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Interspacecraft ranging is crucial for the suppression of laser frequency noise via time-delay in-
terferometry (TDI). So far, the effect of on-board delays and ambiguities in the LISA ranging
observables was neglected in LISA modelling and data processing investigations. In reality, on-
board delays cause offsets and timestamping delays in the LISA measurements, and PRN ranging
is ambiguous, as it only determines the range up to an integer multiple of the pseudo-random noise
(PRN) code length. In this article, we identify the four LISA ranging observables: PRN ranging,
the sideband beatnotes at the interspacecraft interferometer, TDI ranging, and ground-based ob-
servations. We derive their observation equations in the presence of on-board delays, noise, and
ambiguities. We then propose a three-stage ranging sensor fusion to combine these observables in
order to gain optimal ranging estimates. We propose to calibrate the on-board delays on ground and
to compensate the associated offsets and timestamping delays in an initial data treatment (stage 1).
We identify the ranging-related routines, which need to run continuously during operation (stage 2),
and implement them numerically. Essentially, this involves the reduction of ranging noise, for which
we develop a Kalman filter combining the PRN ranging and the sideband beatnotes. We further
implement crosschecks for the PRN ranging ambiguities and offsets (stage 3). We show that both
ground-based observations and TDI ranging can be used to resolve the PRN ranging ambiguities.
Moreover, we apply TDI ranging to estimate the PRN ranging offsets.

I. INTRODUCTION

The Laser Interferometer Space Antenna (LISA), due
for launch in 2034, is an ESA-led mission for space-based
gravitational-wave detection in the frequency band be-
tween 0.1 mHz and 1 Hz [1]. LISA consists of three satel-
lites forming an approximate equilateral triangle with an
armlength of 2.5 Gm, in a heliocentric orbit that trails
or leads Earth by about 20 degrees. Six infrared laser
links with a nominal wavelength of 1064 nm connect the
three spacecraft (SC), whose relative motion necessitates
the usage of heterodyne interferometry. Phasemeters are
used to extract the phases of the corresponding beatnotes
[2], in which gravitational-waves manifest in form of mi-
crocycle deviations equivalent to picometer variations in
the interspacecraft ranges.

The phasemeter output, however, is obscured by vari-
ous instrumental noise sources. They must be suppressed
to fit in the LISA noise budget of 10 pm Hz−0.5 (single
link) [3], otherwise they would bury the gravitational-
wave signals. Dedicated data processing algorithms are
being developed for each of these instrumental noise
sources, their subsequent execution is referred to as ini-
tial noise reduction pipeline (INReP). The dominating
noise source in LISA is by far the laser frequency noise
due to the armlength differences in the order of 1%
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(25 000 km). It must be reduced by more than 8 orders of
magnitude. This is achieved by time-delay interferome-
try (TDI), which combines the various beatnotes with the
correct delays to virtually form equal-optical-path-length
interferometers, in which laser frequency noise naturally
cancels [4, 5]. The exact definition of these delays de-
pends on the location of TDI within the INReP (see fig. 1)
[6], but wherever we place it, some kind of information
about the absolute interspacecraft ranges is required.

Yet, absolute ranges are not a natural signal in a
continuous-wave heterodyne laser interferometer such as
LISA. Therefore, a ranging scheme based on pseudo-
random noise (PRN) codes is implemented [7–9]. Each
SC houses a free-running ultra-stable oscillator (USO) as
timing reference. It defines the spacecraft elapsed time
(SCET). PRN codes generated according to the respec-
tive SCETs are imprinted onto the laser beams by phase-
modulating the carrier. The comparison of a PRN code
received from a distant SC, hence generated according to
the distant SCET, with a local copy enables a measure-
ment of the pseudorange: the pseudorange is commonly
defined as the difference between the SCET of the recei-
ving SC at the event of reception and the SCET of the
emitting SC at the event of emission [10]. It represents
a combination of the true geometrical range (light travel
time) with the offset between the two involved SCETs
(see eq. A5).

In the baseline TDI topology (upper row in fig. 1), TDI
is performed after SCET synchronization to the barycen-
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Figure 1. In the baseline TDI topology (upper part) we per-
form TDI after clock synchronization to TCB, the delays are
given by the light travel times. In the alternative TDI topo-
logy (lower part) we execute TDI without clock synchroniza-
tion and apply the pseudoranges as delays [6]. Both topologies
rely on a ranging sensor fusion.

tric coordinate time (TCB), the light travel times are
used as delays. The pseudoranges comprise information
about both the light travel times and the SCET offsets
required for synchronizing the clocks (see appendix A).
A Kalman filter can be used to disentangle the pseudo-
ranges in order to retrieve light travel times and SCET
offsets [11]. In the alternative TDI topology (lower row
in fig. 1), the pseudoranges are directly used as delays.
In that topology, TDI is executed on the unsynchronized
beatnotes sampled according to the respective SCETs [6].

However, PRN ranging (PRNR) does not directly pro-
vide the pseudoranges but requires three treatments.
First, due to the finite PRN code length (we assume
400 km), PRNR measures the pseudoranges modulo an
ambiguity [7]. Secondly, PRNR is limited by white ran-
ging noise with an RMS amplitude of about 1 m when
sampled at 4 Hz [9]. Thirdly, on-board delays due to
signal propagation and processing cause offsets and time-
stamping delays in the PRNR. There are three additional
pseudorange observables to resolve these difficulties:
ground-based observations provide inaccurate but un-
ambiguous pseudorange estimates; time-delay interfero-
metric ranging (TDIR) turns TDI upside-down seeking a
model for the delays that minimizes the laser frequency
noise in the TDI combinations [12]; the sideband beat-
notes include information about the time derivatives of
the pseudoranges [6]. The combination of these four
pseudorange observables in order to form optimal pseu-
dorange estimates is referred to as ranging sensor fusion
in the course of this article. It is common to both TDI
topologies (see fig. 1) and consequently a crucial stage of
the INReP.

In section II, we first specify the pseudorange defini-
tion. We then derive the observation equations of the
four pseudorange observables carefully considering the ef-
fects of the on-board delays. In section III, we introduce
a three-stage ranging sensor fusion consisting of an ini-
tial data treatment, a core ranging processing, and cross-
checks. In the initial data treatment, we propose to com-
pensate for the offsets and timestamping delays caused
by the on-board delays. We identify PRNR unwrapping

Figure 2. LISA labeling conventions (from [14]). The SC are
labeled clockwise. The MOSAs are labeled by 2 indices: the
first one indicates the SC they are located at, the second one
the SC they are oriented to. The measurements and related
quantities (optical links, pseudoranges, etc.) share the indices
of the MOSAs they are measured at. Below, we distinguish
between left-handed MOSAs (12, 23, 31) and right-handed
MOSAs (13, 32, 21).

and noise reduction as the ranging processing steps that
need to run continuously during operation. In parallel
to this core ranging processing, we propose crosschecks
of the PRNR ambiguities and offsets. We implement the
core ranging processing and the crosschecks numerically.
In section IV we discuss the performance of this imple-
mentation, and conclude in section V.

II. RANGING MEASUREMENTS

Each SC houses an ultra-stable oscillator (USO) gene-
rating an 80 MHz clock signal, the phasemeter clock
(PMC). The PMC can be considered as the timing refe-
rence on board the SC (see fig. 3), its associated counter
is referred to as spacecraft elapsed time (SCET):

SCET(n) =

n∑
1

1

80 MHz
. (1)

The SCET, denoted by τ̂i, differs from the barycentric
coordinate time (TCB), denoted by t, due to instrumen-
tal clock drifts and jitters, and due to relativistic effects.
Following the notation of [13], we use superscripts to in-
dicate a quantity to be expressed as function of a certain
time scale, e.g., τ̂ t1 denotes the SCET of SC 1 as function
of TCB. Note that

τ̂ τ̂ii (τ) = τ. (2)

