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In this work we comment in more detail on what happens to the parametrized framework first
presented by Cardoso et al. when there are departures from the Schwarzschild background metric, as
well as possible deviations in the “dynamics”. We treat possible deviations in the background metric
with additional coefficients with respect to the original works. The advantages of this reformulation
are clear when applied to a parameter estimation problem, since the coefficients are always real,
and many of them do not depend on the overtone number and angular momentum of the frequency,
thus eventually reducing the total amount of parameters to be inferred.

I. INTRODUCTION

Ongoing and future efforts of gravitational wave de-
tectors provide unprecedented access to test general rel-
ativity (GR) in the strong field regime [1–4]. Among the
several exciting possibilities, one is to perform black hole
spectroscopy in order to verify the validity of the require-
ments of the no-hair theorem and also general relativity
itself [5–7]. Our current understanding of binary black
hole mergers predicts that the final stage of such events
should be described by a superposition of linear pertur-
bations of the background, the so-called quasi-normal
modes [8–10], see also Refs. [11–14] for reviews.

The spectrum of quasi-normal modes is sensitive to the
background perturbed metric, but also to the dynamical
behaviour of the theory in which the perturbations are
excited. The purpose of this work is to provide a frame-
work which allows to study quasi-normal modes in spher-
ical symmetry for metrics which are different from the
Schwarzschild metric when the modifications are small.
Our framework is following a prescription similar to the
one presented by Cardoso et al. [15] and McManus et
al. [16]. In these works, a modified (system) of wave
equations has been introduced and the corresponding
quasi-normal mode spectrum has been computed up to
quadratic order for a set of small deviation parameters.
We explicitly show how possible deviations in the back-
ground metric could affect the quasi-normal frequencies,
in a different fashion from [15, 16]. While the general idea
is similar, our approach allows for a better description
of non-Schwarzschild backgrounds, purely real deviation
parameters in the framework, as well as a differentiation
between the parameters that depend on the angular mo-
mentum of the frequencies, and those which do not.

This work is structured as follows. In Sec. II we intro-
duce the metric dependent parametrized framework. We
apply it to two different cases in Sec. III. Conclusions are
discussed in Sec. IV. Throughout this work we use units
in which G = c = 1.

II. THEORETICAL FRAMEWORK

Let us start by qualitatively reviewing how gravita-
tional perturbations in gravity theories can be studied.
In general, one assumes a linear perturbation of the met-
ric as

gab ' gab + hab , (1)

for which the background metric gab and the perturba-
tion metric hab satisfy the 0th order and 1st order equa-
tions of motion, respectively. They are obtained from the
linear expansion of the full system of equations

Gab ' Gab +Hab = 0 , (2)

where Gab are the equations of motion of a given grav-
ity theory. Let us assume that the background metric
is given by some non-GR metric. We remark that we
do not know a priori which equations of motion this
metric is satisfying. However, as long as it is pertur-
batively close, with respect to some parameter δ, to
the Schwarzschild/Kerr metric, it must satisfy Einstein’s
equations of GR up to some error linear in δ

G
GR

ab [gcd] = 0 + O (δ) . (3)

The presence of the O(δ) term can be interpreted as the
fact that the equations of motion of a new theory whose
static solution is approximated by the metric gab must
have different dynamics, not captured with the GR equa-
tions by a linear factor.

We can conjecture that the first order equations share
the same property. For GR, one would have

HGR
ab

[
hcd; gSch

cd

]
= 0 , (4)

but when gSch
cd is substituted by gcd, the equations become

HGR
ab [hcd; gcd] = 0 + O(δ) . (5)

One must bear in mind that this notation generically
includes the 0th and 1st order metric as well as their
derivatives.
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Let us now take into account a spherically symmetric
background metric defined as follows

gabdx
adxb = −f(r)A(r)dt2 +

B2(r)

f(r)A(r)
dr2 + r2dΩ , (6)

with f(r) = 1 − rH/r, being rH the location of the
event horizon. Then, we can expand the functions A
and B with a set of real coefficients a(k)M , b

(k)
M in a post-

Newtonian fashion [17]

A(r) = 1 + δ

K∑
k=1

a
(k)
M

(
rH
r

)k

, (7)

B(r) = 1 + δ

K∑
k=1

b
(k)
M

(
rH
r

)k

. (8)

We make the series terminate at some finite number K
starting from k = 1 to ensure asymptotic flatness.

