side of Eq. (2.43) reveals the separation of the above quantities.
Remark 2.11:
Kernel separation and stage ℓ- approximation For a given system, the procedure involves
exciting it with a single-tone input. By varying the driving frequency and amplitude, we
can approximate the GFRFs by minimizing the (2-norm) of the remaining systems.

Ym+1,ℓ(jmω, αℓ) = [Mm+1,ℓ(αℓ)⊙Pm+1,ℓ(jmω)] · en+1,1. (2.44)

The m-"direction" gives us the threshold up to the specific harmonic we measure, while
the ℓ-"direction" gives us the level of the kernel separation that we want to achieve. For
instance, for the second stage approximation, we have ℓ = 2 with Ym ≈ 0, ∀m with ℓ =
2 < m = 3, 4, .... ♢

2.4. Representation of nonlinear systems with structured
embeddings

2.4.1. Carleman linearization

Carleman in [43] introduced a technique capable of arbitrarily approximating any nonlin-
ear system with analytical nonlinearities with the mildest representation of a nonlinear
system that of bilinear control. Consider the general nonlinear system equivalent to
Eq. (2.27) described as: {

ẋ(t) = f(x(t)) + g(x(t))u(t),

y(t) = Cx(t), t ≥ 0, x(0) = 0.
(2.45)

4the Hadamard product is denoted with "⊙"; the matrix multiplication is performed element-wise.
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2. Mathematical preliminaries and basic concepts

The operators f , g : Rn → Rn are supposed to be analytic in the state variable x.
The analysis shows that it is not restricted when x0 ̸= 0. In this case, the state shift
x̂(t) = x(t)− x0 results in the same structured system in Eq. (2.45).

The idea naturally arises: nonlinear systems with analytic operators f , g can be ap-
proximated with polynomial state representations similar to Taylor’s approximation. The
critical difference is that the polynomial degrees for the states scale with the Kronecker
product ⊗. Denote the composition of k Kronecker products of the same vector x with
itself as

x(k)(t) := x(t)⊗ x(t)⊗ · · · ⊗ x(t) ∈ Rnk
. (2.46)

The (analytic) nonlinear operators f and g can be expanded as

f(x) =
∞∑
k=1

Fkx
(k), g(x) =

∞∑
k=0

Gkx
(k), (2.47)

where G0 ∈ Rn×1, Fj , Gj ∈ Rnj×nj
, j ≥ 1. The system Eq. (2.45) has an equivalent

representation to a state polynomial after substituting Eq. (2.47) with infinite dimension.
The approximation involves the finite approximation of these operators by only N , similar
to a Taylor approximation in which higher-order terms are neglected. Thus, it remains

ẋ(t) =

N∑
k=1

Fkx
(k)(t) +

N−1∑
k=0

Gkx
(k)(t)u(t) + res. (2.48)

We write the derivative of x(2) with respect to the time variable t, further, we use the
Kronecker product property: (A⊗B)(C⊗D) = (AC)⊗ (BD) and it remains:

ẋ(2)(t) =
dx(2)

dt
= ẋ(t)⊗ x(t) + x(t)⊗ ẋ(t) =

=

[
N∑

k=1

Fkx
(k)(t) +

N−1∑
k=0

Gkx
(k)(t)u(t)

]
⊗ x(t) + x(t)⊗ [

N∑
k=1

Fkx
(k)(t) +

N−1∑
k=0

Gkx
(k)(t)u(t)]

=

N∑
k=1

[Fk ⊗ In + In ⊗ Fk]x
(k+1)(t) +

N−2∑
k=0

[Gk ⊗ In + In ⊗Gk]x
(k+1)(t)u(t).

(2.49)
Introduce the following notation that sums j terms, each containing j − 1 Kronecker
products, as follows (for j ≥ 2, k ≥ 1)

Fj,k = Fk(t)⊗In⊗· · ·⊗In+In⊗Fk(t)⊗In⊗· · ·⊗In+ . . .+In⊗· · ·⊗In⊗Fk(t), (2.50)

where we set F1,k := Fk. Similarly, define Gj,k for j ≥ 1, k ≥ 0. Now, write the time
derivative of x(j)(t) (for j ≥ 1) in terms of the new defined matrices

ẋ(j)(t) =

N−j+1∑
k=1

Fj,kx
(k+1)(t) +

N−j∑
k=0

Gj,kx
(k+1)(t)u(t). (2.51)
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2.4. Representation of nonlinear systems with structured embeddings

Increase the dimension of the original state vector from n to n(N) = n+n2 + · · ·+nN =
nN−n
n−1 introducing a new bilinear state variable (n is the dimension of the nonlinear

variable x)
x⊗(t) =

[
x(t) x2(t) · · · x(N)(t)

]T ∈ Rn(N)
(2.52)

having introduced the above state vector, we obtain the following bilinear system repre-
sentation {

ẋ⊗(t) = A⊗x⊗(t) +N⊗x⊗(t)u(t) +B⊗u(t),

y(t) = C⊗x⊗(t), t ≥ 0,x⊗
0 (0) = 0,

(2.53)

where the matrices have dimensions; A⊗, N⊗ ∈ Rn(N)×n(N)
, B⊗, (C⊗)

T ∈ Rn(N) and
are defined as:

A⊗ =


F1,1 F1,2 · · · F1,N

0 F2,1 · · · F2,N−1

0 0
. . . F3,N−2

...
...

...
...

0 0 · · · FN,1

 , N⊗ =


G1,1 G1,2 · · · G1,N−1 0
G2,0 G2,1 · · · G2,N−2 0
0 G3,0 · · · G3,N−3 0
...

...
. . .

...
...

0 0 · · · GN,0 0

 ,

B⊗ =
[
G1,0 0 · · · 0

]T
, C⊗ =

[
C 0 · · · 0

]
(2.54)

Through this thesis, in many cases, especially in Chapter 4, we will use this struc-
ture for identification or reduction purposes. The Carleman procedure can generally be
viewed as a linearization of the original nonlinear system Eq. (2.45) since it involves the
approximation technique similar to Taylor series approximation that truncation of higher
terms must be obtained. In this case, when the original system contains a control input
u(t), the resulting system is bilinear and has the form Eq. (2.53). For the non-controlled
case, the resulting system is linear.

Remark 2.12 (Challenges of Carleman approximation):
The main challenges with this method are:

• It is an approximation of the original system.

• The dimension of the bilinear system scales exponentially w.r.t the original system
and the order of the remaining polynomial terms and new states N . Usually, to
keep the dimension tractable, in most cases, the terms are N = 2 (up to quadratic).
♢

Although the above remark may be seen as an inevitable task, this thesis aims to devise
methods that can learn bilinear systems directly from input-output time-domain data
that are also tailored with reduction techniques. Such a result will not affect the identified
(low order) dimension, as we expect it to be relatively small in most cases. On the
other hand, even for the intrusive methods that use the original large bilinear systems,
depending on the application, model order reduction can also be performed, making the
class of bilinear control systems a very appealing way of approximating general nonlinear
systems.
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2. Mathematical preliminaries and basic concepts

2.4.2. Quadratization of nonlinear systems

The dynamics of many classical nonlinear PDEs or ODEs systems can be expressed after
lifting in terms of polynomial nonlinearities without any approximation error. Examples
include the Chafee-infante, FitzHugh-Nagumo, Burgers’, Oseen, Stokes, RC ladder, or
Navier-Stokes equations. This is performed by using specifically tailored lifting transfor-
mations. In particular, the method of lifting works as follows; Auxiliary variables and
equations are artificially introduced to reformulate the equations into the structure. This
allows the application of conventional MOR methods to more general nonlinear systems.
Specific lifting transformations have already been discussed in the past. Kerner and
McCormick have also introduced lifting techniques for representing nonlinear systems to
exact polynomials. Most recently, algorithms for lifting to quadratic and for many engi-
neering examples tailored with the current study have been introduced in [86, 114, 38],
and in the recent study [64].

Examples above, e.g., the viscous Burgers’ equation or the RC ladder nonlinear circuit,
will be analyzed directly in the lifted version, usually bilinear or quadratic-bilinear. Some
more examples will be introduced toward the end of the thesis and in chapter Chapter 6,
where the analytical steps of bringing a general nonlinear system with analytic nonlin-
earities to the quadratic form will be analyzed.

Remark 2.13 (Advantages and challenges):
The main idea of quadratization via lifting strategies has two main advantages:

• Transforms the original nonlinear system equivalently to the quadratic control sys-
tem form.

• Many methods developed for the class of quadratic systems can be applied di-
rectly and subsequently to any nonlinear system that can be transformed into the
quadratic form.

Although the two above characteristics seem fairly powerful and, in many cases, provide
good results, it must be considered that numerical stiffness is introduced due to lifting,
making the simulation performance lower and sometimes quite challenging. Further, lift-
ing inserts auxiliary variables; thus, it increases the dimension of the resulting system
without guaranteeing a convergent procedure and that only finite terms need to be in-
troduced. Moreover, by not keeping the structure of the original nonlinear system, the
linear operator seems to contain huge sparse blocks with only a few non-zero eigenvalues.
Most model reduction methods respect the splitting as in Eq. (2.27) with a significant
matrix A. If the linear operator diminishes, such cases have only a few results. ♢

Example 2.1 (The forced Van der Pol oscillator):
In dynamics, the Van der Pol oscillator is a non-conservative oscillator with non-linear
damping. It evolves in time according to the second-order differential equation:

d2y

dt2
− µ(1− y2)

dy

dt
+ y = u(t) (2.55)
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2.4. Representation of nonlinear systems with structured embeddings

y(t) is the position as a function of time, u(t) is the external force, and µ is a scalar
parameter indicating the damping’s nonlinearity and strength.

The second-order differential Eq. (2.55) can be written as a first-order by introducing
the following states; x1(t) := y(t), x2(t) :=

dy
dt = ẏ(t). Obviously, ẋ2(t) = ÿ(t). Thus, we

can write:

Σcubic

{
ẋ1(t) = x2(t),

ẋ2(t) = µ(1− x21(t))x2(t)− x1(t) + u(t).
(2.56)

The polynomial system in Eq. (2.56) has cubic degree due to the term x21(t)x2(t).
Lifting to quadratic. Quadratization procedure introduces auxiliary variables by in-
creasing the state dimension. For instance, we can introduce the x3(t) := x21(t) as a third
state. We must differentiate first for augmenting this state with the original 1st order
system.

ẋ3(t) =
dx3
dt

= 2x1(t)ẋ1(t) = 2x1(t)x2(t).

The remaining lifted system in quadratic form is
ẋ1(t) = x2(t),

ẋ2(t) = −x1(t) + µx2(t)− µx3(t)x2(t) + u(t),

ẋ3(t) = 2x1(t)x2(t),

(2.57)

with operators

Aq =

 0 1 0
−1 µ 0
0 0 0

 , Qq =

 0 0 0 0 0 0 0 0 0
0 0 0 0 0 −µ/2 0 −µ/2 0
0 1 0 1 0 0 0 0 0

 , Bq =

 0
1
0

 (2.58)

The subscript "q" indicates that the resulting system’s operator comes from a polynomial
state system with a maximum degree equal to two (quadratic nonlinearities). If we choose
to observe the position x1(t) = y(t), then, the output vector is Cq =

[
1 0 0

]
, and

with state vector x =
[
x1 x2 x3

]T , the following quadratic control system is derived:

Σquadratic :

{
ẋ(t) = Aqx(t) +Qq(x(t)⊗ x(t)) +Bqu(t),

y(t) = Cqx(t).
(2.59)

Remark 2.14 (Quadratization of the forced Van der Pol oscillator):
Through this small-scale example, we want to include some remarks.

• The two systems in Eq. (2.56) and Eq. (2.59), although are different in the internal
description (different state dimension and polynomial degree), they have the same
external description. Thus, the two input-output maps are equivalent.

• The main reason for lifting to quadratic systems is that many model order reduction
methods have been extended to this class of nonlinear systems (e.g., the Loewner
framework). Thus, they can directly apply when all the operators are accessible
from the high-fidelity model and not in a purely data-driven way.
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2. Mathematical preliminaries and basic concepts

• On the other hand, the different internal descriptions can have different numeri-
cal performances due to the dimensionality scaling. Numerical stiffness has been
observed for lifted systems from a higher polynomial degree to quadratic. More
details on the appropriate polynomial degree in [25].

• For the non-intrusive case and towards the methods we aim to develop in this
thesis, keeping the original polynomial structure is beneficial as the linear operator
is theoretically minimal, and the number of eigenvalues matches the state dimension
of the system under some controllability/observability conditions. Thus, for our
approaches in this thesis, for a system like the forced Van der Pol oscillator, it is
better to infer the input-output dynamics from a cubic system (original) instead of
a lifted quadratic where the linear operator loses its strength of giving the correct
dimensionality order, e.g., eig(Aq) = µ/2±

√
µ2 − 4/2 (two non-zero eigenvalues

but the order is 3). ♢
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3. The Loewner framework for linear Systems

3.1. Introduction

One of the main approaches to the model reduction of linear dynamical systems is employ-
ing interpolation. This approach seeks reduced models whose transfer function matches
the original system at selected interpolation points. Data-driven methods constitute an
important particular class of modeling methods. We start with an account of the Loewner
framework in the linear case [122]. It constructs models from given data straightforwardly.
An important attribute is that it provides a trade-off between the accuracy of fit and the
complexity of the model. We compare this approach with other approximation methods
and apply it to test cases. One of the case studies to which we apply the aforementioned
methods is defined by the inverse of the Bessel function. We then turn our attention to
the approximation of an Euler-Bernoulli beam model with Rayleigh damping.

Further case studies include approximating two real-valued functions with specific dif-
ficulties (discontinuity, sharp peaks) and other nontrivial approximation tasks. One
computational tool is the SVD; its complexity is cubic in the number of data points. For
large data sets, the CUR factorization is a viable alternative. Note that its complexity
is also cubic, but concerning the dimension of the reduced-order model (ROM). Another
option is to use stochastic procedures such as randomized singular value decomposition
(r-SVD) [89].

A complex problem facing computational linear algebra is that of modeling big data.
The problem mainly involves constructing reduced complex systems from input/output
data. This contribution focuses on reduction via interpolation. The Loewner framework
is a data-driven approach that can construct low-order models from measurements. It
can be applied to frequency and time-domain data [127]. In this chapter, we concentrate
on frequency domain data; later, we will connect it naturally with the time domain. The
Loewner framework will be implemented using (a) the SVD (singular value decomposi-
tion), (b) the CUR factorization, and (c) randomized SVD (r-SVD). Its performance will
be compared with that of the recently developed AAA algorithm see [123], the Vector
Fitting approach [88, 52], and the IRKA algorithm [18]. Chapter 3 is composed by three
subsections. Section 3.2 covers the fundamentals of the Loewner framework, starting
from a left and right interpolatory reduction in connection with moment matching. It
concludes (a) by describing an interpolation property satisfied by reduced systems and
(b) by making the procedure of obtaining real reduced models (despite complex inter-
polation points and values) explicit. Next, the description of two algorithms, namely,
Loewner-SISO and Loewner-MIMO, is given. Finally, numerical examples are presented,
and the role of generalized inverses Section 2.1.3 is outlined. Describes methods for im-
plementing the Loewner reduction, namely the SVD, the CUR factorization, and the role
of splitting the interpolation point in left and right sets. Illustrates the main features
of the Loewner approach utilizing seven case studies, namely, (a) the CD player, (b) an
oscillating function, (c) the inverse of a Bessel function, (d) an Euler-Bernoulli beam, (e)
a heat equation, (f) a function with two sharp peaks, and (g) the sign function.
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3.2. The Loewner framework

3.2. The Loewner framework

The Loewner framework has attracted the increased attention of researchers from various
fields of applied mathematics and control engineering in the last 20 years. Consequently,
a fair number of contributions that are now available deal with various aspects of further
extending the framework and its application to different test cases. Below we provide an
account of some of the works related to or inspired by the "Loewner framework."

Table 3.1.: A collection of contributions related to the Loewner Framework
Original paper [122] & tutorial paper [13] Chapters 4 and 7 in the book [8]

Extension to Application to
LPV & parametrized linear systems [6, 93, 76] modeling multi-port linear systems [115]
bilinear systems [12, 73, 104, 101] preserving the stability of the ROM [66, 77]
quadratic systems [69, 65, 72, 48, 106] the Burger’s equations [10, 48, 106]
quadratic-bilinear systems [69, 105] the Oseen equations [11]
linear switched systems [75] preserving the structure of DAE systems [80]
polynomial systems [26, 5] systems with delay [141, 71]
modeling from noisy data [51, 117, 109] approximating functions [100, 123]
modeling from time-domain data [127, 104, 106] singular/rectangular systems [4]
one-sided Loewner framework [70] genes oscillations [14] & biological rhythms [157]
data-driven control [79, 78, 110] generic BizJet gust load alleviation [132]
port Hamiltonian systems [29, 94] flutter stability with true damping [134]
second order systems [131] batteries [138], electrochemistry [81, 126, 147]

Perspective based on duality and Interpretation based on interconnection and
application to bilinear differential [135, 136] application to LPV/LTV systems [142, 143, 76]

3.2.1. Rational interpolation and the Loewner matrix

In this section, we deal with the Lagrangian rational interpolation that is numerically
proven to be more stable than the classical polynomial interpolation. There are certain
bases, e.g., Chebynshev base, for which the polynomial interpolation is almost optimal,
and for further details [149] is of relevance. Still, here we will be concerned with the
rational approximation problem, which is more general and tailored to the system theory
as the transfer function belongs to the class of rational functions. The general rational
function of degree (n, d) over the complex plane C is defined as:

r(s) :=
βns

n + βn−1s
n−1 + · · ·+ β1s+ β0

αnsd + αd−1sd−1 + · · ·+ α1s+ α0
, s ∈ C, (3.1)

where (n, d) tells the order of the numerator and denominator, respectively. Moreover,
βn, αm ̸= 0. The above rational function Eq. (3.1) covers the polynomial function,
thus making rational interpolation more general. In particular, polynomials have poles
"at infinity." In contrast, for the rational function case, singularities can be finite, and
Eq. (3.1) is the right structure for approximating functions with singular points, i.e.,
roots of the denominator. For simplicity, let’s take equal polynomial degrees for the
numerator and denominator; thus, d = n.
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3. The Loewner framework for linear Systems

The unknown coefficients at first glance seem 2n+2, but after division with the nonzero
αn ̸= 0, we get the normalized version of the following rational function of degree (n, n)

r(s) :=
β̂ns

n + β̂n−1s
n−1 + · · ·+ β̂1s+ β̂0

α̂nsn + α̂n−1sn−1 + · · ·+ α̂1s+ α̂0
, s ∈ C, α̂n = 1. (3.2)

To compute the rational interpolant of order n, one needs to determine 2n+1 coefficients
so that the following interpolation conditions are satisfied

r(si) = fi, i = 1, 2, . . . , 2n+ 1, where r(s) =

∑n
k=0 β̂ks

k∑n
k=0 α̂ksk

. (3.3)

Firstly, partition the set of interpolation nodes into two disjoint sets

{s1, s2, . . . , s2n+1} = {µ1, µ2, . . . , µn} ∪ {λ1, λ2, . . . , λn, λn+1} .
Secondly, partition the set of points into the analogs disjoint sets from the nodes.

{f1, f2, . . . , f2n+1} = {υ1, υ2, . . . , υn} ∪ {ω1, ω2, . . . , ωn, ωn+1} .
The most crucial numerical handling is to avoid using the monomial base expansion of
the Eq. (3.3) as it will lead to an ill-conditioned Vandermonde matrix, but instead to
introduce the Lagrange basis ℓ(s) and to rewrite the rational interpolation problem by
using the barycentric formula.

r(si) = fi, i = 1, 2, . . . , 2n+ 1, where r(s) =

∑n+1
i=1 biℓi(s)∑n+1
i=1 aiℓi(s)

, (3.4)

where the Lagrange polynomials are given ℓi(s) =
∏n+1

k=1,k ̸=i(s− λk), i = 1, 2, . . . , n+ 1.
Evaluating Eq. (3.4) at the nodes λi, it follows that r(λi) = bi/ai = ωi ⇒ bi = αiωi. By
dividing both the numerator and denominator in Eq. (3.4) with the polynomial ℓ(s) =∏n+1

k=1(s− λk), it follows that the barycentric formula is rewritten as

r(s) =

∑n+1
i=1

bi
s−λi∑n+1

i=1
αi

s−λi

=

∑n+1
i=1

aiωi
s−λi∑n+1

i=1
αi

s−λi

, (3.5)

and to recover the rational function r that interpolates all the data, we need to specify
the n+1 unknowns coefficients (weights) ai, i = 1, . . . , n+1. The reduction from 2n+1
unknown to only n + 1 has to do with the fact we have already enforced r(λi) = ωi. It
remains to enforce the remaining interpolation conditions

r(µj) = υj ⇔
∑n+1

i=1
aiωi
µj−λi∑n+1

i=1
αi

µj−λi

= υj , ∀1 ≤ j ≤ n⇔
n∑

j=1

n+1∑
i=1

υj − ωi

µj − λi
αi = 0,

where in matrix form is

L =


υ1−ω1
µ1−λ1

υ1−ω2
µ1−λ2

· · · υ1−ωn+1

µ1−λn+1
υ2−ω1
µ2−λ1

υ2−ω2
µ2−λ2

· · · υ2−ωn+1

µ2−λn+1

...
...

. . .
...

υn−ω1
µn−λ1

υn−ω2
µn−λ2

· · · υn−ωn+1

µn−λn+1

 ∈ Cn×(n+1), (3.6)
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and the coefficients ai can be computed from the null space, e.g., the kernel of Loewner
ker(L) = a. Having the coefficients ai, we compute the bi, and the rational function has
been determined uniquely.

3.2.2. The Loewner pencil

Given a row array of complex numbers (µj ,vj), j = 1, · · · , q, and a column array, (λi,wi),
i = 1, · · · , k, (with λi and the µj mutually distinct) the associated Loewner and shifted
Loewner matrices are:

L=


v1−w1
µ1−λ1

· · · v1−wk
µ1−λk

...
. . .

...
vq−w1

µq−λ1
· · · vq−wk

µq−λk

∈Cq×k, Ls=


µ1v1−λ1w1

µ1−λ1
· · · µ1v1−λkwk

µ1−λk
...

. . .
...

µqvq−λ1w1

µq−λ1
· · · µqvq−λkwk

µq−λk

∈Cq×k.

Definition 3.1 (McMillan degree):
If g is rational, i.e., g(s) = p(s)

q(s) , for appropriate polynomials p, q, the McMillan degree
or the complexity of g is degg = max{deg(p), deg(q)}. ♢

Now, if wi = g(λi), and vj = g(µj), are samples of a rational function g, the main
property of Loewner matrices asserts the following.

Theorem 3.2 (Minimality of LTI systems):
[122] Let L be as above. If k, q ≥ deg g, then rankL = deg g. In other words, the
rank of L encodes the complexity of the underlying rational function g. Furthermore,
the same result holds for matrix-valued functions g. ♢

3.2.3. Interpolatory projectors

We denote the tangential versions of (2.18) and (2.20) by R, O, respectively. For arbitrary
k and q, these are defined as:

R =
[
(λ1E−A)−1Br1, · · · , (λkE−A)−1Brk

]
∈ Cn×k, (3.7)

OT =
[
(µ1E

T −AT )−1CT ℓ1 · · · (µqE
T −AT )−1CT ℓq

]
∈ Cn×k. (3.8)

It readily follows that the reduced quantities Ê and Â form a Loewner pencil:

Ê = −OER = −


vT
1 r1−ℓT1 w1

µ1−λ1
· · · vT

1 rk−ℓT1 wk

µ1−λk
...

. . .
...

vT
q r1−ℓTq w1

µq−λ1
· · · vT

q rk−ℓTq wk

µq−λk

 = −L ∈ Cq×k, (3.9)

Â = −OAR = −


µ1vT

1 r1−ℓT1 w1λ1

µ1−λ1
· · · µ1vT

1 rk−ℓT1 wkλk

µ1−λk
...

. . .
...

µqvT
q r1−ℓTq w1λ1

µq−λ1
· · · µqvT

q rk−ℓTq wkλk

µq−λk

 = −Ls ∈ Cq×k, (3.10)
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B̂ = OB =

 vT
1
...
vT
q

 = V ∈ Cq×m , Ĉ = CR =
[
w1 · · · wk

]
= W ∈ Cp×k. (3.11)

The resulting quadruple (W, L, Ls, V) is called the Loewner quadruple.
Lemma 3.3 (Sylvester equations and Loewner):
Upon multiplication of the first equation in (2.21) with O on the left and the second by
R on the right, we obtain:

Ls − LΛ = VR and Ls −ML = LW. (3.12)

By adding/subtracting appropriate multiples of these expressions, it follows that the
Loewner quadruple satisfies the Sylvester equations

ML− LΛ = VR− LW and MLs − LsΛ = MVR− LWΛ. (3.13)
♢

Theorem 3.4 (Tangential interpolation):
Assume that the pencil (Ls, L) is regular1. Then H(s) = W(Ls − sL)−1V, satisfies the
tangential interpolation condition (2.22). ♢

Proof. Multiplying the first Sylvester equation by s and subtracting it from the second
one, we get

M(Ls − sL)− (Ls − sL)Λ = (M− sI)VR− LW(Λ− sI).

Multiplying this equation by ei on the right and setting s = λi, we obtain

(M− λiI)(Ls − λiL)ei = (M− λiI)Vri ⇒ (Ls − λiL)ei = Vri

⇒ Wei = W(Ls − λiL)−1Vri.
Thus wi = H(λi)ri. Next, we multiply the above equation by eTj on the left and set
s = µj :

eTj (Ls − µjL)(Λ− µjI) = eTj LW(Λ− µjI) ⇒ eTj (Ls − µjL) = ℓjW

⇒ eTj V = ℓTj W(Ls − µjL)−1V.

Thus vT
j = ℓTj H(µj).

Remark 3.5 (Parametrization of all interpolants):
With K ∈ Cp×m, the Sylvester equations can be rewritten as

ML− LΛ = (V− LK)R− L(W−KR) and

M(Ls + LKR)− (Ls + LKR)Λ = M(V− LK)R− L(W−KR)Λ.

These equations imply that
(
W̄,L, L̄s, V̄

)
is an interpolant for all K ∈ Cp×m, where

L̄s = Ls + LKR, V̄ = V− LK and W̄ = W−KR. ♢
1The pencil (Ls,L) is called regular if there is at least one value of λ ∈ C such that det(Ls − λL) ̸= 0.
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3.2. The Loewner framework

3.2.4. Construction of interpolants

If the pencil (Ls, L) is regular, then E = −L, A = −Ls, B = V, C = W, is
a minimal interpolant of the data, i.e., H(s) = W(Ls − sL)−1V, interpolates the data.
Otherwise, as shown in [122], problem (2.22) has a solution provided that

rank [sL− Ls] = rank [L, Ls] = rank
[

L
Ls

]
= r,

for all s ∈ {λj} ∪ {µi}. Consider, then, the short SVDs:

[L, Ls] = YΣ̂rX̃
∗,

[
L
Ls

]
= ỸΣrX

∗,

where Σ̂r, Σr ∈ Rr×r, Y ∈ Cq×r, X ∈ Ck×r, Ỹ ∈ C2q×r, X̃ ∈ Cr×2k.

Remark 3.6 (Numerical rank):
r can be chosen as the numerical rank (as opposed to the exact rank) of the Loewner
pencil. For issues related to the rank, we refer the reader to [7], page 50, for details. ♢

Theorem 3.7 (Compressed model):
The quadruple (E,A,B,C) of size r × r, r × r, r ×m, p× r, given by:

E = −YTLX, A = −YTLsX, B = YTV, C = WX,

is a descriptor realization of an (approximate) interpolant of the data with McMillan
degree r = rankL. ♢

Remark 3.8 (Descriptor realization and the D term):
(a) The Loewner approach constructs a descriptor representation (W,L,Ls,V), of an
underlying dynamical system exclusively from the data, with no further manipulations
involved (i.e., matrix factorizations or inversions). The pencil (Ls,L) is singular and
needs to be projected to a regular pencil (A,E). However, as shown in the mass-spring-
damper example in Eq. 3.16, inversion can be replaced by generalized inversion.
(b) As mentioned, in the Loewner framework, by construction, D terms are absorbed
in the other matrices of the realization. Extracting the D term involves an eigenvalue
decomposition of (Ls,L). ♢

3.2.5. Interpolation property of reduced systems

Given a Loewner quadruple and the projection matrices2 X,Y ∈ Cn×k, let the reduced
quantities be

L̂ = X∗LY, L̂s = X∗LsY, V̂ = X∗V, Ŵ = WY.

We also consider the projected L and R matrices, namely L̂ = X∗L, R̂ = RY. The
question arises whether these reduced quantities also satisfy interpolation conditions.
The answer is affirmative, and to show this, we proceed as follows.

2We call X,Y ∈ Cn×k projection matrices as they are used for defining the projector : X(Y∗X)−1Y∗.

33



3. The Loewner framework for linear Systems

The associated Λ̂ and M̂ must satisfy the projected equations resulting from (3.12),
i.e.

L̂s − L̂ Λ̂ = V̂R̂ and L̂s − M̂ L̂ = L̂Ŵ. (3.14)

Notice that the projected Loewner pencil is not in Loewner form. To achieve this, we
proceed as follows. We need to diagonalize Λ̂ and M̂. For this purpose we compute the
following two generalized eigenvalue decompositions:[

DΛ̂,TΛ̂

]
= eig

(
L̂s − V̂R̂, L̂

)
and

[
DM̂,TM̂

]
= eig

(
L̂s − L̂Ŵ, L̂

)
.

These decompositions imply:

Λ̂ = TΛ̂DΛ̂T
−1

Λ̂
and M̂ = TM̂DM̂T−1

M̂
, (3.15)

where for simplicity, it is assumed that the matrices Λ̂ and M̂ are diagonalizable.
It follows that the (diagonal) entries of DΛ̂ and DM̂ are the right frequencies and

the left frequencies of the reduced system, respectively. Furthermore, straightforward
calculations imply that the remaining quantities are as follows:

L̄s = T−1

M̂
L̂sTΛ̂, L̄ = T−1

M̂
L̂TΛ̂,

V̄ = T−1

M̂
V̂, L̄ = T−1

M̂
L̂,

W̄ = ŴTΛ̂, R̄ = R̂TΛ̂.

Conclusion The right/left data triples for the reduced system are
(
DΛ̂, W̄, R̄

)
,

and
(
DM̂, V̄, L̄

)
, respectively, while the associated Loewner pencil is (L̄s, L̄).

3.2.6. Real interpolants and reduced models

Most often, the data are collected from real systems. In these cases if (si, ϕi) si, ϕi ∈ C,
is a measurement pair; for the interpolants/reduced models to be real, the complex
conjugate pair (s̄i, ϕ̄i), should also be included. Thus the left/right frequencies, besides
real quantities, contain complex ones appearing in complex conjugate pairs. For instance,
in the SISO (single-input, single-output) case, let the real measurement frequencies be
σi ∈ R, and the complex ones σ̂i + j · ω̂i where j denotes the imaginary unit. We split
them into two sets, the left, and the right ones, respectively, making sure that each set
is closed under complex conjugation:

M = {σi, i = 1, · · · , r1; σ̂i ± j · ω̂i, i = 1, . . . , r3},
Λ = {σi, i = r1 + 1, . . . , r1 + r2; σ̂i ± j · ω̂i, i = r3 + 1, . . . , r3 + r4}.

Thus the left set has r1 real frequencies and r3 complex frequencies together with their
complex conjugates (total r1+2r3 numbers). Similarly, the numbers for the right set are
r2 and r4, i.e., it consists of r2 +2r4 numbers. The quantities W and V are assembled in

34



3.3. Introductory examples

accordance with M and Λ. In addition, let us define the matrices:

Jµ = blkdiag[Ir1 ,
r3 terms︷ ︸︸ ︷
J, · · · ,J] ∈ C(r1+2r3)×(r1+2r3),

Jλ = blkdiag[Ir2 ,J, · · · ,J︸ ︷︷ ︸
r4 terms

] ∈ C(r2+2r4)×(r2+2r4),

where J = 1√
2

[
1 −j
1 j

]
, where blkdiag[·] (following Matlab notation) denotes the diag-

onal block structure. A simple calculation shows then that the matrices.

MR = J∗
µMJµ, VR = J∗

µV, LR = J∗
µL,

Have real entries. The same happens with the matrices.

ΛR = J∗
λΛJλ, WR = WJλ, RR = RJλ.

Recall equations (3.12). If we now solve the transformed equations for LR, LR
s :

LR
s − LR ΛR = VR RR and LR

s −MR LR = LR WR,

the resulting pencil (LR
s , LR) has real entries. Hence the algorithms based on LR and

LR
s described below yield real reduced order models.

3.2.7. Algorithms for SISO and MIMO Loewner models

3.3. Introductory examples

In this section, the theory will be illustrated using simple examples.

Example 3.1 (A spring-mass-damper system):
Let m, d, and k denote the mass, damping, and stiffness of the spring; let also x(t) denote
the displacement and F (t) the force applied; the associated differential equation is:

mẍ(t) + dẋ(t) + kx(t) = F (t)

This is a SISO (single-input, single-output) system. By introducing the state variables

Figure 3.1.: A spring mass damper system.
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3. The Loewner framework for linear Systems

Algorithm 3.1: The Loewner-SISO rational interpolation method
Input: S = [s1, · · · , sN ] ∈ CN , F = [ϕ1, · · · , ϕN ] ∈ CN , N ∈ N.
Output: Ê ∈ Rr×r, Â ∈ Rr×r, B̂ ∈ Rr×1, Ĉ ∈ R1×r with r ≪ N.
1: Partition the measurements into 2 disjoint sets and form left and right set as:

(µj ,vj), j = 1, . . . , q and (λi,wi), i = 1, . . . , k.

frequencies : [s1, · · · , sN ] → [λ1, · · · , λk] , [µ1, · · · , µq] , k + q = N,

values : [ϕ1, · · · , ϕN ] → [w1, · · · ,wk] = W, [v1, · · · ,vq] = VT .

2: Construct the Loewner pencil as:

L =

(
vi −wj

µi − λj

)j=1,...,k

i=1,...,q

, Ls =

(
µivi − λjwj

µi − λj

)j=1,...,k

i=1,...,q

.

3: It follows that the complex raw model is:

{W,L,Ls,V}.

4: Transform all the complex data to real, and it follows the raw, real model:

{WR,LR,LR
s ,VR}.

5: Compute the rank revealing SVDs: [Y1,Σ1,X1] = SVD([LR LR
s ]) and

[Y2,Σ2,X2] = SVD([LR;LR
s ]); the decay of the singular values, leads to the choice

of the order r of the approximant.
6: The reduced real model is obtained by projecting the raw real model with

Y = Yn×r
1 and X = Xn×r

2 as:

{WR,LR,LR
s ,VR}︸ ︷︷ ︸

singular

⇒︸︷︷︸
SVD

{WRX,YTLRX,YTLR
s X,YTVR}︸ ︷︷ ︸

regular

= {Ĉ,−Ê,−Â, B̂}.

7: A real approximant of the data is then:

Ĥ(s) = Ĉ(sÊ− Â)−1B̂ ≈ ϕ(s).
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Algorithm 3.2: The Loewner MIMO rational interpolation method
Input: S = [s1, · · · , sN ] ∈ CN ,F = [ϕ1, · · · ,ϕN ] ∈ CN×p×m, N ∈ N.
Output: Ê ∈ Rr×r, Â ∈ Rr×r, B̂ ∈ Rr×m, Ĉ ∈ Rp×r with r ≪ N.
1: Partition the measurements into 2 disjoint sets:

Left data:

M =

 µ1

. . .
µq

∈Cq×q, L =

 ℓT1
...
ℓTq

∈Cq×p, V =

 vT
1
...
vT
q

 ∈ Cq×m.

Right data:

Λ =

 λ1

. . .
λk

 ∈ Ck×k,
R = [r1, r2, · · · rk] ∈ Cm×k,

W = [w1 w2 · · · wk] ∈ Cp×k.

2: Construct the Loewner pencil as:

L =

(
vT
i ri − ℓTj wj

µi − λj

)j=1,...,k

i=1,...,q

, Ls =

(
µiv

T
i ri − λjℓ

T
j wj

µi − λj

)j=1,...,k

i=1,...,q

.

3: It follows that the complex raw model is:

{W,L,Ls,V}.

3: Transform all the complex data to real, and it follows the real raw model:

{WR,LR,LR
s ,VR}.

4: Compute the rank revealing SVDs: [Y1,Σ1,X1] = SVD([LR LR
s ]) and

[Y2,Σ2,X2] = SVD([LR;LR
s ]); the decay of the singular values, lead to the choice

of r.
5: The reduced real model is obtained by projecting the raw real model with:

Y = Yn×r
1 and X = Xn×r

2 .

{WR,LR,LR
s ,VR}︸ ︷︷ ︸

singular

⇒︸︷︷︸
SVD

{WRX,YTLRX,YTLR
s X,YTVR}︸ ︷︷ ︸

regular

= {Ĉ,−Ê,−Â, B̂}.

6: A real approximant of the data is:

Ĥ(s) = Ĉ(sÊ− Â)−1B̂ ≈ ϕ(s).
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3. The Loewner framework for linear Systems

x1 = x, x2 = ẋ, the input u = F , and as output the velocity y = ẋ, the following state
equations result:

ẋ1(t) = x2(t), mẋ2(t) = −kx1 − dx2(t) + u(t), y(t) = x2(t).

The system matrices are thus:

E =

[
1 0
0 m

]
, A =

[
0 1
−k −d

]
, B =

[
0
1

]
, C =

[
0 1

]
,

and the resulting transfer function:

H(s) = C(sE−A)−1B =
s

ms2 + ds+ k
.

Next, we will assume for simplicity that all parameters have value one. We now wish
to recover state equations equivalent to the above from transfer function measurements.
Toward this goal, we evaluate the transfer function at the real frequencies: λ1 =

1
2 , λ2 = 1

(right frequencies), as well as µ1 = −1
2 , µ2 = −1 (left frequencies). The corresponding

values of H are collected in the matrices.

W =
(

2
7

1
3

)
, V =

(
−2

3 −1
)T

.

Furthermore with R = [1 1] = LT , we construct the Loewner pencil:

L =

[
20
21

2
3

6
7

2
3

]
, Ls =

[
− 4

21 0

−4
7 −1

3

]
.

Since the pencil (Ls, L) is regular, we recover the original transfer function:

H(s) = WΦ(s)−1V =
s

s2 + s+ 1
, where Φ(s) = Ls − sL.

Hence, the measurements above yield a minimal (descriptor) realization of the system in
terms of the (state) variables z1, z2:

20
21 ż1(t) +

2
3 ż2(t) = − 4

21z1(t) +
2
3u(t),

6
7 ż1(t) +

2
3 ż2(t) = −4

7 z1(t)− 1
3 z2(t) + u(t),

y(t) = 2
7 z1(t) +

1
3 z2(t).

with

Ẽ =

[
20
21

2
3

6
7

2
3

]
, Ã =

[
− 4

21 0
−4

7 −1
3

]
, B̃ =

[
2
3
1

]
, C̃ =

[
2
7

1
3

]
.

By multiplying with Ẽ−1, it yields: (id: identified system in state space form)

Ãid =

[
4 7

2
−6 −5

]
, B̃id =

[
−7

2
6

]
, C̃id =

[
2
7

1
3

]
.
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Coordinate tranformation Let the state vector x be transformed to the new state
vector z by the non-singular transformation matrix

Ψ =

[
C
CA

]−1 [
C̃id

C̃id Ãid

]
,

of dimension 2× 2. Then, the following hold:

z = Ψ−1x, Ãid = Ψ−1AΨ, B̃id = Ψ−1B, C̃id = CΨ.

(e.g., ΨÃidΨ
−1 =

[
0 1
−1 −1

]
= A).

Remark 3.9 (Invariant information and identification):
The above result certifies that the Loewner framework constitutes a data-driven system
identification method that constructs a realization only from measurements. It is es-
sential to mention that initial and identified systems are identical under a coordinate
transformation. At the same time, the underlying dynamics are recovered exactly while
the corresponding revealing transfer function remains invariant under such a transforma-
tion. ♢

The question now arises: what happens if we collect more data than necessary:

Λ = diag
(

1
2 1 3

2 2
)
, M = diag

(
−1

2 −1 −3
2 −2

)
.

In this case, the associated measurements are

W =
(

2
7

1
3

6
19

2
7

)
, V =

(
−2

3 −1 −6
7 −2

3

)T
,

and with R = [1 1 1 1] = LT , the Loewner pencil is:

L =


20
21

2
3

28
57

8
21

6
7

2
3

10
19

3
7

4
7

10
21

52
133

16
49

8
21

1
3

16
57

5
21

 , Ls =


− 4

21 0 4
57

2
21

−4
7 −1

3 − 4
19 −1

7

−4
7 − 8

21 − 36
133 −10

49

−10
21 −1

3 −14
57 − 4

21

 .

It turns out that we can choose arbitrary matrices X,Y ∈ R4×2, provided that det (YTX) ̸=
0, e.g.

X =


−1 0
0 −1
0 0
−2 1

 , YT =

[
0 1 0 −1
1 −1 −1 1

]
,

so that the projected quantities

Ŵ = WX =
[
−6

7 − 1
21

]
, L̂ = YTLX =

[
−6

7 −1
7

18
49

1
147

]
,
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3. The Loewner framework for linear Systems

L̂s = YTLsX =

[
0 1

21

−48
49 − 19

147

]
, V̂ = YTV =

[
−1

3

11
21

]
,

constitute a minimal realization of H(s):

H(s) = Ŵ
(
L̂s − sL̂

)−1
V̂ =

s

s2 + s+ 1
.

It should be stressed that this holds for arbitrary projection matrices X, Y. The quantity
needed is the generalized inverse Section 2.1.3 of

Φ(s) = Ls − sL =


− 20s

21
− 4

21
− 2s

3
4
57

− 28s
57

2
21

− 8s
21

− 6s
7
− 4

7
− 2s

3
− 1

3
− 10s

19
− 4

19
− 3s

7
− 1

7

− 4s
7
− 4

7
− 10s

21
− 8

21
− 52s

133
− 36

133
− 16s

49
− 10

49

− 8s
21

− 10
21

− s
3
− 1

3
− 16s

57
− 14

57
− 5s

21
− 4

21

 . (3.16)

We first notice that Φ(s) = X∆(s)YT , where X and Y can be chosen as follows

X =


1 0

0 1

−3
7

8
7

−1
2 1

 , Y =

[
1 0 − 7

19 −1
2

0 1 24
19

9
7

]
⇒ det (YX) ̸= 0.

Thus by taking the 2 × 2 upper-left block as ∆(s) = Φ(1 : 2, 1 : 2)(s), it follows that
Φ(s)MP = 1

80989667
1

s2+s+1
Z(s), where Z(s) =−28 (11610185s + 7274073) 14 (3558666s − 5604037) 6076 (32301s − 391) 14 (15168851s + 1670036)

294 (225182s + 281171) (−147) (192415s − 19668) −2058 (29494s + 15609) −147 (417597s + 261503)

3724 (54617s + 48189) (−1862) (29046s − 17485) −26068 (5715s + 1523) −1862 (83663s + 30704)

98 (2527157s + 2123670) −49 (1250553s − 876439) −98 (1797669s + 409322) −49 (3777710s + 1247231)

 .