Each SC contains two movable optical sub-assemblies
(MOSAs) connected by an optical fibre (see fig. 2 for
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Figure 3. We trace a local laser (red arrows) and a distant laser (yellow arrows) to the ISI BSs on both SC, where they interfere
and form beatnotes (orange arrows). Before, the carriers are phase-modulated with the GHz clock and the PRN signals (follow
the arrows from the PMC and the PRN to the EOM). We show the USO frequency distribution (follow the blue arrows after
the USOs) and illustrate the on board signal processing (follow the arrows after the QPRs). Constituents of the pseudorange
are marked purple. These are the light travel time between the PBSs (at the telescopes) and the transformation between the
two SCETs (considered at the PBS of the receiving SC). In light blue, we mark the PRN ranging offset from the pseudorange.
We identify the common carrier, sideband, and PRN timestamping delays in green, dark yellow, and pink, respectively.

the labeling conventions). Each MOSA has an associ-
ated laser and houses a telescope, a free-falling test mass
marking the end of the corresponding optical link, and an
optical bench with three interferometers: the interspace-
craft interferometer (ISI), in which the gravitational-
wave signals eventually appear, the reference interfero-
meter (RFI) to compare local and adjacent lasers, and
the test-mass interferometer (TMI) to sense the optical
bench motion with respect to the free-falling test mass
in direction of the optical link. The MHz beatnotes in
these interferometers are detected with quadrant-photo-
receivers (QPRs). They are digitized in analog-to-digital
converters (ADCs) driven by the PMCs. Phasemeters
extract the beatnote phases1 using digital phase-locked

1 In the current design, the phasemeters deliver the beatnote fre-
quencies with occasional phase anchor points.

loops (DPLLs), which are then downsampled to 4 Hz in
a multi-stage decimation procedure (DEC) and teleme-
tered to Earth.

A. The pseudorange and on-board delays

The pseudorange, denoted by Rτ̂iij , is commonly defined
as the difference between the SCET of the receiving SC
at the event of reception and the SCET of the emitting
SC at the event of emission [10]. It represents a combina-
tion of the light travel time between the emission at SC j
and the reception at SC i, and the differential SCET off-
set (see eq. A5). However, considering the complexity of
the LISA metrology system, this definition appears to be
rather vague: to what exactly do we relate the events of
emission and reception? Two specifications are required
here: we need to locate emission and reception, and we
need to define the actual events. It is convenient to con-
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sider emission and reception at the respective polarizing
beam splitters (PBSs) in front of the telescopes (denoted
PBS1 in [15]), and to treat the on-board signal propa-
gation and processing on both SC as on-board delays.
Thus, we clearly separate the pseudorange from on-board
delays. This definition is not unique, the events of emis-
sion and reception could be located elsewhere, assuming
that the on-board delays are defined accordingly. The
LISA optical links do not involve delta-pulse-like events.
In order to define the actual events of emission and re-
ception we, instead, use the instants when the light phase
changes at the beginning of the first PRN code chip. At
first glance, the PRN code might seem unfavorable for
the pseudorange definition, as PRN and carrier phase are
oppositely affected by the solar wind: the PRN phase is
delayed by the group-delay, while the carrier phase is ad-
vanced by the phase delay. However, these effects are at
the order of 10 pm (see appendix C), whereas our best
pseudorange estimates are at 0.1 mm accuracy. Conse-
quently, the solar wind dispersion can be neglected in
the pseudorange definition.

When expressing the interferometric measurements ac-
cording to this specified pseudorange definition, we need
to consider the excluded on-board signal propagation and
processing. For that purpose, we introduce two kinds of
delay operators by their action on a function f τ̂j . The
on-board delay operator describes delays due to on-board
signal propagation and processing and is defined on the
same SCET as the function it is acting on:

Dτ̂j
x f τ̂j (τ) = f τ̂j

(
τ − dτ̂jx (τ)

)
. (3)

x is a place holder for any on-board delay, e.g., Dpbs ← l
denotes the optical path length from the laser to the PBS
and Ddec the decimation filter group delay. The inter-
spacecraft delay operator is defined on a different SCET
than the function it is acting on and applies the pseudo-
range as delay:

Dτ̂i
ij f

τ̂j (τ) = f τ̂j
(
τ −Rτ̂iij (τ)

)
. (4)

For on-board delays that differ between carrier, PRN,
and sideband signals, we add the superscripts car, prn,
and sb, respectively. To trace the full path of a signal
from the distant SC, we need to combine the interspace-
craft delay operator for the interspacecraft signal propa-
gation and the SCET conversion (considered at the PBS
of the receiving SC) with on-board delay operators on
both SC. The application of a delay operator to another
time-dependent delay operator results in nested delays:

Dτ̂i
x Dτ̂i

ijf
τ̂j (τ) = f τ̂j

(
τ − dτ̂ix (τ)−Rτ̂iij

(
τ − dτ̂ix (τ)

))
.

(5)

For a constant delay operator Dx we can define the as-
sociated advancement operator Ax acting as its inverse:

Aτ̂j
x f τ̂j (τ) = f τ̂j

(
τ + dτ̂jx

)
, (6)

Ax Dx f
τ̂j (τ) = f τ̂j

(
τ − dτ̂jx + dτ̂jx

)
= f τ̂j (τ). (7)

For advancement operators associated to propagation de-
lays, e.g., the optical path length from the laser to the
PBS, we write

D−1
pbs ← l = Al ← pbs, (8)

the subscript underlines that the advancement operator
undoes the signal propagation. Below, we consider on-
board delays as constant or slowly time varying so that
their associated advancement operators are well-defined.

What does the specified pseudorange definition imply
for TDI in the context of on-board delays? In [6] the
pseudoranges are said to be the delays that are to be
applied in TDI in the alternative topology. To find out
whether this statement holds, we write down the ISI car-
rier beatnotes in the presence of on-board delays using
the above defined delay operators:

ISIτ̂iij (τ) = Dcar, τ̂i
dec ← bs

(
Dτ̂i

bs ← pbs Dτ̂i
ij Dτ̂j

pbs ← lΦ
τ̂j
ji (τ)

−Dτ̂i
bs ← l Φτ̂iij (τ)

)
. (9)

Dpbs ← l denotes the optical path length from the laser to
the PBS (before transmission), Dbs ← pbs is the optical
path length from the PBS to the recombining beam split-
ter of the interspacecraft interferometer (ISI BS) (after
reception), and Dbs ← l denotes the optical path length
from the local laser to the ISI BS. These optical path
lengths are in the order of 10 cm to 1 m [15]. Dcar

dec ← bs
denotes the delay from the ISI BS to the decimation fil-
ters, it differs for sideband and PRN signals. The dom-
inating part of Dcar

dec ← bs is the group delay of the deci-
mation filters in the order of 1 s. To identify the delay
we need to apply in TDI, it is convenient to split the de-
lays in eq. 9 into a common and an uncommon delay by
inserting Dτ̂i

bs ← l A
τ̂i
l ← bs = 1 in front of the bracket:

ISIτ̂iij (τ) = Ccar, τ̂i
i

(
Uτ̂i
ij Φ

τ̂j
ji (τ)− Φτ̂iij (τ)

)
, (10)

Ccar, τ̂i
i = Dcar, τ̂i

dec ← bs Dτ̂i
bs ← l, (11)

Uτ̂i
ij = Aτ̂i

l ← bs Dτ̂i
bs ← pbs Dτ̂i

ij Dτ̂j
pbs ← l. (12)

Ccar
i denotes the common delay of the local and the dis-

tant carrier phase. Uij is the uncommon delay that only
applies to the distant carrier phase. We refer to Ccar

i

and Uij as common and uncommon carrier delay, re-
spectively. To see how these delays affect the carrier
beatnotes, we expand eq. 10:

ISIτ̂iij (τ) = Φ
τ̂j
ji

(
τ − cτ̂ii − u

τ̂i
ij

(
τ − cτ̂ii

))
− Φτ̂iij

(
τ − cτ̂ii

)
. (13)

The common carrier delay causes a timestamping delay
in both the laser phases and the uncommon carrier delay
(essentially the pseudorange). It can be compensated by
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application of its associated advancement operator:(
Ccar, τ̂i
i

)−1

ISIτ̂iij (τ) = Uτ̂i
ij Φ

τ̂j
ji (τ)− Φτ̂iij (τ), (14)(

Ccar, τ̂i
i

)−1

=
(
Dτ̂i

bs ← l

)−1 (
Dcar, τ̂i

dec ← bs

)−1

=: Acar, τ̂i
l ← dec. (15)

TDI is blind to the common carrier delay, as it equally
delays the laser phases and the pseudorange. Hence, from
the perspective of TDI eq. 9 and eq. 14 are equivalent.
Nevertheless, the compensation of the common carrier
delay is important for the synchronization of the mea-
surements to TCB. We propose to calibrate Ccar

i on
ground, so that during operation it can be compensated
in an initial data treatment by application of its associ-
ated advancement operator (see eq. 14). After this initial
data treatment, the uncommon carrier delay constitutes
the delay that is to be applied in TDI in the alternative
topology. It is composed of the optical path length delay
from the distant laser source to the local ISI BS and the
optical path length advancement from the ISI BS to the
local laser source. Hence, it can be thought of as the dif-
ferential optical path length from both lasers to the ISI
BS. To construct the uncommon carrier delay, we need
to measure the optical path lengths laser to PBS, PBS
to ISI BS, and laser to ISI BS on ground, and we need
to measure the pseudorange during operation. The sec-
tions II B to II E cover the four pseudorange observables.
Before, we close this section with a few comments on the
common carrier delay.

