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Abstract. We investigate the implications for cosmology of a phenomenological quantum
gravity approach based on thermodynamics. We analyze in detail the corresponding primor-
dial power spectrum. The considered modified cosmological scenario has similarities with
Loop Quantum Cosmology. Actually, one recovers the same effective background dynam-
ics by fixing the value of the free parameter of the modified approach. In particular, the
background experiences a bounce that solves the initial singularity. Adopting background-
dependent equations for the primordial perturbations like those derived in General Relativity,
the studied model can be considered a generalization of the dressed metric formalism in Loop
Quantum Cosmology. We focus our discussion on the spectrum of tensor perturbations. For
these perturbations, we compute the exact form of the background-dependent effective mass
that affects their propagation. Since there are background regimes in the modified cosmology
that are far away from slow-roll inflation, we do not have at our disposal a privileged vacuum
like the Bunch-Davies state. We then select the state of the perturbations by a recently
proposed criterion that removes unwanted oscillations in the power spectrum. Finally, we nu-
merically compute the spectrum of this vacuum and compare it with other spectra obtained
in the literature, especially with one corresponding to an alternative quantization prescription
in Loop Quantum Cosmology (called the hybrid prescription).

Keywords: Cosmological perturbation theory in GR and beyond, quantum cosmology, quan-
tum fields in curved spacetimes, physics of the early universe, loop quantum cosmology
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1 Introduction

One of the major challenges of modern physics is to construct a consistent and complete
quantization of General Relativity (GR). In this situation, the study of the phenomenology
expected to arise from such a theory of quantum gravity is particularly relevant to extract
information about potentially observable effects and put the existing candidates to the test.
In this context, the application to cosmology is certainly one of the most appealing fronts.

On different grounds, spacetime thermodynamics has attracted an increasing interest
lately. The first steps in this direction were taken with the development of black hole thermo-
dynamics in the 70s [1]. More recently these ideas have been extended to the derivation of the
Einstein equations, first starting with the thermodynamics of Rindler horizons [2] and then
using causal diamonds to rely on a more fundamental formulation [3]. This progress has led
to the innovative idea of encoding the gravitational dynamics into the thermodynamics [3, 4].
In the same direction, by modifying the thermodynamics of spacetime in order to include low-
energy quantum gravity effects, phenomenological equations have been put forward to correct
the gravitational dynamics [5]. This last proposal has been applied to a homogeneous and
isotropic, flat cosmological model, using the Friedmann-Lemaître-Robertson-Walker (FLRW)
metric [6]. It has been claimed that, in this way, one obtains a bouncing cosmology that shares
several properties with effective cosmological models of Loop Quantum Gravity (LQG) [7, 8].

Nowadays, LQG is one of the more solid candidates for the quantization of GR. It is a
nonperturbative quantization program that was originally based on a canonical formulation
of Einstein gravity in terms of the Ashtekar variables [7, 9]. These variables are a gauge
connection and a densitized triad, that capture the physical information about the spatial
geometry and its extrinsic curvature. Some of the most remarkable achievements of LQG
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have been attained by its application to cosmology, founding a discipline that is now called
Loop Quantum Cosmology (LQC) [8]. For instance, it has been shown that LQC solves the
cosmic singularity problem, replacing the “Big Bang” with a cosmic bounce, often referred to
as the “Big Bounce” [8, 10]. This bounce provides a quantum transition from a contracting
phase of the Universe to an expanding one.

To falsify any theory of quantum gravity, one should find a way to confront the pre-
dictions of that theory with observations. Among the most important observables at our
disposal in cosmology, we find the cosmic microwave background (CMB) [11]. The distri-
bution of temperatures and polarization anisotropies in the CMB can be well explained by
the existence of quantum primordial perturbations, which were originated in a vacuum state
and experienced the effects of an inflationary epoch [12]. If slow-roll inflation is a good ap-
proximation to describe that epoch, so that the background dynamics is quasi-de Sitter, then
there is a preferred vacuum state for the perturbations, namely the Bunch-Davies state [13].
This state can be characterized as the unique Hadamard state that is invariant under the de
Sitter isometry group [12, 13]. Therefore, invariance and a good behavior of the correlation
functions select a natural initial state in this case.

However, this scenario does not account for the existence of a pre-inflationary period
with radically different dynamics, such as the presence of a cosmological singularity in the
context of GR or a bounce in LQC. In these cases, the quantum cosmological perturbations
may be influenced by the dynamics of these earlier periods. For the affected perturbation
modes, the preference for a Bunch-Davies state as the natural vacuum becomes meaningless.
If those modes are observable today (e.g. because inflation was short-lived and they were not
swept away, far beyond the present Hubble horizon), we need some alternative criterion to
choose a suitable vacuum for them [14].

Selecting a vacuum is akin to fixing initial conditions. Different criteria to pick them
out then lead to distinct solutions for the perturbations and, consequently, to different power
spectra. To address this issue, several criteria have been proposed in the literature in order
to identify vacuum candidates. The simplest prescription is the use of adiabatic states [15].
Other proposals have explored the minimization of quantities related with the renormalized
stress-energy tensor [16–18], a minimal quantum uncertainty around the bounce compatible
with classical properties at the end of inflation [19, 20], a minimization of power oscillations
during a period that covers a kinetically dominated epoch (where the inflaton potential has
negligible contribution) and the beginning of inflation [21], or an asymptotic diagonalization
of the Hamiltonian of the perturbations in the ultraviolet sector [22–24]. In this work, we
adopt this last approach to determine our vacuum state.

It has been shown that the vacuum selected by this diagonalization also leads to spectra
with non-oscillating properties [22]. For this reason, it is often called the non-oscillating
vacuum state. Nonetheless, this nomenclature can create some confusion with the original
non-oscillating vacuum suggested by Martín-de Blas and Olmedo [21], which shows properties
that depend crucially on the kinetically dominated period where the background has classical
dynamics and the quantum effects are ignorable. This much more classical vacuum has been
studied in Refs. [25, 26], and bears a resemblance to the vacuum put forward in Ref. [27]
within pure GR. To make clear the distinction between these different vacua, and emphasize
in this way that we are interested in studying states that are well adapted to quantum effects,
we will refer to the non-oscillating (NO) vacuum determined by asymptotic Hamiltonian
diagonalization (AHD) [23] as the NO-AHD vacuum.