In the rectangular case, where there are two fewer right measurements, i.e., we only have
Λ̃ = diag

[
1
2 , 1

]
, while M remains the same, the right values are W̃ = W(:, 1 : 2);

hence

Φ̃(s) = L̃s − s L̃ =


− 20s

21
− 4

21
− 2s

3

− 6s
7
− 4

7
− 2s

3
− 1

3

− 4s
7
− 4

7
− 10s

21
− 8

21

− 8s
21

− 10
21

− s
3
− 1

3

 = X∆(s) ỸT ,

has dimension 4 × 2, where Ỹ = Y(1 : 2, 1 : 2). In this case, the Moore-Penrose
Section 2.1.3 inverse is

Φ̃(s)MP =
1

737 (s2 + s+ 1)

[
−4767s− 3402 1827

2
s− 2037

2
3087s+ 294 3297s+ 1365

2

5838s+ 5250 −1596s+ 903 −4326s− 1218 −4515s− 1722

]
,

which implies the desired equality

⇒WΦ(s)MP V = W̃ Φ̃(s)MP V = H(s).

Conclusion: the Loewner framework allows the definition of rectangular and singular
systems. ♢
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Example 3.2 (Reduction of a 10th order band-stop filter):
The system has two inputs and outputs (MIMO), state-space dimension 10, and a D
term of rank 2. A state-space representation is as follows:

Σ : ẋ(t) = Ax(t) +Bu(t), y(t) = Cx(t) +Du(t), where

A =



− 1
2

− 1
2

− 1
2

1
2

1
2

−1 0 0 0 0

− 1
2

− 1
2

− 1
2

− 1
2

1
2

0 −1 0 0 0
1
2

1
2

− 1
2

− 1
2

− 1
2

0 0 −1 0 0

− 1
2

1
2

− 1
2

− 1
2

− 1
2

0 0 0 −1 0

− 1
2

− 1
2

− 1
2

− 1
2

− 1
2

0 0 0 0 −1

1 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0



, B =



1
2

− 1
2

1
2

− 1
2

1
2

1
2

1
2

1
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1
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1
2

0 0

0 0

0 0
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

,

C =

[
− 1

2
− 1

2
1
2

1
2

1
2

0 0 0 0 0

− 1
2

− 1
2

− 1
2

− 1
2

− 1
2

0 0 0 0 0

]
, D =

[
1
2

− 1
2

1
2

1
2

]
.

The transfer function is a 2× 2 rational matrix given by:

H(s) =
1

d(s)

[
n1(s) n2(s)
−n2(s) −n1(s)

]
+D, where

n1(s) = s
(
s8 + 7s6 + 13s4 + 7s2 + 1

)
,

n2(s) = s
(
5s8 + 6s7 + 25s6 + 20s5 + 41s4 + 20s3 + 25s2 + 6s+ 5

)
,

d(s) = 2(s4 + s3 + 3s2 + 2s+)(2s6 + 3s5 + 7s4 + 7s3 + 7s2 + 3s+ 2).

It readily follows that lims→∞H(s) = D. We take N = 100 samples of the transfer
function on the imaginary axis (frequency response measurements) between 10−1 and
101 rad/sec. Fig. 3.3 (left) shows the first 20 normalized singular values of the resulting
real Loewner pencil (the rest are numerically zero). The rank of L is 10 (the McMillan
degree of the system), while the rank of Ls is 12 (= rankL+ rankD). The right pane
in Fig. 3.2 shows that we can obtain a perfect fit (total recovery of the model) with the
Loewner framework for this MIMO example only by sampling the transfer function. As
both grammians are: P = Q = 1

2I10, i.e., equal and a multiple of the identity matrix,
the Hankel singular values (see [7]) are all equal; this makes reduction with balanced
truncation not feasible.
The right pane in Fig. 3.3 shows the poles of the system obtained using the Loewner
framework, along with the zeros for every entry. The right pane in Fig. 3.2 shows the
band-stop character around frequency ω0 = 1 rad/s, of entries (1, 2) and (2, 1).
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Figure 3.2.: Left: Shows the 100 measurements sampled with DNS(Direct Numerical Sim-
ulations) of the theoretical (2× 2)-matrix transfer function. Right: Loewner
approximants.
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Figure 3.3.: Left: Shows the first 12 singular values while the rest are numerically zero.
Right: Pole/Zero diagram.

Computing the poles of the Loewner model confirms the accuracy of the approach.



eig (A) eig (Ar,Er)
−0.0181885913675508− 0.745231200229 i −0.0181885913675508− 0.745231200229 i
−0.0181885913675508 + 0.745231200229 i −0.0181885913675508 + 0.745231200229 i
−0.148402943598342− 0.632502179219046 i −0.148402943598342− 0.632502179219046 i
−0.148402943598342 + 0.632502179219046 i −0.148402943598342 + 0.632502179219046 i
−0.699080475814867− 0.715042997542469 i −0.699080475814867− 0.715042997542469 i
−0.699080475814867 + 0.715042997542469 i −0.699080475814867 + 0.715042997542469 i
−0.0327309328175858− 1.34106659803138 i −0.0327309328175858− 1.34106659803138 i
−0.0327309328175858 + 1.34106659803138 i −0.0327309328175858 + 1.34106659803138 i
−0.351597056401658− 1.49852758300335 i −0.351597056401658− 1.49852758300335 i
−0.351597056401658 + 1.49852758300335 i −0.351597056401658 + 1.49852758300335 i

∞
∞


As can be observed from this table, the Loewner method computes, besides the finite
poles, two poles at infinity. This happens because, in the Loewner framework, the bD
term is incorporated in the remaining matrices of the realization. ♢
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3.4. Summary of the method

The following result summarizes the cases that arise in the Loewner framework, depend-
ing on the amount of data available.

Lemma 3.10:
Given is a scalar transfer function of McMillan degree n.

1. Amount of data less that 2n. For q = k ≤ n, define the transfer function Ĥ(s) =
Ĉ(sÊ− Â)−1B̂, using the Loewner procedure. The interpolation conditions below
are satisfied:

Ĥ(µi) = H(µi) and Ĥ(λi) = H(λi) for i = 1, . . . , k.

If k = q = n, the Loewner quadruple is equivalent to the original one (C,E,A,B).

2. Arbitrary amount of data, no reduction. For arbitrary k and q (i.e. k, q ≤ n or k,
q ≥ n) the Loewner quadruple interpolates the data, even if the pencil (Ls, L) is
singular. This is to be interpreted as follows:

(Ls − λiL) ei = V and eTj (Ls − µjL) = W.

Hence Wei = wi, i = 1, · · · , k, and eTj V = vj , j = 1, · · · , q. Therefore the
transfer function of the Loewner pencil interpolates H(s) at the left and right
interpolation points.

3. Arbitrary amount of data, followed by reduction. If k, q ≥ n, consider the rank
revealing SVD decompositions:

[L Ls] = ŶrΣ̂rX
T
r and

[
L
Ls

]
= YrΣ̃rX̃

T
r ,

where Yr ∈ Rq×r, Xr ∈ Rk×r, and r ≤ k, q, is the exact or the numerical rank
of the Loewner pencil involved. Let

Ẽ = YT
r LXr, Ã = YT

r LsXr ∈ Cr×r, B̃ = YT
r V ∈ Cr, C̃ = WXr ∈ C1×r.

Then the following approximate interpolation conditions are satisfied:

H̃(µi) ≈ H(µi), i = 1, · · · , q, and H̃(λj) ≈ H(λj), j = 1, · · · , k.

In addition, the reduced system satisfies (exact) interpolation conditions as shown
in section 3.2.5. ♢
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3.5. Practical considerations and some advances

In this section, we apply the CUR factorization to the Loewner matrix. We follow [113],
where CUR is applied to Hankel matrices instead.

Definition 3.11:
With L ∈ Rn×n, let I = {i1, . . . , ir} and J = {j1, . . . , jr} denote the r-subsets (r ≪ n) of
row and column indices respectively. If (·)MP denotes the pseudo inverse, then the CUR
factorization of the Loewner matrix L is given by

Lr := L(:, J)︸ ︷︷ ︸
J-columns

· L(I, J)MP · L(I, :)︸ ︷︷ ︸
I-rows

. (3.17)
♢

In practical applications, large-scale data matrices are only approximately low-rank
(when data can be, for instance, corrupted by noise). In this case, the sets I and J

need to be chosen in such a way that the approximation error ∥L− Lr∥ is small. Many
approaches for selecting sets of rows and columns have been proposed. In the following,
we mention only some of them.

1. Selection based on a maximum volume sub-matrix in [124].

2. Selection based on minimizing the approximation error in the Chebyshev norm
("skeleton" approximation) in [62, 61].

3. Procedure based on the "cross-approximation" algorithm in [125].

4. Selection based on a discrete empirical interpolation method (DEIM) approach in
[146].

3.5.1. The Loewner CUR algorithm

We introduce a data-driven approximation algorithm for the SISO case based on the
CUR approach. This constructs a reduced-order model using an adaptive selection of
the rows and columns via the cross-approximation algorithm in [125]. The steps of the
procedure are included in the following algorithm.

For the practical implementation of the function "crossapprox," used in steps 5 and
6 of the above algorithm, we refer the reader to Algorithm 1 in [113], or to the original
reference [125].

Remark 3.12 (DEIM):
Instead of using the cross approximation algorithm, one can use the DEIM (Discrete
Empirical Interpolation Method) algorithm from [146]. Hence, steps 5 and 6 in Algo-
rithm 3 need to be modified accordingly. As a result, singular value decompositions are
performed to construct left and right singular vector matrices (for which the DEIM pro-
cedure is applied). To avoid the SVD, an incremental QR factorization can be used, as
proposed in [146]. ♢
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Algorithm 3.3: The Loewner CUR cross approximation based method
Input: S = [s1, · · · , sN ] ∈ CN , F = [ϕ1, · · · , ϕN ] ∈ CN with N, r ∈ N, and

tolerance values δ, ϵ.
Output: Ê ∈ Rr×r, Â ∈ Rr×r, B̂ ∈ Rr×1, Ĉ ∈ R1×r with r ≪ N .
1: Form left and right set as: (µj ,vj), j = 1, . . . , q and (λi,wi), i = 1, . . . , k
2: Form the Loewner matrices L and Ls as in Algorithm 1 and step 2.
3: Transform all the complex data to real as explained in section 2.5.4.
4: J0 = [j1, · · · , jr] ⊂ Jn an initial set of column indices.
5: [Ir ,∼,∼] = crossapprox([L Ls], J0, δ, ϵ).

6: [∼, Jr ,∼] = crossapprox(

[
L
Ls

]
, Ir, δ, ϵ).

6: Ê = −L(Ir, Jr), Â = −Ls(Ir, Jr), B̂ = V(Ir), Ĉ = W(Jr).
7: The rational approximant is given by:

Hr(s) = Ĉ(sÊ− Â)−1B̂.

Remark 3.13 (Data preservation):
The CUR factorization directly reveals the dominant rows/columns of the data, while the
SVD does not. More precisely, the leading singular vectors give only linear combinations
of the underlying features. Meanwhile, with the CUR, one gets an actual subset of the
initial features (columns) together with the corresponding rows. Consequently, the first
benefit of the CUR is that it preserves the physical meaning and structure of the initial
data. Additionally, another advantage is that the sparsity is preserved. ♢

3.5.2. Choice of left and right interpolation points

This section deals with the problem of selecting the initial interpolation points in the
Loewner framework. More specifically, we investigate how the choice of the initial inter-
polation points affects the quality of the reduced-order model. We take into consideration
different point distributions in 1D or 2D.

Moreover, several splitting techniques are analyzed. These are related to partitioning
the data set into two disjoint subsets performed at the beginning of the algorithms in
the Loewner framework.

3.5.3. Distribution of the interpolation points

We present the initial interpolation point distributions for the one-dimensional case (1D)
and the two-dimensional case (2D).
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Figure 3.4.: A visual representation of different interpolation grids

In Fig. 3.4, we depict different distributions of initial interpolation points. One way
of selecting points is equispaced or linearly spaced, commonly used for Fourier analysis.
This represents a natural choice because of the usage of trigonometric periodic functions.
In some practical applications, the choice of logarithmically distributed points is more
appropriate when the energy decreases exponentially as time or frequency approaches
infinity (on an unbounded domain).

Naturally, a dense sampling grid can be used at the beginning of the experiment (e.g.,
for a lower frequency range or small-time instances). The motivation for this approach
stems from the assumption that meaningful quantities (with high energy or with relevant
oscillations) appear in the beginning, requiring more samples. Afterward, a more sparse
distribution grid of points can be chosen instead as the energy level decays (or as relevant
oscillations decay in time).

Additionally, the choice of Chebyshev-type points is motivated by their usage in
polynomial-based interpolation on bounded domains due to, for example, the elimination
of the Runge phenomenon3 (high degree polynomials are generally unsuitable for inter-
polation with equispaced points). Finally, randomly distributed sampling points often
appear in stochastic experiments characterized by randomness.

3.5.4. Partition of the data points and values

Data splitting is one of the first steps in the classical Loewner algorithm (presented in
Section 2). In this section, we mention various splitting schemes and how they affect
the Loewner matrix singular value decay and the approximation quality of the Loewner
interpolants.

The data set (n = even) is composed of the following:{
Sample points : S = [ω1, ω2, · · · , ωn] ∈ Rn, with ω1 < ω2 < . . . < ωn,

Sample values : H = [H(ω1), H(ω2), · · · , H(ωn)] ∈ Cn.
(3.18)

3Runge’s phenomenon is a problem of oscillation at the edges of an interval that occurs when using
polynomial interpolation with polynomials of a high degree over a set of equispaced interpolation
points
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We analyze four types of data splitting mentioned in the following.

1. First type: disjoint splitting.

• µ = [ω1, · · · , ωn/2] and V = [H(ω1), · · · , H(ωn/2)],

• λ = [ωn/2+1, · · · , ωn] and W = [H(ωn/2+1), · · · , H(ωn)].

2. Second type: alternate splitting.

• µ = [ω1, ω3, · · · , ωn−1] and V = [H(ω1), H(ω3), · · · , H(ωn−1)],

• λ = [ω2, ω4, · · · , ωn] and W = [H(ω2), H(ω4), · · · , H(ωn)].

3. Third type: magnitude splitting (in this case the set S is first sorted with respect
to the magnitude of set H).

• µ = [ω1, · · · , ωn/2] and V = [H(ω1), · · · , H(ωn/2)],

• λ = [ωn/2+1, · · · , ωn] and W = [H(ωn/2+1), · · · , H(ωn)].

4. Forth type: magnitude alternate splitting (in this case, the set S is first sorted
with respect to the magnitude of set H and then alternating splitting is applied).

• µ = [ω1, ω3, · · · , ωn−1] and V = [H(ω1), H(ω3), · · · , H(ωn−1)],

• λ = [ω2, ω4, · · · , ωn] and W = [H(ω2), H(ω4), · · · , H(ωn)].

As observed in practice, when splitting the data for the first type, the Loewner matrix
has a very fast decay of the singular values. Moreover, the computed reduced models
usually provide low approximation quality.

On the other hand, for the second separation type (alternate splitting), the left and
right sets of sample points can be chosen ϵ-close to one another (element-wise). Hence,
as ϵ → 0, Hermitian interpolation conditions are enforced (which involve matching the
first derivative at those points).

Another observation in the case of second-type splitting is that the numerical rank of
the Loewner matrix is usually larger than that of the Loewner matrix constructed based
on the first type. Additionally, for the second type, the condition number is smaller than
that computed for the first type. For the above-mentioned cases, bounds on the singular
value decay of the Loewner matrix are provided in [21].

3.6. Numerical examples

This section illustrates the concepts developed in the preceding sections and chapters
employing examples. In particular, the following seven examples will be analyzed.

1. The benchmark CD player (n = 120).

2. The function f(x) = exp(−x) sin(10x), x ∈ [−1, 1].

3. The inverse of the Bessel function of the first kind, in [0, 10]× [−1, 1]j.
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3. The Loewner framework for linear Systems

4. An Euler-Bernouli beam described by a PDE.

5. A heat equation with transfer function H(s) = exp(−√s), s ∈ [0.01, 100]j.

6. Approximation of f = y/ sinh(y), y(x) = 100π(x2 − 0.36), x ∈ [−1, 1].

7. The sign function sampled on the reunion of the interval [−b,−a] and [a, b], a >
b > 0.

3.6.1. Approximation of the CD player

Consider the CD player benchmark example, a MIMO dynamical system of dimension
120 with 2 inputs and 2 outputs. Here we will consider the (2, 1) sub-system, i.e., the
SISO system from the first input to the second output.

The goal is to approximate the transfer function in the Loewner framework. We start
by considering 400 interpolation points ±jωi, i = 1, · · · , 200, where ωi are logarithmically
spaced in the interval Ω = [10−1, 105]. Thus Ω = {ω1, ω2, · · · , ω200}, where ωi < ωi+1,
for all i. We now define the left/right interpolation points in four ways, as explained in
section 3.3.2 and depicted in Fig. 3.5 (up).
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Figure 3.5.: The four different splitting schemes (up) and the decay of the singular values
( σi
σ1
, i = 1, . . . , 100) of the Loewner matrix for each type (down).

As it can be seen in Fig. 3.5 (down), the decay of the Loewner matrix singular values
is faster for "half-half" (disjoint) splitting than for "alternating" splitting.

The next step is to choose the truncation order and determine the level of approxima-
tion. We propose two different ways for this purpose.

1. By choosing equal truncation orders r.

2. By choosing for each separation the maximum truncation order so that σr
σ1

, is equal
to a fixed tolerance value.
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First experiment: equal truncation orders. Here, we fix the truncation order to r = 10
and compute σr

σ1
. The results are presented in the table that follows. The frequency

case 1st 2nd 3rd 4th
r 10 10 10 10
σr
σ1

1e− 8 1e− 6 1e− 4 1e− 4

Table 3.2.: Normalized singular values corresponding to r = 10 for each splitting.

response of the original system with those of the four reduced systems (corresponding
to each different splitting) is shown in Fig. 3.6. Note that all methods produce good
approximation quality.
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Figure 3.6.: Frequency response comparison: original system vs. the reduced ones with
equal truncation orders (r = 10).

Second experiment: reaching machine precision The tolerance of normalized singular
value σr

σ1
is now fixed (e.g. 10−14). This implies the truncation order r. The results are

presented in the following table. The truncation order for the first splitting type is

case 1st 2nd 3rd 4th
r 16 51 23 48
σr
σ1

1e− 14 1e− 14 1e− 14 1e− 14

Table 3.3.: Different truncation orders for all splitting schemes and a fixed tolerance.

more than three times smaller than that for the second splitting type (16 vs. 51). The
frequency response of the original systems with the four reduced systems is depicted in
Fig. 3.7. All methods produce good approximation quality, with a slight deviation in the
high-frequency range observed for the first splitting type.

Finally, Fig. 3.8 shows the approximation error for each reduced system.
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Figure 3.7.: Frequency response comparison: original system vs. the reduced ones by
reaching machine precision.
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Figure 3.8.: Approximation error for the four splitting schemes.

Notice that the blue curve in Fig. 3.8 has a ’V’ shape in the middle of the sampling in-
terval. The lowest approximation error is recorded for the second splitting type (alternate
selection).

3.6.2. Approximation of an oscillating function

We collect N = 4, 000 measurements {(sk,ϕk) : k = 1, ..., N} of the following function:

ϕ(x) = e−x sin(10x), x ∈ [−1, 1]. (3.19)

Assume that the interpolation points s = [s1, s2, ..., s4000] ⊂ [−1, 1] are equispaced ; Next,
we have two types of splitting.

1. First type: disjoint splitting.

• Left: µ = [s1, s2, ..., s2000] ⊂ [−1, 0)
• Right: λ = [s2001, s2002, ..., s4000] ⊂ [0, 1]
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We construct the Loewner pencil, and the underlying rank is 11.

2. Second type: alternate splitting.

• Left: µ = [s1, s3, ..., s3999] ⊂ [−1, 1]

• Right: λ = [s2, s4, ..., s4000] ⊂ [−1, 1].

We construct the Loewner pencil, and the underlying rank is 15.

Fig. 3.9 shows the entries of the Loewner matrix in logarithmic scale for the two ways
of sampling point separation. Next, the interpolation data is compressed, making use of
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Figure 3.9.: Entries of the Loewner matrix for the first splitting (left) and the second
splitting (right).

the following methods: (a) the singular value decomposition SVD, (b) the randomized
version rSVD, (c) CUR, implemented with DEIM, and (d) CUR implemented with cross
approximation. The parameters for the latter two methods are ϵ = 0.001 and δ = 0.01.
The error curves for the first splitting are shown in Fig. 3.10. The red Xs indicate the

Reduction - r for ≈ L rank(Lr×r) cond(Lr×r) =
σmax
σmin

Error ∥·∥F Time (s)

SVD 11 9.7313e+ 10 6.7367e− 10 4.166029

CUR-CrossApprox 11 7.6582e+ 10 1.5621e− 09 0.528352

CUR-DEIM 11 1.3898e+ 11 2.2283e− 09 4.101303

randomized SVD 11 9.7314e+ 10 1.1281e− 10 0.030148

Table 3.4.: Results for the first splitting type (disjoint) with an i5-CPU 2.60 GHz.

selected points with the CUR-cross approximation method, while the green crosses (+)
indicate the selected points with the CUR-DEIM method. The error curves for the
second splitting are shown in Fig. 3.11. As opposed to the previously shown results (in
Fig. 3.10), the error in this case (Fig. 3.11) is distributed more uniformly.

As seen in the above experiments, the data splitting influences the Loewner singular
value decay and the approximation quality. In most of the following experiments, we
choose the "alternating" way of splitting the data.
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Figure 3.10.: Selected points and approximation error for the disjoint splitting
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Figure 3.11.: Selected points and approximation error for the alternate splitting.

Reduction - r for ≈ L rank(Lr×r) cond(Lr×r) =
σmax
σmin

Error ∥·∥F Time(s)

SVD 11 8.8199e+ 4 0.0020 4.261075

CUR-CrossApprox 11 1.0228e+ 5 0.0062 0.563411

CUR-DEIM 11 9.3343e+ 4 0.0245 4.152420

randomized SVD 11 8.8199e+ 4 0.0020 0.024586

Table 3.5.: Results for the second splitting type (alternate) with an i5-CPU 2.60 GHz.

3.6.3. Approximation of a Bessel function

This section investigates the approximation of a Bessel function’s inverse in a complex
plane domain. If this function is considered to be the transfer function of a dynamical
system, this system is infinite-dimensional; furthermore, it is not stable as there are poles
in the right half of the complex plane. In particular, we consider the inverse of the Bessel
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function of the first kind and order n ∈ N. The following contour integral defines it:

Jn(s) =
1

2πi

∮
e(

s
2
)(t− 1

t
)t−n−1dt. (3.20)

Here, we consider only the case n = 0. Our aim is to approximate H(s) = 1
J0(s)

, s ∈ C,
inside the rectangle Ω = [0, 10] × [−1, 1] ⊂ C. In Fig. 3.12 (left pane), the function
H(s) is shown in the domain Ω. The three spikes correspond to the unstable poles of
the underlying system. These are three of the zeros of the Bessel function. Here we
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Figure 3.12.: Left: The inverse of the Bessel function of the 1st kind. Right: A subset of
10, 000 Padua point grid over Ω = [0, 10]× [−1, 1] domain are shown.

construct approximants Hr(s), of order r, of H(s), using the interpolation points as
shown in Fig. 3.12 on the right pane. The distribution of the two-dimensional initial
grids is 5, 000 Padua points with the conjugates. This grid is used to reduce the Runge
phenomenon. For more details in approximation theory (i.e., Runge phenomenon, Padua
points, barycentric interpolation, etc.), we refer the reader to [149]. In [100, 108], the
same experiment is presented with other grids (randomly uniformly structured) types.

In the Loewner framework, the singular value decomposition (SVD) plays a key role.
This factorization allows us to extract the numerical order of the rational model, which
approximates the original non-rational one.

In Fig. 3.13 (left pane), we show the distribution of the normalized singular values σj

σ1
,

j = 1, ..., N , of the augmented matrices [L Ls] and
[

L
Ls

]
.

By taking measurements as in Fig. 3.12 (right pane), the decay of the singular values
Fig. 3.13 - left pane, leads to a reduced order r = 12 with σ12

σ1
= 4.887·10−13. In Fig. 3.13

on the right pane, the pole/zero diagrams are presented, which include the results from
all methods. Methods VF and Loewner(SVD or CUR) construct real strictly rational
models with degree (11, 12)4 with D = 0, as opposed to the AAA algorithm, which
constructs a complex proper rational model of degree (12, 12) with a non-zero D term.

4Notation (m,n) indicates that the order of the numerator polynomial is m. The order of the denomi-
nator polynomial is n.
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Figure 3.13.: Left: Singular value decay of 10, 000 values. Right: Pole/zero diagrams
with the three original poles (zeros of Bessel) were recovered with 15 digits
of accuracy.

Points from the sampling grid are selected using LoewCUR-cross and AAA methods.
Applying the LoewSVD method, the point selection is obtained by compressing the
initial grid. This can be achieved by using the first r columns (r : singular vectors) of the
singular matrices as projection matrices and by solving two (r×r-dimension) generalized
eigenvalue problems as explained in section 3.2.5. In this way, we compress the original
grid with N = 10, 000 points into a much smaller set of only 2r = 24 points which are
exact interpolation points for the approximant. As it turns out, the projected points lie
in the domain Ω; see also left pane in Fig. 3.14.

The LoewCUR-cross and AAA methods select points among the initial interpolation
points but with different criteria. The AAA algorithm selects support points by mini-
mizing the mean squared error with the rest of the measurements. At the same time,
LoewCUR uses cross approximation, which maximizes the absolute value of the deter-
minant (maximum volume) of the sub-matrix of dimension (r × r).
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Figure 3.14.: Left: Support and compressed points for every method over Ω domain
with LSVD(r) → LoewSVD projected right points, LSVD(l) → LoewSVD
projected left points. Right: The error for every method.

In Fig. 3.14 on the right pane, the error for each method is shown. The normalized error
is computed as: |H(s)−Hr(s)|

|H(s)| with 25, 000 evaluation points in Ω. It should be mentioned
that the above special choice of the original interpolation grid as Padua points indeed
reduced the Runge phenomenon.

Next, we wish to visualize the approximation error outside Ω. Towards this goal we
chose 25, 000 equispaced evaluation points inside the domain [−3, 13] × [−3, 3]. Results
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with log-contour level error of increasing order 10−16, ..., 10−4 are presented in Fig. 3.15.
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Figure 3.15.: Extrapolation error as log |H(s) −Hr(s)| in [−3, 13] × [−3, 3]j ⊂ C. With
’+’ the original poles.

All methods constructed accurate, rational approximations. Notice, however, that
the Loewner approach reaches similar precision with AAA without performing any opti-
mization step. Finally, the CUR method performed the best in terms of computational
complexity.

3.6.4. Approximation of an Euler Bernoulli beam

In this subsection, we analyze the approximation of an Euler-Bernoulli clamped beam
[47] and study in [67, 158]. The underlying PDE describes the oscillation of the free end.
As shown in [47], the non-rational transfer function is given by:

H(s) =
sn(s)

(EI + scdI)m3(s)d(s)
, where

m(s) =

[ −s2
EI + cdIs

] 1
4

, d(s) = 1 + cosh(Lm(s)) cos(Lm(s)),

n(s) = cosh(Lm(s)) sin(Lm(s))− sinh(Lm(s)) cos(Lm(s)).

(3.21)

Usually, the next step consists of a discretization of the PDE involved. Instead, we
bypass this step and take frequency response measurements using the transfer function
above. The parameter specification is as in [47]5. Thus, we have the frequency response
of the beam as in Fig. 3.16 and on the left pane.

5Young’s modulus (elasticity constant): E = 69 GPa = 6, 9 · 1010N/m2, moment of inertia: I =
3.58 · 10−9m4, damping constant: cd = 5 · 10−4, length: L = 0.7m, base: b = 0.07m, height:
h = 0.0085m.
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Figure 3.16.: Left: Original frequency response of the beam. Right: The approximant is
constructed with the Loewner framework.

The next step is to collect 2, 000 measurements on the imaginary axis (frequencies
jωi, i = 1, ..., 2000), spaced logarithmically from 1 rad/s to 105 rad/s. These points are
depicted in the left pane of Fig. 3.17.
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Figure 3.17.: Left: 2,000 sampling points alternating as left and right. Right: The sin-
gular value decay.

The Loewner matrices decay’s singular value is shown in Fig. 3.17 on the right pane.
Thus, we construct a reduced model with dimension r = 44, and the Loewner approxi-
mant in Fig. 3.16 (right pane) is depicted.

Finally, the poles and zeros for every method are presented in Fig. 3.18. Each method’s
approximation quality is given in Fig. 3.19, where the evaluation is in the frequency range
from 1 to 105.5. The error outside the sampling domain increases, thus indicating the
difficulty of approximation outside the sampling domain for infinite dimensional systems.

3.6.5. Approximation of the heat equation

Next, we investigate a one-dimensional heat equation [18]. The corresponding PDE
describing the diffusion of heat leads to the following non-rational transfer function:

H(s) = e−
√
s, s ∈ C. (3.22)

The aim is to construct reduced models using the Loewner framework and compare
the results with the TF-IRKA used in [18]. Iterative Rational Krylov Algorithm - IRKA
[19] builds optimal reduced models by minimizing the H2 error [87].
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Figure 3.18.: Pole/Zero diagram for every method (LoewSVD, LoewCUR-cross,
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By collecting 1, 000 values of the transfer function on the imaginary axis, the resulting
reduced order was r = 6 (as in [18]). For this truncation order, it holds: σ6

σ1
≈ 6 ·

10−3. In Fig. 3.20c, the pole/zero distribution for every method is depicted; in Fig.
3.20d, the selected points are shown. It is worth mentioning that the Loewner SVD
method produced poles near the optimal set computed using IRKA; see Fig. 3.20c.
Approximation results in Fig. 3.21.

3.6.6. Approximation of a two-peak function

This section presents an example of a hyperbolic sine from [123]. The difficulty here
results from the two differentiable peaks. More precisely, the function is

f(x) =
100π(x2 − 0.36)

sinh(100π(x2 − 0.36))
, x ∈ [−1, 1],
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Figure 3.20.: Approximation of the heat equation with LoewSVD, LoewCUR, VF, AAA,
TF-IRKA.
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Figure 3.21.: Approximation results for the heat equation with various interpolation
methods.

and is shown Fig. 3.22 (left pane). We approximate this function by choosing 1, 000
equispaced points in [−1, 1] as on the right pane in Fig. 3.22. The singular values of
the Loewner matrix are shown in Fig. 3.23 on the left pane, while the selected points
are shown on the right pane of the same figure. The order is selected to be r = 38 with
(σ38
σ1
≈ 10−12). In Fig. 3.24, each method’s distribution of the poles and zeros is shown.

On the other hand, AAA looks quite different because it doesn’t impose real symmetry.

Remark 3.14 (Imaginary points):
The different support points are shown in Fig. 3.23, right pane. In the case of the
LoewSVD method, two almost pure imaginary projected points are obtained even if the
initial sampling points were real. ♢

Finally, we observe a good fit for every method, with slightly better performance attained
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Figure 3.22.: Left: The function f with two very sharp differentiable picks. Right: 1, 000
sampling points and zoom in close to one pick.
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Figure 3.24.: The pole/zero diagram.

for the Loewner SVD method (see the error plot in Fig. 3.25).

3.6.7. Approximation of the sign function

Our final case study problem concerns the approximation of the sign function, known
as Zolotarev’s 4th problem. Here, we compare the approximation obtained using the
Loewner SVD with the optimal solution that is explicitly known [2]. Given two disjoint
closed complex sets E and F , Zolotarev’s 4th problem is to find the rational function
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Figure 3.25.: The error profile with 5, 000 evaluation points over [−1, 1].

r(x) = p(x)
q(x) , where p, q are polynomials of degree k, that deviates least from the sign

function

sign(x) =

{
−1, x ∈ E,
+1, x ∈ F,

on E∪F . For general sets E and F , the solution to Zolotarev’s 4th problem is not known.
However, there are special cases where the rational function can be given explicitly.
For the real disjoint intervals, E = [−b,−1], and F = [1, b] with b > 1, an explicit
(optimal) solution to Zolotarev’s fourth problem is known [2]. Here, we investigated
how well the Loewner framework can approximate this discontinuous function in two
symmetric real intervals. We choose b = 3 and N = 2, 000 initial interpolation points
from [−3,−1]∪ [1, 3]. We perform two experiments. First, we choose initial interpolation
points as equispaced and, secondly, as Chebyshev nodes. We split the data for each choice
as "half-half" and "alternating," as discussed previously. The left pane in Fig. 3.26 shows
the plot of the sign function. In [34], the explicit solution of this optimization problem is
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Figure 3.26.: Left: The sign function. Right: Chebyshev nodes in [−3,−1] ∪ [1, 3].

computed. We start by taking N = 2, 000 measurements as Chebyshev nodes as in Fig.
3.26 on the right pane. The above sampling way leads to the following singular value
decay of the Loewner matrices as in Fig. 3.27 on the left pane. From the rank revealing
factorization in the left pane in Fig. 3.27, we chose r = 4 with σ4

σ1
= 1.657 · 10−4. In Fig.

3.27 on the right pane, the pole/zero diagrams distribution derived from the Loewner
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Figure 3.27.: Left: The singular value decay of the Loewner pencil. Right: Pole/Zero
diagram for the Loewner and the optimal approximant with order r = 4.

SVD method is compared to the optimal set. In Fig. 3.28 (left) the Loewner approximant
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Figure 3.28.: Left: A comparison between the Loewner approximant with the optimal one
order r = 4. Right: The projected points are approximated interpolation
points.

is shown. It is close to the optimal one by choosing the Chebyshev nodes and splitting
the left and right points as "half-half." Indeed, the error distribution as presented in
the optimal interpolant in Fig. 3.29 with the blue line has the equioscillation property
of the optimal approximant in the infinity norm - ∥x∥∞ = max (|x1|, . . . , |xn|). Thus
the equioscillation of the error |sign(x) − r(x)| on both intervals shows the optimality
of the approximant. The Loewner framework succeeds in constructing an approximant
very close to the optimal. Another aspect is shown in Fig. 3.28 (right pane). More
specifically, note that the projected points are indeed interpolation points.

Remark 3.15 (Interpolation goals):
If the choice of the splitting is disjoint - "half-half" as in this experiment, the constructed
approximant interpolates the data as in Fig. 3.28(right pane). If the choice is "alter-
nating" by mixing left and right, then the projected low-order model approximates the
values and the derivatives at the interpolation points Fig. 3.30. ♢
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Figure 3.29.: Error plot with the Loewner approximant and the optimal solution with
order r = 4.
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Figure 3.30.: By splitting the data as "alternating," the projected Loewner model ap-
proximates the first derivative as well (Hermitian interpolation conditions).

3.7. Linear systems with initial conditions

Consider the following linear system with inhomogeneous initial conditions{
Eẋ(t) = Ax(t) +Bu(t), x(0) = x0

y(t) = Cx(t) +Du(t), t ≥ 0.
(3.23)

By performing a Laplace transform, we can write{
sEx̂(s)−Ex0 = Ax̂(s) +Bû(s),

ŷ(s) = Cx̂(s) +Dû(s), t ≥ 0.
(3.24)

{
x̂(s) = (sE−A)−1Bû(s) + (sE−A)−1Ex0,

ŷ(s) =
(
C(sE−A)−1B+D

)
û(s) +C(sE−A)−1Ex0, t ≥ 0.

(3.25)

So, here we can define the following transfer functions. The one comes from the input
and is denoted as Hu, and the other comes from the initial conditions and is denoted as
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Hx0 .
Hu(s) = C(sE−A)−1B+D,

Hx0(s) = C(sE−A)−1Ex0.
(3.26)

Instead of folding the D term in the E, we assume it is zero. Further, we can rewrite the
remaining output as follows:

y(s) = C(sE−A)−1
[
B Ex0

]︸ ︷︷ ︸
B̃

[
û(s)
1

]
(3.27)

Remark 3.16 (The initial condition as an input?):
The "position" of the initial condition indicates that x0 acts as a system’s parameter and
enters the invariant system’s part of the transfer function. ♢

Thus, the total transfer function is: H(s) = C(sE−A)−1B̃ ∈ C1×(p+1).

The interpolation problem we want to solve is a special MIMO case that has already
been addressed. We want to find an interpolant Hr that satisfies the following interpo-
lation conditions along some directions ℓi, ri.

H(σi)ℓi = Hr(σi)ℓi for i = 1, . . . , r,

rTi H(µj) = rTi Hr(µj) for j = 1, . . . , q.
(3.28)

Example 3.3 (A toy MISO example for system and initial conditions identification.):
We consider the linear system with the following matrices:

E =

[
1 0
0 1

]
, A =

[
−1 −10
10 −1

]
, B̃ =

[
B Ex0

]
=

[
1.0 2.0
1.0 1.0

]
,

CT = B, x0 =

[
2.0
1.0

]
.

(3.29)

By sampling the "extended" transfer function with the B̃, we have the following mea-
surements for each. The sampling grid consist of 100 points distributed logarithmically
within the [10−2, 102].

The Loewner matrices were constructed, and the singular value decomposition gave
the following decay following Algorithm 3.2. As the Loewner singular value decay drops
to machine precision after the second singular value, the underlying McMillan degree of
the system is 2. The identified linear model is of order r = 2 with matrices:

Er =

[
1.93 −5.59
6.13 −1.81

]
, E−1

r Ar =

[
−4.33 9.4
−11.8 2.33

]
, E−1

r B̃r =

[
−0.263 −0.525
−0.372 −0.466

]
,

CT
r =

[
−2.54
−3.58

]
, x0r =

[
−0.525
−0.466

]
.

(3.30)
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Figure 3.31.: Left: The two transfer functions (MISO) are input to output and initial
conditions to output. Right: The Loewner singular value decay captures
the minimality.

Remark 3.17 (Recovery of initial conditions?):
It is important here to observe that the initial condition we observe from the original is
the same as the model constructed by Loewner. that is, yr(0) = Crx0r = 3 = y(0). ♢

Next are some summarizing results.
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Figure 3.32.: Left: Identification of the MISO TF. Right: Time domain evaluation with
the theoretical.

Remark 3.18 (What if we change the initial conditions?):
As the x0 enters the invariant part, it acts as a parameter, and the transfer function
is variant on the initial conditions. Therefore, we can identify a linear system with the
same initial condition y(0) = yr(0). If we change the x0, it will change the constructed
Loewner model. That is explained as the x0 enters as follows:

C(sE−A)−1
[
B Ex0

]︸ ︷︷ ︸
B̃

[
û(s)
1

]
= C(sE−A)−1

[
B E

]︸ ︷︷ ︸
B̆

[
û(s)
x0

]
(3.31)

The above matrix B̆ enlarges the input dimension by n, but this could be a way to
interpret the initial conditions x0 without affecting the invariants system’s properties.
The framework works as a full matrix interpolation, not in some tangential directions.♢
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3.7. Linear systems with initial conditions

Therefore, if we employ the above invariant scheme, the new reduced order model from
Lowner is:

Er =

[
−1.25 4.49
−4.64 1.53

]
, E−1

r Ar =

[
−4.26 9.21
−12.0 2.26

]
, E−1

r B̃r =

[
−0.382 −0.327 −0.055
−0.43 −0.0558 −0.374

]
,

CT
r =

[
−2.67 −2.28

]
.

(3.32)
We introduce the following similarity transformation G to achieve the same coordinates.

G =

[
−0.327 −0.055
−0.0558 −0.374

]
,

Ag = G−1AiG = A,

Bg = G−1Bi = B,

Cg = CrG = C.

(3.33)

After we have built the Loewner model, we can change the initial conditions x0, and the
FOM and the ROM after projection will stay close.
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Figure 3.33.: Recovery with known initial conditions.

Remark 3.19 (knowing or not the x0):
The first approach is recommended for a system with unknown initial conditions where
the x0 acts as a parameter. If the initial conditions are known, the second is recommended
where the x0 plays the role of the input along with the controller. In system theory, inputs
should be known. ♢

The following studies [20, 90] are recommended for a more detailed analysis of linear
systems with inhomogeneous initial conditions.

65





CHAPTER 4
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4. Identification and reduction of bilinear systems

4.7. From a single i/o data sequence to bilinear realization . . . . . . . . . . . 117
4.7.1. Nonlinear autoregressive models with exogenous inputs . . . . . . . 118
4.7.2. A real engineering example . . . . . . . . . . . . . . . . . . . . . . 118

4.1. Introduction

The Loewner framework (LF) Section 3.2, in combination with the Volterra series-(VS)
Section 2.3, offers a non-intrusive approximation method capable of identifying bilin-
ear models from time-domain measurements. This method uses harmonic inputs, which
establish a natural data acquisition method. For the general class of nonlinear prob-
lems with VS representation, the growing exponential approach allows the derivation
of the generalized kernels, namely symmetric generalized frequency response functions
(GFRFs). In addition, the homogeneity of the Volterra operator determines the accuracy
in terms of how many kernels are considered. The weakly nonlinear setup needs only
a few kernels to obtain a good approximation. In this direction, the proposed adap-
tive scheme Section 2.3.2 can improve the estimations of the computationally non-zero
kernels. The Fourier transform associates these measurements with the derived GFRFs
in system theory, and the LF with linear algebra tools provides state-space dynamical
models.

The proposed method aims to extend identification to the case of bilinear systems
from time-domain measurements and approximate other general nonlinear systems by
using the Carleman linearization scheme Section 2.4.1 that approximates general non-
linear systems with analytical nonlinearities. In the linear case, the LF associates the
S-parameters with the linear transfer function by interpolating in the frequency domain.
By identifying the linear contribution with the LF, a considerable reduction is achieved
using the SVD. The fitted linear system has the same McMillan degree Definition 3.1
as the original linear system. Then, the performance of the linear model is improved by
augmenting a particular nonlinear structure. We learn reduced-dimension bilinear mod-
els from a potentially large-scale system simulated in the time domain. This is done by
fitting a linear model and providing the corresponding bilinear operator afterward. The
LF has been extended to infer time-domain data when the underlying system is linear
[127].

Extending identification from time domain data in the nonlinear case is challenging.
The main difficulties of extending the time-domain Loewner framework [127] in the non-
linear case are; 1st) how to separate the commensurate frequencies in the Fourier spec-
trum under multi-tone excitation and 2nd) how to enforce interpolation of the symmetric
generalized frequency response functions (GFRFs). Next, we present solutions to these
problems.

The bilinear Loewner framework [12] addresses bilinear identification and reduction but
to artificial data that can be produced by simulating an accessible high-fidelity model
intrusively. Thus, in our case with input-output time domain data, this is not the case.
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4.2. Modeling continuous bilinear control systems from input-output data

One way to combine the bilinear Loewner framework with the time domain data will
be possible if we realize the regular transfer functions that bilinear Loewner needs with
the symmetric transfer function that can be measured. We propose a possible way that
theoretically is grounded but inherits high numerical complexity.

When state access is possible, we devise a spectral method that can identify the bilinear
state equation from the measured frequency domain that constructs models that remain
input-independent in contrast to many state access methods; the resulting models are
input-dependent.