Parts of the common carrier delay are slowly time vary-
ing. To analyze the origin of this time dependence we
decompose Ccar

i into

Ccar
i = Dcar

dec Dcar
dpll Ddpll ← abee Dcar

abee

Dabee ← qpr Dcar
qpr Dqpr ← bs Dbs ← l, (16)

these constituents are marked green in fig. 3. The domi-
nating contribution is by far the decimation filter group
delay Dcar

dec in the order of 1 s. It is constant and pre-
determined by the design of the decimation filters. The
group delays of the quadrant-photo-receiver Dcar

qpr and the
analog backend electronics2 Dcar

abee depend amongst oth-
ers on the beatnote frequency [16]. Hence, they change
over time and differ between carrier, sideband, and PRN
signals. Together with the cable delays Dabee← qpr and
Ddpll← abee they can amount to 10 m. The DPLL delay
Dcar

dpll depends on the time-dependent beatnote ampli-
tude. The higher this amplitude the smaller Dcar

dpll [2, 17].
Dqpr ← bs and Dbs ← l, for completeness, denote the op-
tical path lengths from the local laser to the QPR in
the order of 10 cm to 1 m [15]. We propose to individu-
ally calibrate all constituents of Ccar

i on ground. The

2 The analog backend electronics comprise analog signal amplifiers,
analog low-pass filters, and the ADC.

time-dependent ones should be calibrated for all combi-
nations of the time-dependent parameters. Hence, during
operation they can be constructed with the help of the
SC monitors, which provide the corresponding parameter
values, e.g., beatnote frequency and amplitude.

B. PRN ranging (PRNR)

A set of 6 pseudo-random noise (PRN) sequences
has been computed such that the cross-correlations and
the auto-correlations for nonzero delays are minimized.
These PRN codes are associated to the 6 optical links
in the LISA constellation. The PRN codes are generated
according to the respective PMCs and imprinted onto the
laser beams by phase-modulating the carriers in electro-
optical modulators (EOMs). In each phasemeter, DPLLs
are applied to extract the beatnote phases. The PRN
codes show up in the DPLL error signals since the DPLL
bandwidth of 10 kHz to 100 kHz is lower than the PRN
chipping rate of about 1 MHz. In a delay-locked loop
(DLL), these error signals are correlated with PRN codes
generated according to the local SCET. This correlation
yields a pseudorange measurement, we refer to it as PRN
ranging (PRNR) [7, 8].

We now derive the PRNR observation equation care-
fully taking into account on-board delays. We model the
path of the PRN code from the distant SC to the local
DLL by applying delay operators to the distant SCET:

Dprn, τ̂i
dll ← pbs Dτ̂i

ij Dprn, τ̂j
pbs ← pmc τ̂

τ̂j
j (τ). (17)

The two on-board delays can be decomposed into

Dprn
pbs ← pmc = Dpbs ← eom Deom ← prn

Dprn Dprn ← pmc, (18)
Dprn

dll ← pbs = Ddll D
prn
dpll Ddpll ← abee Dprn

abee Dabee ← qpr

Dprn
qpr Dqpr ← bs Dbs ← pbs. (19)

Dprn
pbs ← pmc consists of the cable delays from the PMC

to the EOM, the processing delay due to the PRN code
generation, and the optical path length from the EOM
to the PBS. All these delays are constant at the sensi-
tive scale of PRNR, so that we do not have to consider
delay nesting in Dprn

pbs ← pmc. We added the superscript
prn because this path is different for the sideband signal.
Dprn

dll ← pbs is explained in the next paragraph as part of
the PRN timestamping delay. At the DLL, the received
PRN codes are correlated with identical codes generated
according to the local SCET. We model this correlation
as the difference between the local SCET and the delayed
distant SCET (eq. 17), and we apply Dprn

dec to model the
group delay of the decimation filters applicable to PRN
ranging:

Dprn
dec

(
τ̂ τ̂ii (τ)−Dprn, τ̂i

dll ← pbs Dτ̂i
ij Dprn, τ̂j

pbs ← pmc τ̂
τ̂j
j (τ)

)
.

(20)
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To see how the on-board delays affect the PRNR we ex-
pand eq. 20 applying eq. 2:

Dprn
dec

(
τ̂ τ̂ii (τ)− τ̂ τ̂jj

(
τ − dτ̂idll ← pbs

−Rτ̂iij
(
τ − dτ̂idll ← pbs

)
− dτ̂jpbs ← pmc

))
= Dprn, τ̂i

dec ← pbs R
τ̂i
ij (τ) +Oprn

ij . (21)

The on-board delays cause a timestamping delay
Dprn

dec ← pbs, the PRN timestamping delay, and an offset
Oprn
ij , the PRNR offset:

Dprn
dec ← pbs = Dprn

dec Ddll D
prn
dpll Ddpll ← abee

Dprn
abee Dabee ← qpr Dprn

qpr

Dqpr ← bs Dbs ← pbs, (22)

Oprn
ij = dτ̂idll ← pbs + d

τ̂j
pbs ← pmc. (23)

The PRN timestamping delay has similar constituents as
the common carrier delay, they are marked pink in fig. 3.
However, most of them are frequency or amplitude de-
pendent. Therefore, they differ between carrier and PRN
signals. As for the common carrier delay, we propose to
individually calibrate all constituents of the PRN time-
stamping delay on ground before mission start. Hence,
during operation Dprn

dec ← pbs can be compensated in an
initial data treatment by application of its associated ad-
vancement operator Aprn

pbs ← dec. After that, the PRNR
observation equation including ranging noise and PRN
ambiguity can be written as:

Aprn, τ̂i
pbs ← dec PRNR

τ̂i
ij (τ) =Rτ̂iij (τ) +Oprn

ij +Nprn
ij (τ)

− aprn
ij (τ) · l. (24)

l denotes the finite PRN code length. We use 400 km
as a placeholder, the final value has not been decided.
The finite PRN code length leads to an ambiguity, aprn

ij

denote the associated ambiguity integers [8]. Nprn
ij is the

white ranging noise with an RMS amplitude of about 1m
at 4 Hz. This ranging noise is mainly due to shot noise
and PRN code interference [9]. The PRNR offset Oprn

ij
involves contributions on the emitter and on the receiver
side (see eq. 23), they are marked light blue in fig. 3. It
can amount to 10 m and more [17, 18]. Similar to the
common carrier and the PRN timestamping delay, we
propose to calibrate the PRNR offset on ground, so that
it can be subtracted in an initial data treatment.

C. Sideband ranging (SBR)

For the purpose of in-band clock noise reduction in the
INReP, a clock noise transfer between the SC is imple-
mented [9]: the 80 MHz PMC signals are up-converted to
νm
l = 2.400 GHz and νm

r = 2.401 GHz for left and right-
handed MOSAs, respectively (see fig. 2 for the definition

of left and right-handed MOSAs). The EOMs phase-
modulate the carriers with the up-converted PMC sig-
nals, thereby creating clock sidebands.3 We show below
that the beatnotes between these clock sidebands consti-
tute a pseudorange observable.