From the prescription suggested by passing from
Eq. (4) to Eq. (5) one could guess the following form
for the master perturbation equation

fZ
d

dr

(
fZ

dΦ

dr

)
+
[
ω2W − fZV `

]
Φ = 0 , (9)

where one has enough generality to define the per-
turbation variable Φ to choose Z = A/B such that
the tortoise coordinate r∗ arising from this equation is
dr∗ fA/B = dr. Finally, we expect small deviations from
GR in the other parameters as well: W = 1 + δw(r),
V ` = V

GR

` (r) + δV `(r). Note that in this definition we
made explicit that radial functions modifying the poten-
tial depend on the angular momentum ` of the quasi-
normal frequencies.

In the following we try to provide a heuristic explana-
tion of why we expect this form for the master equation.
The first step is to write down the master equation for a
perturbation in GR

FGR

d

dr

(
FGR

dΦ

dr

)
+
[
ω2 − V GR

]
Φ = 0 , (10)

where FGR ≡
√
gSch
tt g rr

Sch = f(r) is the “natural” tortoise
function for the Schwarzschild solution, and

V
GR

= gSch
tt

Λ

r2
+G(r)

FGR

r

dFGR

dr
, (11)

where Λ = `(` + 1), G(r) = 1 denotes scalar perturba-
tions, G(r) = −3 for axial perturbations and

G(r) = −3
1 + 3F 2

GR(r)− Λ2[
1− 3FGR(r) + Λ

]2 (12)

for polar perturbations. We intentionally wrote the
eikonal term gSch

tt Λ/r2 to make its correspondence with
geodesic motion evident.

If we want to assume that the background metric is
the metric of Eq. (6), we can substitute all the gSch

ab terms
with gab everywhere in equation (10). For example, one
should transform FGR into fA/B. Moreover, to take into
account that the theory can be different, one should add
a correction δZ to the tortoise coordinate and one δV to
the potential. These two corrections take into account
the fact that the derivation of the perturbation equation
might be done in a theory which is not GR [cfr. Eq. (5)].
The resulting equation is

f(Z + δZ)
d

dr

[
f(Z + δZ)

dΦ

dr

]
+

[
ω2 − fZ

(
V GR
` + δV `

)]
Φ = 0 .

(13)

One can always re-define the perturbation function Φ and
re-scale the equation to remove the δZ term from the
derivative term. This would ensure that the second order
derivative is acted upon the tortoise coordinate of the
metric. However, by doing so, one would introduce some
terms multiplying the frequency, obtaining Eq. (9). The
term multiplying the frequency can be mapped into the
modification of the tortoise coordinate δw(r) = −2δZ(r),
and we expand it as

δw(r) =

K∑
k=1

w(k)

(
rH
r

)k

. (14)

It is worth noting that this term appears just because the
background metric (and thus the tortoise coordinate) is
different from the Schwarzschild metric.

On the potential side, from the construction, we can
split the contribution to the potential coming from the
metric and from the “dynamics”. We have that

V
GR

` + δV ` = V
mod

` + δV
D

` , (15)

where we made the following identifications

V
mod

` = B
`(`+ 1)

r2
+
G(r)

r

d

dr

(
f
A

B

)
, (16)

δV
D

` =
δ

r2H

K∑
k=0

β
(k)
D,`

(
rH
r

)k

. (17)

This last term, linear in δ, expresses in a 1/r basis our
ignorance on the correct equations of motion for the dy-
namics of the theories under scrutiny.