Continuously in this chapter, we introduce a method that identifies or reduces discrete
bilinear systems from the input-output time domain data based on the realization theory
from [95]. Given the high complexity of the method, in terms of simulation, we use the
power of neural networks in learning input-output maps through the universal approx-
imation theorem in combination with Isidori’s realization theory to construct nonlinear
state-space bilinear models. The developed method is tested to benchmark examples and
compared with state-of-the-art methods such as the subspace identification method.

4.2. Modeling continuous bilinear control systems from
input-output data

In recent years, projection-based Krylov methods have extensively been applied for model
reduction of bilinear systems. We mention the following contributions [12, 1, 15, 22, 23,
38, 56, 130] and the references within. The set of matrices that describes single input
single output (SISO) bilinear systems is Σb = (A,N,b, c,E) and characterized by the
following continuous in time system of equations:

Σb :

{
Eẋ(t) = Ax(t) +Nx(t)u(t) + bu(t),

y(t) = cx(t), x(0) = x0 = 0, t ≥ 0.
(4.1)

where E,A,N ∈ Rn×n, b ∈ Rn×1, c ∈ R1×n, and x ∈ Rn×1, u, y ∈ R. In what follows,
we restrict our analysis to systems with non-singular E matrices (e.g., identity matrix).

4.2.1. The growing exponential approach

The growing exponential approach’s properties can be readily adapted to the problem
of finding transfer functions for constant-parameter (stationary) state equations. Let us
consider the bilinear model in Eq. (4.1) with zero initial conditions x0 = 0.

A single-tone input with amplitude A < 1 is considered in Eq. (2.31).

u(t) = A cos(ωt) =
A

2
ejωt +

A

2
e−jωt = aejωt + ae−jωt, (4.2)

where a = A/2 and a ∈ (0, ϵ) with 0 < ϵ < 1/2 and for all t ≥ 0. The steady-state
solution for the differential equation in Eq. (4.1) can be written as:

x(t) =

∞∑
p,q∈N

Gp,q
n (jω, . . . , jω︸ ︷︷ ︸

p−times

,−jω, ...,−jω︸ ︷︷ ︸
q−times

)ap+qejω(p−q)t (4.3)
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4. Identification and reduction of bilinear systems

The symbol1 Gp,q
n denotes the nth input to state frequency response containing p-times

the frequency ω and q-times the frequency −ω. By substituting in Eq. (4.1) and collect-
ing the terms of the same exponential (as the ejωmt), we can derive the input to state
frequency responses Gn for every n as follows:

∞∑
p,q∈N

(jω(p− q)E−A)Gp,q
n ap+qejω(p−q)t = b(aejωt + ae−jωt)+

+N

 ∞∑
p,q∈N

Gp,q
n ap+q+1ejω(p+1−q)t +

∞∑
p,q∈N

Gp,q
n ap+q+1ejω(p−q−1)t

 .

For the first choices of p and q up to p + q ≤ 2, (1, 0), (0, 1), (2, 0), (0, 2), (1, 1) and by
denoting the resolvent Φ(jω) = (jωE−A)−1 ∈ Cn×n, c.t. conjugate terms, we derive
the first set of terms:

Φ(jω)−1G1,0
1 aejωt +Φ(2jω)−1G2,0

2 a2e2jωt +Φ(0)−1G1,1
2 a2 + c.t.+ · · · =

NG1,0
1 a2e2jωt +NG2,0

2 a3e3jωt +NG1,1
2 a3ejωt + c.t.+ · · ·+ baejωt + c.t.

Collecting the same powers in both exponential and polynomial magnitudes, we compute
the first and the second time/input invariant GFRFs:

G1,0
1 (jω) = Φ(jω)b,

G2,0
2 (jω) = Φ(2jω)NG1,0

1 = Φ(2jω)NΦ(jω)b.
(4.4)

Then, the following input to state transfer functions Gn using induction are:

Gn,0
n (jω) = Φ(njω)NΦ((n− 1)jω)N · · ·NΦ(jω)b,

G0,n
n (jω) = Φ(−njω)NΦ(−(n− 1)jω)N · · ·NΦ(−jω)b,

Gp,q
n (jω) = Φ((p− q)jω)N

[
Gp,q−1

n−1 (jω) +Gp−1,q
n−1 (jω)

]
, p, q ≥ 1,

(4.5)

for n ≥ 1 and p+ q = n. By multiplying with the output vector c, we can further derive
the input-output generalized frequency responses GFRFs as:

Hn,0
n (jω) = cΦ(njω)NΦ((n− 1)jω)N · · ·NΦ(jω)b,

H0,n
n (jω) = cΦ(−njω)NΦ(−(n− 1)jω)N · · ·NΦ(−jω)b,

Hp,q
n (jω) = cΦ((p− q)jω)N

[
Gp,q−1

n−1 (jω) +Gp−1,q
n−1 (jω)

]
, p, q ≥ 1.

(4.6)

At this point, we can write the Volterra series similarly as in Section 2.3.1 by using the
above specific structure of the GFRFs derived with the growing exponential approach for
the bilinear case. An important property is that the nth kernel is a multivariate function
of order n. Identifying the nth-order FRF involves an n-dimensional frequency space [37].

1Gp,q
n = G(jω, ..., jω︸ ︷︷ ︸

p−times

;−jω, ...,−jω︸ ︷︷ ︸
q−times

).
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4.2. Modeling continuous bilinear control systems from input-output data

Therefore, we next derive the general 2nd symmetric kernel for the bilinear case with a
double-tone input.

u(t) = A1 cos(ω1t) +A2 cos(ω2t) =
2∑

i=1

αi(e
jωit + e−jωit), (4.7)

where α1 = A1
2 and α2 = A2

2 . In that case, with the growing exponential approach, the
state solution in steady state is

x(t) =
∞∑

m1,...,m4∈N
Gm1,m2,m3,m4

n αm1+m2
1 αm3+m4

2 ej((m1−m2)ω1+(m3−m4)ω2)t. (4.8)

We are looking for the input to state frequency response function G(jω1, jω2). By
substituting to the bilinear model in Eq. (4.1) and collecting the appropriate terms while
at the same time using the symmetry G(jω1, jω2) = G(jω2, jω1), we conclude that:

G2(jω1, jω2) =
1

2
[(jω1 + jω2)E−A]−1N

[
(jω1E−A)−1 b+ (jω2E−A)−1 b

]
, (4.9)

Where by using the resolvent notation and multiplying with c, we derive the 2nd order
symmetric generalized frequency response function as:

H2(jω1, jω2) =
1

2
cΦ(jω1 + jω2)N [Φ(jω1)b+Φ(jω2)b] . (4.10)

4.2.2. Identification of the bilinear operator

The difference between linear and bilinear models is the presence of the product between
the input and the state that is scaled by the matrix N. As the LF can identify the
linear part (A,b, c,E) of the bilinear model, the only thing that remains is identifying
the matrix N. The matrix N enters linearly in the following kernels (as E has been
considered invertible, for simplicity, it is assumed E = I):

• With a single-tone input, the kernel H1,1
2 can be written as:

H2(jω1,−jω1) =
1

2
c (−A)−1N

(
(jω1I−A)−1b+ (−jω1I−A)−1b

)
. (4.11)

and the kernel H2,0
2 as:

H2(jω1, jω1) = c (2jω1I−A)−1N(jω1I−A)−1b. (4.12)

• While with a double-tone input, the general kernel H2 can be written as:

H2(jω1, jω2) =
1

2
c

(
(jω1 + jω2)I−A

)−1

N

(
(jω1I−A)−1b+ (jω2I−A)−1b

)
. (4.13)

71



4. Identification and reduction of bilinear systems

We introduce the following notation:

O(jω1, jω2) =
1

2
c

(
j(ω1 + jω2)I−A

)−1

∈ C1×n,

R(jω1, jω2) =

(
(jω1I−A)−1b+ (jω2I−A)−1b

)
∈ Cn×1.

(4.14)

Then, Eq. (4.13) can be compactly rewritten as:

H2(jω1, jω2) = O(jω1, jω2)NR(jω1, jω2). (4.15)

Assume that k measurements of the function H2 are available (measured) for k different
pairs (ω1, ω2). By vectorizing with respect to the measurement set, we have for the kth

measurement:

H2(jω
(k)
1 , jω

(k)
2 )︸ ︷︷ ︸

Y(k)

= O(jω
(k)
1 , jω

(k)
2 )︸ ︷︷ ︸

O
(k)
1,n

N︸︷︷︸
n×n

R(jω
(k)
1 , jω

(k)
2 )︸ ︷︷ ︸

R
(k)
n,1

,

For all k measurements→ Y(1:k,1) =
(
O
(k)
(1,n) ⊗ R

T (k)
(1,n)

)
︸ ︷︷ ︸

(1:k,n2)

vec (N)︸ ︷︷ ︸
(1:n2,1)

2 (4.16)

Note that equations (4.11), (4.12), (4.13) can be equivalently rewritten as the one linear
matrix equation given in Eq. (4.16). By filling out the above matrix

[
O⊗ RT

]
with the

information from H2(jω1,−jω1) and from H2(jω1, jω1) as well, the solution can be
improved. Hence, we can solve Eq. (4.16) with full rank and identify the matrix N.
All the symmetry properties of the kernels are appropriately used, e.g., conjugate-real
symmetry. For n denoting the dimension of the bilinear model and k the number of
measurements, we have the following two cases:

1. k < n2 under-determined → least squares (LS) solution (minimizing the 2-norm)
as in [101],

2. k ≥ n2 (over)determined - rank completion → identification of N,

Theorem 4.1 (Bilinear identification):
Let Σb = (A,N,b, c,E) be a bilinear system of dimension n for which the linear subsys-
tem Σl = (A,b, c,E) is fully controllable and observable. Then, for k ≥ n2 measurements
so that (jω

(k)
1 , jω

(k)
2 ) are distinct complex pairs with (ω

(k)
1 , ω

(k)
2 ) ∈ R2

+ and ω
(k)
1 ̸= ω

(k)
2 ,

the following holds:

rank

(
O(1) ⊗ RT (1)

O(2) ⊗ RT (2)

...
O(k) ⊗ RT (k)


︸ ︷︷ ︸

(1:k≥n2,n2)

)
= n2. (4.17)

♢

2The vectorization is row-wise, vec(N) =
[
N(1, 1 : n) · · · N(n, 1 : n)

]T ∈ Rn2×1.
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4.2. Modeling continuous bilinear control systems from input-output data

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

φ

ω1+ω2 = (1 + φ)ω1

Figure 4.1.: This figure shows the constraints of ϕ (e.g., ϕ = 0, 1/3, 1/2, 1, 2, 3, . . ., etc.).
By choosing ϕ’s within the blue dots, we construct frequency bandwidths
with a unique (ω1 + ω2) up to the specified mixing order.

Theorem 4.1 can be proved in a similar way as in [42]. As the above result indicates,
one would need at least n2 measurements to identify the matrix N corresponding to the
bilinear system of dimension n.

4.2.3. A separation strategy for the 2nd kernel

To identify the nth Volterra kernel, we need an n-tone input signal. To identify the
2nd kernel, the input signal must be chosen at least as a double tone Eq. (4.7). The
propagating harmonics are: e(j(m1−m2)ω1+j(m3−m4)ω2)t or more compactly e(±kjω1±ljω2)t,
where k, l ∈ N. The aim is to differentiate the (ω1 + ω2) harmonic from the other
harmonics. More precisely, we want the following result to hold:

ω1 + ω2 ̸= kω1 + lω2, ∀(k, l) ∈ Z× Z \ {1, 1}. (4.18)

Suppose ω2 = ϕω1, ϕ ∈ R. The suitable ϕ’s where Eq. (4.18) holds are:

ω1 + ϕω1 = kω1 + lϕω1 ⇒ 1 + ϕ = k + lϕ⇒ ϕ =
k − 1

1− l
, k, l ∈ Z \ {1}. (4.19)

By choosing ϕ so that the equality in Eq. (4.19) doesn’t hold, with harmonic mixing
index m = k + l, it makes the harmonic (ω1 + ω2) uniquely defined in the frequency
spectrum up to the mth kernel.

To visualize this feature, we choose ω1 = 1 and ω2 = ω1ϕ = ϕ for harmonic mixing
index m = 4. Then, the constraints of ϕ are depicted in Fig. 4.1 with blue dots. Next,
in Fig. 4.2 and on the left pane, one ϕ constraint that occurs commensurate harmonics
is depicted with the 2nd and the 3rd kernel to contribute at the same harmonic. On the
right pane, the harmonic is uniquely defined at (ω1 + ω2) from the 2nd kernel up to the
mixing order m = 4.

The next result allows us to construct sweeping frequency schemes to get enough
measurements for the H2(jω1, jω2). So, for every ω1 > 0 the following should hold:

ω2 ∈ (ϕi−1ω1, ϕiω1) , i = 1, . . . (4.20)

Where ϕi are the constraints (see Fig. 4.1 blue dots).

Remark 4.2 (Kernel separation):
In the proposed framework, the separation of the kernels that contribute at (ω1 + ω2)
harmonic is forced only under a specific mixing order m. We do not offer any general
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Figure 4.2.: Left pane: Overlapping kernels contributing to the same harmonic with in-
valid ϕ = 0.5. Right pane: Uniquely defined harmonic at (ω1 + ω2) with
valid ϕ = 1.5. Here, it holds (n = k + l).

solution to this separation problem for multi-tone input, although techniques have been
introduced, such as in [37]. There, it was also stated that the solution of the complete
separation of harmonics is generally not possible. ♢

4.2.4. The Loewner-Volterra algorithm for bilinear modeling

We start with a set of single-tone inputs u(t) = αℓ cos(ω
(i)
1 t), i = 1, ..., k, with αℓ < 1. For

those k measurements, we can estimate the linear kernel H1(jω
(i)
1 ), the H2(jω

(k)
1 , jω

(k)
1 ),

and the H2(jω
(k)
1 ,−jω(k)

1 ) by simply measuring the first harmonic as Y1, the second
harmonic as Y2, and the DC term as Y0, from the frequency spectrum as in Fig. 2.1. To
improve the accuracy of the estimations for the kernels above, we could upgrade to an
ℓ-stage approximation by varying the amplitude αℓ as explained in Section 2.3.2. This
approach is necessary whenever higher harmonics are considered numerically non-zero,
hence meaningful. The reason for this is that the first harmonic is hence corrupted by
noise introduced by the term H2,1

3 and the rest of the terms which appear on the second
row of the matrix Pω in Eq. (2.42).

Since the LF reveals the underlying order of the linear system denoted with r, the
value of k should be at least equal to 2r. Then, we can decide on the order r of the
reduced system by analyzing the singular value decay. Up to the previous step, we have
identified the linear part with the LF, and we have filled the LS problem Eq. (4.16)
with measurements from the diagonal of the second kernel and the perpendicular to the
diagonal axis (ω1,−ω1). Those measurements contribute to the problem but with an
under-determined (rank deficient) least-squares problem. We need more measurements
from H2 to complete the rank of (r2) degrees of freedom. Thus, the unique solution will
lead to the identification of N. So, we proceed by measuring the H2 off the diagonal
(ω1 ̸= ω2) with a double-tone input as u(t) = αℓ cos(ω

(k)
1 t) + βℓ cos(ω

(k)
2 t), for a set of

frequency pairs (ω1, ω2) (# r2).
We follow the solution proposed in section Section 4.2.3 (up to a mixing degree) to deal
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4.2. Modeling continuous bilinear control systems from input-output data

with this problem. Finally, to get the bilinear operator N, we solve the real3 completed
rank least-squares (LS) problem as described in Eq. (4.16) by using all the symmet-
ric properties of these kernels (i.e., real symmetry, conjugate symmetry, and the fact
that H2(jω1, jω2) = H2(jω2, jω1)). To numerically improve the ill-conditioned matri-
ces involved, the inversion can be under a threshold in a classical regularization manner
(e.g., Thikhovov or thresholding SVD as the L-curve regularization). An algorithm that
summarizes the above procedure is presented below.

The computational effort of the proposed method This section analyzes the proposed
method’s computational effort by analyzing each step. We comment on the applicability
of large-scale problems and their relation with real-world scenarios.

Simulation of processes with harmonic inputs constitutes a classical technique in many
engineering applications; data acquisition in the time domain is a standard procedure.
Nevertheless, using advanced electronic devices such as vector network analyzers (VNAs),
frequency-domain data can also be obtained (directly). The Loewner framework applied
in the case where frequency-domain data obtained from VNAs offers an excellent iden-
tification and reduction tool in the linear case (with many applications in electrical,
mechanical, or civil engineering). In the context of the current paper, we deal with
time-domain data for a particular class of nonlinear problems.

Data collection is the most expensive procedure to identify and reduce bilinear sys-
tems from time-domain measurements. This is done by simulating time-domain models
with Euler’s method (bilinear models such as the ones approximating Burgers’ equation).
Nevertheless, the high computational cost of simulating large dimensional systems in the
time domain could be alleviated using parallel processing (e.g., for multiple computa-
tional clusters). Estimating transfer function values by computing the Fourier transform
remains robust. In addition, the LF can adaptively detect the decay of the singular
values; hence, the procedure can be terminated for a specifically reduced order r ≪ n.

Initially, a linear system of reduced dimension r is fitted using the LF. For the rest of the
proposed algorithm, note that we will use the lower dimension r to our advantage; hence,
the method remains robust. The next step is to compute the matrix N that characterizes
the nonlinearity of bilinear systems. As the fitted linear system is dimension r, we must
detect exactly r2 unknowns (matrix entries N).As presented in section 4.3, this boils
down to solving a full-rank LS problem that can be easily dealt with.

The newly proposed method aims to train bilinear models from time-domain data
accurately. We offer a first-step approach toward identifying such systems within the
Volterra series approximation approach. Large-scale systems are often sparse (due to
spatial domain semi-discretization); hence, reduction techniques can be applied. The new
method deals with the inherent redundancies through the linear subsystem (compression
using SVD). Afterward, it updates the nonlinear behavior by introducing an appropriate
low-dimensional bilinear matrix that improves the overall approximation. Note also that
the new method relies on the controllability/observability of the fitted linear system.
Additionally, noise values up to a particular threshold can be handled as presented in

3Enforcing real-valued models have been discussed in [13, 102]; here, we follow the same approach.
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Algorithm 4.1: Bilinear modeling from time-domain data.
Input: Use as control input the signals:

u(t) = αℓ cos(ω
(k)
1 t) + βℓ cos(ω

(k)
2 t), t ≥ 0, by sweeping the small

amplitudes (< 1) and a particular range of frequencies.
Output: A reduced bilinear system of dimension-r: Σbr : (Ar,Nr,br, cr,Er)

1: Apply one-tone input u(t) with βℓ = 0, ω(k)
1 for k = 1, . . . , n, and collect the

snapshots y(t) in steady state.
2: Apply Fourier transform and collect the following measurements:

• DC term: YO(0 · jω(k)
1 ),

• 1st harmonic: YI(1 · jω(k)
1 ),

• 2nd harmonic: YII(2 · jω(k)
1 ),

...

• mth harmonic: Ymth(m · jω(k)
1 ) (last numerically non-zero harmonic).

3: If the 2nd harmonic or higher harmonics are nonzero, the system is nonlinear. By
sweeping the amplitude and using the adaptive scheme (stage ℓ-approximation see
Section 2.3.2) in Eq. (2.43), the estimations of the first and the second kernel can
be improved. If the 2nd and higher harmonics are equal to zero, the bilinear matrix
N remains zero, and the underlying system is linear.

4: Apply the linear LF, see Algorithm 3.1 by using the measurements (e.g.,
H1(jω

(k)
1 ) ≈ 2YI(jω

(k)
1 )/αℓ for the 2nd stage approximation Ym ≈ 0 for m > 2) and

get the order r linear model.
5: If the system is nonlinear, fitting a bilinear matrix N will improve the accuracy.

Apply the 2-tone input u(t) = αℓ cos(ω
(k)
1 t) + βℓ cos(ω

(k)
2 t) to get enough

measurements (≤ r2) to produce a full-rank LS problem. Measure the (ω1 + ω2)
harmonic as explained in section 4.2.3 and get the estimations for the 2nd kernel as:
H2(jω

(k)
1 , jω

(k)
2 ) ≈ 2YII(jω

(k)
1 , jω

(k)
2 )/(αℓβℓ).

6: Solve the full rank least squares problem as described in Eq. (4.16) and compute
the real-valued bilinear matrix N. When the inversion is not exact due to numerical
issues, the least squares solution is obtained with a thresholding SVD.

76



4.2. Modeling continuous bilinear control systems from input-output data

section 5; further analysis on noise-related issues is left for future research.

Convergence of Volterra series representation and BIBO stability of bilinear systems
A classical theorem for bilinear systems is the following.

Theorem 4.3 (BIBO stability for bilinear systems):
As shown in [144], the bilinear system Eq. (4.28) is bounded-input/bounded-output
(BIBO) stable, provided that

∥N∥2 ≤
α

Cβ
, (4.21)

where A is Hurwitz stable (i.e., has eigenvalues in the left half of the complex plane)
and in addition, ∥eAt∥2 ≤ βe−αt, t > 0 , and ∥u∥2 ≤ C. Thus, any bilinear system with
stable A is BIBO stable for small enough control inputs. ♢

4.2.5. Numerical examples

4.2.5.1. Identifying a low-order bilinear system

Example 4.1 (Identifying a low-order bilinear toy example):
This experiment aims to identify a simple bilinear model from time-domain measure-
ments. Consider the following controllable/observable bilinear model Eq. (4.1) of dimension-
2 with a non-symmetric matrix N, zero initial condition and matrices as:

E =

[
1 0
0 1

]
, A =

[
−1 −10
10 −1

]
, N =

[
1 −2
3 −4

]
, B =

[
1
1

]
, C =

[
1 1

]
. (4.22)

We simulate the system in the time domain with input as u(t) = A cos(ωt), magnitude
A = 0.01, frequency ω ∈

[
0.5 1 1.5 2

]
2π, and time step dt = 1e−4. Next, the 2nd-

stage approximation results for the linear kernel H̃1 in comparison with the theoretical
values of H1 are presented in Table 4.1.

Table 4.1.: Measurements of H1

Frequency ω H̃1(jω)-2nd stage H1(jω)-theoretical

0.5 · 2π +0.026606 + 0.067106i +0.026574 + 0.067115i
1.0 · 2π +0.071503 + 0.189600i +0.071258 + 0.189700i
1.5 · 2π +0.752720 + 0.377300i +0.754030 + 0.380870i
2.0 · 2π +0.134070− 0.381970i +0.133780− 0.382520i

a With 2nd-stage approximation H̃1(jω) ≈ 2Y1(jω)/A.

With the estimations of the linear transfer function and by using the LF as the data-
driven identification and reduction tool for linear systems, we identify the linear system
(Ã, b̃, c̃, Ẽ). We stopped at the 4th measurement because the underlying system is
second-order (McMillan degree 2). Otherwise, more measurements will be needed for
a sufficient decay of the singular values as in Fig. 4.3. The singular values decay offers
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Figure 4.3.: The singular value decay of the LF is a fundamental characterization of the
McMillan degree of the underlying linear system. Here, a truncation scheme
of order r = 2 is recommended where the 2nd stage approximation gave
σ3/σ1 = 4.721 · 10−5, while for the noise-free case, the third singular values
have reached the machine precision.

a choice of reduction. The singular values with magnitude below that threshold are
neglected as long as the system simulation is done, with a time step dt = 1e− 4.

Construction of the linear system with order r = 2, by using the theoretical noise-free
measurements (subscript "t") appears next:

Ãt =

[
−1.4513 −8.8181
11.363 −0.54868

]
, B̃t =

[
−0.92979
1.3967

]
, C̃t =

[
−0.76857 0.9203

]
, (4.23)

While by using the measured data with 2nd-stage approximation results to the following:

Ã =

[
−1.458 −8.8137
11.367 −0.55162

]
, B̃ =

[
−0.9342

1.4

]
, C̃ =

[
−0.7675 0.91611

]
. (4.24)

Remark 4.4 (Identified linear dynamics):
Even if the coordinate system is different, one crucial qualitative result is to compute
the poles and zeros of the linear transfer function. For the identified system with the
theoretical measurements (noise free), the poles and zeros are precise as the original:
p̃t = −1 ± 10i and the zero are z̃t = −1 while for the 2nd stage approximation to the
linear system, the corresponding results are: p̃ = −1.0048± 9.9989i, z̃ = −1.0042. ♢

At this point, we have recovered the linear part of the bilinear system up to accuracy due
to the truncation of the Volterra series. The inexact simulations of the continuous system
are done with a finite time step dt = 1e−4. The Fourier accuracy led to entirely accurate
results with a perturbation of the order ∼ O(1e− 3) by comparing the theoretical poles
and zeros. We proceed by collecting the measurements of the 2nd kernel. Table 4.2
contains measurements of the 2nd kernel with 1-tone input.

We can get N by solving the least squares problem by minimizing the 2-norm as in
[101]. This result was not towards identifying the matrix N; here is the new approach
working towards identifying bilinear systems.
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Table 4.2.: Measurements of the H2 on and perpendicular to the diagonal.
Freq. ω H̃2(jω, jω) H2(jω, jω) H̃2(jω,−jω) H2(jω,−jω)

0.5 · 2π +0.026440− 0.124490i +0.026570− 0.124440i +0.032190 +0.032177
1.0 · 2π −0.184590 + 0.298430i −0.184510 + 0.298910i +0.045648 +0.045641
1.5 · 2π +0.178080 + 0.305840i +0.178160 + 0.307170i +0.063936 +0.064350
2.0 · 2π +0.062642− 0.054219i +0.062588− 0.054423i −0.044927 −0.044998

b The estimation of the 2nd kernel is given as: H̃2(jω, jω) ≈ 4Y2(jω, jω)/A
2, on the diagonal, and

H̃2(jω,−jω) ≈ 2Y2(jω,−jω)/A2, which is the DC term.

Remark 4.5 (Can we identify the matrix N?):
The improvement relies on the rank deficiency problem produced by getting the least
squares solution without taking under consideration measurements off the diagonal of
the 2nd kernel H2. By filling in the least squares problem in Eq. (4.16) with these
different equations, as proposition Theorem 4.1 indicates, the problem solution upgrades
to a complete rank inversion, and the answer is affirmative. ♢

Back to our introductory example, the rank of the least squares problem is less than
r2 = 4. So, we need to increase the rank. We take measurements (≤ 4) out of the
diagonal from the 2nd kernel by using the input u(t) = A1 cos(ω1)+B1 cos(ω2). Tab. 4.3
includes the theoretical and measured results.

Table 4.3.: Measurements of the H2 off the diagonal
Frequencies (ω1, ω2) H̃2(jω1, jω2) H2(jω1, jω2)

(0.2 · 2π, 0.3 · 2π) +0.030440− 0.039259i +0.030429− 0.039237i
(0.2 · 2π, 0.6 · 2π) +0.031002− 0.080364i +0.031037− 0.080315i
(0.4 · 2π, 0.3 · 2π) +0.030948− 0.062869i +0.030961− 0.062835i
(0.4 · 2π, 0.6 · 2π) +0.026417− 0.125320i +0.026554− 0.125260i

c The estimation of the 2nd kernel as H̃2(jω1, jω2) ≈ 2Y2(jω1, jω2)/(A1B1). Here we use
ϕ = 1.5 to avoid the harmonic overlapping as explained in section 4.2.3 and amplitudes
as A1 = B1 = 0.01.

The full rank least squares solution gave for the hypothetical noise-free case and for
the 2nd stage approximation the following results respectively:

Ñt =

[
−4.1542 −2.0998
3.236 1.1542

]
, Ñ =

[
−4.1557 −2.1084
3.2284 1.1513

]
(4.25)

Remark 4.6 (Coordinate transformation):
By transforming all the matrices to the same coordinate system as in [97], we conclude
with the following:

• Noise-free case - exact identification
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Ăt =

[
−1.0 −10.0
10.0 −1.0

]
, N̆t =

[
1.0 −2.0
3.0 −4.0

]
, B̆t =

[
1.0
1.0

]
, C̆t =

[
1.0
1.0

]T
. (4.26)

• Simulated case - approximated identification

Ă =

[
−1.0037 −9.9941
10.004 −1.0059

]
, N̆ =

[
0.99525 −1.997
3.006 −3.9997

]
, B̆ =

[
0.99925
1.0003

]
, C̆ =

[
1.0
1.0

]T
.

(4.27)
♢

Next, in Fig. 4.4, evaluation results for the linear and the second-order generalized trans-
fer function are presented:
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Figure 4.4.: The identified 1st and 2nd kernels with 2nd-stage approximation in compar-
ison with the theoretical kernels.

Finally, time-domain simulations for each system performed in Fig. 4.5 with a larger
amplitude than the probing one.

4.2.5.2. Approximation of the viscous Burgers’ model equation

Example 4.2 (The viscous Burgers’ Equation):
This example illustrates the bilinear modeling and reduction concepts proposed in [12]
for the viscous Burgers’ equation from time-domain simulations. We simulate the system
with 40 measurements as ωk = j2π[0.1, 0.2, . . . , 4]. We present the corresponding results
with initial system dimension n = 420 reduced by the proposed method to order r = 2
with the first normalized neglected singular value to be σ3/σ1 = 4.6255 · 10−4. As
the order was chosen r = 2, the reduced bilinear matrix Ñ was introduced by using
the following measurements as ω1 = j2π[0.2, 0.4] and ω2 = j2π[0.3, 0.6]. Evaluation
results are presented in Fig. 4.6. Lastly, in Fig. 4.7, a time-domain simulation reveals
that the proposed method can improve the accuracy by fitting a nonlinear model. Table
4 contains approximation results both in the frequency and time domains. For the
example presented (dimension reduction from n = 420 to r = 2, i.e., ∼ 99%), we offer
a comparison of the newly-proposed method (Time-LoewBil) with another way, i.e., the
frequency-domain bilinear Loewner framework introduced in [12] (Freq-LoewBil). The
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standard frequency grid was selected as described above, while the sampling values of the
transfer functions (in the frequency domain) were corrupted with white noise. The noise
magnitude of the latter was selected to match the noise values introduced by performing
time-domain simulations with a time step of dt = 1e− 4.

4.3. The bilinear time domain Loewner framework

In Chapter 2 and Section 2.3, we defined the Volterra series and their properties for
general nonlinear systems. We continue our analysis with bilinear systems with state
dimension n. Bilinear systems can be derived directly from a physical system (e.g.,
inflow-outflow engineering processes) or after approximating a nonlinear analytical model
with the Carleman bilinearization scheme.
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Figure 4.7.: Time-domain simulation for the Burgers’ equation example; viscosity param-
eter ν is set as 1, and the dimension of the semi-discretized model is chosen to
be 420. A comparison of the identified/reduced bilinear of order r = 2 with
the linear and frequency-domain Loewner bilinear is depicted. The input is
chosen as: u(t) = (1+ 2 cos(2πt))e−t, t ∈ [0, 2.5], u(t) = 4sawtooth(8πt), t ∈
[2.5, 3.75], u(t) = 0, t ∈ [3.75, 5].

Remark 4.7 (Carleman bilinearization and linear minimality):
Carleman linearization of autonomous systems or bilinearization of control systems ap-
proximates the state polynomial nonlinearities (analytical) with a Taylor expansion ap-
proximation as explained in Section 2.4.1. The approximation comes from that higher-
state polynomial terms (cubic and higher) are neglected. The resulting system’s larger
dimension scales exponentially with the original one. Most importantly, the minimality
of the linear sub-model does not always explain the bilinear system’s minimality. There-
fore, approximation of nonlinear systems with methods that rely on the linear minimality
degree as in Algorithm 4.1 could not always reveal the theoretical minimal degree of the
bilinear system that approximates the underlying nonlinear system. We notice this phe-
nomenon of miss-matching minimalities, especially when lifting strategies (e.g., Carleman
or Kerner methods) lead to structured nonlinear embedding of higher-order nonlineari-
ties that forced to preserve a low-order state nonlinearity as quadratic see Chapter 5 or
bilinear in the current chapter. ♢

Remark 4.8 (Different types of Volterra kernels):
Using the regular Volterra kernels, the Loewner framework has been extended to the
class of bilinear systems in [12]. The type that can be measured from the time domain
simulation is symmetric. These different types of Volterra kernels are connected. Thus,
we aim to identify the regular kernels (bilinear Loewner) from the symmetric (measured
kernels) type and apply the nonlinear Loewner framework. ♢

To keep the mathematical complexity low, we consider the single-input-single-output
(SISO) case, and in the latter, the explicit derivation of the corresponding kernels follows.
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The (SISO) bilinear system is{
ẋ(t) = Ax(t) +Nx(t)u(t) + bu(t),

y(t) = cx(t), x(0) = x0 = 0,
(4.28)

where A, N ∈ Rn×n, b, cT ∈ Rn×1. The bilinear system in Eq. (4.28) has state
dimension n, the input is u(t), the output is y(t), and starts at t0 = 0 with zero-state
initial conditions x0 = 0.

4.3.1. Regular kernels for the bilinear system

There are several ways to derive Volterra kernels from yielding a Volterra series. Following
the procedure and the notation in [8], someone can derive specific types based on the
variational approach (Picard iterations) described in [137].

Definition 4.9 (The mth triangular bilinear Volterra kernel):

htrim (t, τ1, τ2, . . . , τm) = ceA(t−τ1)NeA(τ1−τ2) · · ·NeA(τm−1−τm)b, m ≥ 1. (4.29)
♢

Using the change of variable tm−i = τi− τi+1 for i = 0, 1, . . . ,m− 1, with the convention
that t = τ0, we obtain the so-called regular Volterra kernel as

Definition 4.10 (The mth regular bilinear Volterra kernel):

hregm (t1, t2, . . . , tm) = ceAtmNeAtm−1 · · ·NeAt1b, m ≥ 1. (4.30)
♢

With the identity matrix I ∈ Rn×n, we denote the resolvent Φ(s) = (sI−A)−1 ∈ Cn×n,
and with the multidimensional Laplace transform in Eq. (4.30), we obtain the mth regular
generalized frequency response (mth subsystem regular transfer function) as

Hreg
m (s1, s2, . . . , sm) = cΦ(sm)NΦ(sm−1)N · · ·NΦ(s2)NΦ(s1)b. (4.31)

The regular type of kernels yields a Volterra series, and interpolatory model reduction
[8] such as the one based on the Loewner matrices can construct reduced models after
enforcing interpolation to these multi-variable rational transfer functions Eq. (4.31) as in
[12]. The restriction with the above type of kernels starts when a physical measurement
environment is concerned. In the original extension of the Loewner framework to bilinear
systems [12], data were considered as sample values of the regular kernels over an arbi-
trary frequency domain s1, . . . , sm from an accessible high fidelity model. Consequently,
to have such data, one needs the original operators of the large-scale bilinear system
to construct reduced models. The bilinear Loewner framework belongs to the class of
intrusive methods. It uses data from direct numerical simulations (DNS).
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4.3.2. The bilinear Loewner framework

The framework presented here first appears in [12]. We assume that k = 2k̃ left and
right interpolation points are available, which are grouped as follows:

left points : µ
(1)
1 , µ

(1)
2 , , . . . , µ

(k̄)
1 , µ

(k̄)
2 ,

right points : λ
(1)
1 , λ

(1)
2 , . . . , λ

(k̄)
1 , λ

(k̄)
2 .

(4.32)

Next, the left and right interpolation points are grouped in multi-tuples for j = 1, . . . , k̃:

µ(j) = {(µ(j)
1 ), (µ

(j)
1 , µ

(j)
2 )}, λ(j) = {(λ(j)

1 ), (λ
(j)
2 , λ

(j)
1 )}. (4.33)

The generalized controllability matrix R ∈ Cn×k associated with the right multi-tuples
λ(1),λ(2), . . . ,λ(k̃) is

R =
[
R(1), R(2), · · · , R(k̃)

]
, (4.34)

where the matrices R(j) ∈ Cn×2, j = 1, . . . , k̃, are associated with the j-th multi-tuple
λ(j) in (4.33) are given by

R(j) =
[
(λ

(j)
1 E−A)−1 b, (λ

(j)
2 E−A)−1N (λ

(j)
1 E−A)−1 b,

]
. (4.35)

Similarly, the generalized observability matrix O ∈ Ck×n associated with the left multi-
tuples µ(1),µ(2), . . . ,µ(k̃) is given by

O =
[(
O(1)

)T
,
(
O(2)

)T
, . . .

(
O(k̄)

)T ]T ∈ Ck×n, (4.36)

where O(i) ∈ C2×n, i = 1, . . . , k̄, correspond to the i-th multi-tuple µ(i) in (4.33) and

O(i) =

[
cT (µ

(i)
1 E−A)−1

cT (µ
(i)
1 E−A)−1N (µ

(i)
2 E−A)−1

]
. (4.37)

Next, the Loewner matrix L and the shifted Loewner matrix Ls are defined using the
generalized controllability (4.34) and observability (4.36) matrices as

L = −OER, Ls = −OAR . (4.38)

The fact that the Loewner matrices are factorized in terms of the pairs of matrices (E,A)
and (O,R) is an inherent property of the Loewner framework, which holds for both the
bilinear [12] and quadratic-bilinear [68], and polynomial [5, 26] extensions of the method.

Analyzing the bilinear case and using the structure in (4.35) and in (4.37), it follows
that:

L(i,j) = −O(i) ER(j) =

 H1(µ
(i)
1 )−H1(λ

(j)
1 )

µ
(i)
1 −λ

(j)
1

H2(µ
(i)
1 ,λ

(j)
1 )−H2(λ

(j)
2 ,λ

(j)
1 )

µ
(i)
1 −λ

(j)
2

H2(µ
(i)
1 ,µ

(i)
2 )−H2(µ

(i)
1 ,λ

(j)
1 )

µ
(i)
2 −λ

(j)
1

H3(µ
(i)
1 ,µ

(i)
2 ,λ

(j)
1 )−H3(µ

(i)
1 ,λ

(j)
2 ,λ

(j)
1 )

µ
(i)
2 −λ

(j)
2

 (4.39)
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4.3. The bilinear time domain Loewner framework

and similarly for Ls
(i,j). Hence, matrices L and Ls are indeed data matrices since

all their entries are samples of the system’s regular transfer functions denoted with
H

reg
n (s1, . . . , sn) (evaluated at the particular grid of points). Next, introduce matrices:

V = Ob, W = cR, T = ONR, (4.40)

Which can also be shown to be composed solely of data, i.e., evaluations of the regular
transfer functions. For matrix T, one can show that the (i, j) block is explicitly written
as follows:

T(i,j) = O(i)NR(j) =

[
H2(µ

(i)
1 , λ

(j)
1 ) H3(µ

(i)
1 , λ

(j)
2 , λ

(j)
1 )

H3(µ
(i)
1 , µ

(i)
2 , λ

(j)
1 ) H4(µ

(i)
1 , µ

(i)
2 , λ

(j)
2 , λ

(j)
1 )

]
. (4.41)

Remark 4.11 (What kind of data the bilinear Loewner framework needs?):
The extension of the Loewner framework to the bilinear system class has been ac-
complished within the Volterra framework when the regular type of transfer functions
Eq. (4.31) has been assumed. Therefore, the bilinear Loewner works using samples of
Eq. (4.31) after direct numerical simulation (DNS). In that way, data are obtained that
can be processed further within the bilinear Loewner framework, primarily for reduction
or identification purposes. It would have been beneficial if there was a way to derive
these measurements as samples of the regular type from physical experiments without
assuming a known high-fidelity system that one wants to sample. ♢

Ideally, after simulating the system with particular inputs and collecting the correspond-
ing outputs, we want to infer data directly from a physical measurement process. Under
some mild assumptions, the nonlinear underline model can be modeled as a bilinear that
Carleman’s bilinearization scheme can approximate.

4.3.3. A challenging aspect in extending the Loewner framework

Consider the bilinear system in Eq. (4.28). As detailed in Section 4.3.1 and in [137],
there are different ways of deriving generalized frequency response functions (GFRFs).
The Loewner framework has been extended with the regulars for the bilinear case in [12].
Here, we would like to expose the fundamental issue for extending the Loewner framework
with the symmetric type Volterra kernels. Next, once more, is the 2nd symmetric kernel
for the bilinear system as in Eq. (4.28) that we can measure from the power spectrum
after processing the time domain data as in [104]

H
sym
2 (s1, s2) =

1

2
C ((s1 + s2)E−A)−1N

(
(s1E−A)−1B+ (s2E−A)−1B

)
. (4.42)

To extend the Loewner framework for the bilinear case with the symmetric transfer
functions, someone should start by appropriately defining the general observability O

and controllability matrices R. There are different ways of constructing these matrices,
but here and only for illustration purposes, we introduce a particular choice with the
following sets:
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The general observability matrix

O(i) =

[
cT (µ

(i)
1 E−A)−1

cT ((µ
(i)
1 + µ

(i)
2 )E−A)−1N

(
(µ

(i)
2 E−A)−1 + (µ

(i)
1 E−A)−1

) ] , (4.43)

and the general controllability matrix

R(j) =
[
(λ

(j)
1 E−A)−1b ((λ

(j)
1 + λ

(j)
2 )E−A)−1N

(
(λ

(j)
2 E−A)−1b+ (λ

(j)
1 E−A)−1b

) ]
.

(4.44)
The above choices seem reasonable, involving the bilinear matrix N into the controllabil-
ity and observability counterparts. They will produce double-sided projection schemes
as in the classical bilinear Loewner [12].

Similarly, as in Eq. (4.38), we want to derive the corresponding Loewner matrices (the
Loewner pencil). We write the following 1st-1st blocked-wise multiplication:

L11 = −O(i)
1 ER

(j)
1 = −cT (µ(i)

1 E−A)−1E(λ
(j)
1 E−A)−1b =

= −cT (µ(i)
1 E−A)−1µ

(i)
1 E−A− λ

(j)
1 E+A

µ
(i)
1 − λ

(j)
1

(λ
(j)
1 E−A)−1b =

= −cT (µ(i)
1 E−A)−1 (µ

(i)
1 E−A)− (λ

(j)
1 E−A)

µ
(i)
1 − λ

(j)
1

(λ
(j)
1 E−A)−1b =

=
−cT (λ(j)

1 E−A)−1b+ cT (µ
(i)
1 E−A)−1b

µ
(i)
1 − λ

(j)
1

=
H1(µ

(i)
1 )−H1(λ

(j)
1 )

µ
(i)
1 − λ

(j)
1

.

(4.45)

The importance of the above result is that the Loewner matrix can be directly constructed
from measurements of H1 that can be measured from the power spectrum as the 1st kernel
that drives the 1st harmonic. We continue with the 1st-2nd blocked-wise multiplication:

L12 = −O(i)
1 ER

(j)
2 =

= −cT (µ(i)
1 E−A)−1E

(
(λ

(j)
1 + λ

(j)
2 )E−A

)−1

N
(
(λ

(j)
2 E−A)−1b+ (λ

(j)
1 E−A)−1b

)
=

= −cT (µ(i)
1 E−A)−1µ

(i)
1 E−A− (λ

(j)
1 + λ

(j)
2 )E−A

µ
(i)
1 − (λ

(j)
1 + λ

(j)
2 )

(
(λ

(j)
1 + λ

(j)
2 )E−A

)−1

× · · ·

· · · ×N
(
(λ

(j)
2 E−A)−1b+ (λ

(j)
1 E−A)−1b

)
=

=
cT
(
µ
(i)
1 E−A

)−1

N
(
(λ

(j)
2 E−A)−1b+ (λ

(j)
1 E−A)−1b

)
−Hsym

2 (λ
(i)
1 , λ

(j)
2 )

µ
(i)
1 − (λ

(j)
1 + λ

(j)
2 )

.