Considering on-board delays, the difference between
carrier and sideband beatnotes can be written as

ISIτ̂iij (τ)− ISIτ̂isb, ij(τ) = −Dsb, τ̂i
dec ← bs{

Dτ̂i
bs ← pbs Dτ̂i

ij

(
Dsb, τ̂j

pbs ← pmc ν
m
ji τ̂

τ̂j
j (τ) + νm

ji M
τ̂j
ji (τ)

)
−
(
Dsb, τ̂i

bs ← pmc ν
m
ij τ̂

τ̂i
i (τ) + νm

ij M
τ̂i
ij (τ)

)}
. (25)

Dsb
pbs ← pmc and Dsb

bs ← pmc are the delay operators asso-
ciated to the paths from the PMC to the PBS and to the
ISI BS, respectively. They can be decomposed into:

Dsb
(p)bs ← pmc = D(p)bs ← eom Deom ← pmc Dup, (26)

Dup is the up-conversion delay due to phase-locking a
2.40(1) GHz oscillator to the the 80 MHz PMC signal,
Deom ← pmc is the cable delay from the PMC to the
EOM. νm

ij is the up-converted USO frequency associated
to MOSAij . Since eq. 25 is expressed in the SCET, all
clock imperfections are included in τ̂ τ̂ii (τ). The modu-
lation noise M τ̂i

ij contains any additional jitter collected
on the path Dsb

(p)bs ← pmc, e.g., due to the electrical fre-
quency up-converters. The amplitude spectral densities
(ASDs) of the modulation noise for left and right-handed
MOSAs are specified to be below [6, 19]√

SMl
(f) = 2.5× 10−6m Hz−0.5

(
f

Hz

)−2/3

, (27)

√
SMr

(f) = 2.5× 10−5m Hz−0.5

(
f

Hz

)−2/3

. (28)

The modulation noise on left-handed MOSAs is one order
of magnitude lower, because the pilot tone used for the
ADC jitter correction, hence being the ultimate phase
reference, is derived from the 2.400 GHz clock signal.

To derive a pseudorange observation equation from the
sideband beatnote we expand eq. 25 using eq. 2. We ap-
ply the advancement operator Asb

pbs ← dec to avoid nested
delays in the pseudorange:

Asb, τ̂i
pbs ← dec

(
ISIτ̂iij (τ)− ISIτ̂isb, ij(τ)

)
= νm

ij Aτ̂i
pbs ← bs

(
Dsb, τ̂i

bs ← pmc τ̂
τ̂i
i (τ) +M τ̂i

ij

)
− νm

ji Dτ̂i
ij

(
Dsb, τ̂j

pbs ← pmc τ̂
τ̂j
j (τ) +M

τ̂j
ji (τ)

)
=
(
νm
ij − νm

ji

)
τ + νm

ji R
τ̂i
ij (τ)

+ νm
ji · d

τ̂j
pbs ← pmc − ν

m
ij ·
(
dτ̂ibs ← pmc − d

τ̂i
pbs ← bs

)
+ νm

ij Aτ̂i
pbs ← bs M

τ̂i
ij (τ)− νm

ji Dτ̂i
ijM

τ̂j
ji (τ). (29)

3 We focus on the first order upper clock sidebands, because the
lower sidebands contain almost the same information.



7

We subtract the 1 MHz ramp and then refer to eq. 29 as
sideband ranging (SBR). Taking into account that the
SBR phase is defined up to a cycle, the SBR can be
written as

SBRτ̂iij (τ) = Asb, τ̂i
pbs ← dec

(
ISIτ̂iij (τ)− ISIτ̂isb, ij(τ)

)
± 1 MHz τ

= νm
ji R

τ̂i
ij (τ) +Osb

ij +N sb
ij (τ)− asb

ij (τ). (30)

asb
ij denote the SBR ambiguity integers. Expressed as

length, the SBR ambiguity is 12.5 cm corresponding to
the wavelength of the GHz sidebands. The SBR offset

Osb
ij = νm

ji · d
τ̂j
pbs ← pmc

− νm
ij ·
(
dτ̂ibs ← pmc − d

τ̂i
pbs ← bs

)
(31)

can be thought of as the differential phase accumulation
of local and distant PMC signals on their paths to the
respective PBSs. Similar to the PRNR offset and the
various delays, the SBR offset should be measured on
ground. N sb

ij denotes the appearance of the modulation
noise in the SBR:

N sb
ij (τ) = νm

ij Aτ̂i
pbs ← bs M

τ̂i
ij (τ)− νm

ji Dτ̂i
ijM

τ̂j
ji (τ). (32)

This is a combination of left and right-handed modula-
tion noise, their RMS amplitudes are 2.9 × 10−5 m and
2.9 ×10−4 m, respectively. As shown in [6], it is possible
to combine carrier and sideband beatnotes from the RFI
to form measurements of the dominating right-handed
modulation noise, which can, thus, be subtracted from
the SBRs (see appendix B).

The advancement operator Asb
pbs ← dec (see eq. 29) is

associated to the delay operator Dsb
dec ← pbs, to which

we refer as sideband timestamping delay. The sideband
timestamping delay can be decomposed into:

Dsb
dec ← pbs = Dsb

dec Dsb
dpll Ddpll ← abee Dsb

abee

Dabee ← qpr Dsb
qpr Dqpr ← bs, (33)

these constituents are marked dark yellow in fig. 3. As
for the common carrier and the PRN timestamping delay,
we propose to individually calibrate all its constituents on
ground. The sideband timestamping delay can then be
compensated in an initial data treatment by application
of its associated advancement operator (see eq. 29).

In reality, the beatnotes are expected to be delivered
not in phase, but in frequency with occasional phase an-
chor points. Therefore, we consider the derivative of
eq. 30, we refer to it as sideband range rate ( ˙SBR):

˙SBR
τ̂i
ij (τ) = νm

ji Ṙ
τ̂i
ij (τ) + Ṅ sb

ij (τ). (34)

The sideband range rates are an offset-free and unam-
biguous measurement of the pseudorange time deriva-
tives. Phase anchor points enable their integration, so
that we recover eq. 30.

D. Time-delay interferometric ranging (TDIR)

TDI builds combinations of delayed ISI and RFI carrier
beatnotes to virtually form equal-arm interferometers, in
which laser frequency noise is suppressed. In the alter-
native TDI topology, the corresponding delays are given
by the pseudoranges in combination with the small opti-
cal path lengths between laser, PBS, and ISI BS (see the
uncommon carrier delay eq. 12). Time delay interferome-
tric ranging (TDIR) turns this approach upside-down: it
minimizes the power integral of the laser frequency noise
in the TDI combinations by varying the delays that are
applied to the beatnotes [12]. When doing this before
clock synchronization to TCB, i.e., with the beatnotes
sampled according to the respective SCETs, the uncom-
mon delays show up at the very minimum of that integral.
Thus, TDIR constitutes a pseudorange observable.

Below, we consider TDI in frequency [14]. We intro-
duce the Doppler-delay operator, which can be consi-
dered as the time derivative of the interspacecraft delay
operator (see eq. 4):

Ḋ
τ̂i
ij f

τ̂j (τ) =
(

1− Ṙτ̂iij (τ)
)
· f τ̂j

(
τ −Rτ̂iij (τ)

)
. (35)

We use the shorthand notation

Ḋ
τ̂i
ijk = Ḋ

τ̂i
ij Ḋ

τ̂j
jk (36)

to indicate chained interspacecraft Doppler-delay opera-
tors. In this paper we neglect on-board delays in the RFI
beatnotes. We start our consideration of TDIR from the
intermediary TDI variables ηij . These are combinations
of the ISI and RFI carrier beatnotes to eliminate the laser
frequency noise contributions of right-handed lasers. In
terms of the ηij the second-generation TDI Michelson
variables can be expressed as [20]

X τ̂1
2 =

(
1− Ḋ

τ̂1
121 − Ḋ

τ̂1
12131 + Ḋ

τ̂1
1312121

)(
ητ̂113 − Ḋ

τ̂1
13η

τ̂3
31

)
−
(

1− Ḋ
τ̂1
131 − Ḋ

τ̂1
13121 + Ḋ

τ̂1
1213131

)(
ητ̂112 − Ḋ

τ̂1
12η

τ̂2
21

)
(37)

Y τ̂22 (τ) and Z τ̂32 (τ) are obtained by cyclic permutation of
the indices. For later reference, we also state the first
generation TDI Michelson variables:

X τ̂1
1 = (1− Ḋ

τ̂1
121)

(
ητ̂113 − Ḋ

τ̂1
13η

τ̂3
31

)
− (1− Ḋ

τ̂1
131)

(
ητ̂112 − Ḋ

τ̂1
12η

τ̂2
21

)
. (38)

In the framework of TDIR, the delays applied in TDI
are parameterized by a model, e.g., by a polynomial
model. We minimize the power integral of the TDI com-
binations by varying the model parameters. TDIR at-
tempts to minimize the in-band laser frequency noise
residual. Therefore, we apply a band-pass filter to first
remove other contributions appearing out-of-band, i.e.,
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slow drifts and contributions above 1Hz that are domi-
nated by aliasing and interpolation errors. The TDIR
pseudorange observables for the second generation TDI
Michelson variables can then be expressed as

TDIRτ̂iij = min
Θ

1

T

∫ T

1
T

[
X̃ τ̂1

2

]2
+
[
Ỹ τ̂22

]2
+
[
Z̃ τ̂32

]2
dt,

(39)

Θ denotes the parameters of the delay model, the tilde
indicates the filtered TDI combinations.