Collectively we label all the real coefficients, from met-
ric and from dynamics as

β(i) =
(
β
(0)
D,`, z

(1), b
(1)
M , w(1), β

(1)
D,`, z

(2), b
(2)
M , w(2), β

(2)
D,`, . . .

)
,

(18)
where we identified z(k) = a

(k)
M − b(k)M from the definition

of Z. In the rest of the paper we will refer to this set of
parameters as mixed parametrization or metric-potential
parametrization to distinguish it from the potential-only
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parametrization introduced in [15]. A quadratic expan-
sion of ω in the parameters β(i) is simply given by

ω ' ω0 + c(i)β
(i) +

1

2
v(ij)β

(i)β(j) . (19)

We can infer the coefficients c(i) and v(ij) from the coef-
ficients d(k) and e(ks) obtained in [15, 16]1 by comparing
the respective master equations. In order to do so, we
must manipulate Eq. (9). By performing the change of
variables φ =

√
ZΦ, the master equation takes the form

f
d

dr

[
f

dφ

dr

]
+

[
ω2WH

Z2
H

− fV

]
φ = 0 , (20)

V =
V

Z
−
f
(
Z ′
)2 − 2Z

(
fZ ′

)′
4Z2

− ω2

f

(
W

Z2
− WH

Z2
H

)
,

(21)

with ZH = Z(rH) and WH = W (rH). Also the last term
of (21) can be put in the 1/r form with the following
manipulation

ω2

f

(
W

Z2
− WH

Z2
H

)
= ω2

∑
k

2z(k) − w(k)

rk−1
rk − rkH
r − rH

= ω2
∑
k

(
2z(k) − w(k)

) k−1∑
p=0

(
rH
r

)p

. (22)

In this way, we can define a first order expansion of the
potential in δ as

δV ≡ V − VGR =
δ

r2H

∞∑
k=0

α(k)

(
rH
r

)k

. (23)

The coefficients α(k) can be obtained up to second-order
by combinations of the coefficients β(i). For generic in-
dex k and tensor axial perturbation, we have that linear
contributions are

α(k) =
[
(k − 2)z(k−2) − (k − 3)z(k−3)

] k − 7

2

+ Λ
(
b
(k−2)
M − z(k−2)

)
+ β

(k)
D,`

+ ω2r2H

K∑
p=k+1

(
w(p) − 2z(p)

)
, (24)

while we do not display the quadratic ones since the
expression is lengthy and uninformative. The formula
for scalar perturbations has an analogue form, while for
the tensor polar case, one should first decompose the
term (12) such that it yields 1/r terms. We suggest
that the best-motivated way to proceed is to perform

1 See also [18, 19] for alternative ways to compute these coefficients

an eikonal expansion of the term (i.e., around ` → ∞)
and include eikonal terms until the deviation in the co-
efficients is smaller that the numerical error of the coef-
ficients themselves.

The manipulation shown with the previous calcula-
tions has brought the equation (20) in the same form
shown of that in Ref. [15]. Now, one can apply the
quadratic expansion of the quasi-normal frequencies from
Refs. [15, 16] to Eq. (20), yielding

ω ' ZH

W
1/2
H

(
ω0 + d(k)α

(k)

+ d(k)d(s)α
(k)∂ωα

(s) +
1

2
e(ks)α

(k)α(s)

)
.

(25)

Due to the relation between the coefficients α(k) and β(i),
we can always do the mapping

c(i) ≡
∂ω

∂β(i)
= ω0

∂

∂β(i)

ZH

W
1/2
H

+ d(k)
∂α(k)

∂β(i)
, (26)

v(ij) ≡
∂2ω

∂β(i)∂β(j)
= ω0

∂2

∂β(i)∂β(j)

ZH

W
1/2
H

+ d(k)

(
∂

∂β(i)

ZH

W
1/2
H

∂α(k)

∂β(j)
+

∂

∂β(j)

ZH

W
1/2
H

∂α(k)

∂β(i)

)

+ d(k)d(s)

(
∂α(k)

∂β(i)

∂2α(s)