(4.46)
As it is evident, the Loewner block L12 contains the 2nd symmetric transfer function
H

sym
2 that can be measured from the power spectrum as the 2nd kernel that drives the

2nd harmonic, but the extra entry

H
(?)
2 (µ

(i)
1 , λ

(j)
1 , λ

(j)
2 ) = cT

(
µ
(i)
1 E−A

)−1

N
(
(λ

(j)
2 E−A)−1b+ (λ

(j)
1 E−A)−1b

)
, (4.47)
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is a generalized kernel that cannot be directly associated with measurements from the
power spectrum when considering time domain data. Thus, with the above construction
of the generalized observability/controllability matrices, we obtain Loewner matrices.
However, filling these Loewner matrices with actual data (processing the time domain)
is impossible as long as the entries of the Loewner matrix are inconsistent with the
symmetric generalized frequency response structure. Another approach is constraining
the bilinear operator to be symmetric and appropriately constructing the controllability
and observability matrices. Thus, measuring the Loewner pencil from time domain data
after processing them to the frequency domain is possible. However, the assumption that
N is a symmetric matrix may be restrictive. Therefore, we proceed in this thesis keeping
the N unconstrained.

4.3.4. Pole-residue form of the bilinear regular Volterra kernels

Starting with the bilinear system in Eq. (4.28), we can enforce the canonical form of the
linear subsystem. That is

Ă =

 λ1 0 0

0
. . . 0

0 0 λn

 , c̆T =

 c1
...
cn

 , b̆ =

 b1
...
bn

 , N̆ =

 η11 · · · η1n
...

. . .
...

ηn1 · · · ηnn

 . (4.48)

For simplicity, we assume that the linear subsystem of the bilinear model in (4.48) is
minimal, i.e., ci, bj ̸= 0 for all 1 ≤ i, j ≤ n. In this case, we can say that the poles of the
linear model (A,B,C) perfectly coincide with the eigenvalues of matrix A.

The first transfer function in the pole-residue form is H1(s1) =
∑n

i=1
γi

s1−λi
. Following

[55], the pole residue forms of the higher regular kernels are

H
reg
2 (s1, s2) =

n∑
i=1

n∑
j=1

ciηi,jbj
(s2 − λi)(s1 − λj)

...

Hreg
m (s1, . . . , sm) =

n∑
i1=1

· · ·
n∑

im=1

ci1ηi1,i2 · · · ηim−1,imbim
(sm − λim) · · · (s2 − λi2)(s1 − λi1)

.

(4.49)

4.3.5. Pole-residue form of the bilinear symmetric Volterra kernels

Similarly to the variational approach described in [12] that helps the explicit derivation of
regulars/triangular kernels, the growing exponential approach [137] constructs symmetric
type Volterra kernels that yield a Volterra series. Moreover, those symmetric kernels
comprise the appropriate set that connects with the physical measurement setup. We
assume the following multi-harmonic complex signal with normalized amplitudes equal
with the unit and frequencies si = jωi, i = 1, . . . ,m. The following system excitation is
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also known as the probing method.

u(t) =

k∑
i=1

esit (4.50)

The growing exponential approach: Any nonlinear system that yields a convergent
Volterra series, after excitation with input as in Eq. (4.50) has the following steady-state
response for M →∞

xss(t) =

M∑
m=1

k∑
i1=1

· · ·
k∑

ik=1

G̃m(si1 , . . . , sik)e
(si1+···+sik )t =

=
M∑

m=1

∑
p(m)=1

Gp1(m)···pk(m)(s1, . . . , sk)e
(p1(m)s1+···+pk(m)sk)t

(4.51)

where
∑

p(m) indicates a k-fold sum over all integer indices p1(m), . . . , pk(m) such that
0 ≤ pi(m) ≤ m, p1(m) + · · ·+ pk(m) = m and

Gp1(m)···pk(m)(s1, . . . , sk) =
m!

p1(m)! · · · pk(m)!
G̃m

s1, . . . , s1︸ ︷︷ ︸
p1(m)

, . . . , sk, . . . , sk︸ ︷︷ ︸
pk(m)

 . (4.52)

Remark 4.12 (Input-output mapping with the symmetric Volterra kernels):
After multiplication with the observability vector C from the left on the above relations,
the steady-state input-output response is

yss(t) = Cxss(t) =
M∑

m=1

∑
p(m)=1

cGp1(m)···pk(m)(s1, . . . , sk)e
(p1(m)s1+···+pk(m)sk)t

=
M∑

m=1

∑
p(m)=1

Hp1(m)···pk(m)(s1, . . . , sk)e
(p1(m)s1+···+pk(m)sk)t

(4.53)

where Hm is the input-output symmetric generalized frequency response function. ♢

Remark 4.13 (Symmetric kernel derivation):
As evident from the relations in Eqs. (4.51) and (4.53), identifying the mth symmetric
kernel needs excitation with at least an mth harmonic input. ♢

The derivation of the symmetric transfer function becomes tedious with the above anal-
ysis and does not yield a concise way of representing these extended expressions. There-
fore, as it is at the heart of our problem, we derive formulas that concisely connect the
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symmetric transfer functions with the other types. In [137], the relations between the
regular, triangular, and symmetric are:

Hsym
m (s1, s2, . . . , sm) =

1

m!

∑
p(·)

Htri
m (sp(1), sp(2), . . . , sp(m))

Htri
m (s1, s2, . . . , sm) = Hreg

m (s1, s1 + s2, . . . , s1 + · · ·+ sm)

(4.54)

With a bit of inspection, the connection between the symmetric and the regular type is

Hsym
m (s1, s2, . . . , sm) =

1

m!

∑
p(·)

Hreg
m (sp(1), sp(1)+sp(2), . . . , sp(1)+sp(2)+· · ·+sp(m)) (4.55)

where the p(·) denotes all the m! permutations of the frequency arguments s1, . . . , sm.

4.3.6. Connecting the symmetric with regular Volterra kernels

The pole-residue form for the symmetric generalized frequency response functions is

Hsym
m (s1, s2, . . . , sm) =

1

m!

∑
p(·)

n∑
i1=1

· · ·
n∑

im=1

ci1ηi1,i2 · · · ηim−1,imbim
(sp(m) + · · ·+ sp(1) − λim) · · · (sp(1) − λi1)

(4.56)

where p(m) denotes all the m! permutations of the index set 1, . . . ,m.

Identifying the symmetric pole-residue from measurements From a data-driven per-
spective, the pole residue form of the symmetric generalized frequency response function
in Eq. (4.56) has the following properties. The left-hand-side consist of a measurement
at (s1, s2, . . . , sm) and the right-hand-side contains the following unknowns; 1) The order
n 2) The residues ρi1,i2,...,im and 3) the singularities λi, i = 1, . . . , n. Estimating the
previous unknowns is a nonlinear optimization problem. We solve this problem in two
steps. The first step is to estimate the λi, and the second is to compute the residues.

Computing the singular points λi. By equating s1 = s2 = · · · = sm = s, the pole-
residue form remains as:

fm(s) = Hsym
m (s, s, . . . , s) =

n∑
i1=1

· · ·
n∑

im=1

ci1ηi1,i2 · · · ηim−1,imbim
(ms− λim) · · · (2s− λi2)(s− λi1)

⇔

fm(s) = Hsym
m (s, s, . . . , s) =

1

m!

n∑
i1=1

· · ·
n∑

im=1

ci1ηi1,i2 · · · ηim−1,imbim
(s− λim/m) · · · (s− λi2/2)(s− λi1)

(4.57)

Lemma 4.14 (Intrusive analysis):
Consider (A,N,b, c) a bilinear system, and λi’s be the singular points (e.g., poles in
the linear case) of the linear sub-system (A,b, c), for 1 ≤ i ≤ n (i.e., the eigenvalues of
the matrix A). Then, the poles of the mth symmetric generalized frequency response
function fm(s) = Hm(s, . . . , s) are m×n in total and can be written explicitly as all the
permutations of the following vector with length m as

[
λim/m · · · λi2/2 λi1

]
with

indexes as i(·) = 1, . . . , n. ♢
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Considering the above result non-intrusively, we can collect measurements of the sym-
metric generalized transfer functions H

sym
m (s, . . . , s) and interpret them as bilinear sym-

metric GFRFs. Then, all the recovered r poles (r ≤ n) of the mth symmetric gener-
alized frequency response function fm(s) = H

sym
m (s, . . . , s) are m × r in total and can

be written explicitly as all the permutations of the following vector with length m as[
λim/m · · · λi2/2 λi1

]
with indices as i(·) = 1, . . . , r.

The difference between the original order n and the recovered order r ≤ n may be
explained since the controllability/observability matrices are not of full rank [12]. As
a result, some poles cannot be detectable, and the corresponding residue remains zero.
In general, when the minimality of the bilinear system is different from the linear sub-
system, higher generalized transfer functions should be involved for identification.

By having measurements on the diagonal of the symmetric generalized frequency re-
sponse functions fm(s) = Hm(s, . . . , s), we can apply the linear Loewner framework
Chapter 3 to recover the univariate rational function fm(s) and interpret it as the trans-
fer function of a linear system with the realization (Âm, b̂m, ĉm). Thus, the poles at
level m can be computed as the eigenvalues of the linear operator µ

(m)
i = eig(Âm), i =

1, . . . , ℓm ≤ mn. As we have the ℓ recovered poles of the mth level transfer function,
we must assign them in m!ℓmm positions. It is to be noted that this number could be re-
duced as we can detect splittings of the original poles and assign them to the appropriate
positions.

By having the poles µ
(m)
i with cardinality ℓm, the pole-residue form of the symmetric

generalized frequency response function takes the form

Ĥsym
m (s1, s2, . . . , sm) =

=
1

m!

∑
p(·)

ℓm∑
i1=1

· · ·
ℓm∑

im=1

ρi1,i2,...,im
(sp(m) + · · ·+ sp(1) − µim) · · · (sp(2) + sp(1) − µi2)(sp(1) − µi1)

(4.58)

where the remaining unknowns are the residues only. Therefore, by having measure-
ments of Hsym

m , we can solve linearly for the residues. To simplify the formula above, we
introduce the following notation of the symmetric base

Bsym(s1, . . . , sm;µi1,...,im) =

=
1

m!

∑
p(·)

1

(sp(m) + · · ·+ sp(1) − µim) · · · (sp(2) + sp(1) − µi2)(sp(1) − µi1)
(4.59)

where the symmetric mth generalized frequency response function is

Ĥsym
m (s1, s2, . . . , sm) =

ℓm∑
i1=1

· · ·
ℓm∑

im=1

Bsym
m (s1, . . . , sm;µi1 , . . . , µim)ρi1,i2,...,im , (4.60)

where the residues ρi1,...,im are to be determined. By setting s
(k)
m = (s

(k)
1 , s

(k)
2 , . . . , s

(k)
m )

the mth-dimensional argument at the kth measurement, we can write

Ĥsym
m (s(k)m ) =

ℓm∑
i1=1

· · ·
ℓm∑

im=1

Bsym
m (s(k)m ;µi1 , . . . , µim)ρi1,i2,...,im , (4.61)
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where, the scalar complex number at the kth measurement Ĥsym
m (s

(k)
m ) can be decomposed

in a matrix product as

[
B

sys
m (s

(k)
m ;µ1,1,...,1) B

sys
m (s

(k)
m ;µ1,1,...,2) · · · B

sys
m (s

(k)
m ;µℓm,ℓm,...,ℓm)

]
︸ ︷︷ ︸

M(k)∈C1×ℓmm


ρ1,1,...,1
ρ1,1,...,2

...
ρℓm,ℓm,...,ℓm


︸ ︷︷ ︸

ρ

, (4.62)

and after appending k measurements, the least squares linear problem is defined with
the following matrices.

M =


B

sym
m (s

(1)
m ;µ1,1,...,1) B

sym
m (s

(1)
m ;µ1,1,...,2) · · · B

sym
m (s

(1)
m ;µℓm,ℓm,...,ℓm)

...
...

. . .
...

B
sym
m (s

(k)
m ;µ1,1,...,1) B

sys
m (s

(k)
m ;µ1,1,...,2) · · · B

sym
m (s

(k)
m ;µℓm,ℓm,...,ℓm)

 ∈ Ck×ℓmm ,

L =


Hsym

m (s
(1)
m )

...
Hsym

m (s
(k)
m )

 ∈ Ck×1, ρ =


ρ1,1,...,1
ρ1,1,...,2

...
ρℓm,ℓm,...,ℓm

 ∈ Cℓmm×1, where Mρ = L.

(4.63)

Lemma 4.15 (Identification of the pole residue form):
The base that is spanned in Eq. (4.59) with the measurements s(k)m =

(
s
(k)
1 , s

(k)
2 , . . . , s

(k)
m

)
,

it constructs a full rank column space for the least squares matrix M ∈ Ck×ℓmm . When
k ≥ ℓmm, it holds that rank(M) = ℓmm, and the vector solution with the ℓmm unknown
residues from ρ= M−1L is unique and well defined. ♢

Remark 4.16 (Data reduction):
For solving the system above, due to the symmetric nature of the symmetric generalized

transfer function Hm(s1, s2, . . . , sm), for a single measurement s(k)m =
(
s
(k)
1 , s

(k)
2 , . . . , s

(k)
m

)
,

we have in total m! measurements. That happens as all the possible permutations in the
argument provide the same complex value. ♢

Remark 4.17 (Computational effort):
To infer the mth regular transfer function from the mth symmetric transfer function
with ℓm the number of singular points at the mth level transfer function, a linear system
of dimension ℓmm should be solved. For the Burgers’ example of dimension n = 6, the
4th kernel has ℓ4 = 10 singular points. Therefore, one would need ℓ44 = 104 = 10, 000
measurements of the symmetric transfer function H

sym
4 (s1, s2, s3, s4) so to compute the

residues and the pole reside form of the transfer function. ♢

By having the symmetric mth kernel in the pole residue form, we know the singularities
λi and the residues ρi; we can infer the regular pole residue kernel by assigning the
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frequency variable s1, s2, . . . , sm as in the following way:

Hsym
2 (s1, s2) =

1

2

r∑
i=1

r∑
i=1

ρi,j
(s1 + s2 − λi)(s1 − λj)

+
ρi,j

(s1 + s2 − λi)(s2 − λj)

=
1

2

r∑
i=1

r∑
i=1

ρi,j
(s1 + s2 − λi)(s1 − λj)︸ ︷︷ ︸
H

reg
2 (s1,s1+s2)

+
1

2

r∑
i=1

r∑
i=1

ρi,j
(s1 + s2 − λi)(s2 − λj)︸ ︷︷ ︸
H

reg
2 (s2,s1+s2)

.

Finally, by setting (s1 + s2)← s2

H
reg
2 (s1, s2) =

r∑
i=1

r∑
j=1

ρi,j
(s2 − λi)(s1 − λj)

.

Remark 4.18 (Connecting the bilinear Loewner approach [12] with the time-domain):
The procedure is generalizable for identifying higher kernels Hn in the regular type.
Therefore, a connection with the bilinear Loewner framework has been accomplished. ♢

4.3.7. Numerical examples

4.3.7.1. A toy example

Example 4.3 (A toy example of order 2):
Consider the following bilinear system: bilinear minimal order 2 and linear minimal order
1.

A =

(
−1.0 0
0 −0.1

)
, N =

(
1.0 2.0
3.0 4.0

)
,b =

(
1.0
0

)
, cT =

(
1.0
0

)
. (4.64)

♢

The characteristic of the above bilinear system is that it has a bilinear minimal order
of 2, but the linear subsystem has a minimal order of 1. The Loewner decays, along
with the recovered poles, are presented in Fig. 4.8: Assigning the poles with the previous
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Figure 4.8.: The decay of the Loewner matrices (left). Recovered singular points (e.g.,
poles).

methodology, we can infer the regular kernels from the symmetric measurements and
apply a bilinear Loewner. Next are the estimations over the diagonals of the higher
kernels that recovered with the Loewner framework. Constructing the bilinear system
of order 2 in the time domain, we obtain the following results in Fig. 4.9. Finally,
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Figure 4.9.: Generalized transfer functions recovery and singular value decay of the bi-
linear Loewner matrix.

after inferring the regulars and applying the bilinear Loewner framework, the bilinear
Loewner decay can correctly detect the minimal bilinear order and results in the bilinear
identification of the minimal bilinear model as the normalized error is close to machine
precision in Fig. 4.10.
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Figure 4.10.: Bilinear identification from i/o harmonic time domain data with bilinear
Loewner.

4.3.7.2. Burgers’ example with low dimension

Example 4.4 (The viscous Burgers’ equation):
This example illustrates the proposed time domain bilinear realization method using the
developed bilinear Loewner from [12] after inferring the regular kernels from the measured
symmetric kernels. We consider the viscus Burgers’ equation with dimension n = 6 and
viscosity parameter ν = 0.001. Another characteristic of this example is that it is not a
minimal bilinear system of order n = 6. The minimality can be checked from Isidori’s
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4. Identification and reduction of bilinear systems

realization algorithm in [95], and the minimal order of the bilinear system is equal to 4.

A =


−0.018 0.009 0 −0.75 −0.75 0
0.009 −0.018 0 0.75 0.75 0
0 0 −0.036 0.009 0.009 0
0 0 0.009 −0.036 0 0.009
0 0 0.009 0 −0.036 0.009
0 0 0 0.009 0.009 −0.036

 , B =


0.009
0
0
0
0
0

 , CT =


0.5
0.5
0
0
0
0


and the bilinear operator

N =



1.5 0 0 0 0 0
0 0 0 0 0 0

0.018 0 0 0 0 0
0 0.009 0 0 0 0
0 0.009 0 0 0 0
0 0 0 0 0 0


We start our analysis by getting the poles from the diagonal of the generalized fre-

quency response functions fm(s) = Hm(s, . . . , s︸ ︷︷ ︸
m times

). The equivalent of this over the actual

measurement setup is to use a single harmonic input and, after kernel (harmonic) sepa-
ration Section 2.3.2 to estimate the higher harmonics.
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Figure 4.11.: Identify the first four higher generalized transfer functions over the diagonal
Hn(s, . . . , s) with the Loewner framework.

By estimating (small perturbations are neglected) the poles as µ
(m)
im

= eig(Âm), we
get

• For m = 1, µ(1)
i1

= eig(Â1) = −0.009

• For m = 2, µ(2)
i2

= eig(Â2) =
(

−0.027 −0.0045 −0.009
)
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4.3. The bilinear time domain Loewner framework

• For m = 3, µ(3)
i3

= eig(Â3) =
(

−0.027 −0.027 −0.0135 −0.009 −0.009 −0.0045 −0.003
)

• For m = 4, µ(4)
i4

= eig(Â4) =(
−0.027 −0.027 −0.0135 −0.009 −0.009 −0.009 −0.006 −0.0045 −0.003 −0.00225

)
♢
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Figure 4.12.: Singular points recovery and small perturbations.
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Figure 4.13.: Identification of the Burgers’ bilinear model from time domain data with
four kernels H1, H2, H3, H4.

4.3.7.3. Burgers’ equation of large-dimension

Example 4.5 (A weakly nonlinear example of large-dimension):
Consider the Burgers’ equation model of order 420 with a viscosity parameter of 0.001.
We take measurements up to the 2nd harmonic by assuming that higher kernels (i.e.,
higher harmonics) are negligible, and the assumption of setting those equal to zero is
realistic.
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4. Identification and reduction of bilinear systems

Realization algorithms exist based on the Loewner framework for the first two sym-
metric kernels that can be measured. Therefore, we can derive explicit rational function
over the 2D domain of definition (s1, s2) ∈ C2. These are H1(s1) and H

sym
2 (s1, s2).

To infer the poles (singular points - roots of the denominator) of these two symmetric
functions, we set s1 = s2 = s and apply 1D Loewner. The decays of the singular values
of the univariate functions f1(s) = H1(s) and f2(s) = H

sym
2 (s, s) are illustrated in the

following figure Fig. 4.14.
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Figure 4.14.: Decay of the singular values for the first two diagonals of the kernels
H1, H

sym
2 .

From the above decays, we can compute the poles of f1(s) with order r = 9 and of
f2(s) with order r = 14, along with the approximation results over the diagonals. These
are displayed in the following figure Fig. 4.15.
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Figure 4.15.: Left: Kernel estimation on the diagonals. Right: Identified poles.

Now, with the discovered set of poles, we can construct the symmetric bases for
H1, H

sym
2 , and by solving linear systems, we can get the residues. After inferring

the identical residues over the regular bases, we obtain the regular transfer functions
H1(s), H

reg
2 (s1, s2).

Using these two discovered regular functions and assuming all the higher kernels are
negligible, we have the following bilinear Loewner decay Fig. 4.16(left). Finally, in
Fig. 4.16(right), comparing the original large-scale model with the reduced bilinear indi-
cates a significant improvement when a bilinear model is constructed. ♢
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Figure 4.16.: The bilinear Loewner with zero padding (H3 = H4 = 0) allows a trunca-
tion with order 16. The reduced bilinear model is stable and improves the
performance fit by two magnitudes compared to the linear approximant.

Remark 4.19 (Accuracy of the recovered poles and Jordan blocks):
The recovered poles, especially for the higher kernels Hn(s, . . . , s), are not accurately
captured from the 1D Loewner. The reason is that the lifted bilinear symmetric kernels
contain Jordan blocks after setting s1 = s2 = . . . = sn = s. Therefore, the poles are not
"simple" with algebraic multiplicity equal to one. Consequently, the numerical precision
of detecting such poles drops to the square root of the machine’s numerical precision. The
current machine precision with respect to IEEE is ϵ ≈ 1e−16 and drops to

√
ϵ ≈ 1e−8.♢

The proposed time bilinear Loewner is a straightforward theoretical extension from
the frequency bilinear Loewner in [12]. This was possible after theoretically connecting
the different types of kernels within the Volterra framework. In particular, the bilinear
Loewner framework needs regular kernel measurements, where time-domain measure-
ments can only be processed from the symmetric type.

At the heart of the proposed method is the process of identifying the symmetric kernels
after solving a nonlinear optimization problem in two steps;

1. detect the singularities (poles) of the higher kernels with linear Loewner (1D
Loewner) and

2. Solve a linear system to compute the residues. By having the poles and residues
of the symmetric kernels, i.e., the pole residue form of the symmetric kernels, with
only a simple variable change assigning, we can identify the regular kernels. Finally,
by having the regulars, the developed bilinear framework [12] can identify minimal
bilinear systems (without coinciding with the linear minimality) or construct good
bilinear models.
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Due to the complexity of the number of poles for the higher kernels, we illustrated
that the method could perform well when higher harmonics (kernels) can be assumed
zero (zero padding). This stands in accordance with the Volterra series approximation,
where due to the polynomial structure, the convergence of the Volterra series relies on the
concept of weakly nonlinear dynamics. Another way to avoid the numerical issues that
arise by applying the Linear framework on the diagonals to infer the poles is using the
parametric Loewner framework [116, 12]. This can be done by asserting that Hsym

2 (s1, s2)
can be realized as H(s, p). After realizing the H

sym
2 (s1, s2), still there is no obvious way

of getting the H
reg
2 (s1, s2). We must compute the poles or the 2D singularities to regain

this connection. We noticed the previous issue with the Jordan blocks after setting
s = s1 = s2. Thus, an alternative is to employ multivariate polynomial factorization
with partial differential equations [60]. Theoretically, this can avoid the numerical issues
of detecting the 2D singularities, e.g., (s1+s2+1)(s1+1)(s2+1) after setting s = s1 = s2
where results to a denominator with 1 not to be a simple pole, i.e., (2s + 1)(s + 1)2.
Combining multi-parametric Loewner with multi-variable polynomial factorization could
be beneficial in tackling this problem. Still, we leave this research direction open for
future research endeavors.

4.4. Spectral bilinear identification from state access

So far, the methods presented in the chapter work toward reducing or identifying bilinear
systems from input-output time-domain data. They construct input invariant models.
On the other hand, snapshot-based methods such as POD, DMD, and OpInf construct
models with input bias, where these models can perform well for inputs close to the
training one.

We present a snapshot-based method inspired by the classical concept of sampling
state snapshots, but in addition, we achieve identification. As mentioned earlier, the step
forward from the well-known snapshot-based methods is that we successfully construct
models that stay input invariant.

Consider the continuous bilinear system of order n that is described in the following
ODE

Σb : ẋ(t) = Ax(t) +Nx(t)u(t) +Bu(t), x(0) = x0 = 0. (4.65)

With si ∈ C, i = 1, . . . ,m, the general mth-tone complex input is defined as

u(t) =
m∑
i=1

esit = es1t + es2t + · · ·+ esmt, (4.66)

and with the growing exponential approach, the steady-state solution can be assumed as

xss(t) =
∞∑

k1=0

· · ·
∞∑

km=0

G(k1+k2+···+km)(k1s1, k2s2, . . . , kmsm)e(k1s1+k2s2+···+kmsm)t.

(4.67)
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Remark 4.20 (The mth symmetric Volterra kernel):
To define the mth symmetric Volterra kernel, the system has to be excited with an
mth-tone harmonic input. ♢

The 1st Volterra kernel can be extracted with a single tone input; thus, with m =
1, u(t) = es1t, x(t) =

∑∞
k1=0Gk1(k1s1)e

k1s1t and substituting to the system Eq. (4.101),

∞∑
k1=0

(k1s1I−A)Gk1(k1s1)e
k1s1t = Bes1t +N

∞∑
k1=0

Gk1(k1s1)e
k1s1tes1t, (4.68)

the first kernel G1 is computed by setting k1 = 1 and collecting the same exponential
powers

(s1I−A)G1(s1) = B⇒ G1(s1) = (s1I−A)−1B. (4.69)

From the structure of the 1st kernel, it is evident that it involves all the operators a
linear system contains. When good observables are known, a vector C with left mul-
tiplication leads to the classical input-output transfer function H(s) = C(sI −A)−1B.
Although continuous bilinear systems can merit identification from input-output data,
we want to relax the necessary reachability-observability assumptions in [104]. Therefore,
we consider state snapshot data and the input-to-state transfer functions Gm.

The 2nd Volterra kernel is with m = 2, u(t) = es1t + es2t, the steady state solution is
x(t) =

∑∞
k1=0

∑∞
k2=0Gk1+k2(k1s1, k2s2)e

(k1s1+k2s2)t, and substituting in the differential
equation of the system, we get that

∞∑
k1=0

∞∑
k2=0

((k1s1 + k2s2)I−A)Gk1+k2(k1s1, k2s2)e
(k1s1+k2s2)t = B(es1t + es2t)+

+N

∞∑
k1=0

∞∑
k2=0

Gk1+k2(k1s1, k2s2)e
(k1s1+k2s2)t(es1t + es2t),

(4.70)

the G2(s1, s2) after collecting the same exponential powers with (s1 + s2) is

((s1 + s2)I−A)G2(s1, s2) = N(G1(s1) +G1(s2))⇒
G2(s1, s2) = ((s1 + s2)I−A)−1N(G1(s1) +G1(s2)).

(4.71)

Applying an mth (m ≥ 2) tone harmonic input excitation to the bilinear system, the
general mth order bilinear symmetric input to state Volterra kernel (symmetric transfer
function) can be derived.

Gm(s1, . . . , sm) = ((s1 + · · ·+ sm)I−A)−1NRm(s1, s2, . . . , sm) (4.72)

where Rm(s1, s2, . . . , sm) contains recursively the kernels G1, G2, . . . , Gm−1.
As it is evident, Eq. (4.69) and Eq. (4.72) contain all the operators from the bilinear

system ODE in Eq. (4.65). Towards the identification of these operators (A, N, B), we
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start with the first kernel,

G1(s1) = (s1In −A)−1B⇒ (s1In −A)G1(s1) = B⇒
AG1(s1) +B = s1G1(s1)⇒ InAG1(s1) +B = s1G1(s1)⇒
(In ⊗GT

1 (s1))vec(A) +B = s1G1(s1)⇒[
In ⊗GT

1 (s1) In
] [ vec(A)

B

]
= s1G1(s1)

(4.73)

To simplify the notation further, we introduce the resolvent Φm(s1, . . . , sm) as

Φm(s1, s2, . . . , sm) = ((s1 + s2 + · · ·+ sm)In −A)−1 ∈ Cn×n (4.74)

Now, Eq. (4.72) can be written as:

Gm(s1, s2, . . . , sm) = Φm(s1, s2, . . . , sm)NRm(s1, s2, . . . , sm)⇒
Φ−1

m (s1, s2, . . . , sm)Gm(s1, s2, . . . , sm) = NRm(s1, s2, . . . , sm)⇒
((s1 + s2 + · · ·+ sm)In −A)Gm(s1, s2, . . . , sm) = NRm(s1, s2, . . . , sm)⇒
(s1 + s2 + · · ·+ sm)Gm(s1, s2, . . . , sm) = AGm(s1, s2, . . . , sm) +NRm(s1, s2, . . . , sm),

(4.75)

where, by denoting Gm = Gm(s1, s2, . . . , sm), Rm = Rm(s1, s2, . . . , sm) and using the
property of the Kronecker product XQY = (X⊗YT )vec(Q), we conclude to

(s1 + s2 + · · ·+ sm)Gm =
(
In ⊗GT

m

)
vec(A) +

(
Im ⊗RT

m

)
vec(N). (4.76)

Finally, by coupling the above two least-squares problems Eqs. (4.73-4.76), we derive for
the arbitrary m-tone input, the following m-level least square problem. The solution of
the following least-squares problem results in bilinear operator identification.

s1G1(s1)
(s1 + s2)G2(s1, s2)

...
(s1 + · · ·+ sm)Gm(s1, . . . , sm)

 =


In,n In ⊗GT

1 0n,n2

0n,n In ⊗GT
2 In ⊗RT

2
...

...
...

0n,n In ⊗GT
m In ⊗RT

m


︸ ︷︷ ︸

M

 vec(B)
vec(A)
vec(N)

 . (4.77)

Remark 4.21 (Spectral bilinear identification from state access):
When the rank(M) is full, the operators (A,N,B) can be identified. The resulting
bilinear system is input invariant. Moreover, the snapshot data allow SVD-based pro-
jection schemes to construct reduced models similar to the methods, e.g., POD operator
inference (OpInf). ♢

We will illustrate this method for a more general class of nonlinear dynamical systems in
Section 5.6. In this thesis, we will keep the discussion and implementation minimal for
approaches that require state-access snapshot data as we focus mainly on input-output
data. Thus, we continue this chapter of modeling discrete bilinear control systems from
input-output data.
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4.5. Modeling discrete bilinear control systems

This section focuses on identifying and reducing discrete bilinear systems from time-
domain data. These approaches are data-driven, i.e., the data are given by sampled
trajectories of the control input and the observed output. We present connections to the
time-domain Loewner method and the eigensystem realization (ERA) algorithm. The
main challenge for extending these classical methods for fitting bilinear systems is the
accurate recovery of Markov parameters from the input and output measurements. Af-
terward, one can employ a realization algorithm similar to that of Isidori [95]. The eigen-
system realization algorithm (ERA) from Juang and Papa [99] provides a data-driven
system identification method that discovers discrete systems capable of approximating
the continuous impulse response from input-output data. The discrete bilinear model
induces from the continuous one by employing discretization techniques (Euler or higher
order schemes) with tk = k∆t as

Σcont :

{
ẋc(t) = Acxc(t) +Ncxc(t)u(t) +Bcu(t),

yc(t) = Ccxc(t) +Ddu(t).

∆t→0⇐====⇒
zk(k∆t)

Σdisc :

{
zk+1 = Adzk +Ndzkuk +Bduk,

yk = Cdzk +Dduk.

(4.78)

The subscripts "c" and "d" are the continuous and discrete operators, respectively.
Carleman’s bilinearization Section 2.4.1 allows the bilinear system in Eq. (4.78) to

approximate general analytic nonlinear systems. In the case of time domain data, the
Hankel framework is a particular case of the Loewner framework. Ho and Kalman in [92]
have provided the classical eigensystem realization algorithm (ERA) for linear system
identification. Extensions to the bilinear identification through the subspace method
have been accomplished from various studies [54, 46, 119]. The bottleneck for subspace
methods is the accurate estimation of the state where the Kalman filter is not optimal
and the dimensionality, as in the linear case. Isidori has provided theoretical results for
input-output minimal bilinear realization [95]. By combining these concepts, we offer a
new data-driven bilinear identification framework for time-domain data.

The nonlinear frameworks we developed can be used in real engineering applications
and provide low-order nonlinear models directly from measurements capable of capturing
the underlying nonlinearities and improving the performance of linear fits. Finally, these
low-order nonlinear (bilinear) models allow the optimization of the engineering process
via robust simulations and control design.

The authors in [54] have generalized the linear subspace identification theory to an ana-
log theory for the subspace identification of bilinear systems. This approach is subject to
white inputs that are mutually independent. The authors provided the link between the
bilinear subspace method and the Kalman filter in the same work. The application con-
cerns engineers’ applications. In [54], the authors explain physical bilinear processes. For
example, in most chemical processes, the controls are flow rates Eq. (4.79). From the first
principles (mass and heat balances), we know these will appear in the system equations

101



4. Identification and reduction of bilinear systems

as products with the state variables (typical temperatures or concentrations). Therefore
the bilinear equation for (continuously stirred tank reactors, distillation columns, etc.)
can be written accordingly:

M ẋ =
∑
i

qixi︸ ︷︷ ︸
incoming flow

−
∑
m

qmxm︸ ︷︷ ︸
outgoing flow

, q(inputs), x(state concentration) (4.79)

In [54], the MIMO bilinear system of the following type is considered:{
xk+1 = Axk +Nuk ⊗ xk +Buk + ωk,

yk = Cxk +Duk + υk.
(4.80)

Assumption 1: The inputs are assumed to be observed and white. Moreover, they
should be mutually independent and independent of the measurement noise υk and the
process noise ωk. The covariance matrix of these sequences is

E

 up

ωp

υp

( uT
p ωT

p υTp
) =

 Im 0 0
0 Q S
0 ST R

 δpq ≥ 0. (4.81)

Problem statement: Given measurements of the inputs uk and the outputs yk of the
unknown bilinear system, determine the system matrices (A,N,B,C,D) as an estimate
of the noise covariance matrices Q, R, and S. Prediction error methods [49, 3] aim
to find the exact solution. Subspace identification techniques have advantages: they
provide a state-space representation of the unknown system by projecting the row spaces
of matrices constructed only from input and output data. PEM and subspace methods
can be generalized to MIMO systems and can be direct.

The authors in [44] (Chen et al. 2000) succeeded in relaxing the hypothesis in [54] to the
case where the measured input is not restricted to be white. Moreover, the results are not
biased estimates of the system as in [54]. Further, in [49], the authors determine bilinear
Markov parameters using unit impulses at the discrete-time points k = 0 and k = i1,
etc. Thus, after solving the linear system, he computes bilinear Markov parameters and
constructs the bilinear Hankel that leads to reduced discrete bilinear systems that finally
can be transformed to continuous bilinear via the following transformation:

Theorem 4.22 (Dorissen 1990 [49]):
A sampled continuous-time bilinear system with sampling rate T answers with Markov
parameters of an equivalent discrete-time bilinear model as:

Ad = eAcT ,

Nd = e(Ac+Nc)T − eAcT ,

Bd =

∫ T

0
e(Ac+Nc)τBcdτ,

Cd = Cc,

(4.82)
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if it is excited by a sequence of unit discrete impulses

u(k) =

{
1 ∀ k = i1, i2, . . . and 0 ≤ i1 < i2 < . . .

0 otherwise
. (4.83)

♢

Correspondingly, from the realization (Ad,Nd,Bd,Cd) of the evaluated Markov param-
eters, the continuous time BLs can be computed as above. The authors in [119] can
construct bilinear systems with white noise inputs based on an iterative deterministic-
stochastic subspace approach. They have the same assumption as [54] on the random
processes. To develop their bilinear system identification algorithm, a characterization of
the bilinear portion of the state equation z(t) = u(t)⊗x(t), as a second-order stationary
white noise process is required.

The author in [98] uses the linear model properties of the bilinear system when sub-
jected to constant input. Constant inputs can transform the bilinear model into an
equivalent linear model as in [73]. In [98], identification can be achieved by identifying
the matrices A,C,D and, secondly, the matrices B,N.

The model depends on the bilinear minimality and stays consistent with the linear
model. Although the complexity grows exponentially, which is common for nonlinear
identification frameworks (e.g., subspace identification method for bilinear), the repet-
itive process can be implemented in parallel as all the experiments can be obtained
independently. The short simulation time for each experiment is enough to exploit the
information of the nonlinear model, as the choice of white noise excitation inputs can
activate enough modes (persistent excitation) to achieve identification. Moreover, con-
structing the inputs can give the matrix U complete rank for the deterministic case.
As with bilinear systems, white inputs with small magnitudes can overload with big-
magnitude inputs or constant inputs, and the result can be unstable.

4.5.1. The Moebius transform for the discretization of dynamical systems

The following exact transformation describes the mapping between the continuous Laplace
s-domain and the discrete z-domain

z = esτ , τ : sampling rate (4.84)

As the exact transformation will produce non-rational transfer functions, we approximate
it with the Taylor series by splitting first the exponential as (Tustin’s method)

z = esτ =
esτ/2

e−sτ/2
=

1 + sτ
2 + (sτ)2+···

4·2!

1− sτ
2 + (sτ)2+···

4·2!

≈ 1 + sτ
2

1− sτ
2

(4.85)

where the bilinear transform and the inverse map are precisely the following:

z =
1 + τ

2s

1− τ
2s
⇔ s =

2

τ

z − 1

z + 1
(4.86)
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Let’s first check the influence that this approximation (Moebius transformation) has on
the first transfer function

H1(s) = C(sI−A)−1B+D, s ∈ C (4.87)

and by substituting the s→ 2
τ
z−1
z+1 we have:

G1(z) = H1

(
2

τ

z − 1

z + 1

)
= C

(
2

τ

z − 1

z + 1
I−A

)−1

B+D (4.88)

a useful identity, x(xI+A)−1 = I−A(xI+A)−1. To make it more general, we assume
the general bilinear transform as the following mapping

s→ az + b

cz + d
. (4.89)

We compute

G1(z) = H1 (s(z)) = H1

(
az + b

cz + d

)
= C

(
az + b

cz + d
E−A

)−1

B+D

= (cz + d)C ((az + b)E− (cz + d)A)
−1

B+D

= (cz + d)C

z (aE− cA)︸ ︷︷ ︸
M1

+(bE− dA)︸ ︷︷ ︸
M0

−1

B+D

= cCz
(
zI+M−1

1 M0

)−1
M−1

1 B+ dC
(
zI+M−1

1 M0

)−1
M−1

1 B+D

= cC
[
I−M−1

1 M0

(
zI+M−1

1 M0

)−1
]
M−1

1 B+ dC
(
zI+M−1

1 M0

)−1
M−1

1 B+D

= cCM−1
1 B+ (dC− cCM−1

1 M0)
(
zI+M−1

1 M0

)−1
M−1

1 B+D⇔

G1(z) = (dC− cCM−1
1 M0)︸ ︷︷ ︸

Cd

zI−
(
−M−1

1 M0

)︸ ︷︷ ︸
Ad


−1

M−1
1 B︸ ︷︷ ︸
Bd

+ cCM−1
1 B+D︸ ︷︷ ︸
Dd

Expressing the discrete operators to the continuous operators, we can write for the
general bilinear (Moebius) transformation the following:

Ad = −M−1
1 M0 = −(aE− cA)−1(bE− dA)

Bd = M−1
1 B = (aE− cA)−1B

Cd = dC− cCM−1
1 M0) = dC− cC(aE− cA)−1(bE− dA)

Dd = cCM−1
1 B+D = cC(aE− cA)−1B+D

(4.90)

Therefore, the connection between the continuous and the discrete operators with the
general bilinear transform approximation and for the linear system remains:

Ad = −(aE− cA)−1(bE− dA)

Bd = (aE− cA)−1B

Cd = dC− cC(aE− cA)−1(bE− dA)

Dd = cC(aE− cA)−1B+D

(4.91)
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It is interesting to investigate how these matrices are affected under Euler schemes.

• The Forward Euler (FE). The derivative is approximated by: df(t)
dt = f(t+τ)−f(t)

τ

where in the Laplace domain, we have sf(s) = zf(s)−f(s)
τ → τs = z−1⇔ z = 1+τs.

Thus, for the FE, the transformation is s = z−1
0·z+τ , and the parameters are FE

(a, b, c, d) = (1,−1, 0, τ). The discrete operators are:

Ad = −(E)−1(−E− τA) = (I+ τE−1A) stability: ∥ · ∥ ≤ 1

Bd = E−1B

Cd = τC

Dd = D.

(4.92)

• The Backward Euler (BE). The derivative is approximated by: df(t)
dt = f(t)−f(t−τ)

τ

where in the Laplace domain, we have sf(s) = f(s)−f(s)z−1

τ → τs = 1− z−1 ⇔ z =
1

1−τs . Thus, for the BE, the transformation is s = z−1
τz+0 , and the parameters are

BE (a, b, c, d) = (1,−1, τ, 0). The discrete operators are:

Ad = −(E− τA)−1(−E) = (I− τE−1A)−1 stability: ∥ · ∥ ≤ 1

Bd = (E− τA)−1B = (I− τE−1A)−1E−1B

Cd = −τC(E− τA)−1(−E) = τC(I− τA)−1

Dd = τC(E− τA)−1B+D = τC(I− τE−1A)−1E−1B+D.

(4.93)

Remark 4.23 (Structure preservation for LTI systems with BE):
The Backward Euler preserves the structure of the original linear system as it contains the
same operators. These are (A,B,C,D). The above result proves that the discrete and
the continuous models are equivalent for sampling time that tends to zero. Moreover,
if a D term has been assumed zero for the continuous model, the discrete contains a
non-zero D term. ♢

4.5.2. The generalized bilinear transform and discretization schemes

There are several ways of approximating a continuous model with a discrete one of the
same structure. Most prominent and well-studied for comparing the derived are the Euler
schemes (e.g., the backward or the forward Euler), where the simplicity of applying these
has shaped the class of discretization methods. Despite the numerical stability issues
frequently arising in compliance with spatial discretization, such as 1st order schemes,
they have treated many applications and performed well. Central or 2nd order schemes
like the Cranck-Nicolson or Wilson θ methods have also been applied to improve the
discretization error. There are general polynomial schemes for improving the derivative
approximation, e.g., higher-order schemes (Range Kutta).

Following [53], the discretization of a continuous bilinear system can be exact when the
bilinear system can be transformed to the phase-canonical form. That can be possible
when the linear subsystem has a full-rank controllability matrix. This is very rare in
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real applications, which immediately makes the subclass of these bilinear systems quite
restrictive.