The TDIR accuracy, we denote it by σtdir, increases
with the integration time T (length of telemetry dataset).
It is in the order of [12]:

σtdir(T ) ∝ 10 cm

√
d

T
, (40)

where d stands for day.

E. Ground-observation based ranging (GOR)

The mission operation center (MOC) provides orbit
determinations (ODs) via the ESA tracking stations and
MOC time correlations (MOC-TCs). When combined
properly, these two on-ground measurements form a
pseudorange observable referred to as ground-observation
based ranging (GOR). It has an uncertainty of about
50 km due to uncertainties in both the OD and the MOC-
TC. Yet, it yields valuable information. It is unambigu-
ous, hence it allows to resolve the PRNR ambiguities.

The OD yields information about the absolute posi-
tions and velocities of the three SC. New orbit deter-
minations are published every few days. For the posi-
tion and velocity measurements in the line of sight, ra-
dial (with respect to the sun) and cross-track direction
conservative estimations by ESA state the uncertainties
as 2 km and 4 mm s−1, 10 km and 4 mm s−1, 50 km and
5 cm s−1, respectively [21]. The MOC-TC is a measure-
ment of the SCET desynchronization from TCB. It is
determined during the telemetry contacts via a compari-
son of the SCET associated to the emission of a telemetry
packet and the TCB of its reception on Earth taking into
account the down link delay. We expect the accuracy of
the MOC-TC to be better than 0.1 ms (corresponds to
30 km). This uncertainty is due to unexact knowledge of
the SC-to-ground-station separation, as well as inaccura-
cies in the time tagging process on board and on ground.

As shown in appendix A, the pseudoranges can be ex-
pressed in TCB as functions of the reception time:

Rtij(t) = (1 + δ ˙̂τ tj (t)) · dtij(t) + δτ̂ tij(t). (41)

dtij denotes the light travel time from SC j to SC i, δτ̂ tij
the offset between the involved SCETs, and δ ˙̂τ tj the SCET
drift of the emitting SC with respect to TCB. The light

travel times can be expressed in terms of the ODs [22]:

dtod, ij(t) =
1

c
Ltij(t) +

1

c2
~Ltij(t) · ~vtj(t) +O(c−3), (42)

~Lij = ~ri − ~rj , Lij = |~Lij |, (43)

~ri denoting the position of the receiving SC, ~rj and ~vj
the position and the velocity of the emitting one, respec-
tively. The terms of order O(c−3) contribute to the light
travel time at the order of 10 m and are therefore negli-
gible compared to the large uncertainties of the orbit de-
termination. Combining the light travel times obtained
this way with the MOC-TC allows to write the GOR as

GORtij(t) = dtod, ij(t) + δτ̂ ttc, i(t)− δτ̂ ttc, j(t) +Ngor
ij (t).

(44)

δτ̂ ttc, i denotes the MOC-TC of SC i and N t
gor ∼ 50 km

the GOR uncertainty. Note that OD and MOC-TC, and
hence also the GOR, are given in TCB, while all other
pseudorange observables are sampled in the respective
SCETs. This desynchronization is negligible: the desyn-
chronization can amount up to 10 s after the ten year
mission time, the pseudoranges drift with 10 to 100 m s−1

(see central plot in fig. 5). Hence, neglecting the desyn-
chronization leads to an error in the order of 100 to
1000 m, which is negligible compared to the large GOR
uncertainty.

III. RANGING SENSOR FUSION

To combine the four pseudorange observables, we pro-
pose a three-stage ranging sensor fusion consisting of an
initial data treatment, a ranging processing, and cross-
checks. The ranging processing (central part of fig. 4)
refers to the ranging-related routines, which need to run
continuously during operation. These are the PRNR un-
wrapping, and the reduction of ranging and right-handed
modulation noise. Simultaneously, the PRNR ambigu-
ities and offsets are steadily crosschecked using TDIR
and GOR (lower part of fig. 4). Both ranging processing
and crosschecks rely on a preceding initial data treatment
(upper part of fig. 4), in which the various delays and off-
sets are compensated for. Ranging processing and cross-
checks can be categorized into four parts demonstrated
below: PRNR ambiguity, noise, PRNR offset, and SBR
ambiguity.

A. PRNR ambiguity

As part of the ranging processing, the PRNR needs
to be steadily unwrapped: due to the finite PRN code
length, the PRNR jumps back to 0 km when crossing
400 km and vice versa (see upper plot in fig. 5). These
jumps are unphysical but easy to track and to remove.
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SC Monitors & Ground Calibration ISI ISI  ISI
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PRNR ISI SBR

Reduce Ranging
NoisePRNR Unwrapping Subtract Right Handed

Modulation Noise

RFI, RFI

PRNR    

PRNR Ambiguity
Crosscheck (TDIR) MOC TC, OD PRNR Ambiguity

Crosscheck (GOR)

SBR Ambiguity
Resolution

ISI, RFI, TMI

PRNR Offset
Crosscheck (TDIR)

SBR

Resolve PRNR
Ambiguities

Figure 4. We illustrate the three-stage ranging sensor fusion. Processing elements are drawn with a black frame. In the upper
part we show the initial data treatment. Products of the on-ground calibration (the various delays and offsets) are drawn green.
Raw datasets are drawn yellow, after the initial data treatment we add a green frame. In the central part we show the core
ranging processing. Its output, the pseudoranges, are drawn with a blue frame. In the right box we show how the pseudoranges
are combined with the small optical path length to form the uncommon delays (the delays for TDI). In the lower part we show
simultaneous crosschecks of PRNR ambiguity, PRNR offset, and SBR ambiguity. Products of these crosschecks are drawn with
a red frame. We do not consider the on-board delays of the RFI and TMI beatnotes.

Apart from that, the PRNR ambiguities need to be cross-
checked regularly. For that purpose we propose two in-
dependent methods below.

The combination of PRNR and GOR enables an iden-
tification of the PRNR ambiguity integers aprn

ij :

GORtij(t)− PRNRτ̂iij (τ) = Ngor
ij + aprn

ij (τ) · 400 km

+Rtij(t)−R
τ̂i
ij (τ)−Oprn

ij −N
prn
ij (τ)︸ ︷︷ ︸

negligible

, (45)

aprn
ij (τ) = round

[
GORtij(t)− PRNRτ̂iij (τ)

400 km

]
, (46)

400 km is the value we assumed for the PRN code length.
However, this procedure only succeeds if |Ngor

ij | does not
exceed the PRN code’s half length, i.e., 200 km. Oth-
erwise, a wrong value for the associated PRN ambigu-
ity integer is selected resulting in an estimation error of
400 km in the corresponding link. Note that GORtij(t)
and PRNRτ̂iij (τ) are sampled according to different time
frames, but this desynchronization is negligible consider-
ing the low accuracy that needs to be reached here (see
section II E).