The aim of this paper is to compute the cosmological perturbations in the framework of a

– 2 –



quantum phenomenological gravity approach using the thermodynamics of spacetime. When
the free parameter of the approach is adjusted, the resulting effective dynamical equations
coincide with those obtained in LQC for the effective background. Moreover, adopting a line
of reasoning similar to that of GR, one obtains equations of motion for the perturbations that
reproduce those of the so-called dressed metric prescription for LQC [28–30]. This prescription
encapsulates the loop quantum effects on the background by dressing its metric with quantum
corrections and describing the resulting geometry in terms of a number of expectation values,
that can be evaluated on effective trajectories for sufficiently peaked quantum states [28–30].
We will obtain the solutions of the perturbations at the end of inflation analytically thanks to
a number of well-motivated approximations in the description of the background evolution.
The computation of the primordial power spectrum (PPS) then will become almost direct.
This spectrum can be compared with others found in the literature [31], especially with the
spectrum obtained in GR and with the spectrum associated with an alternative prescription
for the quantization of the perturbations in the framework of LQG, called hybrid LQC [32–
35]. This last prescription combines a loop quantization of the background geometry with
a Fock quantization of the perturbations, treating the union of these two ingredients as a
constrained gravitational system [32].

The structure of this paper is as follows. In Sec. 2 we very briefly review the key
ingredients of the modified cosmology derived from the thermodynamics of the spacetime,
pointing out its similarity with LQC. In Sec. 3, we introduce cosmological perturbations
paralleling the treatment in GR, and present dynamical equations for the perturbation modes
in this setting. The obstructions to solve analytically these dynamics of the perturbations,
lead us to suggest a division of their pre-inflationary and inflationary evolution into four
epochs. We approximate the background-dependent mass of the perturbations in each of
these epochs in such a way that we can derive the general solution for the perturbation
modes. We then dedicate Sec. 4 to the definition of the NO-AHD vacuum and its application
to determine the initial state of the perturbations. In Sec. 5, we calculate the power spectra,
discussing the main results and the differences with respect to the hybrid prescription for the
quantum dynamics of the perturbations in the framework of LQC. Finally, Sec. 6 contains
the conclusions. In the following, we use Planck units, setting G = c = ~ = 1.

2 Modified cosmology from thermodynamics

The modified gravitational equations that we consider are derived from a condition of entan-
glement equilibrium imposed on local causal diamonds, constructed at every spacetime point.
This condition has been shown to encode the gravitational dynamics [3]. The variation of
the total entropy defining the equilibrium condition is the sum of the variations of the mat-
ter entanglement entropy, δSm, and of the entanglement entropy of the horizon δSB, which
corresponds to the (modified) Bekenstein entropy [3, 5]. So, the condition is

δSB + δSm = 0. (2.1)

To study (low-energy) quantum modifications to the gravitational dynamics, one considers
the leading order correction to the Bekenstein entropy, given by a term that is logarithmic in
the horizon area A:

SB =
kBA

4
+ 30πDkB ln

(
A
A0

)
+O

(
kB

A

)
, (2.2)

– 3 –



where kB is the Boltzmann constant and A0 is an arbitrary constant with dimensions of
area. Besides, D ∈ R is a real dimensionless parameter that depends on the specific quantum
gravity theory employed to calculate the modifications to the Bekenstein entropy and that we
treat as a free parameter in the rest of our discussion. This logarithmic form of the entropy
correction is nearly universal inasmuch as it is predicted by a variety of candidate theories
of quantum gravity (e.g. string theory [36], LQG [37], or AdS/CFT correspondence [38]), as
well as by many model-independent phenomenological arguments [39–42] and entanglement
entropy calculations [43].

The matter entanglement entropy crossing the horizon for small perturbations can be
expressed in terms of a local modular Hamiltonian proportional to the stress-energy tensor
(see Ref. [3] for details). Substituting expressions for both entropy variations into Eq. (2.1),
one can find the traceless modified equations for the gravitational dynamics,

Sµν −DSµλSλν +
D

4

(
RκλR

κλ − 1

4
R2

)
gµν = 8π

(
Tµν −

1

4
Tgµν

)
, (2.3)

where Sµν = Rµν − Rgµν/4, and Rµν and Tµν represent, respectively, the Ricci and stress-
energy tensors [5].

One can apply these general equations to the case of an FLRW cosmology with a (free)
scalar field to obtain the modified Raychaudhuri equation

Ḣ − k

a2
−D

(
Ḣ − k

a2

)2

= −4πφ̇2, (2.4)

where H = ȧ/a is the Hubble parameter and k is the spatial curvature. Compared to
the standard equation for FLRW in GR, one recognizes an extra term proportional to the
correction parameter D. Therefore, the limit D → 0 reproduces the Raychaudhuri equation
in the classical model [6].

Assuming local energy conservation, restricting the attention to the spatially flat case
for simplicity, and using perturbative methods (with perturbative corrections truncated at
first subleading order), one reaches a modified Friedmann equation [6],

H2 =
4π

3
φ̇2
[
1− 2πDφ̇2

]
. (2.5)

This is the dynamical equation that we assign to our cosmological FLRW model in this work.
An analogous equation has also been found in LQC. The effective dynamics for our flat FLRW
model in LQC can be obtained by setting DLQC = (4πρc)

−1, where ρc represents the upper
bound on the energy density of the inflaton, which is reached at the bounce in LQC. This
bound is ρc = 3/(8πγ2∆), where γ is the so-called Immirzi parameter [44], for which we take
the usual value γ ≈ 0.2375 motivated by black hole entropy arguments, and ∆ = 4

√
3πγ is

the area gap, which provides the minimum nonzero eigenvalue allowed by the spectrum of
the area operator in LQG [9].

From the modified Friedmann equation (2.5) (and allowing for a unspecified value1 of
D > 0), one can find the solution for the scale factor

a6 = a6
B

[
1 +

6

D

(
t− tB

)2
]
, (2.6)

1In the following we consider only cases with D > 0, since they allow for bouncing cosmologies in the
adopted perturbative approach.
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where aB is the minimum and tB is the value of the proper time at the bounce. The Hubble
parameter becomes

H(t) =
t− tB

3(t− tB)2 +D/2
. (2.7)

The appearance of a minimum value aB for the scale factor, with the corresponding resolution
of the “Big Bang”, indicates the occurrence of a bounce, where a contracting phase of the
Universe (H < 0) joins an expanding one (H > 0), which is the branch of observational
interest. Notice that the value of aB can always be set equal to one by rescaling the scale
factor in our flat FLRW cosmology.

3 Cosmological perturbations

In this section, we will introduce dynamical equations for cosmological perturbations in the
analyzed modified cosmology. In the standard cosmological model, the Universe experiences
an inflationary period, which for simplicity we assume that is driven by a scalar field, which
we can view as the inflaton. This accelerated expansion amplifies the quantum fluctuations in
vacuo, so that they become macroscopic cosmological fluctuations [45]. We consider a simpli-
fied scenario where the background dependence of the perturbation equations in GR remains
valid. Therefore, the effective background-dependent mass that affects the perturbations has
the same form as in Einstein gravity. However, instead of using the FLRW background of GR,
we use the modified background presented in the previous section. In the context of LQC,
a similar scenario has been proposed to describe the modified dynamics of the perturbations
owing to the quantum corrections that dress effectively the background geometry. In general,
the quantum effects on the background are encapsulated in a number of expectation values,
that for highly peaked states can be obtained by evaluation on the effective trajectory of the
peak. This proposal is known in LQC as the dressed metric prescription [28–30]. From this
perspective, we are going to consider cosmological perturbations propagating on a geometry
that is dressed with corrections of either thermodynamic or quantum origin.