To illustrate the effect of discretization from the frequency domain, we introduce the
bilinear transform and apply it to the 2nd generalized frequency response function for
the bilinear case. The 2nd generalized regular kernel for the bilinear systems is

H2(s1, s2) = C(s2I−A)−1N(s1I−A)−1B (4.94)

We apply the general bilinear transform for each argument as before s = az+b
cz+d . Therefore,

we are trying to create an equivalent discrete bilinear model with a transfer function as

G2(z1, z2) = H2(s1(z1), s2(z2)) = H2

(
az1 + b

cz1 + d
,
az2 + b

cz2 + d

)
= C

(
az1 + b

cz1 + d
E−A

)−1

N

(
az2 + b

cz2 + d
E−A

)−1

B.

(4.95)

We isolate the resolvent to perform the following computations:

(
az + b

cz + d
E−A

)−1

= (cz + d) ((az + b)E− (cz + d)A)−1

= (cz + d)

z (aE− cA)︸ ︷︷ ︸
M1

+(bE− dA)︸ ︷︷ ︸
M0


−1

= (cz + d)(zM1 +M0)
−1 = (cz + d)

[
M1

(
zI+M−1

1 M0

)]−1

= (cz + d)(zI+M−1
1 M0)

−1M−1
1

= c z(zI+M−1
1 M0)

−1︸ ︷︷ ︸
identity

M−1
1 + d(zI+M−1

1 M0)
−1M−1

1

= c
[
I−M−1

1 M0(zI+M−1
1 M0)

−1
]
M−1

1 + d(zI+M−1
1 M0)

−1M−1
1

= cM−1
1 − cM−1

1 M0(zI+M−1
1 M0)

−1M−1
1 + d(zI+M−1

1 M0)
−1M−1

1

= cM−1
1 + (dI− cM−1

1 M0)(zI+M−1
1 M0︸ ︷︷ ︸
−Ad

)−1M−1
1

= cM−1
1 + (dI+ cAd)︸ ︷︷ ︸

H

(zI−Ad)
−1M−1

1︸ ︷︷ ︸
G

= cG+H(zI−Ad)
−1G.

Back to G2(z1, z2), we have

G2(z1, z2) = C
(
cG+H(z2I−Ad)

−1G
)
N
(
cG+H(z1I−Ad)

−1G
)
B

= c2CGNGB+

+ cCGNH(z1I−Ad)
−1GB+ cCH(z2I−Ad)

−1GNGB+

CH(z2I−Ad)
−1GNH(z1I−Ad)

−1GB︸ ︷︷ ︸
≈G2(z1,s2) bilinear form

.

(4.96)
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Here, we write all the above moments w.r.t the continuous operators of the bilinear
system.

c2CGNGB = c2C(aE− cA)−1N(aE− cA)−1B

BE
= τ2C(E− τA)−1N(E− τA)−1B

τ→0→ 0
(4.97)

the next one,

cCGNH(z1I−Ad)
−1GB = cC(aE− cA)−1N(dI+ cAd)(z1I−Ad)

−1(aE− cA)−1B

BE
= −τC(E− τA)−1Nτ(E− τA)−1(−E)

(
z1I+ (E− τA)−1(−E)

)−1
(E− τA)−1B

= τ2C(E− τA)−1N(E− τA)−1E

(
1

1− s1τ
I+ (E− τA)−1(−E)

)−1

(E− τA)−1B

= C(E− τA)−1N(E− τA)−1E

(
1

(1− s1τ)τ2
I+

1

τ2
(E− τA)−1(−E)

)−1

︸ ︷︷ ︸
Φ(τ)

(E− τA)−1B

where we have the following two limits:

lim
τ→0

1
1−s1τ

τ2
=

1

0+
= +∞, lim

τ→0

(−E− τA)−1E

τ2
=
−1
0+

= −∞ (4.98)

since the indeterminacy remains as (+∞) + (−∞) =?, therefore, we need to combine.

lim
τ→0

Φ−1(τ) = lim
τ→0

I− (1− s1τ)(I− τE−1A)−1

τ2

0/0
=

lim
τ→0

Φ−1(τ) = lim
τ→0

s1(I− τE−1A)−1 − (1− s1τ)(E
−1A)(I− τE−1A)−2

2τ
=

s1I−E−1A

2 · 0+ = ±∞ · 1

lim
τ→0

Φ(τ) = (±∞ · 1)−1 = 0.
(4.99)

Finally, the remaining quantities preserve the bilinear structure with the BE scheme
only asymptotically when τ → 0 (G2(z1, z2) ≈bilinear+O(τ)(other terms)). Thus, the
following equivalences between the continuous and discrete operators are presented next:

Ed = I,

Ad = (I− τA)−1,

Nd = τ(I− τA)−1N(I− τA)−1,

Bd = (I− τA)−1B,

Cd = τC(I− τA)−1,

Dd = D+ τC(I− τA)−1B.

(4.100)

Remark 4.24 (Discretization of bilinear control systems):
As detailed in the above analysis, discretization of the nonlinear systems, even in the
simplest case, that of bilinear, is not easy. In particular, besides the forward Euler that
indeed preserves the structure, the rest of the discretization schemes do not preserve the
structure inserting an additional error. Exact discretization of bilinear systems can only
be obtained with very restrictive assumptions [49]. ♢
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4.6. Discrete bilinear realization

Ho and Kalman have set the mathematical foundations for achieving minimal system
realization in linear systems. They have provided the eigensystem realization algorithm
(ERA) that computationally allows model construction for identification and reduction
directly from data. In the nonlinear case and towards the exact scope of identifying
nonlinear systems, Isidori in [95] has extended these results for the bilinear case. This
section presents all the mathematical results for constructing minimal bilinear realization
from nonlinear input-output maps. At the same time, the algorithm for achieving this
goal comes along by circumventing some of the computational challenges.

This approach differs from the classical subspace identification approaches, but as it
appeared in [49], the computational challenges and some assumptions remain the same.
Next is the single-input single-output (SISO) continuous bilinear system of state dimen-
sion n.

Σcont :

{
ẋc(t) = Acxc(t) +Ncxc(t)u(t) +Bcu(t),

yc(t) = Ccxc(t) +Dcu(t), xc(0) = x0 = 0,
(4.101)

where with sampling time dt, the discrete model at 0 < dt < 2dt < · · · < kdt, with
xc(kdt) = xk and u(kdt) = uk for k = 0, . . . ,m− 1 are defined as:

Σdisc :

{
xk+1 = Axk +Nxkuk +Buk,

yk = Cxk +Duk, x0 = 0.
(4.102)

The system in Eq. (4.102) has state dimension n, so, x ∈ Rn and the operators have
dimensions A,N ∈ Rn×n, B,CT ∈ Rn, and D ∈ R. We assume that the system starts
with homogeneous initial conditions. Although the D term is manageable, here, for
simplicity, it is considered zero.

The following step is potentially analogous to the linear case whereby, by exciting
the system with the unit impulse, the output (impulse response) consists of the Markov
parameters that form the linear Hankel matrix and lead to identification. The bilinear
case is more complex in extracting the bilinear Markov parameters and constructing the
bilinear Hankel matrix. Moreover, as it is normal for the existing nonlinear identification
frameworks (e.g., subspace methods), the complexity class is exponential, and the "curse
of dimensionality" needs careful treatment, and maybe some possible solutions can be
stated in what follows.
Definition 4.25 (The reachability matrix):
The matrix Pn =

[
P1 · · · Pn

]
is defined recursively from the following relation:

Pj =
[
APj−1 NPj−1

]
, j = 2, . . . n, P1 = B.

Then the state space of the bilinear system is spanned by the states reachable from the
origin if and only if rank(Pn) = n.

Definition 4.26 (The observability matrix):
The matrix QT

n =
[
Q1 · · · Qn

]T is defined recursively from the following relation:

QT
j =

[
Qj−1A Qj−1N

]T
, j = 2, . . . n, Q1 = C.
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Then the state space of the bilinear system is observable if and only if rank(Qn) = n. The
following input definition allows a concise representation of the input-output relation.

Definition 4.27 (Input sequence):
The block structure of the input sequence through the time steps is given as

uj(h) =

[
uj−1(h)

uj−1(h)u(h+ j − 1)

]
, j = 2, . . . , u1(h) = u(h).

Let {w1,w2, . . . ,wj , . . .} be an infinite sequence of row vectors, in which wj ∈ R1×2j−1

and is defined recursively as follows wj = CPj , j = 1, 2, . . .;
The state response of system Eq. (4.102) from the state x0 = 0 at time k = 0, under

a given input function can be expressed as:

x1 = Bu0 ≜ P1u1(0),

x2 = AP1u1(0) +NP1u1(0)u(1) +Bu(1) ≜ P2u2(0) +P1u1(1),

x3 = A (P2u2(0) +P1u1(1)) +N (P2u2(0) +P1u1(1))u(2) +Bu(2)

≜ P2u3(0) +P2u2(1) +P1u1(2),

...

xk =
k∑

j=1

Pjuj(k − j), k = 1, 2, . . . ;

(4.103)

Finally, the zero-state input-output map of system Eq. (4.102) after multiplication with
the vector C from the left can be written as:

yk =

k∑
j=1

wjuj(k − j), k = 1, 2, . . . ; (4.104)

The input-output map in Eq. (4.104) indicates that the state-space bilinear model is
equivalent to the infinite sequence of row vectors {wj}. Therefore, the complete bilinear
realization problem can be stated as follows: given an infinite sequence of row vectors
{wj}, find a quadruplet of matrices (A,N,B,C) such that Eq. (4.104) holds for all j =
1, 2, . . .; If j is finite (j ≤ M < ∞), then, the identification restricted to the partial
bilinear realization problem by matching up to M .

The {wj} vector sequence is important because it stays invariant regarding the input-
output data. In the linear case, these invariant quantities are called Markov parameters
and can easily be extracted after an impulse excitation or by solving a linear least square
problem. In the bilinear case, several simulations are needed with short lengths to recover
the bilinear Markov parameters encoded in the {wj} vector sequence. Once the bilinear
Markov parameters are recovered, the solution of the bilinear realization problem can be
computed with a simple algorithm that extends the linear ERA.

109



4. Identification and reduction of bilinear systems

4.6.1. The bilinear Markov parameters

First, we must compute the bilinear Markov parameters to achieve bilinear realization.
The bilinear Markov parameters are encoded in the {wj}-vectors for j = 1, . . . , n, that
appear in Eq. (4.104). These parameters play the role of the invariant quantities for the
bilinear system, and the connection between the input and the output, although linear,
the underlined linear least squares system is under-determined.

y1 = w1u1(0),

y2 = w1u1(1) +w2u2(0),

...
yk = w1u1(k − 1) +w2u2(k − 2) + · · ·+wkuk(0).

(4.105)

Assembling the above equations appropriately into a matrix format, we can write
y1
y2
...
yk


︸ ︷︷ ︸

Y

=


uT
1 (0) 0 · · · 0

uT
1 (1) uT

2 (0) · · · 0
...

...
. . .

...
uT
1 (k − 1) uT

2 (k − 2) · · · uT
k (0)


︸ ︷︷ ︸

U

·


wT

1

wT
2
...

wT
k


︸ ︷︷ ︸

W

. (4.106)

where the dimensions are: Y ∈ Rk×1, U ∈ Rk×m, and W ∈ Rm×1. The integer m counts
the bilinear Markov parameters activated at the time step k. This can be computed from
the finite geometric series sum of the first k terms with growth 2. Thus, m =

∑k
i=0 2

i =
2k − 1.

As expected, the problem cannot be solved directly by applying only linear opera-
tions for the nonlinear case. In particular, the difficulty in treating this problem stems in
Eq. (4.106), and the bilinear term causes the complexity to increase exponentially. There-
fore, the least square problem filled out with k time steps will remain under-determined
for ∀k ∈ {2, 3, . . .} as long as 2k − 1 bilinear Markov parameters are activated. Continu-
ously, we must deal with a least square problem with k equations and 2k − 1 unknowns.

Solving an under-determined system is not impossible, but the solutions are infinite,
and regularization schemes cannot easily lead to identification. Therefore, one way of
uniquely identifying the bilinear Markov parameters and determining the W solution
vector can be achieved by solving a coupled least squares system after applying several
simulations to the original system that could be a black box or a practical engineering
application (e.g., chemical reactor).

As the W vector encodes the bilinear Markov parameters and remains invariant con-
cerning the input-output data, to determine 2k − 1 parameters, the column rank of the
matrix U should be complete. That can be accomplished by augmenting rows under-
neath the matrix U until the new extended matrix Û will be square by concatenating
several U matrices from the different simulations. To determine 2k − 1 parameters, we
need 2k−1 simulations of the original system. That is precisely the expected bottleneck
for nonlinear identification frameworks that deal with time-domain data. This result
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4.6. Discrete bilinear realization

is reasonable from another point of view, which will be analyzed in more detail later.
Still, here we can predict that the length of the Markov parameters should form a square
Hankel matrix with winding, which is approximately the square root of this length. The
coupled least squares problem is:

Y1

Y2
...

Yd


︸ ︷︷ ︸

Ŷ

=


· · · U1 · · ·
· · · U2 · · ·
...

...
...

· · · Ud · · ·


︸ ︷︷ ︸

Û

·W (4.107)

where d = 2k−1. Since we repeat the simulation d times, and each time we get k

equations, with the ith simulation to be Yi =
[
y
(i)
1 y

(i)
2 · · · y

(i)
k

]T
and accordingly

for the Ui, the real matrix Û has dimension 2k × (2k − 1). After concatenating all the
lower triangular matrices with full column rank, the Û matrix results. To certify that
the Û will also have full column rank, one choice is to use white inputs (sampled from
a Gaussian distribution) for the simulations. The use of white inputs is very common
for system identification. Still, in that case, a careful choice of deterministic inputs can
make the inversion exact and capable of recovering the bilinear Markov parameters. The
least squares solution is:

rank(Û) = 2k − 1, the unique solution is: W = Û−1Ŷ ∈ R2k−1, (4.108)

where the vector W contains the 2k − 1, bilinear Markov parameters. As we have com-
puted the bilinear Markov parameters, a generalized Hankel matrix can be constructed,
and the complete bilinear realization can be achieved as in the following section.

4.6.2. The bilinear Hankel matrix

In the linear case, the Hankel matrix is defined as the product between the observability
and the reachability matrices [92]. Similarly, for the bilinear case, the bilinear Hankel
matrix denoted as H is defined accordingly and is the following double infinite operator:

H = QP =

 Q1

Q2
...

 [ P1 P2 · · ·
]
=

 Q1P1 Q1P2 · · ·
Q2P1 Q2P2 · · ·

...
...

. . .

 (4.109)

The above equation is in a block Hankel structure representation, so by expanding the
computations to each block, we can rewrite it as:

H = QP =


C
CA
CN

...

 [ B AB NB · · ·
]
=


CB CAB CNB · · ·
CAB CA2B CANB · · ·
CNB CNAB CN2B · · ·

...
...

...
. . .

 (4.110)
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4. Identification and reduction of bilinear systems

The bilinear Hankel matrix in Eq. (4.110) reveals the connection with the bilinear
Markov parameters W = CP. In particular, the first row of H consists of the Markov
parameters, and the first column is a mutation of the first row. As a result, the bilinear
Hankel is not symmetric. Further, the inner blocks are constructed by appropriately
reshuffling the first column or first row whenever the partnership exists under or upper
the main diagonal. To illustrate the relation between the Hankel matrix and the Markov
parameters for the bilinear case, we construct the following finite Hankel matrix H ∈
R2k−1×2k−1 after knowing a finite set of the bilinear Markov parameters W ∈ R1×2k−1.
For instance, if k = 4, then 15-Markov parameters are known and can fill out partial
blocks of the potential Hankel matrix of size 15× 15 with the fully completed Hankel to
be of length 3× 3 (roughly the floor of the square root of 15, which is 3).



H = QP B AB NB A2B ANB NAB N2B A3B A2NB ANAB AN2B · · ·
C ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ · · ·
CA ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 0 0 0 · · ·
CN ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 0 0 0 · · ·
CA2 ∗ ∗ ∗ 0 0 0 0 0 0 0 0 · · ·
CNA ∗ ∗ ∗ 0 0 0 0 0 0 0 0 · · ·
CAN ∗ ∗ ∗ 0 0 0 0 0 0 0 0 · · ·
CN2 ∗ ∗ ∗ 0 0 0 0 0 0 0 0 · · ·
.
.
.


(4.111)

The finite Hankel in Eq (4.111) results after filling it out with the bilinear Markov pa-
rameters. The first row and the first column are the reachability-observability matrices,
respectively, where the Hankel is constructed after taking the product between them.
The second row consists of the Markov parameters, and as we have assumed that 15
parameters are known, the star notation is used whenever the parameter is known. On
the other hand, the zeros are not activated by Markov parameters as the simulation has
stopped at k = 4. Therefore, the zero-block pattern allows one square to complete the
Hankel matrix of dimension 3 in the upper left corner. In general, the construction of
the bilinear Hankel matrix follows the next rule described in [95].

The first row (i = 1) consists of the Markov parameters.

S1j = wj , j = 1, 2, . . . (4.112)

For i ≥ 2 and j = 1, 2, . . .; the rest of the Hankel is constructed as:

Si−1,j+1 =
[
S
(A)
i−1,j+1 S

(N)
i−1,j+1

]
(4.113)

Where the partition assigns the same number of columns to both blocks on the right-hand
side and

Sij =

[
S
(A)
i−1,j+1

S
(N)
i−1,j+1

]
. (4.114)

Finally, the Hankel matrix is

H =

 S11 S12 · · ·
S21 S22 · · ·
...

...
. . .

 (4.115)
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4.6. Discrete bilinear realization

and is formed with the same elements as the definition provides.
Both previous sections have been introduced to connect the input-output data with

constructing a generalized Hankel matrix that will lead to bilinear realization. Therefore,
the following section provides all the relevant results presented in [95] and algorithms.

4.6.3. Bilinear realization algorithm

We state the two theorems from [95] that prove the partial and complete bilinear real-
ization from the Markov parameter sequence.

Theorem 4.28 (Isidori [95]):
Let {w1, w2, . . . , wM0} be an arbitrary finite sequence of 2j−1 row vectors with j =

1, . . . ,M0. Suppose there exist positive integers M and M
′
= M0 −M such that:

rank
(
SM ′M

)
= rank

(
SM ′ ,M+1

)
= rank

(
SM ′+1,M

)
is satisfied. In that case, the minimal partial bilinear realization problem has a unique
solution (modulo the choice of bases in the state space). The dimension of the realization
is equal to rank(SM ′M ), and an actual realization is provided by the following quadruplet
Eqs. (4.116-4.119). ♢

Theorem 4.29 (Isidori [95]):
An arbitrary infinite sequence {w1, w2, . . . , wj , . . .} of 2j−1 row vectors admits a complete
bilinear realization if the infinite matrix H has finite rank n. The dimension of the mini-
mal realization is equal to n an actual minimal realization is provided by the quadruplet
Eqs. (4.116-4.119). ♢

Let the singular value decomposition of the bilinear Hankel matrix be Hm = UΣVT .
The quadruplet of dimension n is constructed as:

An = Σ−1/2UTSAVΣ−1/2 (4.116)
Nn = Σ−1/2UTSNVΣ−1/2 (4.117)
Bn = Σ1/2VT → 1st column (4.118)
Cn = UΣ1/2 → 1st row (4.119)

The theoretical part for achieving bilinear realization by having the freedom of repeated
simulations is completed. Therefore, we employ a toy bilinear system to illustrate the
algorithm’s applicability. In the latter, the novelty will be to relax some conditions. For
instance, the following aspects will be resolved:

4.6.3.1. An introductory example

Example 4.6 (A toy system):
Let the following bilinear system of order 2 with matrices

A =

[
0.9 0.0
0.0 0.8

]
, N =

[
0.1 0.2
0.3 0.4

]
, B =

[
1.0
0.0

]
, C =

[
1.0
1.0

]T
. (4.120)
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4. Identification and reduction of bilinear systems

Algorithm 4.2: Bilinear realization from input-output time domain data

Input: Input-output time-domain data from a system u→ Σ? → y.
Output: A minimal bilinear system (Ar,Nr,Br,Cr) of dimension r s.t., Σr ≈ Σ.
1: Excite the system Σ k-times with um ∼ N(µ, σ) and collect ym, where k = 2m−1.

1st [u1(1) · · ·u1(m)]→ Σ → [y1(1) · · · y1(m)] = Y1, and U1(Definition 4.27).
...

...
kth [uk(1) · · ·uk(m)]→ Σ → [yk(1) · · · yk(m)] = Yk, and Uk (Definition 4.27).

2: Identify the (2m − 1) bilinear Markov parameters by solving the linear system
Eq. (4.107).

3: Construct the bilinear Hankel matrix H along with the partitions SA, SN of
dimension p = 2m/2 − 1.

4: Project with SVD the matrices (H, SA, SN) as in equations (4.116-4.119) and
construct the reduced/identified bilinear model (Ar,Nr,Br,Cr).

We start by estimating the bilinear Markov parameters. By choosing m = 4, we can
recover 2m− 1 = 15 Markov parameters. The solution of the system in Eq. (4.107) gave:

W =
[

1.0 0.9 0.4 0.81 0.33 0.36 0.22 0.729 0.273 0.297 0.183 0.324 0.18 0.198 0.118
]

By reshuffling the vector W with the above rules, we can form the Hankel-H matrix of
dimension p = 2m/2 − 1 = 3 along with the shifted versions SA, SN.

The completed Hankel matrix of dimension p = 3, along with the shifted version, are:

H =

 1.0 0.9 0.4
0.9 0.81 0.33
0.4 0.36 0.22

 , SA =

 0.9 0.81 0.33
0.81 0.729 0.273
0.36 0.324 0.18

 , SN =

 0.4 0.36 0.22
0.33 0.297 0.183
0.22 0.198 0.118

 .

The singular value decomposition has two significant aspects in this framework. Firstly,
it provides a minimal degree of the bilinear model. Secondly, it constructs the identified
or reduced model using the left and right singular vector matrices as projection matrices.
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Figure 4.17.: Left: The singular values decay of the bilinear Hankel matrix is depicted.
Right: With input response, uk = 1/(k + 1), k = 0, 1, . . ., all the models
are equivalent.

In Fig. 4.17, the 3rd normalized singular value has reached machine precision σ3/σ1 =
5.2501e− 17, which is precisely the criterion for the minimality of the underline bilinear
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4.6. Discrete bilinear realization

system. Therefore, we construct the bilinear model of order r = 2 and the results:

Ar =

[
0.89394 0.11305

0.0050328 0.80606

]
, Nr =

[
0.41116 −0.2281
−0.24782 0.088841

]
, Br =

[
−1.0001

−0.053577

]
, Cr =

[
−1.0001
0.0040101

]T
. (4.121)

The above system is an equivalent modulo with the original one, meaning there is a
transformation T Appendix C that makes both systems to be aligned. Another way
that the dynamical equivalence of these systems can be proved is by computing the
eigenvalues of the linear and bilinear operators. Thus, easily can be checked that holds
eig(A) = eig(Ar) and eig(N) = eig(Nr). ♢

4.6.3.2. A large scale example

Example 4.7 (Large scale example: The Burgers’ equation):
In this section, we are concerned with the PDEs where the spatial discretized version of
the continuous models can easily reach the large-scale setting. By varying specific pa-
rameters, e.g., viscosity, we conclude the applicability of the proposed reduction method
near the point where the parabolic structure of a PDE can transform into a hyperbolic
problem where conventional MOR techniques start to break down.

A well-studied nonlinear example is that of the Burgers’ Eq. (4.122). The Burgers’
PDE occurs in various areas of applied mathematics, such as fluid mechanics, nonlinear
acoustics, etc. For a given field u(x, t) and diffusion coefficient (or kinematic viscosity) ν,
the general form of the viscous Burgers’ equation in one space dimension is the following
dissipative system:

∂u

∂t
+ u

∂u

∂x
= ν

∂2u

∂x2
. (4.122)

When the diffusion term is absent (i.e., ν = 0), Burgers’ equation becomes the inviscid
Burgers’ equation:

∂u

∂t
+ u

∂u

∂x
= 0, (4.123)

Which is a prototype for conservation equations that can develop discontinuities (shock
waves). In particular, Eq. (4.123) is the advective form of the Burgers’ equation.

Following Breiten and Damm, after spatial semi-discretization of this nonlinear par-
tial differential equation using k nodes in a finite difference scheme, we end up with
an ordinary differential equation including a quadratic nonlinearity. Further, we can
approximate this system using the Carleman linearization technique. Hence, we use a
second-order approximation that yields a linearized system of dimension n = k + k2.

The fully discretized model can be achieved by enforcing time discretization. Intro-
ducing the backward Euler scheme with time step dt, the derivative approximation is
ẋ(t) ≈ (x(t)− x(t− dt))dt−1, where the same linear relations can be found in [23]:

Remark 4.30 (Backward Euler time discretization for bilinear systems):
The continuous in-time Burgers’ model can be discretized in time with the backward
Euler as:

Ad = (I− dtAc)
−1, Nd = dt(I− dtAc)

−1Nc, Bd = dt(I− dtAc)
−1Bc, Cd = Cc. (4.124)
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4. Identification and reduction of bilinear systems

It is also important that the above discretization scheme is bijective; therefore, by having
the discrete in-time operators, we can infer the continuous operators as well from:

Ac =
1

dt
(I−A−1

d ), Nc =

(
1

dt
I−Ac

)
Nd, Bc =

(
1

dt
I−Ac

)
Bd, Cc = Cd. (4.125)

♢

Specifying a sampling step dt, we want to reconstruct the continuous-time response
from a sample sequence, assuming one sample per time interval with width dt. Similarly,
with a zero-order hold (ZOH). Moreover, the Nyquist-Shannon sampling theorem is a
fundamental bridge between continuous-time and discrete-time signals. In particular,
the theorem establishes a sufficient condition for a sample rate that permits a discrete
sequence of samples to capture all the information from a continuous-time signal of
finite bandwidth. For the Burgers’ example, we investigate the behavior by varying the
discretization parameters and the viscosity up to the point where the hyperbolic profile
of the PDE (e.g., ν → 0) produces shock waves.

For the FOM simulation, we use ν = 0.1 and k = 30, so we have to deal with a
continuous bilinear system of type as in Eq. (4.101), and dimension 930 where after
the above discretization in Eq. (4.124), the discretized bilinear system is of the same
dimension and as in Eq. (4.102). The aim is to construct from a finite set of input-
output time-domain measurements a continuous-time nonlinear model of bilinear type
with low dimension capable of accurately approximating the FOM.

Simulating with a white input of length m = 10, e.g., u =
[
u1 · · · u10

]
with

dt = 0.1, gives an output of the same length, e.g., y =
[
y1 · · · y10

]
. Repeating

the simulation for k = 2m−1 = 512 times, the least square problem obtains the unique
solution consisting of 2m−1 = 1023 bilinear Markov parameters. Therefore, as described
before, constructing a squared bilinear Hankel matrix of size p = 31 is possible.

Continuously, the decay of the singular values of the bilinear Hankel matrix in Fig. 4.18(left)
allows the specification of the order that the reduced model will have in terms of trad-
ing the complexity with the accuracy. The linear Hankel decay is also depicted in
Fig. 4.18(left). The linear decay can be obtained after simulating the bilinear system
with zero initial conditions and applying an impulse input. In such a case, the bilinear
term will not be activated; therefore, the output will give the impulse response of the
linear subsystem. Also, this indicates that someone to check the bilinear nonlinearity
would need persistent excitation inputs. The recommended reduced bilinear model is of
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Figure 4.18.: The singular value decay of the bilinear and linear Hankel frameworks.
Right: The Burgers’ equation under the same input forcing in Fig. 4.7.
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order r = 18 where the 19th normalized singular holds σ19/σ1 = 1.1820e−12. Evaluating
the discrete bilinear ROM of order r = 18, we can compare it with the original discrete
FOM under the following excitation uk = 1/(k + 1), k = 0, 1, . . ..

In Fig. 4.18(right), the reduced continuous model of order r = 18 obtained from input-
to-output time-domain data lies on top of the original FOM with dimension 930 with an
error performance around the O(1e− 5). The inverse transformations from the discrete
to the continuous operators in Eq. (4.125) are performed to derive the continuous bilinear
model. Finally, the bilinear fit is compared with the linear fit obtained from the linear
Hankel framework, where it is evident that it cannot capture the nonlinear behavior of
the Burgers’ equation. ♢

4.7. From a single i/o data sequence to bilinear realization

In many cases, data from a simulated system are available as a unique sequence [119].
To achieve bilinear realization as in [95], many repetitive data assimilation simulations
in the time domain should be performed. Therefore, in the case of a single experiment,
the idea is to learn a NARX model from this unique data sequence capable of predicting
the output behavior under different excitations. The NARX model will play the role of
the original simulator, which might be unavailable for several simulations or the process
is very expensive. Then, by constructing such a model and combining the realization
theory in [95], a state-space bilinear model can be constructed as in Eq. (4.101). Using
a state-space model is beneficial compared to the NARX as it relies on the classical
nonlinear control theory with many results, especially on bilinear systems in the direction
of stability and control.

In real-life applications, the data set is corrupted with noise. Therefore, regression
techniques are suitable as the noise can be filtered efficiently. Machine learning regression
techniques rely on this aspect as well. Next, we will demonstrate two ways of building
a model that will serve the scope of the unknown simulator. The first one is based on
the neural architecture where the coefficients/parameters of the model have nonlinear
dependency due to the multi-composition scheme that describes a Neural Network (NN).
The NN design can approximate strong nonlinearities when the data availability is large.
Still, on the other hand, the generalization of the model and the over-fitting control rely
heavily on regularization techniques where handling those features becomes easily ad-hoc
and depends strongly on the application. Another type of nonlinear autoregressive model
is the moving average NARMAX model, which has similar regression behavior with the
NARX net, but the NARMAX is linear to the parameters. In this case, the NARMAX is
simpler than the NARX net, and the capability of capturing nonlinear features for many
cases is questionable.
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4.7.1. Nonlinear autoregressive models with exogenous inputs

A general discrete bilinear input-output model, as stated in [45], takes the NARMAX
(Non-linear AutoRegressive Moving Average with eXogenous inputs) form

y(k) = q + du(k) +

ny∑
i=1

aiy(k − i) +

nu∑
i=1

biu(k − i) +

ny∑
i=1

nu∑
j=1

cijy(k − i)u(k − j). (4.126)

How well does the above model approximate nonlinear systems, particularly the bilin-
ear? For linear discrete-time systems, it is well known that a linear difference equation
model exists that involves only a fixed and finite number of calculations at each stage
if the Hankel matrix of the system has a finite rank, which provides a much more con-
cise description than the impulse response function. An analogous situation exists for
non-linear discrete-time systems. The NARMAX (Leontaridis and Billings 1985) pro-
vides a unified representation for a broad class of non-linear systems and has apparent
advantages over functional series representation such as the Volterra series. Based on
the Stone-Weierstrass theorem, two models, the output-affine and polynomial models,
are suitable for this purpose. These results should provide a basis for using these two
models to identify non-linear systems and other control implementations.

The model

y(k) = F (y(k − 1), . . . , y(k − ny), u(k − 1), . . . , u(k − nu)) (4.127)

where F (·) is some non-linear function, is about as far as one can go in specifying a
general finite non-linear system. Leontaridis and Billings (1985) proved that a nonlinear
discrete-time time-invariant system can always be represented by the model in a region
around an equilibrium point subject to two sufficient conditions:

1. the response function f of the system is finitely realizable;

2. a linearized model exists if the system is operated close to the chosen equilibrium
point.

4.7.2. A real engineering example

Example 4.8 (Heat exchanger):
The process is a liquid-saturated steam heat exchanger, where water is heated by pres-
surized saturated steam through a copper tube. The input variable is the liquid flow rate,
and the output variable is the outlet liquid temperature. The sampling time is 1s, and the
number of samples is 4, 000. Data can be downloaded from the database to identify sys-
tems (DaISy): https://homes.esat.kuleuven.be/~tokka/daisydata.html. The fol-
lowing data set is depicted in Fig. 4.19.

After detrending the data, the next step is to fit a NARMAX model of Eq. (4.126)
with maximum delay (lag=5). We can use the whole data set, but here, we choose the
same subset of 1, 000 points as in [119], which also serves the validation scope.
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Figure 4.19.: Input-output data from DaISy.

The NARMAX structure fitted above can explain the data under some errors. However,
the idea is to use the NARX-net as a more general class than that of NARMAX models,
which can eventually cover the bilinear dynamics if enough neurons and layers have been
assumed. Figure 4.20) illustrates the superiority of the proposed method in terms of
performance. From the single i/o data sequence, a NN with 3-layers and 20-lags was
trained using the same training data4 as in [119] (1000 points). In addition, the trained
NN was used in the bilinear realization algorithm to generate more data. A stable
reduced bilinear model of order r = 3 shown in (4.128) was successfully constructed. The
original noisy data were explained with a lower mean percentage error MPE = 0.56%
compared to the subspace method for the entire dataset. Another NN architecture, s.a.,
the NARMAX5 belongs to a subclass of bilinear systems, and will filter some nonlinear
features without achieving such a good MPE.
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Figure 4.20.: Comparison and model fit of the proposed NARX-net bilinear model (4.128)
with the subspace method from [119] for the same reduced order (r = 3).

4Data detrend: un = (u − ū)/σu, yn = (y − ȳ)/σy; zero-response: data were doubled in size for
learning the zero-response, i.e., un = 0 → Σ → yn = 0.

5NARMAX: The nonlinear autoregressive moving average model with eXogenous input [45, 3].
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

ẋ(t) =

 0.9164 0.09167 −0.1847
−0.2663 −0.1515 0.1232
−0.07227 0.4778 0.3571


︸ ︷︷ ︸

Aid

x(t)+

 0.02717 0.5169 0.5555
−0.09674 0.5467 0.5696
0.1878 −0.06846 −1.981


︸ ︷︷ ︸

Nid

x(t)u(t) +

 2.9063
2.909

−0.16088


︸ ︷︷ ︸

Bid

u(t) +

 −1.073
−1.074
0.05938


︸ ︷︷ ︸

Lid

,

y(t) =
[
−0.7852 0.7794 −0.05203

]︸ ︷︷ ︸
Cid

x(t) + 96.9358︸ ︷︷ ︸
Tid

, x(0) = 0, t ≥ 0.

(4.128)
♢

In conclusion, NN architectures are a superclass of NARMAX models used in the classical
identification theory. Consequently, NN models share the same strong argument with the
Carleman linearization scheme that can approximate general nonlinear systems. Finally,
NN and realization theory successfully bridge data science with computational science to
build reliable, interpretable nonlinear models. Different NN architectures (s.a., recurrent
NNs) in combination with other realization frameworks (s.a., the Loewner framework)
and for other types of nonlinearities
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CHAPTER 5

IDENTIFICATION AND REDUCTION OF
QUADRATIC-BILINEAR SYSTEMS
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5.1. Introduction

This chapter presents non-intrusive, i.e., purely data-driven methods using the Loewner
framework (LF) and nonlinear optimization techniques to identify or reduce quadratic-
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5. Identification and reduction of quadratic-bilinear systems

bilinear control systems from input-output (i/o) time-domain measurements. At the
heart of these methods are optimization schemes that enforce interpolation of the sym-
metric generalized frequency response functions (GFRFs) as derived in the Volterra se-
ries framework. We consider harmonic input excitations to infer such measurements.
After reaching the steady-state profile, the symmetric GFRFs can be measured from
the Fourier spectrum (phase and amplitude). Using these measurements properly for
the pure quadratic case (zero bilinear terms), we can identify low-order nonlinear state-
space models with non-trivial equilibrium state points in the quadratic form, such as
the Lorenz attractor. In particular, for the multi-point equilibrium case, where measure-
ments describe some local bifurcated models to different coordinates, we achieve global
model identification after solving an operator alignment problem based on a constrained
quadratic matrix equation. We test the new method for a more demanding system in
state dimension, i.e., the viscous Burgers’ equation with Robin boundary conditions. The
complexity reduction and approximation accuracy are tested.

In the first part of this chapter, we are ready to introduce and analyze our new method
that uses i/o time-domain data to identify or construct quadratic state-space models after
combining the Loewner and Volterra frameworks with nonlinear optimization techniques.
Compared to our prior work and previous chapters in this thesis [104, 105, 72], the
advances are; 1) we use generalized frequency measurements from higher orders kernels
of the symmetric type that explain the propagating harmonics in the time domain output
(measurable), making the reverse process (from time to frequency) feasible through the
Fourier transform; 2) we solve the resulting nonlinear optimization problems to achieve
quadratic model construction that interpolates the Volterra series to more kernels; 3) we
identify global quadratic systems of low order with nontrivial equilibrium points after
measuring the local dynamical behavior and solving a nonlinear matrix equation; 4) we
test the proposed method for both scopes of identification and reduction with classical
benchmarks such as the forced Lorenz attractor and the viscous Burgers’ equation.

In the remaining chapter, we propose a similar data-driven procedure to fit quadratic-
bilinear surrogate models from data in the quadratic bilinear part. Although the dynam-
ics characterizing the original model are strongly nonlinear, we rely on lifting techniques
to embed the original model into a quadratic-bilinear format. Here, data represent gen-
eralized transfer function values.This method is an extension of methods that do bilinear
or quadratic inference separately.. It is based on fitting a linear model with the classical
Loewner framework and then inferring the best supplementing nonlinear operators in a
least-squares sense. Electrical circuits give the application scope of this method with
nonlinear components (such as diodes). We propose various test cases to illustrate the
performance of the method.

Finally, we provide a small section with the spectral identification method for the
quadratic-bilinear system’s case. Thus, identification from state access data that pro-
duces models independent of the input, along with an example, is presented.
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5.2. Continuous-time quadratic control systems

5.2. Continuous-time quadratic control systems

We continue our analysis with the general state-space representation of a system in the
quadratic form and for the SISO case:{

ẋ(t) = Ax(t) +Q(x(t)⊗ x(t)) +Bu(t),

y(t) = Cx(t), x(0) = x0 = 0, t ≥ 0,
(5.1)

where the state-dimension is n, and the operators are: A ∈ Rn×n, Q ∈ Rn×n2
, B,CT ∈

Rn×1. The Kronecker product ⊗ is defined as in the following simple case
[
x1 x2

]
⊗[

x1 x2
]
=
[
x21 x1x2 x2x1 x22

]
. Due to the commutative property, the matrix Q

denotes the Hessian of the right-hand side and exhibits a particular symmetric structure.
For two arbitrary vectors u,v ∈ Rn, we can always ensure that it holds

Q(u⊗ v) = Q(v ⊗ u). (5.2)

Similarly, we want representations of the underlying nonlinear system in both time and
frequency domains as in the linear case. As we have exploited tools such as the Volterra
series expansion for approximating general nonlinear systems, we now focus on enforcing
the structure of the quadratic state-space model. The first aim is to derive the symmet-
ric GFRFs for the quadratic case that can be processed from the time domain to the
frequency domain, and the second is to use these measurements to identify the hidden
operators (A, Q, B, C).

5.2.1. Higher-order transfer functions for the quadratic control system

The Volterra series Eq. (2.28) describes the approximation of nonlinear systems through
higher-order generalized kernels in a multi-convolutional scheme. As explained in [137],
different ways of extracting kernels exist. One way is the variational approach, where the
structure of the triangular (or regular kernels) can be revealed through Picard iterations.
In particular, the regular kernels can be derived after shifting the frequency domain
of the triangular kernels. The regular kernels are convenient due to the asymmetric
structure that makes them valuable for interpolation frameworks such as the Loewner
and its nonlinear extensions. Despite the intrusive ease of use, the regular Volterra
kernels cannot be measured directly from the time domain. Therefore, we choose another
way of deriving higher-order Volterra kernels, namely the growing exponential approach
(e.g., the probing method) for treating the issue of kernel estimation. With probing
(harmonic excitation) of the system, and after processing the steady-state time evolution
in the frequency domain via the Fourier (a special case of Laplace over the imaginary
axis) transform, the time domain signal is decomposed to harmonics that scale and shift
w.r.t. the symmetric GFRFs. Methods for estimating these symmetric kernels (e.g.,
kernel separation) were introduced in [37, 104, 150]. In the Appendix A, we analytically
derive the three first symmetric generalized frequency response functions with the probing
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5. Identification and reduction of quadratic-bilinear systems

method. These are summarized here

H1(s1) = C (s1E−A)−1B︸ ︷︷ ︸
G1(s1)

,

H2(s1, s2) =
1

2
C ((s1 + s2)E−A)−1Q (G1(s1)⊗G1(s2) +G1(s2)⊗G1(s1))︸ ︷︷ ︸

G2(s1,s2)

H3(s1, s2, s3) =
1

6
C ((s1 + s2 + s3)E−A)−1Q× · · ·

· · · × [G1(s1)⊗G2(s2, s3) +G2(s2, s3)⊗G1(s1) +

G1(s2)⊗G2(s1, s3) +G2(s1, s3)⊗G1(s2)+

G1(s3)⊗G2(s1, s2) +G2(s1, s2)⊗G1(s3)] .

(5.3)

At this point, we illustrate some of the properties the derived symmetric transfer functions
inherit for the quadratic control system case.

• Symmetry: As it is evident, any permutation of the set (s1, s2, . . . , sn) will result
to the same evaluation of the Hn(s1, s2, . . . , sn) and Gn(s1, s2, . . . , sn).

• Decompositions: Introducing the general reachability R and observability O

counterparts can enable a more concise representation of the kernels. As we have
introduced the reachability matrices R1, R2, R3, here are the corresponding ob-
servability matrices:

O1(s1) = CΦ(s1),

O2(s1, s2) =
1

2
CΦ(s1 + s2),

O3(s1, s2, s3) =
1

6
CΦ(s1 + s2 + s3).

(5.4)

Next, we introduce the following Table 5.1 that illustrates the dependencies of
the quadratic operator as these are decomposed in observability and reachability
counterparts. With the above observations and notations, we can derive a more

input-output GFRF O R

H1(s1) O1(s1) R1 = B
H2(s1, s2,Q) O2(s1, s2) R2(s1, s2)

H3(s1, s2, s3,Q) O3(s1, s2, s3) R3(s1, s2, s3,Q)

Table 5.1.: Quadratic operator dependency over the input to state kernels concerning the
generalized controllability and observability counterparts.

convenient representation of the input to state GFRFs by exploiting their structure
and stressing the positioning of the quadratic operator as in the 3rd level with the
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5.3. Quadratic modeling from i/o time domain data

superscripts (·)ℓ-left and (·)r-right.

G1(s1) = Φ(s1)R1,

G2(s1, s2,Q) =
1

2
Φ(s1, s2)QR2(s1, s2),

G3(s1, s2, s3,Q
ℓ,Qr) =

1

6
Φ(s1, s2, s3)Q

ℓR3(s1, s2, s3,Q
r)

(5.5)

and for the input to output GFRFs as

H1(s1) = O1(s1)R1,

H2(s1, s2,Q) = O2(s1, s2)QR2(s1, s2),

Hℓr
3 (s1, s2, s3,Q

ℓ,Qr) = O3(s1, s2, s3)Q
ℓR3(s1, s2, s3,Q

r).

(5.6)

• The reachability matrix R3(Q) is linear w.r.t the quadratic operator Q.
Assume λ1, λ2 ∈ R and Q1, Q2 ∈ Rn×n2 . Then, it holds

– Linear property: R3(λ1Q1 + λ2Q2) = λ1R3(Q1) + λ2R3(Q2).

Proof. By neglecting the similar-structured terms (s.s.t), we can prove the
following:

R3(s1, s2, s3, λ1Q1 + λ2Q2) = G1(s1)⊗G2(s2, s3, λ1Q1 + λ2Q2) + s.s.t.