TDIR constitutes an unambiguous pseudorange ob-
servable too. It can be applied as an independent cross-

check of the PRNR ambiguities. We linearly detrend
the ISI, RFI, and TMI beatnotes. We then form the
first-generation TDI Michelson variables (see eq. 38) as-
suming constant delays. It is not necessary to apply
second-generation TDI, the first-generation already ac-
complishes the task (see fig. 8). The pseudoranges are ac-
tually drifting by 10 to 100 m s−1 mainly due to differen-
tial USO frequency offsets (see central plot in fig. 5).
Therefore, we choose a short integration time (we use
150 s), otherwise the constant delay model is not suffi-
cient. We use the GOR for the initial delay values of the
TDIR estimator. The TDIR pseudorange estimates can
then be used to crosscheck the PRNR ambiguity integers:

aprn
ij (τ) = round

[
TDIRτ̂iij (τ)− PRNRτ̂iij (τ)

400 km

]
. (47)

B. Noise reduction

For the ranging noise reduction in the ranging proces-
sing, we propose to combine PRNR and sideband range
rates in a linear Kalman filter (KF). The conventional
KF requires all measurements to be sampled according to
one overall time grid. However, in LISA each SC involves
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its own SCET. We circumvent this difficulty by splitting
up the system and build one KF per SC. Each KF only
processes the measurements taken on its associated SC,
so that the individual SCETs serve as time-grids.

The state vector of the KF belonging to SC 1 and its
associated linear system model can be expressed as

xτ̂1 = (Rτ̂112, R
τ̂1
13, Ṙ

τ̂1
12, Ṙ

τ̂1
13, R̈

τ̂1
12, R̈

τ̂1
13)ᵀ, (48)

xτ̂1k+1 =


1 0 ∆t 0 ∆t2

2 0

0 1 0 ∆t 0 ∆t2

2
0 0 1 0 ∆t 0
0 0 0 1 0 ∆t
0 0 0 0 1 0
0 0 0 0 0 1

 · x
τ̂1
k + wτ̂1k , (49)

k being a discrete time index. Eq. 49 describes the time
evolution of the state vector from k to k+1. wτ̂1k denotes
the process noise vector, its covariance matrix is given by

E
[
wk · wT

l

]
= δk, lW, (50)

W = diag
(

0, 0, 0, 0,

10−15s−1, 10−15s−1
)2

. (51)

δk, l denotes the Kronecker delta. Hence, eq. 50 indicates
that each component of wτ̂1k is a white random process.
The process noise covariance matrix we used in our im-
plementation is given in eq. 51. The measurement vector
and the associated observation model are given by

yτ̂1 = (PRNRτ̂112, PRNR
τ̂1
13,

˙SBR
τ̂1
12,

˙SBR
τ̂1
13)ᵀ, (52)

yτ̂1k =

1 0 0 0 0 0
0 1 0 0 0 0
0 0 2.401 GHz 0 0 0
0 0 0 2.400 GHz 0 0

 · xτ̂1k + vτ̂1k .

(53)

Eq. 53 relates the measurement vector to the state vec-
tor. vτ̂1k denotes the measurement noise vector, its co-
variance matrix is given by

E
[
vk · vT

l

]
= δk, l V, (54)

V = diag
(

3 · 10−9m s−1, 3 · 10−9m s−1,

5.2 · 10−13, 5.2 · 10−13
)2

. (55)

The measurement noise covariance matrix we used in our
implementation is given in eq. 55. The diagonal entries
denote the variances of the respective measurements. We
assume the measurements to be uncorrelated, so that the
off-diagonal terms are zero. The KFs for SC 2 and SC 3
are defined accordingly. In this manner, we remove the
ranging noise and obtain estimates for the six pseudo-
ranges and their time derivatives.

These pseudorange estimates are dominated by the
right-handed modulation noise, which is one order of

magnitude higher than the left-handed one. As pointed
out in [6], the right-handed modulation noise can be
subtracted (see appendix B): we combine the RFI mea-
surements to form the ∆Mi, which are measurements of
the right-handed modulation noise on SC i (see eq. B4).
For right-handed MOSAs, the local right-handed modu-
lation noise enters the sideband range rates and we just
need to subtract the local ∆Mi (see eq. B5b). For left-
handed MOSAs the Doppler-delayed right-handed modu-
lation noise from the distant SC appears in the sideband
range rates. Here we need to apply the Kalman filter esti-
mates for the pseudoranges and their time derivatives to
form the Doppler-delayed distant ∆Mi, which then can
be subtracted (see eq. B5a). We then process the three
KFs again, this time with the corrected sideband range
rates. Nowe they are limited by left-handed modulation
noise, so that the respective noise levels are lower. There-
fore, we need to adjust the measurement noise covariance
matrix for the second run of the KFs:

V cor = diag
(

3 · 10−9m s−1, 3 · 10−9m s−1,

7.4 · 10−14, 7.4 · 10−14
)2

. (56)

In this way we obtain estimates for the pseudoranges
and their time derivatives, which are limited by the left-
handed modulation noise.

C. PRNR offset

The PRNR offset is calibrated on ground before mis-
sion start. During operation, it is constructed with the
help of SC monitors and subtracted in the initial data
treatment.

TDIR can be used as a crosscheck for residual PRNR
offsets, as it is sensitive to offsets in the delays. To obtain
optimal performance we choose the second-generation
TDI Michelson variables to be ultimately limited by
secondary noises. In-band clock noise is sufficiently sup-
pressed, since we operate on beatnotes in total frequency
and make use of the in-band ranging information pro-
vided by the preceding noise reduction step. Accordingly,
the offset delay model is parameterized by

dτ̂iij (τ) = R̂τ̂iij (τ)−Oij , (57)

R̂τ̂iij denote the pseudorange estimates after noise reduc-
tion, Oij are the 6 offset parameters. As discussed in sec-
tion IID, computing TDI in total frequency units gene-
rally results in a variable with residual trends. Those
trends need to be removed prior to calculation of the
TDIR integral to be sensitive to residual laser noise in
band. This is achieved by an appropriate band-pass fil-
ter with a pass-band from 0.1 Hz to 1 Hz. The TDIR
integral then reads

Ôij = arg min
Oij

∫ T

0

X̃2(t) + Ỹ 2(t) + Z̃2(t) dt (58)
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where tilde indicates the filtered quantity.

D. SBR ambiguity

Phase anchor points, together with the pseudorange
estimates after noise reduction, enable the resolution of
the SBR ambiguity (see eq. 30):

asb
ij (τ) = round

[
νm
ji R̂

τ̂i
ij (τ)− SBRτ̂iij (τ)

]
. (59)

SBRτ̂iij are the phase anchor points, R̂τ̂iij the pseudorange
estimates after noise reduction. Thus, we obtain esti-
mates of the SBR ambiguity integers asb

ij . The resolu-
tion is successful if the pseudorange estimates are more
accurate than 6.25 cm (half the ambiguity). From the
perspective of noise reduction, this is feasible (see sec-
tion IV). Having resolved the SBR ambiguity, the pseu-
dorange estimates associated to the phase anchor points
serve as initial values for the integration of the side-
band range rates. The resolution of the SBR ambiguity
is worthwhile: SBR constitutes a very accurate pseudo-
range observable, as both its stability and accuracy are
limited by the modulation noise.

IV. RESULTS

In this section, we demonstrate the performance of our
implementation of the core ranging processing and the
crosschecks as proposed in section III (central and lower
part of fig. 4). We did not implement the initial data
treatment. Instead we assume that the common carrier,
PRN, and sideband timestamping delays are compen-
sated beforehand. We further consider offset-free PRNR
and apply TDIR as a crosscheck for residual offsets.

We use telemetry data simulated by LISA Instrument
[23] and LISANode [24] based on orbits provided by ESA
[21, 25]. We simulate phase anchor points for the SBR
(see eq. 30). The SCET deviations from the respective
proper times are modeled by

δτ̂i(τ) = δτ̂i, 0 + yi τ +
ẏi
2
τ2 +

ÿi
3
τ3 +

∫ τ

τ0

dτ̃ yεi (τ̃),

(60)

the δτ̂i, 0 denote the initial SCET deviations set to 1 s,
−1.2 s, and 0.6 s for SC 1, 2, and 3, respectively. The yi
model the PMC frequency offsets corresponding to linear
clock drifts. They are set to 10−7, −2× 10−7, and 0.6×
10−7 for SC 1, 2, and 3, respectively. ẏi ∼ 10−14 s−1

and ÿi ∼ 10−23 s−2 are constants modeling the linear
and quadratic PMC frequency drifts. The yεi denote the
stochastic clock noise in fractional frequency deviations,
the associated ASD is given by√

Syε(f) = 6.32× 10−14Hz−0.5

(
f

Hz

)−0.5

. (61)
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Figure 5. Upper plot: raw PRNR. The ambiguity jumps
at 0 km and 400 km can be seen. Central plot: ambiguous
PRNR, the jumps have been removed but the PRNR am-
biguities have not been resolved yet. The large slopes are
mainly due to USO frequency offsets. Lower plot: unambigu-
ous PRNR. The large differences between the links are caused
by differential SCET offsets.