For a flat FLRW spacetime, and regimes where we can ignore the inflaton potential,
treating this scalar field φ as massless, the action of this field becomes

S =

∫
d4x
√
−g
(
− 1

2
∂µφ ∂

µφ
)

=

∫
d4x a4

[ 1

2a2
φ′2 − 1

2a2
(~∇φ)2

]
, (3.1)

where we allow for an inhomogeneous dependence, that perturbs the homogeneous background
solution. Introducing the rescaling u = aφ, we get in conformal time τ (with the prime
denoting the derivative with respect to it)

S =
1

2

∫
dτd3x

[
u′2 − (~∇u)2 +

a′′

a
u2
]

=
1

2

∫
dτd3x

[
u′2 − (~∇u)2 − s(t)u2

]
. (3.2)

Here, s(t) = −a′′

a can be regarded as a background-dependent, and hence time-dependent,
effective mass. The scalar field u can be quantized using standard procedures of quantum
field theory. We promote it into a quantum field û of the form [45]

û(τ, ~x) =
1

(2π)3/2

∫
d3k
[
â~ku~k(τ)ei

~k~x + â†~k
u∗~k(τ)e−i

~k~x
]
, (3.3)
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where â†~k and â~k are creation and annihilation operators associated with the Fourier mode of

wavevector ~k and fulfill the commutation rules[
â~k, â~k′

]
=
[
â†~k
, â†~k′

]
= 0,

[
â~k, â

†
~k′

]
= δ(3)(~k − ~k′). (3.4)

The function u~k must satisfy the following classical equation in Fourier space

u′′~k +
(
k2 + s(t)

)
u~k = 0. (3.5)

This equation is known as the Mukhanov-Sasaki equation when the background-dependent
mass contains contributions of the inflaton potential [46–48]. In our case, nonetheless, we have
ignored those contributions for simplicity, describing the inflaton as a massless field. This is
a helpful abstraction that can be maintained in all epochs where the energy density of the
inflaton is dominated by its kinetic part. On the other hand, even though the perturbations
of the inflaton are of scalar type, because this is the nature of the field, their dynamics
reproduce the evolution that one would find for tensor perturbations (see e.g. Ref. [49] in an
LQC context), since these are not affected by the potential. Owing to this, our simplification
leads in practice to the consideration of dynamical equations and PPS that correspond to
tensor perturbations.

To confront predictions of different models with observations, the CMB is one of the
better cosmological observables at our disposal. For instance, by measuring the temperature
anisotropies in the sky we obtain the two-point function of the temperature distribution,
which can be related to the angular distribution of the scalar perturbations, distribution that
depends directly on the PPS of the Mukhanov-Sasaki field u [45]. In this manner, the two-
point functions play a key role for the comparison of predictions and observations. For the
considered scalar field φ, these correlation functions on a vacuum |0〉 are

〈0|φ̂( ~x1)φ̂( ~x2)|0〉 = 〈0| 1

a2
û( ~x1)û( ~x2)|0〉

=
1

a2(2π)3

∫
d3k d3k′〈0|

[
â~ku~k(τ)ei

~k ~x1 + â†~k
u∗~k(τ)e−i

~k ~x1

]
×
[
â~k′u

′
~k
(τ)ei

~k′ ~x2 + â†~k′
u∗~k′(τ)e−i

~k′ ~x2

]
|0〉

=
1

(2π)3

∫
d3k
|u~k|

2

a2
ei
~k( ~x1− ~x2) =

∫
d3kei

~k( ~x1− ~x2) PT(k)

256πk3
, (3.6)

where we have used the commutation relations satisfied by the creation and annihilation
operators, and we have introduced the PPS, PT(k), given by

PT(k) =
32k3

π2

|u~k|
2

a2
. (3.7)

This PPS depends on the background scale factor and on k, rather than on ~k, because Eq.
(3.5) implies that the dynamics of the modes u~k depends just on their wavenumber, but not
on the direction of the wavevector. We will make this fact manifest by changing our notation
for the modes from u~k to uk in the following. Besides, all quantities in the above formula must
be evaluated at the end of inflation, where the PPS is defined. To compute this spectrum,
we then need to integrate the dynamical equations of the perturbations starting with their
initial data, and determine in this way the mode solution uk.
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3.1 Effective mass in the modified cosmological scenario

In this subsection, we will compute the effective mass of the perturbations. At leading order
in perturbation theory, the equations of motion for our gauge-invariant perturbations in GR
take the form [45, 50]

u′′k +
(
k2 + s(t)

)
uk = 0, (3.8)

where uk denotes the Fourier coefficient of the mode with wavenumber k, and we recall that
s(t) = −a′′/a is the background-dependent, effective mass. We assume the validity of these
equations even if the scale factor a does not follow the dynamical evolution corresponding
to GR, but instead evolves according to the modified cosmological dynamics. To obtain the
explicit expression of the equations of the perturbations, we have to compute the effective
mass in conformal time, using the scale factor (2.6) that we found by solving the modified
Friedmann equation (2.5). In this way, we obtain

s(t) =
2a2

B

D1/3

2(t− tB)2 −D
[6(t− tB)2 +D]5/3

. (3.9)

However, the above formula is given in proper time t, while what we need to know is the
effective mass in terms of the conformal time.

The relationship between the cosmic and conformal time (considering D > 0) is

η − ηB =

∫ t

tB

dt

a(t)
=

(t− tB)

aB
2F1

(1

6
,
1

2
;
3

2
;−6(t− tB)

D

)
. (3.10)

The appearance of the hypergeometric function 2F1 does not allow for an explicit inversion,
preventing the derivation of an analytically tractable expression for the effective mass. This
makes impracticable the resolution of Eq. (3.8) for the perturbations. To circumvent this
obstruction, we will propose below an approximation for the considered, time-dependent
effective mass. In addition, we will incorporate the effects of inflation in a simplified manner
by including a period of de Sitter expansion. In total, we will divide the evolution of the
perturbation modes into four epochs, each of them characterized by a different background
behavior and its corresponding effective mass. To connect these different epochs, we will
demand continuity up to the first derivative on the background scale factor, as well as on all
of the perturbation modes. These requirements will fix the matching of the solutions at the
end times of the consecutive epochs.