= G1(s1)⊗
1

2
Φ(s1, s2)(λ1Q1 + λ2Q2)R2(s1, s2) + s.s.t.

= G1(s1)⊗
1

2
Φ(s1, s2)λ1Q1R2(s1, s2) +G1(s1)⊗

1

2
Φ(s1, s2)λ2Q2R2(s1, s2) + s.s.t.

= λ1G1(s1)⊗G2(s2, s3,Q1) + λ2G1(s1)⊗G2(s2, s3,Q2) + s.s.t.

= λ1R3(s1, s2, s3,Q1) + λ2R3(s1, s2, s3,Q2).

Starting from the original dynamical system in Eq. (5.1) with the quadratic nonlinearity,
we have derived all the quantities of interest with their properties for setting up our
method. Equivalent descriptions between the time and frequency domain representations
have been addressed for this problem using the Volterra theory.

5.3. Quadratic modeling from i/o time domain data

Next, we introduce the proposed method for computing quadratic state-space models
from the first three symmetric GFRFs, which can be measured from time-domain har-
monic excitation.

5.3.1. Identification of the linear subsystem with the Loewner framework

Using measurements of the 1st harmonic, we can identify the minimal linear subsystem of
order r ≤ n, with an invertible Ê as (Â, B̂, Ĉ) with the Loewner framework. Further,
by accessing the identified linear subsystem, we can formulate optimization problems
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5. Identification and reduction of quadratic-bilinear systems

where estimations of the quadratic operator can be achieved after using higher harmonics
(kernels) information. We acquire and solve these optimization problems in two steps:
solving an under-determined linear optimization problem in a least-squares setting and
solving a non-linear optimization problem with the Newton method.

5.3.2. Estimation of the quadratic operator from the 2nd kernel

Identification of the minimal linear subsystem (Â, B̂, Ĉ) of order r as described in Sec-
tion 5.3.1 allows the construction of the reduced resolvent Φ̂(s) = (sÎ − Â)−1 ∈ Cr×r,
and the 2nd GFRFs with the unknown operator Q̂ can be written as:

Ĥ2(s1, s2) =
1

2
ĈΦ̂(s1 + s2)︸ ︷︷ ︸
Ô2(s1,s2)

Q̂
[
Φ̂(s1)B̂⊗ Φ̂(s2)B̂+ Φ̂(s2)B̂⊗ Φ̂(s1)B̂

]
︸ ︷︷ ︸

R̂2(s1,s2)

=

= Ô2(s1, s2)Q̂R̂2(s1, s2) =
(
Ô2(s1, s2)⊗ R̂T

2 (s1, s2)
)
vec(Q̂).

(5.7)

The way of estimating the quadratic operator Q̂ comes after enforcing interpolation with
the 2nd harmonic (2nd kernel) over a 2D grid of selected measurements

(
s
(k)
1 , s

(k)
2

)
.

Thus, we enforce
H2

(
s
(k)
1 , s

(k)
2

)
︸ ︷︷ ︸
k: measurements

= Ĥ2

(
s
(k)
1 , s

(k)
2

)
, (5.8)

and we construct the following solvable linear optimization problem by minimizing the
2-norm (least-squares) similarly to the quadratic-bilinear case in [105]. Collecting k pairs
of measurements (s

(k)
1 , s

(k)
2 ), we conclude that:
H2(s

(1)
1 , s

(1)
2 )

H2(s
(2)
1 , s

(2)
2 )

...

H2(s
(k)
1 , s

(k)
2 )


︸ ︷︷ ︸

Y: (k×1)

=


Ô

(1)
2 ⊗ R̂

T (1)
2

Ô
(2)
2 ⊗ R̂

T (2)
2

...

Ô
(k)
2 ⊗ R̂

T (k)
2


︸ ︷︷ ︸

M: (k×r3)

vec(Q̂)︸ ︷︷ ︸
r3×1

(5.9)

The quadratic operator inherits symmetries, e.g., the terms xixj and xjxi appear twice
in the product x⊗x. These symmetries are known by construction Eq. (5.2) and can be
handled properly. Nevertheless, taking care of these symmetries, the quadratic operator
is not a unique representation of the original system. Its entries are not fully detectable
using only information from the 2nd kernel. Algebraically, this can be explained by the
rank deficiency of the least squares matrix M ∈ Rk×r3 . Further, real symmetry can
be enforced in Eq. (5.9) by including the conjugate counterparts. The above problem
motivates the usage of higher harmonics (kernels) where the remaining parameters of
the above under-determined problem can be estimated. In particular, evaluating the
quadratic operator Q̂, can be parameterized further with the non-empty null space we
have computed from the above least-squares problem.
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5.3. Quadratic modeling from i/o time domain data

The quadratic operator has r3 unknowns (less due to symmetries). If the rank of the
matrix M is rank(M) = p < r3, the parametric solution of Q̂ that we obtain from H2

measurements with the dimension of the kernel m = r3 − p can be written as:

Q̂ = Q̂s + Q̂k = Q̂s︸︷︷︸
rank solution

+
m∑
i=1

λiQ̂i︸ ︷︷ ︸
parameterization

(5.10)

The above splitting Eq. (5.10) can be considered the same when the operators Q̂s, Q̂i, i =
1, . . . ,m are represented as vectors after vectorization due to the linear property of
vec(·)1.

5.3.3. Identification of the quadratic operator from the 3rd kernel

From the parameters λi in Eq. (5.10), we also search those that explain the 3rd kernel’s
interpolation. Therefore, we can write:

Ĥ3(s1, s2, s3) = Ô3(s1, s2, s3)Q̂R̂3(s1, s2, s3, Q̂), (5.11)

and substituting Eq. (5.10) in Eq. (5.11), due to the linear property of the operator R3

as explained in Section 5.2.1, we can derive

Ĥ3(s1, s2, s3) = Ô3(s1, s2, s3)

(
Q̂s +

m∑
i=1

λiQ̂i

)
R̂3

(
s1, s2, s3, Q̂s +

m∑
i=1

λiQ̂i

)
=

= Ô3(s1, s2, s3)Q̂sR̂3

(
s1, s2, s3, Q̂s

)
+ Ô3(s1, s2, s3)Q̂sR̂3

(
s1, s2, s3,

m∑
i=1

λiQ̂i

)
+

Ô3(s1, s2, s3)

(
m∑
i=1

λiQ̂i

)
R̂3

(
s1, s2, s3, Q̂s

)
+ Ô3(s1, s2, s3)

(
m∑
i=1

λiQ̂i

)
R̂3

(
s1, s2, s3,

m∑
i=1

λiQ̂i

)

= Ĥss
3 (s1, s2, s3) +

m∑
i=1

λi

(
Ĥis

3 (s1, s2, s3) + Ĥsi
3 (s1, s2, s3)

)
+

m∑
i=1

m∑
j=1

λiλjĤ
ij
3 (s1, s2, s3),

where the superscript notation is similar to Eq. (5.6). The above problem can be written
as a classical quadratic optimization problem. We introduce the following notation:
A = Ĥ

(ij)
3 (s1, s2, s3), B = Ĥ

(is)
3 (s1, s2, s3) + Ĥ

(si)
3 (s1, s2, s3), C = Ĥ

(ss)
3 (s1, s2, s3) −

Ĥ3(s1, s2, s3). We reformulate the problem by denoting λ =
[
λ1 λ2 · · · λm

]T .
The dimensions for a single measurement triplet (s1, s2, s3) remain: A ∈ Rn×n, B ∈
R1×n, C ∈ R.

λTAλ+Bλ+ C = 0. (5.12)

We can rewrite the above vector equation in a more convenient format after vectorizing
A as:

vec(A)(λ⊗ λ) +Bλ+ C = 0. (5.13)

1The vectorization is row-wise, vec(Q) =
[
Q(1, 1 : r2) · · · Q(r, 1 : r2)

]T ∈ Rr3×1.
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To enforce interpolation from the 3rd kernel, we equate

H3

(
s
(k)
1 , s

(k)
2 , s

(k)
3

)
︸ ︷︷ ︸

k: measurements

= Ĥ3

(
s
(k)
1 , s

(k)
2 , s

(k)
3

)
. (5.14)

Further, by adding k measurements, we result to:
vec(A1)
vec(A2)

...
vec(Ak)


︸ ︷︷ ︸

W: (k×m2)

(λ⊗ λ) +


B1

B2
...
Bk


︸ ︷︷ ︸
Z: (k×m)

λ+


C1

C2
...
Ck


︸ ︷︷ ︸
S: (k×1)

= 0. (5.15)

The above mapping can be written by denoting F(·) : Rm → Rk as F(λ) = 0 where:

F(λ) = W(λ⊗ λ) + Zλ+ S, λ ∈ Rm. (5.16)

The derivative (Jacobian) w.r.t the real vector λ is:

J(λ) = F′(λ) = W(λ⊗ I+ I⊗ λ) + Z. (5.17)

We seek the solution of Eq. (5.15); thus, by introducing the Newton iterative procedure
(fixed point iterations), we can conclude in the following scheme where an initial seed λ0

can result to F(λn+1)→ 0 as n→∞. The iterations are described next:

λn+1 = λn − J−1(λn)F(λn). (5.18)

Finally, upon Newton’s method convergence, we obtain the vector λ∗, (F(λ∗) ≈ 0) from
Algorithm 5.1, which will lead to a better estimation of Q that explains, in addition, the
measurements from the 3rd kernel. We notice in many situations that the error between
the reduced and original systems improves significantly when the residual γ of Newton’s
method remains small. Moreover, in many cases, identifying the original operator Q
is possible, as we illustrate in the following example with the Lorenz attractor model.
Algorithm 5.1: Solution algorithm of the quadratic vector equation.

1: Define: W ∈ Rk×m2
, Z ∈ Rk×m, S ∈ Rk×1 and the hyperparameters η, γ0.

2: Choose an initial random seed: λ ∈ Rm.
3: while γ > γ0 do
4: Compute F(λ) from Eq. (5.16) and J(λ) from Eq. (5.17).
5: Update λ← (λ− J#F(λ)), # is: ”− 1” or the Moore-Penrose pseudo-inverse

(threshold η).
6: Compute the residue ∥F(λ)∥ = γ.
7: end while
8: return λ
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5.3.4. Algorithm for quadratic modeling from i/o time-domain data

Here, we present a concise algorithm summarizing the procedure for constructing quadratic
state space models from harmonic data (samples of the symmetric kernels H1, H2, H3).
Measuring (symmetric) Volterra kernels is no longer a new topic. However, although
previously addressed in [37, 104, 154], it remains a non-trivial task. The main difficulty
has to do with the fact that it is hard to separate commensurate frequencies. In other
words, each of the propagating harmonics consists of a series of kernels and, therefore,
evaluating the symmetric GFRFs requires kernel separation with an amplitude shifting
[104, 154]. Towards this aim, X-parameters in [150], and the references within, represent
a direct generalization of the classical S-parameters (for linear dynamics) to the nonlin-
ear case. With this agile machinery, estimations of the higher Volterra kernel can be
brought in an actual engineering setup as in [154], and a quadratic state-space surro-
gate model can be inferred from the proposed method. The following algorithm can use
such information (from the X-parameters) to construct quadratic interpretable models.
Algorithm 5.2: Quadratic modeling from time-domain data
Input: # Measurements of the symmetric GFRFs H1, H2, H3.
Output: The quadratic model of order r with operators (Â, Q̂, B̂, Ĉ).
1: Define a truncation order r with SVD from the Loewner matrix L.
2: Realize the minimal linear subsystem (Â, B̂, Ĉ) of order r.
3: Estimate the Q̂s ∈ Rr×r2 from Eq. (5.9) by minimizing the 2−norm error.
4: Update Q̂ ∈ Rr×r2 from Eq. (5.10) after solving Eq. (5.18) with Algorithm 5.1.

5.3.5. Quadratic state-space systems with multiple equilibrium points

Quadratic systems can bifurcate to different equilibrium points that operate locally.
Thus, when measuring, multi-operational points can be revealed. To illustrate this phe-
nomenon mathematically, we write the quadratic system Eq. (5.1) after shifting it with
the non-zero equilibrium state xe. We denote the new state variable x̃(t) = x(t) − xe,
and it remains

ẋ(t) = Ax(t) +Q(x(t)⊗ x(t)) +Bu(t)⇒
˙̃x(t) = A(x̃(t) + xe) +Q ((x̃(t) + xe)⊗ (x̃(t) + xe)) +Bu(t)⇒
˙̃x(t) = Ax̃(t) + 2Q(xe ⊗ x̃(t)) +Q(x̃(t)⊗ x̃(t)) +Axe +Q(xe ⊗ xe) +Bu(t)⇒
˙̃x(t) = (A+ 2Q(xe ⊗ I))︸ ︷︷ ︸

Ã

x̃(t) +Q(x̃(t)⊗ x̃(t)) +Axe +Q(xe ⊗ xe)︸ ︷︷ ︸
L̃

+Bu(t).

(5.19)

Note that L := Axe +Q(xe ⊗ xe) = 0, and should remain zero as in the absence of the
controller u(t), and with zero initial conditions, e.g., x0 = 0, there is no energy in the
system to dissipate. We do not address situations with a limit circle, e.g., systems with
purely imaginary eigenvalues, for which such systems describe self-sustained dynamics.
As a result, the quadratic system that we measure after reaching the equilibrium state
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xe is the following: {
˙̃x(t) = Ãx̃(t) +Q(x̃(t)⊗ x̃(t)) +Bu(t),

y(t) = Cx̃(t) +Cxe.
(5.20)

Remark 5.1 (Invariant operators under bifurcations):
The system in Eq. (5.20) suggests that around the new equilibrium state point xe, the
operators (Q, B, C) stay invariant, and only the linear operator changes to Ã = A +
2Q(xe ⊗ I), along with the DC2 term Cxe. Therefore, for the multiple equilibrium
case, these local systems contain the same invariant information w.r.t. the operators
(Q, B, C) except the linear operator plus a translation. In other words, the generalized
Markov parameters of the system that contain only the operators (Q, B, C) are the
same around any arbitrary equilibrium xe to which the original system bifurcates and
any arbitrary coordinate system. ♢

Two equilibrium points case: Let assume that the original quadratic model has bi-
furcated to the two different equilibrium points x̂(1)

e , x̆
(2)
e and in the different coordinates

denoted (x̂, x̆), that explain the dynamical behavior locally. We can write{
˙̂x1(t) = Â1x̂1(t) + Q̂1(x̂1(t)⊗ x̂1(t)) + B̂1u(t),

y1(t) = Ĉ1x̂1(t), x̂1(0) = 0.
,

{
˙̆x2(t) = Ă2x̆2(t) + Q̆2(x̆2(t)⊗ x̆2(t)) + B̆2u(t),

y2(t) = C̆2x̆2(t), x̆2(0) = 0.

(5.21)

Some properties:

• For the first system in Eq. (5.21) holds

Â1︸︷︷︸
local

= A1︸︷︷︸
global

+2Q̂1(x̂
(1)
e ⊗ I) (5.22)

• For the second system in Eq. (5.21) holds

Ă2︸︷︷︸
local

= A2︸︷︷︸
global

+2Q̆2(x̆
(2)
e ⊗ I) (5.23)

Remark 5.2 (Markov parameters):
The Markov parameters involving the quadratic and input-output operators are the same.
Ĉ1B̂1 = C̆2B̆2, and Ĉ1Q̂1(B̂1 ⊗ B̂1) = C̆2Q̆2(B̆2 ⊗ B̆2). ♢

2DC: direct current in electrical engineering, which describes the non-periodic term (zero frequency) in
the power spectrum.
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5.3. Quadratic modeling from i/o time domain data

Figure 5.1.: Lemma 5.3 through a schematic.

According to Remark 5.2, invariant information from the original system is encoded in
both systems Eq. (5.21). Therefore, a similarity transformation T exists, which aligns
the two systems w.r.t the original operators.

Lemma 5.3 (Quadratic systems alignement):
There exists a transformation matrix T such that the two triplets of operators given by
(Q̂1, B̂1, Ĉ1) and by (Q̆2, B̆2, C̆2) (resulting after a global model bifurcating to different
equilibrium points) can be aligned simultaneously with the original operators but to
different coordinates, geometrically in Fig. 5.1, and algebraically as

Q̂1 = TQ̆2(T
−1 ⊗T−1),

B̂1 = T−1B̆2 ⇔ TB̂1 = B̆2

Ĉ1 = TC̆2,

A1 = TA2T
−1.

(5.24)
♢

One way to compute the transformation matrix T is by solving the first three equations
in system Eq. (5.24). The above problem involves a quadratic matrix equation that
can be iteratively solved using Newton iterations. Moreover, the linear constraints help
the regularization of the Newton iterations not to converge at the zero solution. We
analytically derive the iterative Newton scheme over the Fréchet derivative in what follows
(Section 5.3.6) to seek such a formal solution.

5.3.6. Solution of the constrained quadratic matrix equation

The analysis starts with the quadratic matrix equation. Thus, we define the following
operator: F : Rn×n → Rn×n with F(X) := XU−Q (X⊗X). For known U, Q ∈ Rn×n2 ,
we seek 0 ̸= X ∈ Rn×n such that F(X) = 0. Moreover, X should be invertible (∃ X−1).
The idea is to differentiate w.r.t. the Fréchet derivative and solve a linear matrix equation
for every Newton step similar to the Newton-Kleinmann algorithm for the solution of the
Ricatti matrix equation [112]. Therefore, we introduce a small perturbation to the matrix
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X with N ∈ Rn×n and with h a small real number. We define

(F′(X))(N) = lim
h→0

1

h
(F(X+ hN)− F(X)) = NU−Q(X⊗N+N⊗X). (5.25)

Since Q is symmetric, we can write equivalently

(F′(X))(N) = NU− 2Q(X⊗N). (5.26)

The Newton iteration is given by

(F′(Xj−1))(Nj−1) = −F(Xj−1), Xj = Xj−1 +Nj−1. (5.27)

We compute

Nj−1U− 2Q(Xj−1 ⊗Nj−1) = −Xj−1U+Q(Xj−1 ⊗Xj−1)⇒
(Xj −Xj−1)U− 2Q(Xj−1 ⊗ (Xj −Xj−1)) = −Xj−1U+Q(Xj−1 ⊗Xj−1)⇒

XjU− 2Q(Xj−1 ⊗Xj) + 2Q(Xj−1 ⊗Xj−1) = Q(Xj−1 ⊗Xj−1)

(5.28)

which results to the following linear matrix equation Eq. (5.29) w.r.t the forward step
solution Xj :

XjU− 2Q(Xj−1 ⊗Xj) +Q(Xj−1 ⊗Xj−1) = 0. (5.29)

Remark 5.4:
In Eq. (5.29), it is to be observed that at step j, the matrix equation is linear in Xj ,
provided that Xj−1 is explicitly known, which is to be assumed (from the Newton itera-
tion). ♢

Remark 5.5:
The equation (5.29) is linear in the variable Xj ∈ Rn×n; since U,Q ∈ Rn×n2 , there
are n3 linear scalar equations to solve, and only n2 unknowns. Hence, we are facing an
over-determined linear system of equations with a possibly non-empty null space. ♢

In what follows, we show how to isolate the Xj term from the rest and how to rewrite
this equation more conventionally. More specifically, based on the previous remark, we
show that equation (5.29) can equivalently be written as n classical Sylvester equations,
each characterized by n2 scalar equations in n2 unknowns. From (5.29), it follows that

XjU− 2Q(Xj−1 ⊗Xj) +Q(Xj−1 ⊗Xj−1) = 0⇒
XjU− 2Q(Xj−1 ⊗ In)︸ ︷︷ ︸

:=Vj−1

(In ⊗Xj) = −Q(Xj−1 ⊗Xj−1)︸ ︷︷ ︸
:=Zj−1

⇒ (5.30)

Xj

[
U(1) · · ·U(n)

]︸ ︷︷ ︸
U

−
[
V

(1)
j−1 · · ·V(n)

j−1

]
︸ ︷︷ ︸

Vj−1


Xj 0 · · · 0
0 Xj · · · 0
...

...
. . .

...
0 0 · · · Xj

 =
[
Z

(1)
j−1 Z

(2)
j−1 · · ·Z(n)

j−1

]
︸ ︷︷ ︸

Zj−1

. (5.31)
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Above, we have that U(k),V
(k)
j−1,Z

(k)
j−1 are known n × n real-valued matrices at step j,

for all 1 ≤ k ≤ n. These are the building blocks of the following matrices:

Vj−1 := 2Q(Xj−1 ⊗ In) ∈ Rn×n2
, Zj−1 := −Q(Xj−1 ⊗Xj−1) ∈ Rn×n2

. (5.32)

We can hence write this equation equivalently as follows:[
XjU

(1) · · ·XjU
(n)
]
−
[
V

(1)
j−1 · · ·V(n)

j−1Xj

]
=
[
Z
(1)
j−1 · · ·Z(n)

j−1

]
. (5.33)

Then, for all 1 ≤ k ≤ n, solving (5.29) boils down to solving n (linear) Sylvester equations
as:

XjU
(k) −V

(k)
j−1Xj = Z

(k)
j−1. (5.34)

The solution Xj ∈ Rn×n, after vectorization, becomes vec(Xj) ∈ Rn2×1. Putting together
the n Sylvester equations in vectorized form by using the identity vec(TOR) = (RT ⊗
T)vec(O), will yield the following system of n3 scalar equations in n2 unknowns:

(
U(1)

)T ⊗ In − In ⊗V
(1)
j−1(

U(2
)T ⊗ In − In ⊗V

(2)
j−1

...(
U(n)

)T ⊗ In − In ⊗V
(n)
j−1


︸ ︷︷ ︸

∈Rn3×n2

vec(Xj) =


vec(Z(1)

j−1)

vec(Z(2)
j−1)

...
vec(Z(n)

j−1)


︸ ︷︷ ︸

∈Rn3×1

(5.35)

For low values of n, such a procedure is indeed feasible. However, for moderate to large
values of n, i.e., n > 50 or so, it is quite challenging or even impossible to find the
next value Xj using explicitly forming the n3 × n2 matrix in (5.35). In what follows,
we are concerned with low-order systems as we emphasize quadratic identification in a
reduced-order sense.

Lemma 5.6 (Linearized system of Sylvester equations):
The square matrix T−1 that aligns the operators (Q̂1, B̂1, Ĉ1) and (Q̆2, B̆2, C̆2) from
Lemma 5.3, can be computed, upon Newton’s method convergence Algorithm 5.3, as the
iterative solution of the following constrained linear system of equations Eq. (5.36) with
T−1 := limj→∞Xj that gives F(T−1) ≈ 0.



(
U(1)

)T ⊗ In − In ⊗V
(1)
j−1(

U(2
)T ⊗ In − In ⊗V

(2)
j−1

...(
U(n)

)T ⊗ In − In ⊗V
(n)
j−1

B̂T
1 ⊗ In

In ⊗ C̆2


︸ ︷︷ ︸

∈R(n3+2n)×n2

vec(Xj)︸ ︷︷ ︸
∈Rn2×1

=



vec(Z(1)
j−1)

vec(Z(2)
j−1)

...
vec(Z(n)

j−1)︸ ︷︷ ︸
∈Rn2×1

B̆2

ĈT
1


︸ ︷︷ ︸
∈R(n3+2n)×1

(5.36)
♢
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Algorithm 5.3: Solution algorithm for the constrained quadratic matrix equation
1: Seek: X s.t. F(X) := XU−Q(X⊗X) = 0 and satisfies the constrains (two last

rows) in Eq. (5.36).
2: Choose an initial random seed: Xj=0 ∈ Rn×n.
3: while γ > γ0 do
4: Update: j ← j + 1.
5: Compute Xj by solving the linear system of equations Eq. (5.36).
6: Compute the residue ∥F(Xj)∥ = γ.
7: end while
8: return X

With the solution T−1 from Algorithm 5.3, we can align the "hatted" and "breved" sys-
tems to the same coordinates. We can further write after combining equations Eq. (5.22)
and Eq. (5.23), the following system with unknowns the equilibrium state points x̂(1)

2 , x̆
(2)
2 .

Combining equations Eqs. (5.22) and (5.23) after multiplication with the transformation
matrix T from the left and with T−1 from the right, we have

Ă2 = A2 + 2Q̆2(x̆
(2)
e ⊗ I)⇒

TĂ2T
−1 = TA2T

−1 + 2TQ̆2(x̆
(2)
e ⊗ I)T−1 ⇒

TĂ2T
−1 = A1 + 2TQ̆2(x̆

(2)
e ⊗T−1)⇒

TĂ2T
−1 = A1 + 2TQ̆2(T

−1 ⊗T−1)(T−1 ⊗T−1)−1(x̆(2)
e ⊗T−1)

TĂ2T
−1 = A1 + 2Q̂1(T

−1 ⊗T−1)−1(x̆(2)
e ⊗T−1)⇒

TĂ2T
−1 = A1 + 2Q̂1(T⊗T)(x̆(2)

e ⊗T−1)⇒
TĂ2T

−1 = A1 + 2Q̂1(Tx̆(2)
e ⊗ I)⇒

TĂ2T
−1 = Â1 − 2Q̂1(x̂

(1)
e ⊗ I) + 2Q̂1(Tx̆(2)

e ⊗ I)⇒
TĂ2T

−1 = Â1 − 2Q̂1

(
x̂(1)
e −Tx̆(2)

e ⊗ I
)
⇒

Â1 −TĂ2T
−1 = 2Q̂1

(
x̂(1)
e −Tx̆(2)

e ⊗ I
)
.

(5.37)

The above equation is not enough to define the unknown equilibrium vectors uniquely.
Additional information comes from the direct current (DC) terms that can be measured
from the power spectrum α1, α2. Therefore, we enforce from the Table 5.2

Ĉ1x̂
(1)
e = α1, C̆2x̆

(2)
e = α2, (5.38)

Solving the coupled system with Eq. (5.37) and Eq. (5.38), we obtain infinite solution of
the vectors x̂

(1)
e , x̆

(2)
e as a non-empty null space of length p exists. Finally, each one of

the systems at the equilibrium point satisfies L := Axe + Q(xe ⊗ xe) = 0. Therefore,
working independently, at x̂

(1)
e , it holds L̂

(
x̂
(1)
e

)
= 0. The solution we estimate from

Eq. (5.37) is not unique due to the rank deficiency. In particular, we have to solve for
the two equilibrium points another two quadratic vector equations that enforce L̂(x̂

(1)
e )
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and L̆(x̆
(2)
e ) equal zero. Therefore, we solve for the parametric solution[

x
(1)
e

x
(2)
e

]
=

[
x
(1)
es

x
(2)
es

]
+

p∑
i=1

λi

[
x
(1)
ei

x
(2)
ei

]
, (5.39)

the following equation for every equilibrium point. Thus,

L̂
(
x̂(1)
e

)
: = A1x̂

(1)
e + Q̂1(x̂

(1)
e ⊗ x̂(1)

e ) = Â1x̂
(1)
e − Q̂1

(
x̂(1)
e ⊗ x̂(1)

e

)
=

= Â1

(
x̂(1)
es +

p∑
i=1

λix
(1)
ei

)
− Q̂1

(
x̂(1)
es +

p∑
i=1

λix
(1)
ei

)
⊗
(
x̂(1)
es +

p∑
i=1

λix
(1)
ei

)
=

= Â1x̂
(1)
es − Q̂1

(
x̂(1)
es ⊗ x̂(1)

es

)
︸ ︷︷ ︸

Z

+

p∑
i=1

λi

(
Â1x

(1)
ei − 2Q̂1x

(1)
es ⊗ x

(1)
ei

)
︸ ︷︷ ︸

Y

−

−
p∑

i=1

p∑
j=1

λiλj Q̂1

(
x
(1)
ei ⊗ x

(1)
ej

)
︸ ︷︷ ︸

W

= 0.

(5.40)

Therefore, after enforcing the L vector to be zero at each equilibrium point and for both
systems, we solve a system of coupled quadratic vector equations.[

W1

W2

]
(λ⊗ λ) +

[
Y1

Y2

]
λ+

[
Z1

Z2

]
= 0. (5.41)

Solving for λ with the same developed Algorithm 5.1, we can detect uniquely the equi-
librium state vectors x̂

(1)
e , x̆

(2)
e . Finally, we can identify the initial system that con-

tains the original operators, e.g., A1. In particular, the identified system with operators
(A1, Q̂1, B̂1, Ĉ1) is an equivalent modulo with the original (A, Q, B, C) and a
similarity transformation T̃ ∈ Rn×n exists that aligns the two systems.

5.4. Numerical results

We test the new method for different cases of identifying the Lorenz attractor where the
Burgers’ equation model illustrates the reduction performance.

5.4.1. Identification of the forced Lorenz system

We consider the canonical model for chaotic dynamics, the Lorenz system [120], and
we add a control-input u(t) in the 1st and 3rd states. The following state-space form
describes the quadratic control system:

ẋ(t) = −σx(t) + σy(t) + u(t),

ẏ(t) = ρx(t)− y(t)− x(t)z(t),

ż(t) = −βz(t) + x(t)y(t) + u(t),

(5.42)
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where zero initial condition are assumed e.g., (x(0), y(0), z(0)) = (0, 0, 0), and the
operators are:

A =

 −σ σ 0
ρ −1 0
0 0 −β

 , B = CT =

 1
0
1

 , Q =

 0 0 0 0 0 0 0 0 0
0 0 − 1

2
0 0 0 − 1

2
0 0

0 1
2

0 1
2

0 0 0 0 0

 . (5.43)

With input u(t), we choose to observe the linear combination of the 1st and 3rd states;
thus, the output is x(t)+z(t). The above quadratic system Eq. (5.43) gives rise to chaotic
dynamics for different choices of the parameters (σ, ρ, β). This study aims to identify
the Lorenz system from i/o time domain data under harmonic excitation. We choose
σ = 10, β = 8/3, and for the parameter ρ, we investigate two cases 1,2 and comment on
case 3.

1. ρ = 0.5, where the linear subsystem is stable, and the Lorenz attractor has the
unique zero equilibrium.

2. ρ = 20, where the linear subsystem is unstable, and the Lorenz system has two
different steady-states with two non-zero stable equilibrium points.

3. ρ = 28, where the linear subsystem is unstable, but the Lorenz system is chaotic
(steady-state unreachable) with two non-trivial attractors.

Case 1 - ρ = 0.5. Exciting the Lorenz system Eq. (5.43) with multi-harmonic inputs,
e.g., u(t) = a1e

s1t+a2e
s2t+a3e

s3t, where j =
√
−1 the imaginary unit, and s1 = jω1, s2 =

jω2, s3 = jω3, after reaching the steady-state profile, measurements of the GFRFs can
be achieved, e.g., with X-parameters. The data assimilation process is repetitive, and
for the real input case, e.g., u(t) =

∑n
i=1 cos(ωit), kernel separation should be addressed

in a similar way as in [104, 37, 36]. Therefore, samples of the first three GFRFs over
the following frequency grids can be obtained from a physical measurement setup after
processing the time-domain evolution of the potentially unknown system.

• We take 50 logarithmic distributed measurements ωi, i = 1, . . . , 50, from [10−2, 102].
Therefore, 50 pairs of measurements {jωi, H1(jωi)}, i = 1, . . . , 50 are collected.
Using the Loewner framework Section 3.2, the order r = 3 of the linear minimal
subsystem can be identified from the singular value decay Fig. 5.2(left), and a linear
realization can be constructed:

Â =

 16.96 4.171 −4.638
11.32 4.408 −4.287
135.2 29.95 −35.03

 , B̂ =

 −3.047−1.824
−24.97

 , ĈT =

 2.542
0.08718
−0.3968

 . (5.44)

The coordinate system is different from the original, but the system’s invariant
quantities are the same, e.g., the 1st transfer function H1, or Markov parameters,
e.g., CAB = ĈÂB̂ = −12.6667. The eigenvalues are: eig(A) = eig(Â) =(
−10.52 −0.4751 −2.667

)
.

• We take 10 logarithmic distributed measurements from a squared grid [10−2, 102]2

in each dimension3, and 100 pairs of measurements {(jωk
1 , jωk

2 ), H2(jω
k
1 , jωk

2 )}
3Cartesian product: [a, b]2 = [a, b]× [a, b] for a < b.
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are collected. Solving the linear system Eq. (5.9) by minimizing the 2-norm (least-
squares), we estimate Q̂s as

Q̂s =

 −1.243 0.1493 0.2813 0.1493 −0.01241 0.01805 0.2813 0.01805 −0.05817
0.1416 0.8189 0.03877 0.8189 −0.2759 0.03372 0.03877 0.03372 −0.007071
0.4246 0.03703 0.8877 0.03703 0.1219 0.2355 0.8877 0.2355 −0.2717

 .

• The rank of the least squares matrix in Eq. (5.9) is deficient rank(M) = 21 < 27 =
33. Therefore, a parameterization is introduced as in Eq. (5.10). In this particular
case, the dimension of the vector λ is six. As the proposed method is arbitrary in
the number of measurements, we take 5 logarithmically distributed measurements
from the cubic grid [10−2, 102]3 in each dimension; therefore, 125 pairs of measure-
ments {(jωk

1 , jω
k
2 , jω

k
3 ), H3(jω

k
1 , jω

k
2 , jω

k
3 )} are collected. Solving the quadratic

equation with Algorithm 5.1, and starting with different seeds of λ0, as depicted
on the right of Fig. 5.2, the parameter vector λ ∈ R6 is obtained uniquely. Thus,
the updated estimation of the quadratic operator Q̂ = Q̂s +

∑r
i=1 λQ̂i, with Q̂i

the null space vectors is the following:

Q̂ =

 −1.513 −0.1403 0.2603 −0.1403 −0.006141 0.0241 0.2603 0.0241 −0.04477
22.15 0.5147 −3.506 0.5147 0.01186 −0.08085 −3.506 −0.08085 0.5511
−5.541 −0.7411 0.9982 −0.7411 −0.03402 0.1284 0.9982 0.1284 −0.1794

 .

Finally, using a coordinate transformation Appendix C, we prove that the resulting
system is exactly the original.

A = Ψ−1ÂΨ =

 −10.0 10.0 4.334e− 13
0.5 −1.0 5.219e− 13

−5.254e− 11 5.448e− 11 −2.667

 ,

B = Ψ−1B̂ =

 1.0
−2.207e− 11

1.0

 , C = ĈΨ =
[
1.0 −1.806e− 11 1.0

]
,

Q = Ψ−1Q̂(Ψ⊗Ψ) =

 0 0 0 0 0 0 0 0 0
0 0 −0.5 0 0 0 −0.5 0 0
0 0.5 0 0.5 0 0 0 0 0

± ϵ · 13×9,

(5.45)

where ϵ ∈ [1e−12, 1e−10]. The above result certifies that the original and identified
systems are equivalent under a coordinate transformation (equivalent modulo).
Important is also the fact that since Q ̸= Ψ−1Q̂s(Ψ⊗Ψ), quadratic identification
with information from the first two kernels H1, H2 is impossible even if we have
taken measurements with two harmonic input tones (off the diagonal). Here, the
significant improvement compared with other similar efforts [104] is the systematic
way of adding more information to the constructed model from the higher kernels.
As a result, the forced Lorenz system was successfully identified when measurements
of the first three symmetric kernels were considered, as illustrated in Fig. 5.3(left) in
contrast with the unstable result obtained with information available only from the
first two kernels. Finally, in Fig. 5.3(right), the identified and the original systems
are equivalent state-space models after comparing them at the same coordinate
system.

Case 2 - ρ = 20. For this case where ρ > 1, the Lorenz attractor has two non-zero
equilibrium points from
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Figure 5.2.: Left: The Loewner singular value decay r = 3 with σ4/σ1 ∼ 1e− 14. Right:
The Newton convergence scheme. A solution vector λ∗ has been obtained
uniquely after starting with different random seeds λ0.
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Figure 5.3.: Left: The linear model gives a poor approximation. Also, the H2 does not
contribute to a reasonable estimation of the quadratic operator; therefore,
numerical instability is observed. After enhancing the information from the
3rd kernel, identification of the Lorenz system was achieved with a numerical
error near machine precision. Right: The 3D state space is reconstructed
from the identified system with the proposed method compared with the
original one after aligning both systems to the same coordinates.


0 = −σx(t) + σy(t),

0 = ρx(t)− y(t)− x(t)z(t),

0 = −βz(t) + x(t)y(t),

⇒ x(1)
e =


√

β(ρ− 1)√
β(ρ− 1)
ρ− 1

 , x(2)
e =

 −
√

β(ρ− 1)

−
√

β(ρ− 1)
ρ− 1

 (5.46)

Under harmonic excitation or non-zero initial conditions, the system’s trajectories move
around these two attractors. The chaotic behavior can be detected because the system
can switch to a different steady state for small perturbations to initial conditions or the
input, making the output evolution different.
Data assimilation over multiple steady-states. In Table 5.2, we show for a control
system the way that measurements of the higher kernels can be obtained after exciting
with harmonic inputs. Here, we illustrate this phenomenon by exciting with harmonic
inputs the Lorenz attractor with the parameter ρ = 20. With α = 1, ω1 = 1, we have
two different designed complex inputs4 that converge to the same input signal for large

4With complex inputs, e.g., u(t) : R+ → C, indexing harmonics and estimating kernels are straight-
forward tasks compared to the real input case, e.g., u(t) : R+ → R, where additional operations s.a.
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5.4. Numerical results

t.

1. ρ = 20 - input 1: u1(t) = 3e−0.1tsawtooth(t)︸ ︷︷ ︸
perturbation

+αe2jπω1t.

2. ρ = 20 - input 2: u2(t) = αe2jπω1t.

As it is depicted in Fig. 5.4(left), for the different designed inputs u1(t), u2(t), we ob-
tain two different steady-state solutions with different power spectrums Fig. 5.4(right).
Measurements can be obtained for both systems, and the DC terms may help distinguish
them. In Table 5.2, and for each system (blue, red), the Fourier spectrum (magnitude,
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Figure 5.4.: Multiple steady-states and corresponding power spectrum. More details in
the Table 5.2.

phase) P provides the following measurements (complex inputs): H1(jω1) = P1(jω1)
a ,

H2(jω1, jω1) =
P2(jω1,jω1)

a2
, H3(jω1, jω1, jω1) =

P3(jω1,jω1,jω1)
a3

. For each system, the DC
term, e.g., Eq. (5.38), can be computed from the non-periodic value P (0) in the power
spectrum. This can be generalized for multi-harmonic accurate signals (kernel separa-
tion) and in the X-parameter machinery [150] that deals with harmonic distortion. The

Data DC H1(jω1) H2(jω1, jω2) H3(jω1, jω2, jω3)

u1(t) 11.8819 −0.0148 + 0.297i −0.00687− 0.00614i 1.74e− 4− 5.82e− 5i
u2(t) 26.1181 0.09303 + 0.05011i −3.0e− 4− 3.0e− 3i 6.0e− 6 + 5.3e− 5i

Table 5.2.: Frequency spectrums under bifurcation that reveal multiple steady-states.

symmetric transfer function that can interpret the measurements in Table 5.2 has to
do with the corresponding linear operator, e.g., Ãq = A + 2Q(x

(q)
e ⊗ I), q = 1, 2 and

for each equilibrium respectively. For instance, using the equilibrium x
(1)
e , we compute

Ã1 = A+2Q(x
(1)
e ⊗ I).The 1st transfer function H1 (for the equilibrium x

(1)
e ) yields the

following value at frequency ω1 = 2π: H1(jω1) = C(jω1I − Ã)−1B = −0.0148 + 0.297i
which explains the measurements in the 1st row of Table 5.2, and similarly, the higher
kernels explain the rest. Similar results can be obtained for the 2nd input-u2 and the
higher kernels. One way to distinguish different operational points (steady-states) among
different equilibrium points is through the non-periodic term. For instance, when the

kernel separation with amplitude shifting, should be addressed [104, 37, 150].

139



5. Identification and reduction of quadratic-bilinear systems

Lorenz system is endowed with ρ = 20 > 1, we measure two different local quadratic
systems that can be recognized from the two different DC terms in Fig. 5.4. Thus, the
two different quadratic systems Eq. (5.21) can be identified, and the dynamics of the local
coordinate system can be explained, with the respective equilibrium point as the origin.
To discover the original model that has been bifurcated, we need to align the invariant
operators to the same coordinates. Starting with a random seed for the Newton method,
e.g., T0 ∼ N(µ,σ), and applying Algorithm 5.3, we have the following convergence in
Fig. 5.5 to the solution:

T−1 =

 −0.003881 −1.308 −4.584
−0.2823 −0.8908 −1.193
−0.2035 0.6238 1.575

 (5.47)

Now, the two quadratic systems have been aligned with the transformation T, and the
equilibrium points can be computed by solving Eq. (5.37) coupled with the information
from the DC-terms Eq. (5.38) together with the enforcement of the operators L̂, L̆ at
the equilibrium points to be zero as analyzed in Eq. (5.40). Finally, by solving the
above-coupled systems, we have the following results:

λ =

[
+20.45
−58.29

]
, x̂(1)

e =

 61.15
26.78
11.24

 , x̂(2)
e =

 −16.28
−45.49
11.39

 . (5.48)

Having found the equilibrium points, we can derive the original linear operator from

A1 = Â1 − 2Q̂1

(
x(1)
e ⊗ I

)
=

 −7.873 7.255 66.07
3.056 −7.245 −48.22
1.602 −1.405 1.451

 . (5.49)

This linear operator A1 has the same eigenvalues as the original linear operator from
the Lorenz system ρ = 20, eig(A1) = eig(A) =

(
−20.34 −2.667 9.341

)
. We could

identify the original Lorenz system with the unstable linear operator with the proposed
method. After transforming the operators (A1,Q1,B1,C1) to the original coordinates,
the two systems; original Eq. (5.43) and identified are exactly the same Fig. 5.5(right).
Case 3 - ρ = 28. Since for this parameter range (when ρ > 24.74), the dynamics are
chaotic with the state evolution bifurcating from one equilibrium to the other without
requiring additional energy, a steady state cannot be achieved, and measurements cannot
be obtained for the higher kernels. Identifying such systems is not within the scope of this
study. Generally, for any identification method, the operators can be identified to a finite
numerical precision (e.g., IEEE machine precision ϵ ≈ 2.22e− 16). Since this is already
an approximation with a non-zero numerical error, this slight numerical discrepancy will
not allow any accurate prediction of such a sensitive system as the (deterministic) chaotic
Lorenz attractor.

5.4.2. Reduction of the viscous Burgers’ equation

In this example, we want to illustrate the proposed method in a larger-scale example.
The aim is to construct robust surrogate models of a reduced order directly from phys-
ical measurements (i.e., samples of the symmetric GFRFs obtained from time-domain
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Figure 5.5.: Left: Convergence of the Newton scheme in Algorithm 5.3. Right: The orig-
inal Lorenz system is identified with the two nontrivial equilibrium points.
Here is the comparison between the original system and the identified one.
The constructed state space evolution for both systems and at the same co-
ordinates remains the same with zero numerical error.

simulations) that provide efficient approximations. A detailed description of the model
under consideration can be found in [9]. We keep the same model set-up with a different
viscosity parameter ν and observation space. Here, we consider as an output the velocity
of the last tip of the flow y(t) = xn+1(t). Thus, the vector C contains everywhere zeros
except from the last entry, which is 1. As illustrated in the study [9], the Loewner models
for small viscosity coefficients ν may produce unstable results. As the current study relies
on the Volterra series representation, analysis of the convergence with arbitrary viscosity
and input amplitude remains an open issue. Hence, we illustrate a more conservative
case with higher viscosity in what follows.