∂β(j)∂ω
+
∂α(k)

∂β(j)

∂2α(s)

∂β(i)∂ω

)

+ d(k)
∂2α(k)

∂β(i)∂β(j)
+ e(ks)

∂α(k)

∂β(i)

∂α(s)

∂β(j)
. (27)

It is worth noting that since all the coefficients β(i)

are real, any term that would make the coefficients α(k)

complex comes from the fact that the background metric
is not Schwarzschild. Indeed, we remind that the coeffi-
cients w(k) denote the deviation of the “natural” tortoise
coordinate of the master equation from the tortoise co-
ordinate of the metric, nonetheless defined by the coeffi-
cients z(k).2

The advantage of this formulation over the potential-
only parametrization is evident when reconstructing the
modified potential after the detection of more than one
quasi-normal mode [19, 21, 22]. In fact, even if from a
first look it seems that the metric-potential formalism has
more parameters than the potential-only one, one must
be aware that the coefficients of the latter are complex
(because they can depend on the frequency) and they are
different for each mode measured, as they are sensible to
n and `. This means twice K + 1 coefficients for each

2 An additional frequency-dependent contribution not shown here
could come from a non-spherically symmetric background metric,
that reduces to Schwarzschild in the zero coupling limit (e.g., the
slow-rotation expansion [20]).
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mode measured. On the other hand, the mixed formalism
has K+1 coefficients β(k)

D,` which change with the angular

momentum of the mode, and K − 1 coefficients z(k), b(k)M

and w(k). None of them depends on the overtone number.
By simple counting, one can find that the total number
of coefficients for the observation of n` different angular
momentum modes and nn additional (i.e. on top of the
fundamental one) overtones for the potential-only case is
2(nn+n`)(K+1), while for the metric-potential case one
has n`(K + 1) + 3(K − 1).

III. APPLICATIONS

A. Reissner-Nordström Metric

As first non-trivial application of the framework we
consider the Reissner-Nordström (RN) metric [23–26].
With the current notation it is given by the metric
Eq. (6), with

A = 1− r−
r
, B = 1, (28)

where r− can be related to the mass M and a (small)
electric charge Q through

r− = M −
√
M2 −Q2 ≈ Q2

2M
, (29)

and the location of the horizon is given by

rH = M +
√
M2 −Q2. (30)

The perturbation equation in the odd-parity sector is
close to the Regge-Wheeler equation [13]. From its ex-
pression, one can either infer the axial deviation param-
eters for potential-only formalism (cfr. Ref. [15]) or the
parameters for the mixed framework

z(1) = −r−
rH

, (31)

β
(3)
D,` = −4r−

3rH
(Λ− 2) , β

(4)
D,` = −2

r−
rH

. (32)

In Fig. 1 we compare the application of the original
parametrized framework with the new metric depen-
dent one for the RN n = 0, 1, 2, ` = 2 quasi-normal
modes. In the two panels we show the relative error
δω = |ω − ωRN|/ωRN between the parametrized quasi-
normal modes ω (potential-only parametrization is repre-
sented by solid lines while potential-metric parametriza-
tion by dashed lines) and the numerically computed one
ωRN. One can clearly see that the mixed parametrization
gives an even more accurate prediction of the frequencies
for each case considered. We also checked different an-
gular momentum ` which gives analog features.

FIG. 1. Here we show the relative errors δω = |ω−ωRN|/ωRN

for real (upper panel) and imaginary (lower panel) part of the
axial ` = 2 RN quasi-normal modes for n = 0, 1, 2 using the
potential parametrized framework (solid lines) and the new
metric dependent one (dashed lines).