The first epoch corresponds to the period with important modifications with respect to
GR that result in a bounce of the background geometry. In this period, the effective mass can
be approximated by a Pöschl-Teller potential plus the addition of a constant term [31]. After
this initial interval, we will consider a kinetically dominated epoch in which the background
can be accurately described using GR, with matter given by a massless scalar field [14, 27].
To achieve the best possible approximation, we will introduce a transition interval where
the effective mass is constant. This interval will be followed by a genuine period of kinetic
dominance. As the scalar field gradually loses its kinetic energy, it starts to feel the inflaton
potential, which finally becomes dominant, making way to an inflationary phase. To simplify
the description of this last epoch, we will adopt a de Sitter expansion, as we commented
above. The analytic expressions of the effective mass in each of these epochs is as follows.

• First approximation: Pösch-Teller potential. This first epoch covers an interval
[tB, t0], where tB is the proper (or cosmic) time at the bounce. The Pöschl-Teller
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potential with an added constant that is used to approximate the effective mass in this
interval has the form

s
(t)
PT(η0) =

U0 − v0

cosh2
(
α(η − ηB)

) + v0. (3.11)

Here, U0, v0, and α are just constants. To determine them, we use the exact effective
mass given by Eq. (3.9). We choose three specific moments: The bounce (t = tB), the
instant where the exact effective mass becomes null (tnull =

√
D/2+tB), and the instant

where the exact effective mass has a maximum, that we choose as the endpoint of the
interval (t0 =

√
3D/2 + tB). We then require that the Pösch-Teller and the effective

masses coincide at these three values of the time t.

From the condition at the bounce, we obtain the value U0 = −2/D. By considering
the other two conditions, we derive two equations that we solve numerically to fix the
values of v0 and α. The background evolves using Eqs. (2.6) and (2.7).

• Second approximation: constant effective mass. This epoch covers an interval
(t0, t

′
0), with an end point t′0 that will be specified below. This epoch has a constant

effective mass for the perturbations. This constant mass equals the value of the Pösch-
Teller approximation at the matching time t0. Thus

s
(t)
0 (η) =

U0 − v0

cosh2
(
α(η0 − ηB)

) + v0 = m0, (3.12)

where η0 is the conformal time corresponding to t0. The evolution of the background in
this period is governed by the Friedmann equation corresponding to kinetic dominance
(in Fig. 1, we can see that the relative error in the background between the modified
cosmology and the classical cosmology in GR becomes negligible). Therefore, the scale
factor adopts the form

aclass(t) = aR

(√
12π(t− tR)

)1/3
. (3.13)

Here, aR and tR are two constants chosen to ensure continuity up to the first derivative
at the matching time t = t0, where we have in particular a(t0) = a0. In this way, we
get

a0 = aR

(√
12π(t0 − tR)

)1/3
= aB

[
1 +

6

D
(t0 − tB)2

]1/6

, (3.14)

and tR = tB −D/[6(t0 − tB)].

• Third approximation: kinetic dominance in GR. This epoch covers an interval
[t′0, ti]. The end time ti will be estimated later on, and will be identified with the onset
of inflation. In this period, the background and the effective mass can be taken as those
corresponding to kinetic dominance in GR. Thus, the effective mass is

s
(t)
class =

4πa2
R

3

(√
12π(t− tR)

)−4/3
. (3.15)
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Figure 1. Top left: evolution of the scale factor in the modified cosmology (blue) and in GR for
kinetic dominance (red). We have set the value of the scale factor at the bounce equal to one. Top
right: evolution of the Hubble parameter in the modified cosmology (blue) and in GR for kinetic
dominance (red). The green vertical lines separate the different epochs. In the bottom, we display
the respective relative errors (in absolute value) with respect to the average of the two compared
quantities.

To obtain the effective mass in conformal time, we compute first the relationship between
the proper and conformal times

η − η0 =
1

2aRH0

[(√
12π(t− tR)

)2/3
−
(
a0

aR

)2
]
. (3.16)

We have called H0 =
√

4π/3. This relationship leads to

s
(t)
class(η) =

1

4

[
(η − η0) +

(
a2

0

2a3
RH0

)]−2

. (3.17)

This epoch starts when the effective mass of this kinetically dominated regime becomes
equal to the value of the constant effective mass of the preceding epoch, at a time η′0
that is therefore given by

s
(t)
class(η

′
0) =

1

4

[
(η′0 − η0) +

(
a2

0

2a3
RH0

)]−2

=
U0 − v0

cosh2 (α(η0 − ηB))
+ v0. (3.18)

• Fourth approximation: de Sitter inflation. This last epoch covers an interval
(ti,∞). Its end point has been taken at infinity, but we can equally take any finite
time where inflation has managed to freeze all the considered perturbation modes. In
the literature of LQC, the conformal time ηi is commonly set equal to ηi ≈ 1600 for
phenomenological reasons, since this is the typical value found in background solutions
that allow for sufficient inflation while maintaining observable quantum modifications
in the PPS [14, 31, 51]. After the kinetically dominated epoch, an inflationary period
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begins. For the sake of simplicity, we will consider that the transition between these
two epochs is instantaneous, and we will describe the inflationary period as a de Sitter
expansion, driven by a constant inflaton potential that plays the role of a cosmological
constant [12, 45]. This constant can be identified (modulo a global factor) with the
square of the Hubble parameter at the time ηi when the inflationary epoch starts. The
corresponding scale factor is

adS(η) =
[
a−1
i −HΛ(η − ηi)

]−1
, (3.19)

where HΛ = Hclas(ηi) and ai = aclas(ηi), so that the scale factor is continuous up to its
first derivative. The effective mass of the perturbations becomes

s
(t)
dS(η) = −2H2

Λ

[
a−1
i −HΛ(η − ηi)

]−2
. (3.20)

In order to check the consistency of our approach, we display in Fig. 2 the effective mass
for the first three epochs compared with the exact, background-dependent effective mass given
by Eq. (3.9), as well as the relative error between them. It is clear that the approximation
works very well (see e.g. the discussion in Ref. [31]), with a relative error that is consistently
below 15%.

Figure 2. Top: evolution of the exact effective mass (blue) and of the approximated effective mass
(red) with 4 different epochs. The green vertical lines separate these epochs. Bottom: relative error
in the effective masses.