We use the problem data ν = 0.5, σ0 = 0, σ1 = 0.1 representing the same physi-
cal quantities as in [9]. The full order model (FOM) is the linear finite element semi-
discretization with n = 257. The semi-discretized system can result in Eq. (5.1) af-
ter inverting with the well-conditioned mass matrix E. The system Eq. (5.1) solu-
tion is approximated with the Runge-Kutta multi-step integration method with a uni-
form time-discretization step dt = 1/1000. In the simulation bellow, we use u0(t) =
0.1e−0.2tsawtooth(t) + 0.1 sin(4πt), and u1 ≡ 0. Similarly, as in the Lorenz example, we
take the following measurements:

• 100 logarithmic distributed measurements from the interval [10−3, 101],

• 400 logarithmic distributed measurements from the square grid [10−3, 101]2,

• 216 logarithmic distributed measurements from the cubic grid [10−3, 101]3.

In Fig. 5.7 (left), the singular value decay of the Loewner framework is presented.
Thus, we choose the minimal linear order r = 6 with the first normalized truncated
singular value of magnitude σ7/σ1 = 5.10418 · 1e − 10. The recovery of the 1st GFRFs
H1 that results from the FOM with dimension n = 257 is compared with the reduced
Ĥ1 of dimension r = 6 in Fig. 5.7(left).

Towards the estimation of the quadratic operator from the measurements of the 2nd
GFRF H2 (FOM) and after solving Eq. (5.9) with a threshold η = 1e − 8, we get the
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5. Identification and reduction of quadratic-bilinear systems

quadratic operator Qs ∈ R6×62 . The hyper-parameter is tested for balancing the error
with the norm of ∥Q∥ in a classical regularization sense. There are different ways to
find the optimal regularization parameter η, e.g., Tikhonov regularization, L-curve that
work similarly to the thresholding SVD. Moreover, the choice of η affects the length of
the null space. In particular, out of r3 = 63 = 216 degrees of freedom (DoF) and after
enforcing the symmetries of the quadratic operator, the maximum rank could be rank =
141 < 216 when η is close to machine precision. Therefore, inverting with threshold
η = 1e − 8, the rank is 128, and the resulting null space has length 216 − 128 = 88.
These extra 88 free parameters will also be estimated to interpolate the 3rd GFRF. The
fit performance between the 2nd level GFRFs from both FOM and ROM systems is
illustrated in Fig. 5.6(left).

Figure 5.6.: Comparison between the FOM and ROM on the left, for the 2nd level kernels
∥H2(s1, s2)− Ĥ2(s1, s2)∥ = 3.1577e− 05, and on the right, for the 3rd level
kernels. The error over the 2D plain-domain after fixing the 3rd dimension
as s2 = s3 is ∥H3(s1, s2, s2 = s3)− Ĥ3(s1, s2, s2 = s3)∥ = 5.0353e− 05.

At this level, we estimate the quadratic operator denoted Qs with information from
the first two kernels H1, H2. Using the parameterization with λi, i = 1, . . . , 88 from
Eq. (5.10), we enforce interpolation with the 3rd GFRF H3 to estimate the remaining
m = 88 parameters. Forming the data matrices in Algorithm 5.1, with hyper-parameter
tuning as η = 1e − 9, γ0 = 1e − 5, the residue of the Newton iterations stagnates
to the value 2.2478e − 06. In Fig. 5.6(right) comparison between the 3rd level kernels
FOM(n = 257) and ROM(r = 6) is depicted.

Finally, in Fig. 5.7, both systems FOM(n = 257) and ROM(r = 6) are compared under
a nontrivial input and for an extended simulation that covers all the dynamic evolution
starting from a hard transient up to the steady-state profile. By considering more mea-
surements from higher-order kernels, the fitting performance improves significantly (for
the complete time interval of the simulation). The proposed method achieves approxi-
mate interpolation to all the measurement data sets, and the accuracy performance is
improved when using the three kernels Fig. 5.7(right). The updated quadratic operator
Q̂ of dimension 6×62 interpolates approximately the 3rd kernel. To illustrate this result,
in Table 5.3, we choose a random point in the three-dimensional frequency space, and we
test the interpolation error for both estimations of the quadratic operator; firstly, from
the two kernels as Qs; secondly, from the three kernels as Qr.

In this study, we were concerned with identifying or constructing quadratic state-space
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5.4. Numerical results

Kernels & frequencies Evaluation at (s1, s2, s3) = (1i, 2i, 3i) Interpolation with the FOM

FOM H2(s1, s2) −0.20829 + 0.13846i theoretical value
Ĥ2(s1, s2,Qr) −0.20829 + 0.13846i ✓
Ĥ2(s1, s2,Qs) −0.20829 + 0.13846i ✓

FOM H3(s1, s2, s3) 0.042016 + 0.027069i theoretical value
Ĥ3(s1, s2, s3,Qr,Qr) 0.042015 + 0.027069i ✓
Ĥ3(s1, s2, s3,Qs,Qs) 0.031301 + 0.00015172i ×

Table 5.3.: Symmetric Volterra kernel interpolation at a random point. The updated Qr

from the three kernels enforces interpolation to the 3rd kernel without ruining
the interpolation on the 2nd kernel. As a result, the overall performance has
improved significantly Fig. 5.7(right).
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Figure 5.7.: From left to right, the singular value decay of the Loewner matrix. Com-
parison between the FOM and ROM 1st level kernels with error ∥H1(s1)−
Ĥ1(s1)∥ = 8.9852e − 09. Reduction of a percentage level 98% has been
achieved with the error between the FOM(n = 257) and ROM(r = 6) to be
∥ŷ(t)− y(t)∥ ≈ 1e− 5.

models from i/o time domain data. Such models can be obtained from the first principles,
e.g., Newtonian dynamics that result in second-order ẍ(t) ∈ Rn, and after transforming
equivalently to first-order ẋ(t) ∈ R2n, we result in systems with ODEs of a specific
nonlinear degree. For instance, dynamical systems that belong to the class of quadratic
control are; Navier Stokes, Burgers’ equation, Lorenz attractor, etc. Using the symmetric
generalized frequency Volterra kernels that can be estimated from a physical system under
input-output harmonic excitation, the proposed method identifies/constructs quadratic
models. By having estimations of a finite set out of the infinite Volterra kernels, and
after enforcing interpolation, e.g., to the first three (H1, H2, H3), the resulting quadratic
system inherits a Volterra series that interpolates the original one to a specific set of
chosen frequency points for the first kernels and approximates the rest of the infinite
terms that eventually decay to negligible dynamics. The proposed method is not limited
to systems bifurcating into different equilibrium points. The steady-state measurements
explain the local behavior of the phenomenon without ensuring that the actual dynamics
are not described from a global model that bifurcates to different equilibrium points.
Therefore, we have illustrated this phenomenon from the forced Lorenz attractor model
with parameters that produce this effect. With the proposed method, we identified the
global model of the Lorenz attractor from i/o time domain data and with parameters
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5. Identification and reduction of quadratic-bilinear systems

(σ = 10, β = 8/3, ρ = 20), after taking care of the invariant information that carries
along the different equilibrium points. The proposed method has been tested w.r.t. the
reduction performance for a larger-scale example (the Burgers’ equation), and a quadratic
surrogate model has been constructed of order r = 6 that achieved 98% reduction and
accuracy close to 5 digits.

For systems that involve different nonlinear dynamics, such as classical oscillators, e.g.,
Duffing, Van der Pol, etc., the same analysis can be derived for polynomial state-space
systems to a specific nonlinear degree s.a. cubic order, i.e., x⊗x⊗x that physically can
explain nonlinear stiffness and damping. Lifting strategies for equivalently representing
nonlinear systems with analytical nonlinearities to the quadratic form are left for future
research endeavors. The main difficulty for non-intrusive methods like the one presented
here is dealing with a "partially missing" linear operator A. Therefore, we aim to analyze
such phenomena in the future, i.e., for which the resolvent Φ(s) = (sI −A)−1 contains
a sparse linear operator A, that may contain many zero diagonal blocks (due to, e.g.,
applying lifting approaches). Although the tools used in this study are robust to noise
(such as most spectral transforms), more involved analysis of the impact of the noise is left
for future studies. Moreover, we plan to involve machine learning techniques that can be
advantageous to methods such as the proposed one due to their power to learn nonlinear
i/o maps (universal approximation theorem). For instance, when solely one input-output
sequence of measurements is accessible (and not many such sequences), a neural network
(NN) can be used as a surrogate black box model for transferring the whole measurement
process to more efficient, cheap simulations. Finally, connecting data and computational
science tools, e.g., NNs, with the proposed method will increase interpretability for ML
tools. More precisely, by constructing interpretable state-space dynamic models, for
which the analysis has matured over many decades, ad-hoc engineering practices will
become more reliable.

5.5. Quadratic-bilinear modeling from i/o time-domain data

We analyze in what follows dynamical systems as Eq. (2.45) with f(x(t)) = Q(x(t)⊗x(t))
and g(x(t)) = Nx(t) +B.

5.5.1. Quadratic-bilinear control systems and properties

Let the state-space representation of such a system be given as:{
Eẋ(t) = Ax(t) +Q(x(t)⊗ x(t)) +Nx(t)u(t) +Bu(t),

y(t) = Cx(t),
, (5.50)

where x(0) = x0 = 0 and the matrix E ∈ Rn×n is non-singular, A ∈ Rn×n, Q ∈
Rn×n2

, N ∈ Rn×n, B ∈ Rn×1 and C ∈ R1×n. Moreover, assume that Q satisfies the
property Q(v ⊗w) = Q(w ⊗ v), i.e., it is represented in a "symmetrizable format."

The first two generalized symmetric transfer functions of a QB system as in (5.50) are:
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5.5. Quadratic-bilinear modeling from i/o time-domain data

H1(s1) = CℓΦ(s1)B,

H2(s1, s2) = CℓΦ(s1 + s2)Q(Φ(s1)B⊗Φ(s2)B)

+
1

2
CΦ(s1 + s2)N(Φ(s1)B+Φ(s2)B).

(5.51)

For more details on deriving such functions, we refer the reader to [38] and to [68, 9],
which work similarly as we have illustrated for the bilinear and the quadratic cases
separately. Once more, let us emphasize that the essential property of these particular
functions (symmetric transfer functions) is that their samples can be inferred from the
spectrum of the observed output when using a purely oscillatory control input.

5.5.2. Fitting quadratic-bilinear models from i/o harmonic data

The idea is to recover all the operators in Eq. (5.50) from physical time domain mea-
surements. The Loewner framework can recover the linear part by providing a fitted
realization of dimension r, denoted with (Ê, Â, B̂, Ĉ). Now, based on these matrices,
introduce Φ̂(s) = (sÊ− Â)−1 ∈ Cr×r.

The sampling domain is denoted with Ω = {(ζ(i)1 , ζ
(i)
2 ) ∈ C2|1 ≤ i ≤ K}. For a

particular pair of sampling points (ζ
(i)
1 , ζ

(i)
2 ) ∈ C2, we define the following quantities:

Ô(ζ
(i)
1 , ζ

(i)
2 ) := ĈΦ̂(ζ

(i)
1 + ζ

(i)
2 ) ∈ C1×r,

R̂q(ζ
(i)
1 , ζ

(i)
2 ) := (Φ̂(ζ

(i)
1 )B̂⊗ Φ̂(ζ

(i)
2 )B̂) ∈ Cr2×1,

R̂b(ζ
(i)
1 , ζ

(i)
2 ) := (Φ̂(ζ

(i)
1 )B̂ + Φ̂(ζ

(i)
2 )B) ∈ Cr×1.

(5.52)

It is to be noted that the vectors introduced in (5.52) are computed solely in terms of
the matrices (Ê, Â, B̂, Ĉ) corresponding to the data-driven Loewner surrogate model.
Let v ∈ CK be the vector of data measurements, i.e., containing samples of the second
symmetric transfer function H2(s1, s2) evaluated on the Ω grid. More precisely, let vi =

H2(ζ
(i)
1 , ζ

(i)
2 ). Now, since we would like to fit a reduced-order QB model to interpolate

the 2D data, it follows that H2(ζ
(i)
1 , ζ

(i)
2 ) = Ĥ2(ζ

(i)
1 , ζ

(i)
2 ). We can write:

Ĥ2(ζ
(i)
1 , ζ

(i)
2 )︸ ︷︷ ︸

vi∈C

= ĈΦ̂(s1 + s2)︸ ︷︷ ︸
Ô(ζ

(i)
1 ,ζ

(i)
2 )∈C1×r

Q̂ (Φ̂(ζ
(i)
1 )B̂⊗ Φ̂(s2)B̂)︸ ︷︷ ︸

R̂q(ζ
(i)
1 ,ζ

(i)
2 )∈Cr2×1

(5.53)

+ (1/2)CΦ(ζ
(i)
1 + ζ

(i)
2 )︸ ︷︷ ︸

Ô(ζ
(i)
1 ,ζ

(i)
2 )∈C1×r

N̂ (Φ̂(ζ
(i)
1 )B̂ + Φ̂(ζ

(i)
2 )B)︸ ︷︷ ︸

R̂b(ζ
(i)
1 ,ζ

(i)
2 )∈Cr×1

, (5.54)

and hence it follows that:

Ĥ2(ζ
(i)
1 , ζ

(i)
2 ) = Ô(ζ

(i)
1 , ζ

(i)
2 )Q̂R̂q(ζ

(i)
1 , ζ

(i)
2 ) (5.55)

+ (1/2)Ô(ζ
(i)
1 , ζ

(i)
2 )N̂R̂b(ζ

(i)
1 , ζ

(i)
2 ) (5.56)
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Definition 5.7 (Vectorization operator):
Given a matrix X ∈ Cm×n, we denote with vec(X) the vector (mn) × 1 computed as
follows:

vec(X) =
[
X(1, :) · · · X(m, :)

]T ∈ Cmn, (5.57)

where the MATLAB notation X(k, :) ∈ C1×n was used to refer to the kth row of X. ♢

The vectorization procedure adapted to the data-driven problem is presented in (5.59).
Let us denote with T ∈ CK×(r3+r2), the matrix for which the ith row is given by T(i, :
) =

[
Tq(i, :) Tb(i, :)

]
∈ C1×(r3+r2)Tq(i, :) =

[
Ô(ζ

(i)
1 , ζ

(i)
2 )⊗ R̂T

q (ζ
(i)
1 , ζ

(i)
2 )

]
∈ CK×r3 ,

Tb(i, :) =
[
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(i)
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(5.58)
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2 )⊗ R̂

T
b (ζ
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1 , ζ

(i)
2 )⊗ R̂
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1 , ζ

(i)
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(i)
1 , ζ

(i)
2 )⊗ R̂

T
b (ζ

(i)
1 , ζ

(i)
2 )︸ ︷︷ ︸

=Tb(i,:)

]
︸ ︷︷ ︸

=T(i,:) ∈ C1×(r3+r2)

·

[
vec(Q̂)

(1/2)vec(N̂)

]
︸ ︷︷ ︸
=z ∈ C(r3+r2)×1

(5.59)

Now, from (5.59), by varying the index i such as 1 ≤ i ≤ K, it follows that we can put
together a linear system of equations in r3 + r2 unknowns as follows:

Tz = v, (5.60)

where z =
[
vec(Q̂)T (1/2)vec(N̂)T

]T is the vector of variables that contains the entries
of the vectorized operators of the surrogate reduced-order QB system. We need enough
data measurements to ensure an over-determined linear system of equations, i.e., the
condition K ≥ r3 + r2 needs to hold. Then, we can employ a direct solution of system
(5.60), e.g., using the Moore-Penrose pseudo-inverse or by using Gaussian elimination. If
the matrix T has full column rank, then it does not matter what procedure is chosen (for
the direct solve). However, in most cases, the matrix T is not of full column rank; hence,
direct solutions must be carefully dealt with (by introducing regularization techniques).
In what follows, we will use a truncated singular value decomposition (tSVD) approach.
This is an attractive and powerful method since it uses the optimal rank-k approximation
of the SVD (in the 2 norms). Such an approach has already been used for applying OpInf
[27], together with the Tikhonov regularization scheme [128] and the tQR (truncated QR
decomposition) approach.

Remark 5.8 (Regularization):
Finding a viable solution for the least-squares problem stated in (5.60) is not a straightfor-
ward task and can be a computationally challenging task because of the ill-conditioning
of matrix T (the column rank of matrix T is sometimes much smaller than r3 + r2).
Another challenge is the computational cost which grows cubically in the order r of the
reduced-order system. ♢
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5.5. Quadratic-bilinear modeling from i/o time-domain data

5.5.3. A nonlinear RC Ladder circuit

We analyze a nonlinear RC-ladder electronic circuit first introduced in [46]. Various
variants of this model were also mentioned in other MOR works,i.e., [86] and [38]. This
nonlinear first-order system models a resistor-capacitor network that exhibits a nonlinear
behavior caused by the nonlinear resistors consisting of a parallel connected resistor with
a diode. As presented in [46], a SISO system of the form gives the underlying model:

ẋ(t) =



−g(x1(t))− g(x1(t)− x2(t))
g(x1(t)− x2(t))− g(x2(t)− x3(t))

...
g(xk−1(t)− xk(t))− g(xk(t)− xx+1(t))

...
g(xN−1(t)− xN (t))


+



u(t)
0
...
0
...
0


, (5.61)

with y(t) = x1(t), where the mapping g is given by g : R → R defined as g(xi) =
gD(xi) + xi, which combines the effect of a diode and a resistor. The non-linearity gD
models a diode as a nonlinear resistor, based on the classical Shockley model:

gD(xi) = iS(exp(uPxi)− 1), (5.62)

with material parameters iS > 0 and uP > 0. For this benchmark, the parameters are
selected as follows: iS = 1 and uP = 40 as in [46]. By substituting these values into (5.62),
we get that gD(xi) = exp(40xi)− 1, and hence it follows that g(xi) = exp(40xi)+xi− 1.

In what follows, we will apply the proposed methods for:

5.5.3.1. Linear approximation

By eliminating the higher-order terms from the Taylor expansion, we are using here the
following linear approximation to gD, i.e., gD(xi) = 40xi, and hence g(xi) = g1(xi) =
41xi.

ẋ(t) =



−82x1(t) + 41x2(t)
41x1(t)− 82x2(t) + 41x3(t)

...
41xk−1(t)− 82xk(t) + 41xk+1(t)

...
41xN−1(t)− 41xN (t)


+



u(t)
0
...
0
...
0


, (5.63)

5.5.3.2. Quadratic approximation

By eliminating the higher-order terms starting with the cubic ones, from the Taylor
expansion, we are using here the following linear approximation to gD, i.e., gD(xi) =
40xi + 800x2i , and hence

g(xi) = g1(xi) = 41xi + 800x2i . (5.64)
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5. Identification and reduction of quadratic-bilinear systems

5.5.3.3. Bilinear treatment via Carleman’s approach

The original nonlinear system is transformed into a bilinear system employing Carleman
linearization, as originally shown in [46] and later in [38]. The matrices are:

A =

[
A1

1
2A2

0 A1 ⊗ I+ I⊗A1

]
, x =

[
v

v ⊗ v

]
,

N =

[
0 0

B⊗ I+ I⊗B 0

]
, B =

[
b
0

]
, C =

[
c
0

]T
.

(5.65)

Consequently, the resulting bilinear system has dimension n2 + n with n as the number
of circuit blocks of the original system. More details on the structure of the involved
matrices in Eq. (5.65) can be found in [38].

5.5.3.4. Lifting to quadratic-bilinear form

The original RC-ladder model can be lifted to an equivalent quadratic bilinear model. The
introduced additional state variables x1 = υ1 and xi = υi− υi+1 followed by introducing
the additional state variables z1 = e−40υ1 − 1 and zi = e40xi can transform equivalently
the original system Eq. (5.61) to a quadratic-bilinear form Eq. (5.50) with dimension 2n
[38].

In Fig. 5.8, the original nonlinear system, the equivalent quadratic-bilinear, and the ap-
proximated bilinear are depicted. The numerical difference between the original and the
quadratic-bilinear has reached machine precision, where the bilinear for this amplitude
starts to differ significantly.
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Figure 5.8.: The original RC-ladder model with n = 50 circuit blocks. The lifted QB model is
equivalent to the original nonlinear. The bilinear model of dimension n2 + n offers
good approximation only for relatively small input amplitudes.

The aim is to achieve MOR by measuring the first symmetric Volterra kernels from
input-output time-domain simulations. A double-tone input is considered as we infer the
operators from the 2nd kernel. The scheme for kernel separation and harmonic indexing
remains the same as in [104]. Simulating the original nonlinear model in the time domain
under the excitation of a double-tone harmonic input can make an accurate separation
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5.5. Quadratic-bilinear modeling from i/o time-domain data

of kernels (the Fourier transform is indeed accurate). Here, as we want to illustrate
the efficacy of the proposed method by inferring the operators from the 2nd Kernel, we
assume a perfect measurement setup.

Step 1: The first harmonic can be measured under excitation with a single-tone
input. Then, measurements of the first kernel H1(s1) (e.g., the magnitude and phase)
can be derived. The Loewner framework constructs a low-order rational interpolant and
identifies the minimal linear sub-system of order r. In Fig. 5.3 and on the left pane,
the Loewner singular value decay offers the criterion for reduction. The order r = 10
was chosen, as the 11th singular value is close to machine precision. Hence, it is an
indicator for recovering the original linear dynamics. Denote with Σlin : (Â, B̂, Ĉ) the
linear reduced system of order r = 10.

The approximation results are depicted in Fig. 5.9 and on the right pane.
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Figure 5.9.: Left pane: The Loewner singular value decay (used to decide on the reduced order).
Right pane: The reduced-order Loewner interpolant computed from the 1st kernel
can reach machine precision approximation.

Step 2: By having access to the reduced operators of the linear system Σ̂lin, we
can infer the remaining nonlinear quadratic and bilinear operators from Eq. (5.59). The
second harmonic can be measured with a double-tone excitation. Thus, measurements of
the second kernel H2(s1, s2) over the whole complex domain of definition can be collected
repetitively. It is important to mention that the amount of measurements is related to
the reduced dimension r, where at least K ≥ (r3+r2) measurements ensure enough data
for the solution of Eq. (5.60). By enforcing quadratic symmetries (the matrix Q̂ is set
to satisfy the property Q̂(w ⊗ v) = Q̂(v ⊗w)), the complexity can be further reduced.
Another simplification can be performed using some algebraic adjustments by replacing
the symmetric Kronecker product with the asymmetric one (⊗′ as in [28]). Solving
for the vector z yields a reduced-order QB system Σ̂QB = (Â, Q̂, N̂, B̂, Ĉ). Finally,
inFig. 5.10(right), the time domain solution is depicted and compared to the original
nonlinear response.

The proposed method successfully constructs a reduced quadratic-bilinear model from
input-output time domain data that accurately approximates the response of the origi-
nal nonlinear system. The simulations are performed with the multi-step Runge Kutta
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Figure 5.10.: Left: The original 2nd kernel and the measurements (green dots) compared with
the reduced kernel ∥H2(s1, s2) − Ĥ2(s1, s2)∥∞ ∼ 10−8. Right: The original non-
linear RC ladder and the approximant were constructed with the new LoewQB
method. The absolute error over a dense grid.

scheme (e.g., using ODE45 in Matlab) with input u(t) = 0.01e−t, and the maximum error
is ∥(y(t)− yr(t))∥∞ ∼ 10−6.

A non-intrusive data-driven method that constructs nonlinear models with the quadratic-
bilinear structure from input-output time-domain data was presented. The method was
based on the Loewner and Volterra frameworks. The second symmetric kernel can be
inferred as the 2nd harmonic of the transformed output; hence, the problem of estimating
the nonlinear operators can be resolved in a linear LS system. Although this LS system
may be under-determined, it contains enough information for estimating the nonlinear
operators with the Moore-Penrose pseudo-inverse (truncated SVD), thus providing good
approximations. The use of higher harmonics (e.g., 3rd kernel, etc.) that results in a non-
linear optimization problem, along with the use of other regularization techniques as the
one proposed by Tikhonov, will be the topics of future research endeavors in connection
also with the analysis on the sensitivity of noise that actual data contain.
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5.6. Spectral quadratic-bilinear identification from state access

Algorithm 5.4: Quadratic-bilinear modeling from input-output time data
Input: Measurements of the first two symmetric kernels H1(s1), H2(s1, s2)
Output: A quadratic bilinear system (Ar,Qr,Nr,Br,Cr)
1: Construct the linear minimal subsystem (Ar,Br,Cr) with the Loewner framework

Algorithm 3.1 from H1(s1)
2: Solve the system in Eq. (5.60) with measurements of H2(s1, s2) and get the

quadratic and bilinear operators Qr,Nr

5.6. Spectral quadratic-bilinear identification from state
access

Consider the quadratic-bilinear system of order n that is described in the following ODE

ΣQB : ẋ(t) = Ax(t) +Q(x(t)⊗ x(t)) +Nx(t)u(t) +Bu(t), x(0) = x0 = 0. (5.66)

We consider the general m-tone complex input as

u(t) =
m∑
i=1

esit, (5.67)

and with the growing exponential approach, the steady-state solution can be assumed as

xss(t) =

∞∑
k1=0

· · ·
∞∑

km=0

G(k1+k2+···+km)(k1s1, k2s2, . . . , kmsm)e(k1s1+k2s2+···+kmsm)t.

(5.68)

Remark 5.9 (The mth symmetric Volterra kernel):
To define the mth symmetric Volterra kernel, the system has to be excited with an
mth-tone harmonic input. ♢

In the Appendix B, we analyze the derivation of the higher symmetric Volterra kernels
for the quadratic-bilinear control systems.

The aim is the identification of the operators (A,Q,N,B) from the symmetric Gs
by having state access, so the order is a priori known as the dimension of the system
n. For the QB system with dimension n, the total parameters to be determined are
(n2 + n3 + n2 + n), so in total, K = n3 + 2n2 + n. The Hessian Q has the symmetric
property Q(x1⊗x2) = Q(x2⊗x1) and with that only n2(n+1)/2 should be determined.

Measurements of the Gs can be obtained via time-domain simulation of the original
system lifted to a QB.
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5. Identification and reduction of quadratic-bilinear systems

We start with the first kernel,

G1(s1) = (s1In −A)−1B ⇒ (s1In −A)G1(s1) = B ⇒
AG1(s1) +B = s1G1(s1) ⇒ InAG1(s1) +B = s1G1(s1) ⇒

(In ⊗GT
1 (s1))vec(A) +B = s1G1(s1) ⇒[

In ⊗GT
1 (s1) In

] [ vec(A)
B

]
= s1G1(s1)

(5.69)

A solution can be obtained from the above least squares problem with the pseudo-
inverse when the linear controllability matrix is not full rank. The recovery of B is
exact, and an estimation of the linear operator is denoted as Â, while the 1st kernel is
Ĝ1 = (sIn − Â)−1B with rank([sIn − Â]) = n.

For the rest of the kernels, with Φ(s1+ · · ·+ sm) = ((s1+ · · ·+ sm)In−A)−1, we can
write them arbitrarily with the Φ,RQ,RN notation as:

Gm(s1, . . . , sm) = Φ(s1 + · · ·+ sm)QRQ(s1, . . . , sm) +Φ(s1 + · · ·+ sm)NRN(s1, . . . , sm). (5.70)

Dropping Φ on the left-hand side and using Kronecker product properties yields:

Φ−1(s1 + · · ·+ sm)Gm(s1, . . . , sm) = QRQ(s1, . . . , sm) +NRN(s1, . . . , sm) ⇒(
(s1 + · · ·+ sm)In −A

)
Gm(s1, . . . , sm) = InQRQ(s1, . . . , sm) + InNRN(s1, . . . , sm) ⇒

(s1 + · · ·+ sm)Gm(s1, . . . , sm)− InAGm(s1, . . . , sm) = InQRQ(s1, . . . , sm) + InNRN(s1, . . . , sm) ⇒

(s1 + · · ·+ sm)Gm = In ⊗GT
mvec(A) + In ⊗RT

Qmvec(Q) + In ⊗GT
Nmvec(N) ⇒

(s1 + · · ·+ sm)Gm =
[
In ⊗GT

m In ⊗RT
Qm In ⊗GT

Nm

]  vec(A)
vec(Q)
vec(N)

 .

Now, by combining the above two LS problems, we derive for the arbitrary m-tone input,
the following mth level least squares problem:

s1G1(s1)
(s1 + s2)G2(s1, s2)

...
(s1 + · · ·+ sm)Gm(s1, . . . , sm)

 =


In,n In ⊗GT

1 0n,n3 0n,n2

0n,n In ⊗GT
2 In ⊗RT

Q2 In ⊗RT
N2

...
...

...
...

0n,n In ⊗GT
m In ⊗RT

Qm In ⊗RT
Nm


︸ ︷︷ ︸

M


vec(B)
vec(A)
vec(Q)
vec(N)

 .

Remark 5.10 (Quadratic-bilinear identification with m-tone input):
If the rank of the matrix M is full, rank(M) = n3 + 2n2 + n, the identification of the
quadratic-bilinear system is possible. The reachability matrices RQ,RN will provide the
information for what m is this possible. ♢

Example 5.1 (Identification of the forced Van der Pol oscillator):
In Example 2.1, we lifted the cubic control system to the quadratic form with state
dimension 3. Applying the above algorithm for the parameter µ = 0.8 and solving the
least squares problem, we achieve quadratic-bilinear identification with operators that
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5.6. Spectral quadratic-bilinear identification from state access

do not differ numerically from the original.

Aid =

 3.503e− 15 1.0 −6.058e− 14
−1.0 0.8 −6.223e− 15

−5.209e− 15 8.035e− 15 2.813e− 15

 , Bid =

 −1.571e− 15
1.0

7.189e− 15

 ,

Nid =

 1.248e− 13 1.067e− 14 −9.587e− 16
1.563e− 14 −2.337e− 14 −9.875e− 16
−4.007e− 15 −3.819e− 15 −1.367e− 14

 ,

QT
id =



−6.243e− 14 −1.077e− 14 6.901e− 15
1.04e− 14 2.16e− 14 1.0
9.635e− 15 −1.315e− 15 7.108e− 15
3.89e− 14 1.798e− 14 1.0

−5.067e− 14 −3.604e− 14 1.828e− 15
−2.236e− 14 −0.4 −2.137e− 15
−3.179e− 15 4.242e− 16 6.172e− 15
1.949e− 14 −0.4 −2.7e− 15
6.561e− 16 −3.932e− 16 −2.443e− 17



(5.71)
♢
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CHAPTER 6

OTHER TYPES OF NONLINEAR SYSTEMS
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6.1. The Hammerstein system

We present a data-driven method for identifying and reducing nonlinear cascaded systems
with the Hammerstein structure [103]. The proposed algorithm relies on the Loewner
framework (LF), constituting a non-intrusive algorithm for identifying and reducing dy-
namical systems based on interpolation. We address the problem: the actuator (control
input) enters a static nonlinear block. Then, this processed signal is used as an input for
a linear time-invariant system (LTI). Additionally, it is considered that the orders of the
linear transfer function and the static nonlinearity are not a priori known.

In some engineering applications that study dynamical control systems, the control
input enters the differential equations in a nonlinear fashion [159]. It is of interest to
identify the hidden nonlinearity while, at the same time, the reduction is needed for
robust simulations and control design [7]. The LF [13, 8, 102] constitutes a non-intrusive
method that uses only input-output data. The matrix pencil composed of two Loewner
matrices reveals the minimality (in terms of McMillan degree) of the LTI system. Using
a singular value decomposition (SVD), one can find left and right projection matrices
used to construct a low-order model.

The Hammerstein system is characterized by two blocks connected in series, where
the static nonlinear (memoryless) block is followed by a linear time-invariant system
(LTI) as in Fig. 6.1. The scalar control input-u(t) is used as an argument to the static
nonlinearity-F and then the signal F(u(t)) passes through a linear time-invariant (LTI)
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6. Other types of nonlinear systems

system. The static polynomial map approximates other non-polynomial maps (Taylor
series expansion) s.a. tanh(·), exp(·), etc. The aim is to identify the cascaded system
by estimating the coefficients of the polynomial map ki, i = 1, 2, . . . , n and the hidden
LTI system by using only input-output data (u(t), y(t)) , t ≥ 0. The steady-state output

u(t) F(·) :→ k1(·) + k2(·)2 + . . .+ kn(·)n
input

LTI
F(u(t))

y(t)
output

Figure 6.1.: The input-output scheme of a cascaded system with a static nonlinear (poly-
nomial) map of nth order followed by an LTI. The connection describes a
Hammerstein nonlinear model.

solution can be computed explicitly with the convolution integral1, the impulse response
h(t), t ≥ 0 and the linear transfer function H(jω), jω ∈ C of the LTI as:

y(t) =
(
(k1u(t) + k2u

2(t) + . . .+ knu
n(t)) ⋆ h

)
(t) =

= k1(u ⋆ h)(t) + k2(u
2 ⋆ h)(t) + . . .+ kn(u

n ⋆ h)(t)

= k1

∫ ∞

−∞
h(τ)u(t− τ)dτ + . . .+ kn

∫ ∞

−∞
h(τ)un(t− τ)dτ =

=
n∑

i=1

ki

∫ ∞

−∞
h(τ)ui(t− τ)dτ.

(6.1)

Let the singleton real input be defined as u(t) = A cos(ωt) = αejωt + αe−jωt with the
amplitude α = A/2, the imaginary unit j, the driving frequency ω > 0 and time t ≥ 0.
By substituting the above input in Eq. (6.1) and by making use of the binomial theorem,
we conclude that:

y(t) =
n∑

i=1

ki

∫ ∞

−∞
h(τ)

(
αejω(t−τ) + αe−jω(t−τ)

)i
dτ =

=
n∑

i=1

i∑
m=0

kiα
i i!

(i−m)!m!
H(jω(2m− i))ejω(2m−i)

(6.2)

At frequency ω, the ℓth harmonic is computed by applying the single-sided Fourier trans-
form in Eq. (6.2) as:

Yω,ℓ(jℓω) = H(jℓω)δ(jℓω)
n∑

ℓ≤i ̸=0

kiϕi,ℓ, ℓ = 0, . . . , n,

ϕi,ℓ =

{
2αi · iC(i+ℓ)/2, (i ≥ ℓ) and (i+ ℓ)(even)

0, (else)
, where nCm =

n!

(n−m)!m!

(6.3)

1(f ⋆ g)(t) =
∫∞
−∞ f(τ)g(t− τ)dτ
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6.1. The Hammerstein system

6.1.1. The Loewner-Hammerstein identification method

As we have computed the total output of the Hammerstein cascaded system, we proceed
with the method of determining the unknowns from input-output data. The symmetry
in Eq. (6.3) allows the cancellation of the unknown contribution of the transfer function.
Thus, we determine the unknown coefficients ki and then fit the LTI system using the LF.
For this purpose, defining the following invariant frequency quantities λp,q is important.

Definition 6.1 (Frequency invariant quantities):
The Yp,q denotes the qth harmonic at p frequency.

λp,q =
Yp,q
Yq,p

=

∑n
i=p kiϕi,p∑n
i=q kiϕi,q

, p ̸= q. (6.4)

The entries λp,q are independent of ω. ♢

input \ harmonic 1st 2nd 3rd 4th · · · nth

1ω → N Y1ω,1 Y1ω,2 Y1ω,3 Y1ω,4 · · · Y1ω,n

2ω → N Y2ω,1 Y2ω,2 Y2ω,3 Y2ω,4 · · · Y2ω,n

...
...

...
...

...
. . .

...

nω → N Ynω,1 Ynω,2 Ynω,3 Ynω,4 · · · Ynω,n

(6.5)

The above harmonic map allows the construction of the following linear system. Due
to the mixing linearities (i.e. k1u(t) and (u ⋆ h)(t)), we can fix k1 to an arbitrary value.
For p = 1 and q = 2, . . . , n results:

ϕ21 − λ12ϕ22 ϕ31 − λ12ϕ32 · · · ϕn1 − λ12ϕn2

ϕ21 ϕ31 − λ13ϕ32 · · · ϕn1 − λ13ϕn3

ϕ21 ϕ31 · · · ϕn1 − λ14ϕn4

...
...

. . .
...

ϕ21 ϕ31 · · · ϕn1 − λ1nϕnn




k2
k3
k4
...
kn

 = −k1ϕ11


1
1
1
...
1

 , ∀k1 ∈ R \ {0}. (6.6)

Finally, as we have identified the scaled (k1 arbitrary) coefficient vector k = (k1, k2, . . . , kn),
we can transform the above harmonic map into a measurement map for the linear trans-
fer function as H(jℓω) = Yω,ℓ/

∑n
ℓ≤i ̸=0 kiϕi,ℓ. The LTI system is identified and reduced

by applying the LF as in [13, 8, 102].

6.1.2. Numerical example

To illustrate the proposed method, we choose the following static nonlinearity as F(·) =
e(·) − 1 along with the transfer function H(jω) = 1/((jω)2 + jω + 1). By excit-
ing the system with u(t) = 2 cos(ωit), ωi = 2π[1, 2, . . . , 10] and with collecting the
steady state snapshots, we perform Fourier transform for each signal, and we solve
the linear system in Eq. (6.6) for n = 10 (Y10th ∼ 1e − 10). The solution is k̂ =
(1, 0.5, 0.167, 0.0417, 0.0083, 0.0014, 1.9676e−4, 2.4001e−5, 3.1005e−6, 3.7401e−7) which
constitutes a very good approximation of the leading Taylor series expansion coefficients
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6. Other types of nonlinear systems

Algorithm 6.1: Hammerstein system identification with the Loewner framework
Input: Apply signals u(t) = α cos(ωit) with driving frequencies ωi, i = 1, . . . , n

where n is the maximum nonzero harmonic index.
Output: An identified cascaded nonlinear Hammerstein system.
1: Apply FT and measure U(jωi), Y1st(jωi), Y2nd(2jωi), . . . , Ynth(njωi) from the power

spectrum.
2: Fix k1 to an arbitrary value and determine the scaled coefficient vector

k = (k1, k2, . . . , kn) by solving the linear system in Eq. (6.6).
3: Estimate the measurements of the linear transfer function from

H(jℓω) = Yω,ℓ/
∑n

ℓ≤i ̸=0 kiϕi,ℓ.
4: Apply the Loewner framework as in Algorithm 3.1.

of the F. Next, we estimate the linear transfer function with the LF [8, 13, 102]. The
singular value decay in Section 6.1.2(left) allows the assignment of the order r = 2
(dt = 1e−3). The transfer function identification is accurate in Section 6.1.2(middle) for
the biased k1 = 1 solution. The time domain simulation in Section 6.1.2(right) is indepen-
dent of the choice of k1. The large input as u(t) = 2sawtooth(0.1·2πt)e−0.01t cos(0.1·2πt)
certifies that the method can perform well under large magnitude inputs for nonlinear
Hammerstein systems.
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Figure 6.2.: Left: The singular value decay of the Loewner matrices. σ3/σ1 ∼ 1e − 10.
Middle: The identified linear transfer function with ∥H − Hr∥∞ ∼ 1e − 7.
Right: The simulated identified Hammerstein system in comparison with the
original one. ∥y − yr∥∞ ∼ 1e− 7.

6.2. The Wiener system

In Fig. 6.3, one way of describing a class of non-linear dynamical systems is shown. The
control input passes through a linear time-invariant system (LTI) and is scaled by a static
nonlinearity. A (SISO) linear time-invariant system is described by the following set of
equations:

Σl

{
ẋ(t) = Ax(t) +Bu(t),

z(t) = Cx(t),
(6.7)
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6.2. The Wiener system

u(t) LTI
input

F(·) :→ w1(·) + . . .+ wn(·)n
(h ⋆ u)(t)

y(t)
output

Figure 6.3.: The Wiener cascaded nonlinear system.

where, A ∈ RN×N , x (states), z (output), B, CT ∈ RN . By defining the impulse
response (causal kernel) h(t) = CeAtB, t ≥ 0 and the corresponding transfer function
H(s) = C(sI−A)−1B, s ∈ C, we can write the linear output steady state solution in:
Time-domain as:

zs(t) = eAtz(0) +

∫ ∞

−∞
h(σ)u(t− σ)dσ, t ≥ 0. (6.8)

Frequency-domain (zero initial conditions) as:

Z(s) = H(s)U(s), s ∈ C. (6.9)

Then, the non-linear output (Wiener) can be written as:

ys(t) = F(zs(t)) =
n∑

k=1

wk

(∫ ∞

−∞
h(σ)u(t− σ)dσ

)k

(6.10)

Input design: At this point, we need to specify the input. A general input could be
the following:

u(t) =

L∑
ℓ=1

αℓe
jωℓt. (6.11)

By substituting this input to the linear solution with zero-initial conditions, we get:

zs(t) =

∫ ∞

−∞
h(σ)u(t− σ)dσ =

=

∫ ∞

−∞
h(σ)

L∑
ℓ=1

αℓe
jωℓ(t−σ)dσ =

=
L∑

ℓ=1

αℓe
jωℓt

∫ ∞

−∞
h(σ)e−jωℓσdσ =

=
L∑

ℓ=1

αℓH(jωℓ)e
jωℓt.

(6.12)

By combining Eq. 6.12 with Eq. 6.10 results to:

ys(t) =

n∑
k=1

wk

(
L∑

ℓ=1

αℓH(jωℓ)e
jωℓt

)k

. (6.13)
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6. Other types of nonlinear systems

An 1-tone input: With L = 2, constant amplitude α and frequencies as ω1 = ω, ω2 =
−ω the previous expression remains:

ys(t) =
n∑

k=1

wk

(
aH(jω)ejωt + aH(−jω)e−jωt

)k
=

=
n∑

k=1

wka
k
(
H(jω)ejωt +H(−jω)e−jωt

)k
=

=
n∑

k=1

k∑
m=0

wka
k kCmHk−m(jω)Hm(−jω)ejω(k−2m)t =

(6.14)

As we want to collect the harmonics, we perform the variable change p = k − 2m ∈ Z.

ys(t) =

n∑
k=1

k∑
p=0

wka
k kC(k−p)/2H

(k+p)/2(jω)H(k−p)/2(−jω)ejωpt. (6.15)

So, the pth harmonic is defined as:

Yp(t) =
n∑

p≤k ̸=0
(k−p)(even)

wka
k kC(k−p)/2H

(k+p)/2(jω)H(k−p)/2(−jω)ejωpt + c.t. (6.16)

Yp(pjω) =
n∑

p≤k ̸=0
(k−p)(even)

wk2a
k kC(k−p)/2H

(k+p)/2(jω)H(k−p)/2(−jω). (6.17)

To simplify the notation we introduce the known quantities βk = 2ak kC(k−p)/2 and
the above equation results as:

Yp(pjω) =
n∑

p≤k ̸=0
(k−p)(even)

wkβkH
(k+p)/2(jω)H(k−p)/2(−jω). (6.18)

Some insight on how to solve this system with unknown ws is to start by fixing
the last parameter wn = 1 and get the evaluation of the H(jω) ≈ n

√
Yn

βnwn
. Then the

matrix is known, and by solving the system, we get the remaining (n−1) coefficients ws.