B. Einstein-dilaton-Gauss-Bonnet gravity

Einstein-dilaton-Gauss-Bonnet (EdGB) gravity is a
well-studied alternative theory of gravity, where a dy-
namical scalar field is coupled to the Gauss-Bonnet in-
variant through a coupling αGB (more details can be
found in [27] and references therein). In the small-
coupling limit it provides a background metric and the
perturbation equations of the form we analysed here. The
master equation for axial perturbation can be recast in
the form of Eq. (9) retaining up to ζ2 terms, where we in-
troduced the dimensionless coupling ζ = 4αGB/r

2
H. The

relevant functions are (according to the notation of [28])

B = 1− ζ2
(
r2H
8r2

+
r3H
6r3

+
7r4H
16r4

+
2r5H
5r5

+
3r6H
8r6

)
, (33)

Z = 1 + ζ2

(
− 49rH

80r
− 39r2H

80r2
− 97r3H

240r3

+
49r4H
120r4

+
61r5H
120r5

+
7r6H
12r6

)
, (34)

W = 1 + ζ2

(
−2r3H
r3
− r4H
r4
− r5H
r5

+
4r6H
r6

)
, (35)
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FIG. 2. Relative errors δω = |ω − ωGB|/ωGB for real and
imaginary part of the axial n = 0 GB quasi-normal modes
for ` = 2, 3 using the potential-only parametrized framework
(solid lines) and the metric-potential dependent one (dashed
lines).

V ` = V GR
` + ζ2

rH
r3

[
− 147

80
+

(6− Λ)rH
8r

+

(
99

4
− 19Λ

6

)
r2H
r2

+

(
−15Λ

16
− 29

4

)
r3H
r3

− 9(Λ− 5)r4H
10r4

+

(
41Λ

8
− 712

5

)
r5H
r5

+
519r6H

4r6

]
. (36)

As shown in section II, one can transform the equa-
tion such that it is in the form suitable to express the
modifications from GR as coefficients of the potential
formalism. Hence, in Fig. 2, we compare the ` = 2, 3
fundamental modes obtained with the two different for-
malism against the fits of the numerical quasi-normal
mode frequencies ωGB computed in [27]. In this case,
the metric-potential parametrization under-performs the
potential-only one in most cases, even though the error
with respect to the numerical fits are still comparable.

IV. CONCLUSIONS

In this work we have introduced a framework to com-
pute quasi-normal modes from non-GR metrics where

modifications are small. Our ansatz is very similar and
can be mapped to the one proposed by Cardoso et al. [15].
This allows for a quick computation of QNMs of a given
metric. We have found comparable precision among the
two methods in approximating the numerically computed
frequencies both for RN and EdGB axial perturbations.
In the paper we showed how to perform the mapping
between the two formalisms for scalar and tensor axial
perturbations only, but we also provided an explanation
on how to do it for the tensor polar case.

The main advantage of the mixed method is evident
when one has in mind the so-called inverse problem,
which refers to the reconstruction of the perturbation
equation in a theory-agnostic approach [19, 21, 22]. Es-
sential condition for the inverse problem is the detection
of more angular modes/overtones simultaneously, even
if the capability of doing so with current observations
raised an ongoing discussion in the literature [29–34].
The advantage in the inverse problem comes from a re-
duction of the number of parameters, all real, and only
with the β(k)

D,` depending on the angular momentum of
the perturbation. This is not the case for the potential-
only parametrization, for which all coefficients α(k) are
in principle complex, and depending on angular momen-
tum and overtone number as well. Moreover, it can help
to give insights to discern whether a modification comes
from the background or from the dynamics.

The possibility to explicitly separate the two contri-
butions could also be useful when complementary con-
straints on the metric can be provided, but not on the
dynamics. Such a case may be possible with activities
of the Event Horizon Telescope Collaboration [35–37],
which can in principle be used to study possible devia-
tions from the Schwarzschild/Kerr metric of supermas-
sive black holes, see e.g. Refs. [38–45] for some recent
works. Other complementary constraints can also be ob-
tained using x-ray spectroscopy, see. e.g. Refs. [46–48].
Although it seems unlikely that observations of the same
objects can be done using gravitational waves and one of
these techniques in the foreseeable future, one can still
combine constraints on individual metrics under certain
assumptions, e.g., assuming the way how the metric is
modified happens in a similar way for all sources.
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