3.2 Solution to the mode equation

In this subsection, we will solve the equations of motion of the perturbation modes in the
different epochs of the evolution.
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3.2.1 Pösch-Teller

The dynamical equation for the modes in the Pösch-Teller epoch can be written using Eq.
(3.11) as

u′′k +

[
k̃2 +

α2λ(λ− 1)

cosh2 α(η − ηB)

]
uk = 0, (3.21)

where λ is defined by U0 − v0 = α2λ(λ − 1) and k̃2 = k2 + v0. We introduce a new variable
x and a mode function νk̃(x) given by [52]

x(η) =
tanhα(η − ηB) + 1

2
=
[
1 + e−2α(η−ηB)

]−1
, (3.22)

νk̃(x) = x−rk̃(1− x)−sk̃uk(x) , (3.23)

where rk̃ and sk̃ are

rk̃ =
ik̃

2α
, sk̃ = − ik̃

2α
. (3.24)

Therefore, Eq. (3.21) becomes

x(1− x)
d2νk̃
dx2

+

[
ik̃

α
− 2x+ 1

]
dνk̃
dx

+ λ(λ− 1)νk̃ = 0. (3.25)

Comparing this with the general form of a hypergeometric equation,

x(1− x)
d2νk̃
dx2

+ [c− (a+ b+ 1)x]
dνk̃
dx
− abνk̃ = 0, (3.26)

we see that, in our case, a = λ, b = 1− λ, and c = i(k̃/α) + 1.
The general solution to Eq. (3.26) is a linear combination of two hypergeometric func-

tions 2F1(a, b; c;x) and x1−c
2F1(a− c+ 1, b− c+ 1; 2− c;x) (provided that c is not an integer

[53]). Therefore, the general solution of our dynamical equation (3.21) is

uk = Ak

(
x

1− x

)ik̃/2α
2F1

(
λ, 1− λ;

ik̃

α
+ 1;x

)

+ Bk [x(1− x)]−ik̃/2α 2F1

(
λ− ik̃

α
, 1− λ− ik̃

α
; 1− ik̃

α
;x

)
, (3.27)

where Ak and Bk are arbitrary constants.

3.2.2 Constant effective mass

Let us consider now the epoch when the background dynamics is in a kinetically dominated
regime and the effective mass of the perturbations can be approximated by a constant. From
Eq. (3.12), the dynamical equations of the perturbation modes adopt the form

u′′k +
(
k2 +m0

)
uk = 0, (3.28)

where m0 is the constant value of the effective mass. The general solution to this mode
equation can be written as

uk(η) = αke
iκη + βke

−iκη, (3.29)
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where κ =
√
k2 +m0.

To fix the constants αk and βk, we use the continuity up to the first derivative of the
perturbation in the matching time with the Pösch-Teller epoch. In this way, we obtain

αk =
e−iκη0

2κ

[
κuk(η0)− iu′k(η0)

]
, (3.30)

βk =
eiκη0

2κ

[
κuk(η0) + iu′k(η0)

]
. (3.31)

3.2.3 Kinetic dominance

In this epoch, the background continues in a kinetically dominated regime, while the effective
mass of the perturbation changes according to the standard dependence on the background
found in GR (3.17). The mode equations become

u′′k +

[
k2 +

1

4

(
(η − η0) +

(
a2

0

2a3
RH0

))−2
]
uk = 0. (3.32)

We recall that H0 =
√

4π/3. Let us introduce the variables ȳ = η − η0 + a2
0/(2a

3
RH0) and

x̄ = kȳ, together with the function vk = ȳ−1/2uk. We then get

d2vk
dx̄2

+
1

x̄

dvk
dx̄

+ vk = 0. (3.33)

This corresponds to a Bessel differential equation of order ν = 0. Therefore, the general
solution to the mode equation can be expressed in terms of Hankel functions in the compact
form

uk(ȳ) =

√
πȳ

4

[
CkH

(1)
0 (kȳ) +DkH

(2)
0 (kȳ)

]
. (3.34)

To fix the constants Ck and Dk, we use again the continuity of the perturbations up to
their first time derivative at the matching point with the previous epoch. These conditions
lead to

Ck =
i

4

[
αke

iκη′0

(√
π

ȳ′0

(
1− 2iκȳ′0

)
H

(2)
0 (kȳ′0)− 2

√
πȳ′0k

2H
(2)
1 (kȳ′0)

)

+ βke
−iκη′0

(√
π

ȳ′0

(
1 + 2iκȳ′0

)
H

(2)
0 (kȳ′0)− 2

√
πȳ′0k

2H
(2)
1 (kȳ′0)

)]
, (3.35)

Dk = − i
4

[
αke

iκη′0

(√
π

ȳ′0

(
1− 2iκȳ′0

)
H

(1)
0 (kȳ′0)− 2

√
πȳ′0k

2H
(1)
1 (kȳ′0)

)

+ βke
−iκη′0

(√
π

ȳ′0

(
1 + 2iκȳ′0

)
H

(1)
0 (kȳ′0)− 2

√
πȳ′0k

2H
(1)
1 (kȳ′0)

)]
, (3.36)

where ȳ′0 = η′0 − η0 + a2
0/(2a

3
RH0), aR is the constant introduced in Eq. (3.14), and we recall

that κ =
√
k2 +m0.
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3.2.4 de Sitter inflation

Finally, we will describe the inflationary epoch with a de Sitter background, while the effective
mass of the perturbation modes is given by the corresponding mass in GR:

s
(t)
dS = −2H2

Λ

[
a−1
i −HΛ(η − ηi)

]−2
. (3.37)

We introduce again variables of the form y̆ = ηi − η + 1/(aiHΛ) and x̆ = ky̆, together with
the function wk = y̆−1/2uk, to rewrite the mode equations as a Bessel equation of order 3/2

d2wk
dx̆2

+
1

x̆

dwk
dx̆

+

[
1− 9

4x̆2

]
wk = 0. (3.38)

Then, in terms of the conformal time, the general solution for the perturbation modes is [12]

uk = Gk
eik(η−ηi−a−1

i H−1
Λ )

√
2k

[
1 +

i

k(η − ηi − a−1
i H−1

Λ )

]

+ Fk
e−ik(η−ηi−a−1

i H−1
Λ )

√
2k

[
1− i

k(η − ηi − a−1
i H−1

Λ )

]
. (3.39)

To fix the constants Gk and Fk, we use again the requirement of continuity up to the
first time derivative with respect to the solution in the preceding epoch. In this way, we
conclude that

Fk =
e−ik/aiHΛ

4

√
πk

aiHΛ

[
Ck

[
H

(1)
0

(
k

2aiHΛ

)
−H(1)

1

(
k

2aiHΛ

)(
i+

aiHΛ

k

)]

+ Dk

[
H

(2)
0

(
k

2aiHΛ

)
−H(2)

1

(
k

2aiHΛ

)(
i+

aiHΛ

k

)]]
, (3.40)

Gk =
eik/aiHΛ

4

√
πk

aiHΛ

[
Ck

[
H

(1)
0

(
k

2aiHΛ

)
+H

(1)
1

(
k

2aiHΛ

)(
i− aiHΛ

k

)]

+ Dk

[
H

(2)
0

(
k

2aiHΛ

)
+H

(2)
1

(
k

2aiHΛ

)(
i− aiHΛ

k

)]]
. (3.41)

Summarizing, using our matching conditions between consecutive epochs, we have shown
that the solution at the end of inflation can be analytically determined provided that we have
initial data to fix the constants Ak and Bk for each of the perturbation modes in the Pösch-
Teller period.