Remark 6.2 (On the identification of Wiener systems):
The last harmonic is usually corrupted by numerical noise. So, the H(jω) evaluation
depends on that. This could lead to inaccurate identification of the Wiener system. ♢

A 2-tone complex input: With L = 2, a flat amplitude α and frequencies as ω1, ω2,
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6.2. The Wiener system

we have:

ys(t) =
n∑

k=1

wk

(
aH(jω1)e

jω1t + aH(jω2)e
jω2t
)k

=

=
n∑

k=1

wka
k
(
H(jω1)e

jω1t +H(jω2)e
jω2t
)k

=

=
n∑

k=1

k∑
m=0

wka
k kCmHk−m(jω1)H

m(jω2)e
j[kω1+m(ω2−ω1)]t =

(6.19)

An n-tone complex input

ys(t) =
n∑

k=1

wk

(
L∑
i=1

αiH(jωi)e
jωit

)k

=

=

n∑
k=1

wk

(
a1H(jω1)e

jω1t + a2H(jω2)e
jω2t + . . .+ aLH(jωL)e

jωLt
)k (6.20)

To simplify the notation above, we introduce βi = aiH(jωi), i = 1, . . . , L.

ys(t) =

n∑
k=1

wk

(
L∑
i=1

βie
jωit

)k

=

n∑
k=1

wk

(
β1e

jω1t + β2e
jω2t + . . .+ βLe

jωLt
)k

=
n∑

k=1

∑
m1+...+mL=k

wk
k!

m1!m2! · · ·mL!

L∏
q=1

β
mq
q ejωqmqt

=

n∑
k=1

∑
m1+...+mL=k

wk
k!

m1!m2! · · ·mL!
βm1
1 · · ·βmL

L ej(ω1m1+...+ωLmL)t,

(6.21)

The above expression indicates the construction of
(

n+ L− 1
L− 1

)
harmonics. We

can obtain different goals by choosing the frequencies ωq, q = 1, . . . , L with different
strategies, e.g., real input signal and harmonics separation. A study for various cases is
presented.

6.2.1. The Wiener-Loewner identification algorithm

6.2.2. Numerical examples

L = 4 with two pairs and n = 2. We start with L = 4 complex exponential terms. The
frequencies are: ωq, q = 1, 2, 3, 4. By choosing pairs like ω3 = −ω1 and ω4 = −ω2, with
a flat magnitude αq = 1, we can write the 2-harmonic input as a real-valued quantity:

u(t) = ejω1 + e−jω1 + ejω2 + e−jω2 = 2 cos(ω1t) + 2 cos(ω2t), ω1, ω2 > 0, t ≥ 0. (6.22)
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6. Other types of nonlinear systems

Algorithm 6.2: Wiener system identification with the Loewner framework
Input: Apply multi-tone harmonic signals
Output: An identified cascaded nonlinear Wiener system.
1: Apply FT and measure the propagating harmonics from the power spectrum.
2: Determine the polynomial coefficients ω1, ω2, ... from the power spectrum as

explained in Section 6.2.2.
3: Get the estimations of the linear transfer function.
4: Apply the linear Loewner framework Algorithm 3.1.

A1 cos(ω1t) +A2 cos(ω2t) LTI
input

F(·) :→ 1(·) + 2(·)2
(h ⋆ u)(t)

y(t)
output

Figure 6.4.: The input-output scheme of a cascaded LTI with a static (memoryless) non-
linear polynomial map of order 2.

With ϕ
(k)
m1,m2,m3,m4 = k!

m1!m2!m3!m4!
βm1
1 βm2

2 βm3
3 βm4

4 and n = 2 the steady state output
is the following:

ys(t) =
2∑

k=1

∑
m1+m2+m3+m4=k

wkϕ
(k)
m1,m2,m3,m4

ej(ω1(m1−m3)+ω2(m2−m4))t =

= w1(ϕ
(1)
1000e

jω1t + ϕ
(1)
0100e

jω2t + ϕ
(1)
0010e

−jω1t + ϕ
(1)
0001e

−jω2t)+

+ w2(ϕ
(2)
2000e

2jω1t + ϕ
(2)
0200e

2jω2t + ϕ
(2)
0020e

−2jω1t + ϕ
(2)
0002e

−2jω2t+

+ ϕ
(2)
1100e

j(ω1+ω2)t + ϕ
(2)
1010e

j(0)t + ϕ
(2)
1001e

j(ω1−ω2)t + ϕ
(2)
0110e

(−ω1+ω2)t

+ ϕ
(2)
0101e

−j(0)t + ϕ
(2)
0011e

j(−ω1−ω2)t).

(6.23)

The above expression contains 14 terms. By collecting those, we have up to 14/2=7
distinct harmonics.
Time Domain:

DC : Y0ω1+0ω2(t) = w2(ϕ
(2)
1010e

j(0)t + ϕ
(2)
0101e

−j(0)t)

"1-0" : Y1ω1+0ω2(t) = w1(ϕ
(1)
1000e

jω1t + ϕ
(1)
0010e

−jω1t)

"0-1" : Y0ω1+1ω2(t) = w1(ϕ
(1)
0100e

jω2t + ϕ
(1)
0001e

−jω2t)

"1-1" : Y1ω1+1ω2(t) = w2(ϕ
(2)
1100e

j(ω1+ω2)t + ϕ
(2)
0011e

−j(ω1+ω2)t)

"1-1" : Y1ω1−1ω2(t) = w2(ϕ
(2)
1001e

j(ω1−ω2)t + ϕ
(2)
0110e

−j(ω1−ω2)t)

"2-0" : Y2ω1+0ω2(t) = w2(ϕ
(2)
2000e

2jω1t + ϕ
(2)
0020e

−2jω1t)

"0-2" : Y0ω1+2ω2(t) = w2(ϕ
(2)
0200e

2jω2t + ϕ
(2)
0002e

−2jω2t),

(6.24)

where the general harmonic index with two real harmonic input frequencies (L = 4) is
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6.2. The Wiener system

denoted by: Yλ1ω1+λ2ω2(t), λ1, λ2 ∈ {0, 1, . . . , n} with λ1 + λ2 ≤ n.
Frequency Domain:

DC : Y0ω1+0ω2 = w2(ϕ
(2)
1010 + ϕ

(2)
0101)

"1-0" : Y1ω1+0ω2 = w1ϕ
(1)
1000

"0-1" : Y0ω1+1ω2 = w1ϕ
(1)
0100

"1-1" : Y1ω1+1ω2 = w2ϕ
(2)
1100

"1-1" : Y1ω1−1ω2 = w2ϕ
(2)
0110

"2-0" : Y2ω1+0ω2 = w2ϕ
(2)
2000

"0-2" : Y0ω1+2ω2 = w2ϕ
(2)
0200,

(6.25)

At this step, the choices of ω1 and ω2 are crucial for the harmonic separation. In the
power spectrum, the harmonics to appear are given next:

{0, ω2 − ω1, ω1, ω2, ω1 + ω2, 2ω1, 2ω2} (6.26)

Fig. 6.5 shows one choice of ω2 where the whole harmonic spectrum remains well sep-
arated. By choosing ω2 = ϕω1, with ϕ = 1.5, we obtain a full separation scheme.
Fig. 6.5(left) is the theoretical interpretation of the separation scheme. Next is the
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Figure 6.5.: Left: Identification of a quadratic Wiener system. A two-harmonic in-
put passes through a linear time-invariant system (LTI) and scales from a
quadratic non-linearity. Right: Frequency spectrum and harmonic indexing.

power spectrum Fig. 6.5(right) of the Wiener process in a steady state.
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6. Other types of nonlinear systems

Y0ω1+0ω2 Y1ω1+1ω2 Y1ω1−1ω2 Y2ω1+0ω2 Y0ω1+2ω2

ŵ2 2.0 2.0− 4.5166e− 8i 2.0− 1.1955e− 7i 2.0− 4.4502e− 8i 2.0− 1.4207e− 7i

Table 6.1.: Inferred harmonics from the power spectrum and indexing

By putting together those measurements, we can proceed as follows:

Y0ω1+0ω2 = w2(ϕ
(2)
1010 + ϕ

(2)
0101) = w2(2|H(jω1)|2 + 2|H(jω2)|2)

Y1ω1+0ω2 = w1ϕ
(1)
1000 = w1H(jω1)

Y0ω1+1ω2 = w1ϕ
(1)
0100 = w1H(jω2)

Y1ω1+1ω2 = w2ϕ
(2)
1100 = w22H(jω1)H(jω2)

Y1ω1−1ω2 = w2ϕ
(2)
0110 = w22H(jω2)H(−jω1)

Y2ω1+0ω2 = w2ϕ
(2)
2000 = w2H

2(jω1)

Y0ω1+2ω2 = w2ϕ
(2)
0200 = w2H

2(jω2),

(6.27)

Remark 6.3 (Mixed linearities):
For the above cascaded Wiener system, we assume that when the underlying system is
purely linear, the input signal should be scaled only from the LTI. The memoryless box
wouldn’t play any role in it. Then, a logical assumption without restriction is to set
w1 = 1. ♢

After the above remark, the new goal is to determine the parameter w2 and the linear
transfer function H. From the Fig. 6.3, we have:

• Y1ω1+0ω2 = −0.025274− 0.0042922i,

• Y0ω1+1ω2 = −0.011239− 0.0013139i.

Then from Eq. 6.27, with w1 = 1 we get the two evaluation of the transfer function at
ω1 = 1 and ω2 = 1.5.

H(jω1) ≈ Ĥ(jω1) = −0.025274− 0.0042922i,

H(jω2) ≈ Ĥ(jω2) = −0.011239− 0.0013139i.
(6.28)

From the set of Eqs. 6.27, we get the evaluation of w2.
An evaluation of w2 is the following:

w2 ≈
∑5

i=1 ŵ2
(i)

5
= 2.0− 7.0258e− 8i. (6.29)

We get w2 = 1.999999849625013 by enforcing real values. We have identified the param-
eters of the static non-linearity of order-2 (w1 = 1 and w2 = 1.999999849625013). We
use the Loewner framework Algorithm 3.1 to identify the transfer function.

Finally, the simulation depicting the responses of the original and the identified systems
is provided in Fig. 6.6.
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Figure 6.6.: The simulation error between the original F and the identified Wiener-
Loewner model Fa. Left: the input is the probing one used for the measure-
ments. Right: The input is a sawtooth(t) with a big amplitude (a = 10). A
uniformly distributed error profile of the order O(10−5) is depicted in both
cases.

Example 6.1 (A nonlinear circuit):
We start with L = 6 complex exponential terms. The frequencies are: ωq, q = 1, 2, 3, 4, 5, 6.
By choosing pairs like ω4 = −ω1 and ω5 = −ω2 and ω6 = −ω3, with magnitudes a1, a2, a3,
we can write the 3-harmonic input as real:

u(t) = a1e
jω1t + a1e

−jω1t + a2e
jω2t + a2e

−jω2t + a3e
jω3t + a3e

−jω3t

= 2a1 cos(ω1t) + 2a2 cos(ω2t) + 2a3 cos(ω3t), ω1, ω2, ω3 > 0, t ≥ 0.
(6.30)

Next is the steady state output for the Wiener system with L complex input and nth
order polynomial static non-linearity. For simplicity the notation βi = aiH(jωi), i =
1, . . . , L is introduced.

yss(t) =
n∑

k=1

∑
m1+...+mL=k

wk
k!

m1!m2! · · ·mL!
βm1
1 · · ·βmL

L ej(ω1m1+...+ωLmL)t. (6.31)

By fixing L = 6 and with the above "real" signal symmetry, we can rewrite

yss(t) =

n∑
k=1

∑
m1+...+m6=k

wk
k!

m1!m2! · · ·m6!
βm1
1 · · ·βm6

6 ej(ω1m1+...+ω6m6)t

=

n∑
k=1

∑
m1+...+m6=k

wk
k!

m1!m2! · · ·m6!
βm1
1 · · ·βm6

6 ej(ω1m1+...+ω6m6)t

=

n∑
k=1

∑
m1+...+m6=k

wk
k!

m1!m2! · · ·m6!
βm1
1 · · ·βm6

6 ej(ω1(m1−m2)+ω2(m3−m4)+ω3(m5−m6))t.
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6. Other types of nonlinear systems

By denoting m1 −m2 = k1, m4 −m3 = k2, m6 −m5 = k3

Y (k1ω1 + k2ω2 + k3ω3) =

=

n∑
k=1

∑
k1+k2+k3+2(m2+m4+m6)=k

wk
k!

(k1 +m2)!m2!(k2 +m4)!m4!(k3 +m6)!m6!
·

· βk1+m2
1 βm2

2 βk2+m4
3 βm4

4 βk3+m6
5 βm6

6

=

n∑
k=1

∑
k1+k2+k3+2(m2+m4+m6)=k

wk
k!

(k1 +m2)!m2!(k2 +m4)!m4!(k3 +m6)!m6!
·

· ak1+2m2
1 ak2+2m4

2 ak3+2m6
3 Hk1+m2(jω1)H

m2(−jω1)H
k2+m4(jω2)H

m4(−jω2)H
k3+m6(jω3)H

m6(−jω3)

Application Y (ω3). We set k1 = k2 = 0, k3 = 1. Then

Y (ω3) =

n∑
k=1

∑
1+2(m2+m4+m6)=k

wk
k!

m2!m2!m4!m4!(1 +m6)!m6!
·

· a2m2
1 a2m4

2 a1+2m6
3 Hm2(jω1)H

m2(−jω1)H
m4(jω2)H

m4(−jω2)H
1+m6(jω3)H

m6(−jω3)

(6.32)

And now we expand (up to k = 3 as we have assumed cubic nonlinearity)

Y (ω3) =

k1︷ ︸︸ ︷
w1a3H(jω3)+

k3︷ ︸︸ ︷
6w3a

2
1a3H(jω1)H(−jω1)H(jω3)+

+ 6w3a
2
2a3H(jω2)H(−jω2)H(jω3) + 3w3a

3
3H(jω3)H(jω3)H(−jω3)︸ ︷︷ ︸

k3

(6.33)

By denoting H1(s1) = w1H(s1), H2(s1, s2) = w3H(s1)H(s2), and H3(s1, s2, s3) =
w3H(s1)H(s2)H(s3), we result to the more general Volterra⊃Wiener expression as

Y (ω3) = a3H1(jω3) + 6a21a3H3(jω1,−jω1, jω3)+

+ 6a22a3H3(jω2,−jω2, jω3) + 3a33H3(jω3, jω3, jω3).
(6.34)

Measurements: Now, the task is to get the measurement Y (ω3).

1. Taking care of the overlapping harmonics by choosing appropriately ω1, ω2, ω3

and waiting for steady state, from the power spectrum (FT), we can get the mea-
surements.

2. Using the Agilent technology, X-parameters generation as described in [153, 150]
with a large signal consisting of 3-tones will yield the value of Y (ω3).

One practical choice for separating the harmonics (kernels) is the following. You take ω1

and the choice of ω2 at least nw1 far with n to be the maximum harmonic index that
you want to involve. The same can be assumed for the ω3. To exploit the second kernel
as well, we have:

Y (2ω1) = w2a
2
2H(jω2)H(jω2) = a22H2(jω2, jω2). (6.35)
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6.2. The Wiener system

Kernel separation with amplitude shifting From Eq. (6.34), by varying the ampli-
tudes, we can solve the following least square problem to separate the kernels:

a
(1)
3 6a21a

(1)
3 6a22a

(1)
3 3(a33)

(1)

a
(2)
3 6a21a

(2)
3 6a22a

(2)
3 3(a33)

(2)

a
(3)
3 6a21a

(3)
3 6a22a

(3)
3 3(a33)

(3)

a
(4)
3 6a21a

(4)
3 6a22a

(4)
3 3(a33)

(4)

 ·


H1(jω3)
H3(jω1,−jω1, jω3)
H3(jω2,−jω2, jω3)
H3(jω3, jω3, jω3)

 =


Y (ω3)

(1)

Y (ω3)
(2)

Y (ω3)
(3)

Y (ω3)
(4)

 (6.36)

We quote the following setup similarly to in [153]. The linear transfer function is
H(s) = 1/(LCs2 +RCs+ 1) with L = 42.52, C = 8.5 · 10−3, R = 50. If we denote the
linear output yl(t), then, the non-linear output is given along with the 3rd-order Taylor
expansion:

y(t) =
1

(8− yl)

(
4yl(t) + 2y2l (t) + y3l (t)

)
≈ 1

2
yl(t) +

5

16
y2l (t) +

21

128
y3l (t). (6.37)

The goal is to identify the above system and test it under a rectangular input.
Measurements: We train the system with a 3-tone input with the following param-

eters:

• Amplitudes: a1 = a2 = 0.1 and a3 = [0.1 0.2 0.3 0.4].

• Frequencies: ω1 = 0.1, ω2 = 0.5, ω3 = 2.
0.2 0.012 0.012 0.024
0.3 0.018 0.018 0.081
0.4 0.024 0.024 0.192
0.5 0.03 0.03 0.375


︸ ︷︷ ︸

rank=2

·


H1(jω3)

H3(jω1,−jω1, jω3)
H3(jω2,−jω2, jω3)
H3(jω3, jω3, jω3)

 =


−0.0018116− 0.00019742i
−0.0027174− 0.00029528i
−0.0036232− 0.00039315i
−0.004529− 0.00049103i

 (6.38)

Kernel measurement
H1(jω3) −0.0089931− 0.00097902i
H3(jω1,−jω1, jω3) −0.00053959− 0.000058741i
H3(jω2,−jω2, jω3) −0.00053959− 0.000058741i
H3(jω3, jω3, jω3) −1.0245e− 7 + 5.9452e− 6i

(6.39)

Sweeping ω3, we get more measurements.So, H(3j2π) = −0.0039777− 0.0003308i. Now,
we will construct the Loewner model with these 2-measurements. The identify linear
transfer function Ĥ1(jω) = Cid (jωI−Aid)

−1Cid has the following system

Aid =

[
−1.1766 −18.85
0.14796 1.1345e− 16

]
, Bid =

[
−0.83196
−13.224

]
, Cid =

[
−0.0056 0.0005

]
. (6.40)

It remains

H3(jω1,−jω1, jω3) = w3H(jω1)H(−jω1)H(jω3) ≈ w3Ĥ1(jω1)Ĥ1(−jω1)Ĥ1(jω3)/w
3
1,

and this leads to
w3/w

3
1 = 0.18961 + 4.7066e− 18i.

Similar,
H2(jω2, jω2) ≈ w2Ĥ1(jω2)Ĥ1(jω2)/w

2
1,
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6. Other types of nonlinear systems

so,
w2/w

2
1 = 0.3135 + 0.0058578i.

♢

u(t) Ĥ1(s)
input

F(·) :→ ŵ1(·) + ŵ2(·)2 + ŵ3(·)3
(ĥ ⋆ u)(t)

y(t)
output

0 5 10 15 20

t

-0.5

0

0.5

1

1.5

o
u
tp

u
t

Original model

Identified Volterra model

Figure 6.7.: The identified cascaded Wiener nonlinear system in comparison with the
original [153].

Remark 6.4 (Identification of Wiener-Hammerstein systems):
Identifying the cascaded Hammerstein-Wiener system could be possible if we can identify
a multi-tone input when it passes through a static polynomial non-linearity. This happens
because the input in the Wiener branch is multi-tone, as it comes from the Hammerstein
branch. ♢

u Fh

input
LTI

Hammerstein Fw
Wiener y

Output

Figure 6.8.: The cascaded Hammerstein-Wiener system.
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CHAPTER 7

CONCLUSIONS
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7.1. Summary

In this thesis, we were concerned with constructing nonlinear dynamical models from
input-output time-domain data. The developed methods use the Loewner framework
to realize the linear subsystem, and continuously certain nonlinear operators (bilinear,
quadratic-bilinear, Hammerstein, Wiener) were fitted to improve the overall performance.
The ultimate goal was to devise methods that achieved two aims. The first aim was to
realize the physical data (time domain) for model discovery and for serving the scope
of identification under a finite assumed numerical precision and model structure. The
second aim was to employ model-reduction techniques to construct low-order dynamical
systems for robust simulation. Within the thesis, we have analyzed theoretically under
which assumptions the developed methods achieve the two aims in several examples and
applications.

7.2. Outlook

In Chapter 1, we motivated the research direction for data-driven modeling that stays
consistent with the formal mathematical description of the physical laws. We emphasized
the importance of constructing interpretable models, i.e., state-space dynamical systems,
due to their reliability which is essential for engineering applications. Also, we motivated
the excellent characteristics of the data learning methods that would benefit if these two
approaches (data science and data engineering) could be mutually integrated.

In Chapter 2, we introduced some essential linear algebra tools and their properties
that we built our methods.
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7. Conclusions

In Chapter 3, we reviewed the applicability of the Loewner framework to several lin-
ear time-invariant dynamical systems. Mainly, we emphasized technical issues and gave
insights to make this method easy to use and avoid pitfalls. We investigated the rational
approximation to non-rational transfer functions which provided good models capable of
approximating the dynamics of infinite dimensional linear systems within the interpola-
tion regime.

In Chapter 4, we started our analysis with the continuous in-time bilinear control sys-
tems, and an algorithm that constructs bilinear models from time-domain harmonic data
was introduced. Examples that illustrated the identification or the reduction goals were
detailed. Connection with the developed bilinear Loewner has been achieved when time-
domain data have been considered. Although these developed methods directly applied to
the continuous in-time bilinear control systems case, we also investigated the discrete in-
time case, and connections with the bilinear realization theory and the subspace method
were included. All the identification methods (e.g., subspace) for bilinear systems either
need more expensive, repetitive simulations or exponential computational complexity.
To relax this issue, we utilize machine learning techniques, e.g., Neural Networks, due to
their power to learn input-output maps through the universal approximation theorem. In
a real application example, we achieved interpretable bilinear models that explained the
nonlinear data with comparable performance with the subspace method. We considered
this result a successful connection between data engineering and learning methods.

In Chapter 5, we introduced data-driven modeling with the continuous in-time quadratic-
bilinear control systems. This class of systems has been very well studied in recent years.
Higher symmetric Volterra kernels should be included to realize the quadratic opera-
tor from input-output harmonic data. The proposed method uses data from the first
three symmetric Volterra kernels to realize the quadratic system. Nonlinear algebraic
equations must be solved. After using measurements from the third kernel, we had to
solve a quadratic vector equation to upgrade the missing information from the null space
parametrization of the second kernel. That was successful after utilizing an iterative
(fixed point) algorithm based on Newton’s method. We illustrated this identification
result with the forced Lorenz attractor. In particular, when the parameters of the forced
Lorenz attractor produced two non-trivial equilibrium points, we could identify the global
quadratic system that bifurcated to its nonzero equilibrium points after aligning the re-
sulting invariant operators. The algorithm that aligns the two quadratic systems without
the access of the linear operators involves the solution of a constrained quadratic matrix
equation. We solved this matrix equation by utilizing Newton’s method in a similar
way that Kleinman’s algorithm solves the Ricatti equation with Fréchet differentiabil-
ity. Harmonic time-domain data that can be processed in the Fourier spectrum and for
extracting estimations of the symmetric Volterra kernels were tested for a larger scale
example, and 98% reduction performance with five-digit accuracy was also reported. A
similar algorithm was introduced for constructing quadratic-bilinear state-space systems
from harmonic data with applications in electrical engineering. The proposed methods
upgrade the estimation of the operators by involving higher kernels after parameteriz-
ing the nonempty null space. Involving even higher Volterra kernels leads to solving
higher polynomial vector equations with the tensor formulation, which seems numerical

170



7.2. Outlook

challenging and is left for future research endeavors.
In Chapter 6, we extended the Loewner framework to specific structures of cas-

caded nonlinear systems known as Hammerstein-Wiener. We provided the Loewner-
Hammerstein algorithm for realizing such systems. We started with the Hammerstein
system that interprets the input that inserts in the LTI nonlinearly. Continuously, and for
the same reason, we introduced a similar algorithm for the Wiener system that interprets
the output from the LTI nonlinearly. The algorithms were detailed with application ex-
amples and insight into combining the Loewner framework with the Hammerstein-Wiener
structure was given.
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APPENDIX A

APPENDIXA

The Probing method. It was shown by Rugh [137], and Billings [35] that for nonlinear
systems which are described by the Volterra model Eq. (2.28) and excited by a combi-
nation of complex exponentials u(t) =

∑R
i=1 e

sit, 1 ≤ R ≤ N , the output response can
be written as

y(t) =

N∑
n=1

R∑
i1=1

· · ·
R∑

in=1

Hn(si1 , . . . , sin)e
(si1+···+sin )t,

=

N∑
n=1

∑
m(n)

H̃m1(n)···mR(n)(s1, . . . , sR)e
(m1(n)s1+···+mR(n)sR)t,

(A.1)

where
∑

m(n) indicates an R-fold sum over all integer indices m1(n), . . . ,mR(n) such that
0 ≤ mi(n) ≤ n, m1(n) + · · ·+mR(n) = n, and

H̃m1(n)···mR(n)(s1, . . . , sR) =
n!

m1(n)! · · ·mR(n!)
Hn(s1, . . . , s1︸ ︷︷ ︸

m1(n)

, . . . , sR, . . . , sR︸ ︷︷ ︸
mR(n)

). (A.2)

Note that, H̃n is the weighted GFRF, corresponding to Hn; The former scales with
the factor n!

m1(n)!···mR(n!) . Note also that different input amplitudes can be considered as
in [154, 35] where amplitude shifting allows kernel separation.

To determine the Rth-order generalized frequency response function HR(s1, . . . , sR),
the probing input u(t) =

∑R
i=1 e

sit needs to be applied, with at least R harmonics. We
introduce the input-state GFRFs Gi(s1, . . . , si), i = 1, ..., n to simplify the next deriva-
tions. These simply result in the input-output GFRFs by multiplying the Hi’s from the
left with the output vector C (in the SISO case), i.e., Hn(s1, . . . , sn) = CGn(s1, . . . , sn).
Note further that the transfer function Gi is a vector of length equal to the state dimen-
sion n (this latter is identical to Hi when C = In, i.e., when all the state elements are
individually observed).
• R = 1 - 1st order GFRF H1(s1): With input u(t) = es1t the state solution x(t) and
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A. AppendixA

the time derivative ẋ(t) are given by at the end:

x(t) =
N∑

n=1

∑
m(n)

G̃m1(n)(s1)e
(m1(n)s1)t, ẋ(t) =

N∑
n=1

∑
m(n)

G̃m1(n)(s1)m1(n)s1e
(m1(n)s1)t

(A.3)
By substituting in the differential equation of the system Eq. (5.1), we have

ẋ(t)−Ax(t)−Bu(t) =

N∑
n=1

∑
m(n)

(m1(n)s1I−A)G̃m1(n)(s1)e
(m1(n)s1)t −Bes1t

= Q

 N∑
n=1

∑
m(n)

G̃m1(n)(s1)e
(m1(n)s1)t ⊗

N∑
n=1

∑
m(n)

G̃m1(n)(s1)e
(m1(n)s1)t

 .

(A.4)

By collecting the terms with es1t, we result to

(s1I−A)G̃1(s1) = B⇒ G̃1(s1) = (s1I−A)−1B. (A.5)

We adjust in a similar way as in Hn the weighted G1(s1) =
1!

m1(1)
G̃1(s1) = (s1I−A)−1B.

Multiplication with the vector C from the left gives the 1st order GFRF consistent with
the linear subsystem and can be simplified further using the resolvent notation.

H1(s1) = C(s1I−A)−1B = CΦ(s1)

R1︷︸︸︷
B︸ ︷︷ ︸

G1(s1)

. (A.6)

Higher-order kernels can be derived at this level, e.g., H2, H3, . . .. Still, these can be
evaluated only on the diagonal of the hyper-plane that spans the domain of definition,
e.g., H2(s1, s1), H3(s1, s1, s1) which is not enough for achieving the identification goal as
H2 has a 2D domain support where a single harmonic input will always give information
on the univariate diagonal (NFR method). Therefore, the next step is to excite with more
complex inputs in terms of harmonics to identify the structure of the higher kernels.

• R = 2 - 2nd order GFRF H2(s1, s2): With input u(t) = es1t+es2t the state solution
is:

x(t) =
N∑

n=1

∑
m(n)

G̃m1(n)m2(n)(s1, s2)e
(m1(n)s1+m2(n)s2)t, (A.7)

and the time derivative results to

ẋ(t) =
N∑

n=1

∑
m(n)

(m1(n)s1 +m2(n)s2)G̃m1(n)m2(n)(s1, s2)e
(m1(n)s1+m2(n)s2)t. (A.8)
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By substituting into the differential equation of the system (5.1), we obtain

ẋ(t)−Ax(t) =

=

N∑
n=1

∑
m(n)

((m1(n)s1 +m2(n)s2)I−A)G̃m1(n)m2(n)(s1, s2)e
(m1(n)s1+m2(n)s2)t

= Q

 N∑
n=1

∑
m(n)

G̃m1(n)m2(n)(s1, s2)e
(m1(n)s1+m2(n)s2)t ⊗ ...

... ⊗
N∑

n=1

∑
m(n)

G̃m1(n)m2(n)(s1, s2)e
(m1(n)s1+m2(n)s2)t

+B(es1t + es2t).

(A.9)

By collecting the terms es1t+s2t with (n = 2, m1(2) = 1, m2(2) = 1), we result to

((s1 + s2)I−A)) G̃11(s1, s2)e
(s1+s2)t =

= Q
[
G̃10(s1)e

s1t ⊗ G̃01(s2)e
s2t + G̃01(s2)e

s2t ⊗ G̃10(s1)e
s1t
]
⇒

((s1 + s2)I−A)) G̃11(s1, s2) = Q
[
G̃10(s1)⊗ G̃01(s2) + G̃01(s2)⊗ G̃10(s1)

]
⇒

G̃11(s1, s2) = ((s1 + s2)I−A)−1 ·
·Q
[
(s1I−A)−1B⊗ (s2I−A)−1B+ (s2I−A)−1B⊗ (s1I−A)−1B

]
(A.10)

Finally, by adjusting the weighted G̃11(s1, s2) =
2!
1!1!G2(s1, s2) = 2G2(s1, s2), and multi-

plying from the left with C, we can define the 2nd order GFRF after using the resolvent
notation as

H2(s1, s2) =
1

2
CΦ(s1 + s2)Q [Φ(s1)B⊗Φ(s2)B+Φ(s2)B⊗Φ(s1)B]︸ ︷︷ ︸

R2(s1,s2)

= C
1

2
Φ(s1 + s2)Q [G1(s1)⊗G1(s2) +G1(s2)⊗G1(s1)]︸ ︷︷ ︸

G2(s1,s2)

(A.11)

• R = 3 - 3rd order GFRF H3(s1, s2, s3): With input u(t) = es1t + es2t + es3t, and
similar arguments, we can derive

H3(s1, s2, s3) = C
1

6
Φ(s1 + s2 + s3)QR3(s1, s2, s3)︸ ︷︷ ︸

G3(s1,s2,s3)

, with

R3(s1, s2, s3) =G1(s1)⊗G2(s2, s3) +G2(s2, s3)⊗G1(s1)+

G1(s2)⊗G2(s1, s3) +G2(s1, s3)⊗G1(s2)+

G1(s3)⊗G2(s1, s2) +G2(s1, s2)⊗G1(s3).

(A.12)
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The 1st Volterra kernel for m = 1, u(t) = es1t, x(t) =
∑∞

k1=0Gk1(k1s1)e
k1s1t and

substituting in the system, we can derive
∞∑

k1=0

(k1s1I−A)Gk1(k1s1)e
k1s1t = Bes1t+Q(

∞∑
k1=0

Gk1(k1s1)e
k1s1t ⊗

∞∑
k1=0

Gk1(k1s1)e
k1s1t)+

+N

∞∑
k1=0

Gk1(k1s1)e
k1s1tes1t,

(B.1)

as we want to extract G1, we set k1 = 1 and collect the same exponential powers

(s1I−A)G1(s1) = B ⇒ G1(s1) = (s1I−A)−1B. (B.2)

The 2nd Volterra kernel for m = 2, u(t) = es1t + es2t,

x(t) =

∞∑
k1=0

∞∑
k2=0

Gk1+k2(k1s1, k2s2)e
(k1s1+k2s2)t

and substituting to the system, it remains
∞∑

k1=0

∞∑
k2=0

((k1s1 + k2s2)I−A)Gk1+k2(k1s1, k2s2)e
(k1s1+k2s2)t = B(es1t + es2t)+

+Q(

∞∑
k1=0

∞∑
k2=0

Gk1+k2(k1s1, k2s2)e
(k1s1+k2s2)t ⊗

∞∑
k1=0

∞∑
k2=0

Gk1+k2(k1s1, k2s2)e
(k1s1+k2s2)t)+

+N

∞∑
k1=0

∞∑
k2=0

Gk1+k2(k1s1, k2s2)e
(k1s1+k2s2)t(es1t + es2t),

(B.3)

as we want to extract G2(s1, s2), we collect the same exponential powers with (s1 + s2).

((s1 + s2)I−A)G2(s1, s2) = Q(G1(s1)⊗G1(s2) +G1(s2)⊗G1(s1)) +N(G1(s1) +G1(s2)) ⇒

G2(s1, s2) = ((s1 + s2)I−A)−1Q(G1(s1)⊗G1(s2)+

+G1(s2)⊗G1(s1)) + ((s1 + s2)I−A)−1N(G1(s1) +G1(s2))

(B.4)
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The 3rd Volterra kernel is for m = 3, u(t) = es1t + es2t + es3t,

x(t) =

∞∑
k1=0

∞∑
k2=0

∞∑
k3=0

Gk1+k2+k3(k1s1, k2s2, k3s3)e
(k1s1+k2s2+k3s3)t

and substituting to the system
∞∑

k1=0

∞∑
k2=0

∞∑
k3=0

((k1s1 + k2s2 + k3s3)I−A)Gk1+k2+k3(k1s1, k2s2, k3s3)e
(k1s1+k2s2+k3s3)t =

= B(es1t + es2t + es3t)+

+Q(

∞∑
k1=0

∞∑
k2=0

∞∑
k3=0

Gk1+k2+k3(k1s1, k2s2, k3s3)e
(k1s1+k2s2+k3s3)t⊗

⊗
∞∑

k1=0

∞∑
k2=0

∞∑
k3=0

Gk1+k2+k3(k1s1, k2s2, k3s3)e
(k1s1+k2s2+k3s3)t)+

+N

∞∑
k1=0

∞∑
k2=0

∞∑
k3=0

Gk1+k2+k3(k1s1, k2s2, k3s3)e
(k1s1+k2s2+k3s3)t(es1t + es2t + es3t)

(B.5)

As we want to extract G3(s1, s2, s3), we collect the same exponential powers with (s1 +
s2 + s3).

((s1 + s2 + s3)I−A)G3(s1, s2, s3) =Q

(
G1(s1)⊗G2(s2, s3) +G2(s2, s3)⊗G1(s1)+

+G1(s2)⊗G2(s1, s3) +G2(s1, s3)⊗G1(s2)+

+G1(s3)⊗G2(s1, s2) +G2(s1, s2)⊗G1(s3)

)
+

N

(
G2(s1, s2) +G2(s1, s3) +G2(s2, s3)

)
(B.6)

The 4th Volterra kernel is with m = 4, u(t) = es1t + es2t + es3t + es4t,

x(t) =

∞∑
k1=0

∞∑
k2=0

∞∑
k3=0

∞∑
k4=0

Gk1+k2+k3+k4(k1s1, k2s2, k3s3, k4s4)e
(k1s1+k2s2+k3s3+k4s4)t

and substituting to the system
∞∑

k1=0

∞∑
k2=0

∞∑
k3=0

∞∑
k4=0

((k1s1 + · · ·+ k4s4)I−A)Gk1+···+k4(k1s1, . . . , k4s4)e
(k1s1+···+k4s4)t =

= B(es1t + es2t + es3t + es4t)+

+Q(

∞∑
k1=0

∞∑
k2=0

∞∑
k3=0

∞∑
k4=0

Gk1+k2+k3+k4(k1s1, k2s2, k3s3, k4s4)e
(k1s1+k2s2+k3s3+k4s4)t⊗

⊗
∞∑

k1=0

∞∑
k2=0

∞∑
k3=0

∞∑
k4=0

Gk1+k2+k3+k4(k1s1, k2s2, k3s3, k4s4)e
(k1s1+k2s2+k3s3+k4s4)t)+

+N

∞∑
k1=0

∞∑
k2=0

∞∑
k3=0

∞∑
k4=0

Gk1+···+k4(k1s1, . . . , k4s4)e
(k1s1+···+k4s4)t(es1t + es2t + es3t + es4t)

(B.7)
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As we want to extract G4(s1, s2, s3, s4), we collect the same exponential powers with
(s1 + s2 + s3 + s4).

((s1 + s2 + s3 + s4)I−A)G4(s1, s2, s3, s4) = Q

(
G1(s1)⊗G3(s2, s3, s4) +G3(s2, s3, s4)⊗G1(s1)

+G1(s2)⊗G3(s3, s4, s1) +G3(s3, s4, s1)⊗G1(s2)

+G1(s3)⊗G3(s4, s1, s2) +G3(s4, s1, s2)⊗G1(s3)

+G1(s4)⊗G3(s1, s2, s3) +G3(s1, s2, s3)⊗G1(s4)

+G2(s1, s2)⊗G2(s3, s4) +G2(s3, s4)⊗G2(s1, s2)

+G2(s1, s3)⊗G2(s2, s4) +G2(s2, s4)⊗G2(s1, s3)

+G2(s1, s4)⊗G2(s2, s3) +G2(s2, s3)⊗G2(s1, s4)

+G2(s2, s3)⊗G2(s1, s4) +G2(s1, s4)⊗G2(s2, s3)

)
N
(
G3(s1, s2, s3) +G3(s2, s3, s4) +G3(s3, s4, s1) +G3(s4, s1, s2)

)
(B.8)

The RQ(s1, s2, . . . , sm) and RN(s1, s2, . . . , sm) are defined up to m = 4. Although
tedious, the construction pattern is revealed by considering all the combinations. Further,
the weighted symmetric kernels are Hm(s1, . . . , sm) = 1

m!Gm(s1, . . . , sm).
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APPENDIX C

APPENDIXC

Dynamical systems that form an equivalent modulo can be aligned using a similarity
transform Ψ ∈ Rn×n as:

Φ1 =
[
(C1A1)

T (C1A
2
1)

T · · · (C1A
n
1 )

T
]
, Φ2 =

[
(C2A2)

T (C2A
2
2)

T · · · (C2A
n
2 )

T
]T

,

Ψ = Φ−1
2 Φ1, and for the operators of the quadratic system holds:

(A2, Q2, B2, C2) = (Ψ−1A1Ψ, Ψ−1Q1(Ψ⊗Ψ), Ψ−1B1, C1Ψ).
(C.1)
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THESES

1. The Loewner framework (LF) is a powerful data-driven tool that realizes linear
time-invariant systems from time or frequency domain measurements capable of
serving the identification and reduction goals.

2. The LF method constructs the system’s invariant transfer function directly from
input-output (time or frequency) measurements with the flexibility of allocating
these measurements appropriately for achieving different goals. For instance, when
the left and right measurement sets are almost the same, the LF provides rational
approximants that satisfy approximately the first optimality conditions (Hermitian
interpolation) and asserts a connection with the optimal intrusive method known
as iterative rational Krylov algorithm (IRKA).

3. We review the LF as a rational interpolation method for approximating non-rational
transfer functions derived from PDEs or challenging approximation theory bench-
marks.

4. The LF, in connection with the Volterra series, has been extended to several non-
linear control systems classes such as bilinear, quadratic, quadratic-bilinear, and
polynomial with the formulation of the regular Volterra kernels that can be de-
rived with the variational approach. These approaches’ limitations start when the
model to be discovered or reduced remains unknown, and only simulations can be
performed for data acquisition. These LF variants construct reduced models only
with direct numerical simulation from a prior accessible high-fidelity model.

5. The Volterra kernels that can be measured from time-domain data acquisition
processes are symmetric and can be derived with the growing exponential approach
known as the probing method. Thus, the novelty of this thesis was to develop
methods that use the Loewner framework with the symmetric Volterra kernels
that can be measured from a physical measurement setup. The Loewner framework
faced a fundamental problem in directly generalizing within the structure of the
symmetric kernels.

6. In the linear case, a multi-harmonic excitation in the time domain maps a bijective
frequency map through the Fourier spectrum. Thus, harmonic indexing in the
linear case is straightforward, and frequency domain measurements can be derived
directly. Consequently, the LF method uses these measurements to realize the
dynamics with a linear time-invariant state-space model.
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C. Theses

7. In the nonlinear case, exciting the system for data acquisition with multi-tone in-
put produces a complex Fourier spectrum with commensurate frequencies that is
a challenging task for harmonic indexing and kernel separation. In this thesis, we
provided ways for kernel separation under multi-harmonic excitation. Moreover,
the theoretical establishment of the X-parameters machinery that can provide mea-
surements in a real application environment under polyharmonic distortion in con-
nection with nonlinear systems and the Volterra series seems a promising future
research direction that has not yet matured.

8. Assumptions on the model structure (e.g., bilinear, quadratic, etc.) can be held
from the specific engineering application. For instance, a physical choice of mod-
eling with bilinear systems can be derived from the first principles when inputs
multiply the states (inflow-outflow dynamics). When the engineering application
concerns flow problems such as Navier-Stokes and Burgers’s from first principles,
quadratic models must be introduced to cover the dynamics. Cubic systems must
be considered for oscillatory examples with nonlinear stiffness or damping (Van der
Pol or Duffing oscillator, etc.).

9. The main novelty in this thesis was to construct the nonlinear models Σ listed
below by having access to input-u(t) and output-y(t) time-domain data.

u(t)→ Σ :

{
ẋ(t) = Ax(t) + F(x(t)) + G(x(t))u(t) +Bu(t),

y(t) = Cx(t), x0 = 0, t ≥ 0.
→ y(t)

• Bilinear: F(x(t)) = 0, G(x(t)) = Nx(t).

• Quadratic: F(x(t)) = Q(x(t)⊗ x(t)), G(x(t)) = 0.

• Quadratic-bilinear: F(x(t)) = Q(x(t)⊗ x(t)), G(x(t)) = Nx(t).

As detailed in the thesis, when the above structures were derived from the first
principles, the methods served the reduction and identification goals well.

10. In this thesis, we also studied nonlinear approximations either with Carleman’s
bilinearization scheme or with nonlinear embeddings, such as the quadratization
lifting procedure. Although the results gave fair approximations, the methods de-
veloped in this thesis used mainly the minimality of the linear operator A from the
general structure above. Consequently, when Carleman’s bilinearization or lifting
strategies were introduced, the dimension of the states was increased, and adapta-
tion of the lifted degree was left as an open problem along with the minimality of
nonlinear systems.

11. Finally, machine learning techniques in combination with data engineering methods
such as those presented in this thesis can be advantageous. In particular, neural
networks (NNs), due to their power to learn input-output maps through the uni-
versal approximation theorem, can replace the actual plant with a black box model
for generating more data efficiently and within the interpolation regime that NNs
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remain reliable. Consequently, utilizing the methods in this thesis with the data
generated from NNs, interpretable (state-space) models with theoretical properties
such as stability can be used in the extrapolation (prediction, forecasting) regime,
making the ad hoc engineering processes more reliable.
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