We simulate laser frequency noise with an ASD of√
SṄp(f) = 30 Hz Hz−0.5, (62)

and ranging and modulation noise as specified in the sec-
tions II B and IIC. Furthermore, we consider test-mass
acceleration noise

√
SNδ(f) = 4.8× 10−15m s−2 Hz−0.5

√
1 +

(
0.4 mHz

f

)2

(63)

and readout noise

√
SNro(f) = A

√
1 +

(
2 mHz

f

)4

, (64)

where A = 6.35 × 10−12m Hz−0.5 for the ISI carrier and
A = 1.25×10−11m Hz−0.5 for the ISI sideband beatnotes.
For the readout noise we set a saturation frequency of
fsat = 0.1 mHz, below which we whiten. The orbit deter-
minations are simulated by LISA Ground Tracking with
the noise levels specified in section II.
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Figure 6. ASDs of the residual pseudorange estimates for link 12 (upper plot) and link 21 (lower plot). In blue, residual
PRNR. In orange, residual pseudorange estimates after ranging noise reduction. In green, residual pseudorange estimates after
subtraction of right-handed modulation noise. In red, residual SBR. Dashed black lines, right-handed modulation noise model.
Dash-dotted black lines, left-handed modulation noise model.

A. Ranging processing

Here we demonstrate the performance of our imple-
mentation of the core ranging processing for one day of
telemetry data simulated by LISA Instrument [23]. The
first ranging processing step covers the PRNR unwrap-
ping (see fig. 5). The upper plot shows the raw PRNR,
which jumps back to 0 km when crossing 400 km and vice
versa. These jumps are easy to track and to remove. In
our implementation we remove all PRNR jumps bigger
than 200 km. The central plot shows the unwrapped but
yet ambiguous PRNR. Here you can see PRNR drifts of
the order of 10 to 100 m s−1, which are mainly due to
differential USO frequency offsets. Inserting the PRNR
ambiguity integers obtained from GOR and TDIR yields
the unambiguous PRNR shown in the lower plot.

In the second step, we use the Kalman filter presented
in section III to reduce the ranging noise. Subsequently,
we subtract the right-handed modulation noise applying
the ∆M measurements constructed from the RFI beat-
notes (see appendix B). After noise reduction, we resolve
the SBR ambiguities combining the estimated pseudo-
ranges with the simulated SBR phase anchor points (see
eq. 59). We then integrate the sideband range rates, to
obtain unambiguous SBR.

In fig. 6, we plot the ASDs of the residual pseudorange
estimates (deviations of the estimates from the true pseu-
dorange values in the simulation) for link 12 (upper plot)
and link 21 (lower plot). Blue lines show the ASDs of
the residual PRNR, which are essentially the ASDs of
the white ranging noises. The residual pseudorange es-
timates after ranging noise reduction are plotted in or-
ange. They are obtained by combining the PRNR with
the sideband range rates. Therefore, they are limited by
right-handed modulation noise (dashed black line). In
green, we plot the residual pseudorange estimates after
subtraction of right-handed modulation noise with the
RFI beatnotes. Now the estimates are limited by left-
handed modulation noise (dash-dotted black line). The
residual SBR are drawn red, they are limited by left-
handed modulation noise as well, but involve a smaller
offset, since the SBR phase anchor points are more accu-
rate than PRNR after ranging noise reduction (see fig. 7).
In the case of left-handed MOSAs (see link 12) the RFI
beatnotes need to be time shifted to form the delayed
∆M measurements. We apply the time shifting method
of PyTDI [26], which consists in a Lagrange interpolation
(we use order 5). The interpolation introduces noise in
the high frequency band (see the bump at 2 Hz in the
upper plot) but this is out of band.
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Figure 7. Upper plot: residual pseudorange estimates after
ranging noise reduction. Second plot: residual pseudorange
estimates after subtraction of right-handed modulation noise.
Third plot: residual SBR estimates.

Fig. 7 shows the different residual pseudorange esti-
mates as time series. The upper plot shows the 6 residu-
al pseudorange estimates after ranging noise reduction,
the second plot after subtraction of right-handed modula-
tion noise. The third plot shows the SBR residuals. The
subtraction of right-handed modulation noise reduces the
noise floor, but it does not increase the accuracy of the
pseudorange estimates. The accuracy can be increased
by one order of magnitude through the resolution of the
SBR ambiguities. After ambiguity resolution, SBR con-
stitutes pseudorange estimates with sub-mm accuracy.

B. Crosschecks

Here we demonstrate the performance of our imple-
mentation of the crosschecks for PRNR ambiguity and
PRNR offset.

The PRNR ambiguities can be resolved using either
GOR (see eq. 46) or TDIR (see eq. 47). To evaluate the
performance of both methods, we simulate 1000 short
(150 s) telemetry datasets with LISA Instrument [23],

and one set of ODs and MOC-TCs for each of them. We
compute the GOR and TDIR pseudorange estimates for
each of the 1000 datasets. Fig. 8 shows the GOR residu-
als (first row) and the TDIR residuals (second row) in
km as histogram plots. We see that the GOR accuracy
depends on the arm, because we obtain more accurate
ODs for arms oriented in line of sight direction than for
those oriented cross-track. The PRNR ambiguity reso-
lution via GOR is successful for GOR deviations smaller
than 200 km. In the case of the links 23, 31, 13, and
32 all PRNR ambiguity resolutions via GOR are success-
ful. For each of the links 12 and 21, 2 out of the 1000
PRNR ambiguity resolutions fail. The GOR estimates
are passed as initial values to TDIR, which then reduces
the uncertainty by almost one order of magnitude (lower
plot of fig. 8), such that eventually all PRNR ambiguity
resolutions are successful.

TDIR can also be applied to estimate the PRNR off-
sets. Hence, it constitutes a cross-check of the on-ground
PRNR offset calibration. We simulate one year of teleme-
try data using LISANode [24]. We set the PRNR offsets
to 160.3 m, −210.2 m, 137.3 m, −250.3 m, −188.8 m, and
105.1 m for the links 12, 23, 31, 13, 32, and 21, respec-
tively. We divide the dataset into 1 day chunks (left
plots in fig. 9), 2 day chunks (central plots in fig. 9),
and 3 day chunks (right plots in fig. 9). In each par-
tition we apply the TDIR estimator presented in sec-
tion III C to each chunk in order to estimate the PRNR
offsets. This computation was parallelized and executed
on the ATLAS cluster at the AEI Hannover. In the up-
per part of fig. 9 we show the offset estimation residuals
for the three chunk sizes. The offset estimation accuracy
increases with the chunk size in agreement with the order
of magnitude estimate through eq. 40. In the lower part
of fig. 9 we plot the residual cumulative averages of the
PRNR offset estimates for the different chunk sizes. Here,
it can be seen that the TDIR estimator performs simi-
larly for the different chunk sizes. With the 3 day chunk
size we can estimate all PRNR offsets with an accuracy
of better than 20 cm after 10 days. The dashed-black
lines indicate 6.25 cm (half the SBR ambiguity). This is
the required PRNR offset estimation accuracy for a suc-
cessful SBR ambiguity resolution. With the 3 day chunk
size all offset estimation residuals are below these 6.25 cm
after 179 days.

V. CONCLUSION

The reduction of laser frequency noise in TDI crucially
depends on information about the pseudoranges. There
are four pseudorange observables each having advantages
and disadvantages. In this article, we first derived their
observation equations carefully taking into account am-
biguities, noise, and on-board delays, which cause offsets
and timestamping delays. We then proposed a three-
stage ranging sensor fusion (initial data treatment, ran-
ging processing, crosschecks, compare fig. 4) to combine
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Figure 8. PRNR ambiguity resolution via GOR (upper plots) and TDIR (lower plots). The histogram plots show the residual
GOR and TDIR pseudorange estimates for the different links.

the four pseudorange observables, such that we obtain
optimal pseudorange estimates.