4 Initial conditions and vacuum state

In quantum field theory in general curved spacetimes, there is no preferred vacuum. This
is a serious problem because, away from very symmetric spacetimes, we need a proposal
to choose a natural state for the perturbations. This issue becomes crucial in cosmology,
since predictions depend strongly on this choice. Indeed, selecting a vacuum is equivalent to
setting initial conditions. These initial conditions determine the evolution of the cosmological
perturbations in the Very Early Universe. Here, we will adhere to the NO-AHD vacuum
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proposal [22, 23, 54]. This proposal picks out a vacuum that is well adapted to the background
dynamics and leads to a power spectrum with non-oscillating properties. Such vacuum can
be determined by an asymptotic diagonalization of the Hamiltonian of the perturbations in
the ultraviolet region of asymptotically large wavenumbers. This proposal has been applied
successfully for Minkowski and de Sitter backgrounds, where it selects the Poincaré and the
Bunch-Davies vacua, respectively [23]. Moreover, it has also been applied to cosmological
perturbations in kinetically dominated regimes in GR, as well as in hybrid LQC scenarios
[31].

4.1 NO-AHD vacuum state

The NO-AHD vacuum state is associated with a set of annihilation and creation operators,
with an evolution that depends on the background and which is directly governed by an
asymptotically diagonal Hamiltonian. In this diagonal Hamiltonian, all interacting terms be-
tween the perturbations have been systematically eliminated order by order in the ultraviolet
regime as k tends to infinity, as described in Ref. [23].

The amplitude of the mode solutions corresponding to the NO-AHD vacuum of the per-
turbations exhibits small scale and time-dependent oscillations [22, 31]. These mode solutions
can always be expressed as [23, 31]

uk =

√
− 1

2Im(hk)
e
i
∫ η
η0
dη̃Im(hk)(η̃)

, (4.1)

where hk is a solution of the Riccati differential equation

h′k = k2 + s
(r)
h + h2

k. (4.2)

The NO-AHD vacuum state is characterized by an asymptotic expansion of the form

kh−1
k ∼ i

[
1− 1

2k2

∞∑
n=0

(
−i
2k

)n
γn

]
, (4.3)

where γn are k-independent functions of time that are fixed by the recurrence relations

γ0 = s
(r)
h , γn+1 = −γ′n + 4s

(r)
h

[
γn−1 +

n−3∑
m=0

γmγn−(m+3)

]
−

n−1∑
m=0

γmγn−(m+1). (4.4)

4.2 NO-AHD vacuum at the bounce for the modified cosmology

We will now employ the NO-AHD vacuum proposal to fix the exact values of the constants
that specify the mode solution in the region around the bounce. In the interval [ηB, η0]
(corresponding to [tB, t0] in proper time) where we have applied a Pösch-Teller approximation
for the effective mass, the differential equation (4.2) becomes

h′
k̃

= k̃2 +
U0

cosh2 α(η − ηB)
+ h2

k̃
, (4.5)

where k̃2 = k2 + v0. Recall that v0 is the constant added to the genuine Pösch-Teller contri-
bution. To solve this differential equation we introduce the variable x = [1 + e−2α(η−ηB)]−1

and the function [31]

hk̃ = ik̃(1− 2x)− 2αx(1− x)
d

dx
(log υk̃) = ik̃(1− 2x)− 2αx(1− x)

υk̃

dυk̃
dx

. (4.6)
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In this way, we obtain the hypergeometric equation

x(x− 1)
d2υk̃
dx2

+
[
bk̃3 − (bk̃1 + bk̃2 + 1)x

] dυk̃
dx
− bk̃1bk̃2υk̃ = 0, (4.7)

where the parameters bk̃i are

bk̃1 =
1

2

(
1 +

√
1 +

4U0

α2

)
− ik̃

α
, bk̃2 =

1

2

(
1−

√
1 +

4U0

α2

)
− ik̃

α
, bk̃3 = 1− ik̃

α
. (4.8)

The general solution to the above hypergeometric equation is

υk̃ = Mk̃ 2F1(bk̃1, b
k̃
2; bk̃3;x) +Nk̃ x

ik̃/α
2F1(bk̃1 − bk̃3 + 1, bk̃2 − bk̃3 + 1; 2− bk̃3;x), (4.9)

where Mk̃ and Nk̃ are two constants.
We still need to impose on hk̃ the asymptotic behavior determined by Eqs. (4.3) and

(4.4). At dominant and first subdominant order in the asymptotic expansion, and using that
U0 cosh−2 α(η − ηb) = 4U0x(1− x), we get [31]

hk̃ = −ik̃
[
1 +

2U0

k̃2
x(1− x) +O(k̃−3)

]
. (4.10)

Furthermore, the terms O(k̃−3) must depend polynomically on x [31]. By incorporating this
behavior into Eq. (4.6) and integrating the result, we conclude that υk̃ admits an asymptotic
expansion of the form

υk̃ = xik̃/α
∞∑
n=0

ck̃nx
n, (4.11)

where ck̃n are complex constants that depend on linear combinations of inverse powers of k̃.
The only solution among those in Eq. (4.9) that has an x-dependence of the form (4.11) for
all k̃ is

υk̃ = υk̃0x
ik̃/α

2F1(bk̃1 − bk̃3 + 1, bk̃2 − bk̃3 + 1; 2− bk̃3;x), (4.12)

with υk̃0 a constant. Introducing it in Eq. (4.6), we obtain

hk̃ = −ik̃ − 2αx(1− x)
(bk̃1 − bk̃3 + 1)(bk̃2 − bk̃3 + 1)

2− bk̃3

× 2F1(bk̃1 − bk̃3 + 2, bk̃2 − bk̃3 + 2; 3− bk̃3;x)

2F1(bk̃1 − bk̃3 + 1, bk̃2 − bk̃3 + 1; 2− bk̃3;x)
. (4.13)

The mode solution is then determined using Eq. (3.3). In this way, we select the vacuum
solution in the Pösch-Teller epoch, continuing it until the end of inflation by the procedure
explained in the preceding section. With its value there, we can calculate the PPS.
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5 Primordial power spectrum

The PPS for tensor perturbations is given by [45]

PT(k) =
32k3

π2

|uk(ηend)|2

a2(ηend)
. (5.1)

We need just to introduce the solution found in de Sitter for the perturbation modes into
this formula. On the other hand, compatibility with different types of observations requires
that inflation must have produced at least around 60 e-folds [11], something that is fulfilled in
the typical background solutions studied in LQC and, therefore, also in their corresponding
counterparts in the modified cosmological model. Taking this fact into account, which ensures
a large growth of the scale factor, it is reasonable to approximate the PPS as

PT(k) =
32k3

π2
lim
a→∞

(
|uk|2

a2

)
=

16H2
Λ

π2
|Fk −Gk|2 . (5.2)

The PPS critically depends on the integration constants Fk and Gk, that fix the mode
solutions for the perturbations. So, the behavior of the spectrum depends on this choice of
solution. The form of the power spectrum in the above expression generally leads to fast
oscillations in k because, even if the norms of Fk and Gk vary slowly, their phases θFk and θGk
generically produce a rapidly oscillating interference. Concretely,

PT(k) =
16H2

Λ

π2

[
|Fk|2 + |Gk|2 − 2|Fk||Gk| cos (θFk − θGk )

]
. (5.3)

Actually, even if we start with initial conditions at the bounce for a non-oscillating vacuum
state (of NO-AHD type), rapidly changing phases in Fk and Gk can be generated by the
instantaneous transitions between different epochs in our matching of solutions, which are
just a simplifying approximation where the smoothness of the effective mass is lost [31] (recall
that, in the best of cases, we have preserved at most the continuity up to the first derivative
in these matches). However, it is possible to remove such spurious oscillations in k, which
in average would artificially pump power to the spectrum. Indeed, as it was argued and
supported in Ref. [31], we can always modify our solution as follows:

Fk → F̃k = |Fk|, Gk → G̃k = |Gk|. (5.4)

The above change of solution is in fact a Bogoliubov transformation [31]. The corresponding
PPS is then

PT(k) =
16H2

Λ

π2
(|Gk| − |Fk|)2 . (5.5)

Notice that this spectrum is the envelope of the minima of the oscillating one in Eq. (5.3).
This redefined PPS is clearly free of the commented rapid oscillations but keeps all the main
information of the original spectrum.

As we have seen, to compute the PPS for the modified cosmology we need initial con-
ditions for the perturbation modes, or equivalently, to fix a vacuum state. Our choice is
the NO-AHD vacuum, because it is optimally adapted to the background dynamics around
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the bounce and avoids spurious oscillations in that epoch. As for the corresponding initial
conditions, provided e.g. at the conformal time η0, from Eq. (4.1) we can deduce [31]

uk(η0) =

√
− 1

2Im(hk)(η0)
, u′k(η0) = −h∗k(η0)uk(η0). (5.6)

Therefore, we only need the expression of hk picked out by the NO-AHD criterion (evaluated
at η0). We can then use our matching formulas to obtain the value of the constants Fk and
Gk in the inflationary epoch. These constants are given by Eqs. (3.40) and (3.41). With
them, finally, we can calculate the PPS using Eq. (5.5).

It is then straightforward to see, in particular, that in the ultraviolet regime (k � 1) the
asymptotic behavior of the hypergeometric function 2F1(a1, a2; a3;x) for large a3 [53] implies
that

Im(hk) = −k +O(k−1), Re(hk) = O(k−2), (5.7)

and therefore

uk(η0) =

√
1

2k
+O(k−5/2), u′k(η0) = −i

√
k

2
+O(k−3/2). (5.8)

Then, following our matching procedure, we find in the de Sitter epoch that

|Gk| ≈ O(k−2) and |Fk| ≈ 1 +O(k−2). (5.9)

Hence, the PPS is scale invariant in the ultraviolet region, as in the standard cosmological
model for the Bunch-Davies vacuum (in consonance with the CMB observations, extrapolating
the discussion from tensor to scalar perturbations by assuming that the inflaton potential does
not play a crucial role for these issues).

Moreover, employing the expression of hk for all k given in Eq. (4.13), and using Eq.
(5.6) and our matching formulas, we can compute numerically the PPS and compare it, on
the one hand, with the power spectrum expected in GR for a Bunch-Davies vacuum and, on
the other hand, with the PPS for the same vacuum proposal in LQC adopting the hybrid
prescription [31] to determine the background-dependent mass of the perturbations [49]. In
the following, we particularize the PPS of the studied modified cosmology to the case in which
the parameter D takes the value corresponding to the effective bouncing geometry of LQC,
so that this PPS can also be regarded as the prediction for the dressed metric prescription in
LQC. To check the robustness of our approximations, we include another PPS for this dressed
metric, namely, the spectrum obtained by removing the constant effective mass epoch from
our considerations and reducing to three the number of epochs considered in the evolution.
In this alternative approximation, we still demand continuity up to the first derivative of the
background and of the mode solutions, but we renounce to a continuous effective mass at the
matching between the Pösch-Teller and the kinetically dominated epochs.

These PPS are shown in Figs. 3 and 4. We see in Fig. 3 that the PPS of the NO-AHD
vacuum has in practice a cutoff for the dressed metric prescription in LQC, case which also
applies to the modified cosmology in the sense explained above, while the PPS of a Bunch-
Davies state in GR is fully scale invariant. We observe that the cutoff wavenumber scale for
the dressed metric prescription is of the same order but slightly larger than the corresponding
one for hybrid LQC [31]. Much more importantly, in the infrared region (associated with
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Figure 3. PPS of the NO-AHD vacuum in the
hybrid prescription for LQC (orange), in the
dressed metric prescription for LQC including
a constant mass epoch in the approximation
(blue), and in the same prescription for LQC
but without this last epoch (red). We also dis-
play the PPS for the Bunch-Davies state in GR
(dark).

Figure 4. PPS using the same color code as
in the left figure. Dashed lines correspond to
the PPS before applying the Bogoliubov trans-
formation that removes spurious oscillations,
whereas solid lines are used for the PPS when
the Bogoliubov transformation is applied.

large angular scales), the PPS for a NO-AHD vacuum in hybrid LQC displays a considerably
higher power suppression than the other two scenarios. On the other hand, for the dressed
metric prescription in LQC, Figs. 3 and 4 show that there is just a very little bit more of
suppression when the evolution is approximated using four different regimes than when these
are only three, neglecting the constant mass period, but the difference is really tiny. The
cutoff scale, however, is approximately the same in both cases.

Figure 5. Norms of the constants Fk and Gk

for the different cases considered in LQC. The
dashed, solid, and dotted lines correspond re-
spectively to the hybrid prescription, the dressed
metric prescription including a constant mass
epoch, and the dressed metric prescription with-
out this epoch.

Figure 6. Zoom-in of Fig. 5, showing the
region around k ∼ 10.