We pointed out that the common carrier, PRN, and
sideband timestamping delays (see eqs. 16, 22, and 33),
as well as the PRNR and SBR offsets (see eqs. 23 and
26) need to be calibrated on ground, so that they can be
compensated in the initial data treatment. We further
derived that the small optical path lengths between laser
and PBS, PBS and ISI BS, and laser and ISI BS show
up in the uncommon delays (see eq. 12), which are to be
applied in TDI. We proposed to measure these optical
path lengths on ground, so that during operation they
can be combined with the pseudorange estimates to form
the uncommon delays.

We identified the processing steps, which need to be
performed continuously during operation. These are the
PRNR unwrapping, and the reduction of ranging and
right-handed modulation noise, we referred to them as
ranging processing. We implemented the ranging pro-
cessing numerically: we showed that the white ranging
noise can be reduced by combining the PRNR with the
sideband range rates in a KF. We split up the system and
implemented one KF per SC, such that the individual
SCETs served as KF time-grids. We further applied the

RFI beatnotes to subtract the right-handed modulation
noise. The pseudorange estimates we obtained this way
were at sub-cm accuracy. We showed that in combination
with phase anchor points they allow for the resolution of
the SBR ambiguity resulting in pseudorange estimates at
sub-mm accuracy.

We implemented crosschecks for the PRNR ambigui-
ties and offsets. We showed that both GOR and TDIR
allow for the resolution of the PRNR ambiguity. We
applied TDIR as a crosscheck for the PRNR offset cali-
bration and demonstrated its performance for one year
of telemetry data: after about 180 days all PRNR off-
set estimates reached an accuracy of better than 6.25 cm
allowing for the resolution of the SBR ambiguity.

In reality, the PRNR offsets are slowly time-varying.
The investigation of the PRNR offset estimation via
TDIR could be extended for linearly time varying PRNR
offsets. The delay model for the TDIR estimator would
then become (compare eq. 57):

dτ̂iij (τ) = R̂τ̂iij (τ)− (O0
ij +O1

ij · τ), (65)

The TDIR estimator would now have to fit the 12
parameters O0

ij and O1
ij . Apart from that, tone-assisted

TDIR [27] could be applied for the PRNR offset esti-
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ambiguity.

mation in order to reach faster convergence. As a fur-
ther follow-up investigation, time-varying on-board de-
lays and the associated SC monitors could be included
into the simulation, which would enable an inspection of
the feasibility of the initial data treatment as proposed in
section III. Furthermore, the ranging sensor fusion could
be included into the different INReP topologies. Apart
from that, the algorithms could be applied to real data
as, e.g., produced by the hexagon experiment [28], [29].
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Appendix A: Pseudoranges in TCB

The pseudorange can be expressed in TCB by writing
the SCETs of receiving and emitting SC as functions of
TCB evaluated at the events of reception and emission,
respectively:

Rtij(trec) = τ̂ ti (trec)− τ̂ tj (temit), (A1)

τ̂ ti denotes the SCET of SC i expressed as a function
of TCB. The TCB of emission can be expressed as the
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difference between the TCB of reception and the light
travel time from SC j to SC i, denoted by dtij :

Rtij(trec) = τ̂ ti (trec)− τ̂ tj
(
trec − dtij(trec)

)
, (A2)

in the following we drop the subscript, hence t refers to
the TCB of reception. The SCET can be expressed in
terms of the SCET deviation from TCB

τ̂ ti (t) = t+ δτ̂ ti (t), (A3)

which allows us to write eq. A2 as

Rtij(t) = δτ̂ ti (t) + dtij(t) + δτ̂ tj (t− dtij(t). (A4)

Expanding the emitting SC SCET deviation from TCB
around the reception TCB yields:

Rtij(t) = δτ̂ tij(t) +
(

1 + δ ˙̂τ tj (t)
)
· dtij(t), (A5)

δτ̂ tij(t) : = δτ̂ ti (t)− δτ̂ tj (t). (A6)

Hence, in a global time frame like TCB, the pseudorange
can be expressed in terms of the light travel time dtij and
the differential SCET offset δτ̂ tij .

Appendix B: Subtraction of right-handed
modulation noise

Following the notation in [6], we express the RFI beat-
notes in frequency:

RFIτ̂iij (τ) = ν τ̂iik(τ)− ν τ̂iij (τ), (B1)

RFIτ̂isb, ij(τ) = ν τ̂isb, ik(τ)− ν τ̂isb, ij(τ), (B2)

ν τ̂isb, ij(τ) = ν τ̂iij (τ) + νm
ij · (1 +M τ̂i

ij ). (B3)

In this article we do not consider on-board delays in
the RFI beatnotes. We combine the RFI carrier and
sideband beatnotes to form measurements of the right-
handed modulation noise:

∆M τ̂i
i :=

RFIτ̂iij − RFIτ̂isb, ij + 1 MHz

2

−
RFIτ̂iik − RFIτ̂isb, ik − 1 MHz

2
,

= νm
ij ·M

τ̂i
ij − ν

m
ik ·M

τ̂i
ik , (B4)

i, j, and k being a cyclic permutation of 1, 2, and 3.
We can now subtract the ∆M τ̂i

i measurements from the
sideband range rates (eq. 34). Thus, we reduce the right-
handed modulation noise, so that we are limited by the
one order of magnitude lower left-handed modulation

noise:
˙SBR

τ̂i
cor, ij = ˙SBR

τ̂i
ij − Ḋ

τ̂i
ij ·∆M

τ̂j
j (τ),

=νm
ji · Ṙ

τ̂i
ij + νm

ij

(
M τ̂i
ij − Ḋ

τ̂i
ij ·M

τ̂j
jk(τ)

)
, (B5a)

˙SBR
τ̂i
cor, ik = ˙SBR

τ̂i
ik(τ) + ∆M τ̂i

i (τ),

=νm
ki · Ṙ

τ̂i
ik + νm

ki

(
M τ̂i
ij + Ḋ

τ̂i
ikM

τ̂k
ki (τ)

)
, (B5b)

i, j, and k being a cyclic permutation of 1, 2, and 3.
Appendix C: Solar wind dispersion

The average solar wind particle density at the LISA
orbit is about 10 cm−3. Hence, at the scales of optical
wavelengths the solar wind plasma can be treated as a
free electron gas with the plasma frequency [30]

ν2
p =

ne e
2

4π2 ε0 me
≈ 8× 108 s−2, (C1)

ne denotes the electron density, e the elementary charge,
me the electron mass, and ε0 the the vacuum permittivi-
ty. Contributions from protons and ions can be neglected
as the plasma frequency is inversely proportional to the
mass. We describe the refractive index of the solar wind
plasma by the Appleton equation. Neglecting collisions
and magnetic fields it denotes

n(ν) =

√
1−

(νp
ν

)2

. (C2)

In a dispersive medium we need to distinguish between
phase and group velocity. The phase velocity is given by

vp(ν) =
c

n(ν)
=

c√
1−

(νp
ν

)2 ≈ c ·
(

1 +
1

2

ν2
p

ν2

)
, (C3)

where we applied the expansion for ν � νp, as we con-
sider optical frequencies. The product of group and phase
velocity yields c2. Consequently, the group velocity is

vg(ν) = c · n(ν) = c ·
√

1−
(νp
ν

)2

≈ c ·

(
1− 1

2

ν2
p

ν2

)
.

(C4)

Group and phase delay can now be written as

∆τg(ν) = L

 1

c ·
√

1−
(νp
ν

)2 − 1

c

 ≈ L ν2
p

2 c
· 1

ν2
, (C5)

∆τp(ν) = L


√

1−
(νp
ν

)2
c

− 1

c

 ≈ −L ν2
p

2 c
· 1

ν2
, (C6)

where L = 2.5 Gm denotes the LISA armlength. PRN
and sideband signals propagate at the group velocity,
hence they are delayed by the group delay:

∆τprn
g = ∆τg(281 THz± 1 MHz) ≈ 12.7 pm, (C7)

∆τ sb
g = ∆τg(281 THz± 2.4 GHz) ≈ 12.7 pm. (C8)

The phase delay is negative, because the phase velocity
is bigger than c. Therefore, the laser phase is advanced
with respect to a wave propagating in vacuum. For the
LISA carrier this phase advancement corresponds to

∆τp(281 THz) ≈ −12.7 pm. (C9)
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