The behavior of the constants Fk and Gk in Figs. 5 and 6 confirms our previous predic-
tion that Fk ≈ 1 in the ultraviolet region. Additionally, the constant Gk becomes negligible
in that region. However, it displays distinct asymptotics for the two considered prescriptions
in LQC. In contrast, for the dressed metric prescription, the asymptotic behavior does not
change significantly with the approximation adopted for the effective mass, with either three
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or four epochs, in spite of the fact that the number of matches and the continuity properties
at them depends on this approximation. In Figs. 7 and 8, we display in more detail the region
close to the cutoff in the PPS. The clear similarities between the results of the two considered
approximations for the dressed metric prescription prove the robustness of our analysis.

Figure 7. Zoom-in around k ∼ 10 of the PPS
in the hybrid prescription for LQC (orange),
the dressed metric prescription for LQC with a
constant mass epoch (blue), the dressed metric
prescription for LQC without this epoch (red),
and a Bunch-Davies state in GR (dark).

Figure 8. Zoom-in around k ∼ 100 of the
PPS, showing the diference [PTπ

2/(16H2
Λ)]−1,

in the same cases and with the same color
code as in Fig. 7. Units in the vertical axis
are expressed in multiples of 10−5.

6 Conclusion

We have investigated the implications in cosmology of a phenomenological theory of gravity
with quantum modifications, rooted in thermodynamics. More specifically, we have discussed
the influence of these modifications on the PPS of cosmological perturbations, especially of
tensor ones. We have started with a comprehensive description of the cosmological model ob-
tained within the framework of the modified theory. The resulting homogeneous and isotropic
cosmologies have a remarkable resemblance to the effective solutions found in LQC, when the
thermodynamic equations for cosmology are truncated at first subleading order in a pertur-
bative approach2. In fact, in both situations we find a bounce that resolves the Big Bang
singularity. Moreover, the LQC solutions can be regarded as particular cases of the modified
cosmologies when the free parameter of these last models is fixed to a specific value, which is
of Planck order, as one could expect in order to encode quantum gravity effects.

For the sake of simplicity, we have ignored most of the effects of an inflaton potential on
the evolution of the perturbations, assuming first a dynamics where the kinetic contribution
of the inflaton dominates, with negligible potential, and afterward an inflationary period of
de Sitter expansion, as it would happen if the inflaton potential remained constant during
this stage. In addition, we have adopted equations of motion for the perturbations that have
the same background dependence as in GR. In these circumstances, the perturbations evolve
exactly as if they were tensor ones. In this sense, our study can be interpreted to be focused on
the PPS of tensor perturbations. Moreover, the commented relationship between the modified
cosmologies and LQC, together with the procedure followed to determine the dynamics of the
perturbations in terms of the background, imply that the perturbations evolve similarly as

2When finishing this work, we got aware of another approach that other authors are developing in the
same thermodynamic framework [55].
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in RG but considering a modification in the background evolution. This amounts to admit
that the thermodynamic corrections only affect the perturbations in a relevant way via their
effect on the background, as it happens in the dressed metric prescription for LQC. Again,
this last case is obtained with a particular value of the free parameter of the modified model.

In this setting, we have obtained the exact form of the background-dependent effective
mass that affects the propagation of the perturbations. Nonetheless, we have found obstruc-
tions to express it analytically in terms of the conformal time, which is the natural time that
arises in the propagation equations of the perturbation modes. To circumvent these obstruc-
tions and derive also analytically the form of the general solution to these equations, we have
employed certain approximations in which the evolution is divided into several epochs, with
different dominating regimes in each of them. We have considered an approximation with
four epochs (a bounce with a Pösch-Teller mass, an interval with constant effective mass, a
kinetically dominated period, and a de Sitter stage), as well as an alternative approximation
with only three of those epochs (eliminating the interval with constant effective mass). Com-
parison between these two approximations has allowed us to put to the test the robustness
of the results. The matching between different epochs in our approximations have been per-
formed by demanding that both the background and the perturbation modes are continuous
up to their first derivatives in the transition.

Since the considered backgrounds are nonstationary and their isometries generically do
not involve the time direction, in principle there is no preferred state that can serve as a
natural vacuum to construct a quantum field theory for the perturbations. In this situation,
a physical criterion is needed to select a vacuum, other than the invariance under symmetries.
With this aim, we have adhered to the NO-AHD proposal. This proposal picks out a state
with good non-oscillating properties that can be specified by an asymptotic diagonalization
in the ultraviolet of the Hamiltonian that governs the (unitary Heisenberg) dynamics of
the perturbations, typically in the epoch with relevant quantum effects [23, 31]. The non-
oscillating behavior shows that the state is optimally adapted to the background dynamics,
and translates into similar properties in the corresponding PPS. Then, using the asymptotics
in the ultraviolet that are characteristic of the NO-AHD proposal and extending the resulting
k-dependence, we have determined the initial conditions on the perturbation modes that
correspond to our choice of vacuum state.

With all these ingredients, finally, we have numerically computed the PPS of the NO-
AHD vacuum state in the modified cosmology, for the specific value of the free parameter
that reproduces the effective background dynamics of LQC. This PPS can also be interpreted
as arising from the dressed metric prescription in LQC. We have compared this PPS with
the spectrum obtained for the same kind of vacuum in LQC with the alternative, hybrid
prescription for the quantization of the perturbations, as well as with the scale invariant
spectrum obtained in standard GR with a Bunch-Davies vacuum in de Sitter spacetime.

The main feature of the PPS obtained in the model with thermodynamic modifications,
interpretable also as a dressed metric model in LQC, is the appearance of power suppression
with respect to the standard GR case at an effective cutoff that is of Planck order. Our analysis
shows a small variation of this cutoff scale when the model is compared with a hybrid model
in LQC (both with the same energy density at the bounce), adopting a NO-AHD vacuum
for the perturbations. Much more relevant is the fact that the power suppression for this
kind of vacuum state is significantly larger in the case of hybrid LQC than in the dressed
metric model. This power suppression may depend on the specific approximation adopted
to describe the background-dependent mass of the perturbations, but we have seen that the
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change is small. In this sense, our results are robust, obtaining essentially the same conclusions
for an approximation with four different dynamical epochs than for another one with only
three of those epochs. In future works, we want to carry out a full numerical study of the
PPS, integrating the mode solutions without analytic techniques based on approximations to
their effective mass. This will shed valuable light on the validity of those approximations.
Our study can also be extended to other positive values of D (almost) straightforwardly,
because the methods developed in this work are mostly parameter-independent. Furthermore,
a more complete analysis constraining the admissible values of D is still needed. It would
also be interesting to compare the power spectrum calculated by these numerical means for
the NO-AHD vacuum with the spectra corresponding to other vacua, e.g. adiabatic states
[15, 17], the vacuum suggested by Ashtekar and Gupt [19, 20] (motivated by minimal quantum
uncertainties near the bound and some classical behavior after inflation), or the low-energy
state proposed in Ref. [25].
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