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Recent progress in the development of quantum technologies has enabled the direct investigation of the
dynamics of increasingly complex quantum many-body systems. This motivates the study of the complex-
ity of classical algorithms for this problem in order to benchmark quantum simulators and to delineate the
regime of quantum advantage. Here, we present classical algorithms for approximating the dynamics of
local observables and nonlocal quantities such as the Loschmidt echo, where the evolution is governed
by a local Hamiltonian. For short times, their computational cost scales polynomially with the system
size and the inverse of the approximation error. In the case of local observables, the proposed algorithm
has a better dependence on the approximation error than algorithms based on the Lieb-Robinson bound.
Our results use cluster-expansion techniques adapted to the dynamical setting, for which we give a novel
proof of their convergence. This has important physical consequences besides our efficient algorithms.
In particular, we establish a novel quantum speed limit, a bound on dynamical phase transitions, and a
concentration bound for product states evolved for short times.
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I. INTRODUCTION

The study of the dynamics of quantum many-body
models is a highly active area of research in quantum infor-
mation science, both from the perspective of physics and
of computation. Probing dynamics provides access to a
wealth of physical phenomena and can enable the solution
of hard computational problems. Existing quantum simula-
tors are already allowing us to explore quantum dynamics
of high complexity. To assess the potential for quan-
tum speed-up, it is important to understand the reach of
classical methods for these tasks. Unless all quantum com-
putations can be classically simulated, i.e., BPP = BQP,
classical algorithms will be unable to approximate quan-
tum dynamics in an arbitrary setting. Nevertheless, there
exist restricted regimes in which efficient classical simula-
tion is possible. An important special case is evolution for
short times, during which the quantum information will not
spread much. Tensor-network methods illustrate this point,
as they provide provably efficient means of simulating
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unitary dynamics in one spatial dimension for short times
[1,2].

In this work, we characterize the computational com-
plexity of short-time dynamics under a local Hamiltonian
more generally. Locality in this context means that the
Hamiltonian can be written as a sum of operators sup-
ported on small subsystems. We do not require geometric
locality and we do not restrict the Hamiltonian to a finite-
dimensional lattice. Instead, we only impose that every
term in the Hamiltonian overlaps with a constant num-
ber of other terms. These conditions are satisfied by a
wide class of physically relevant Hamiltonians, including
parent Hamiltonians of quantum low-density parity-check
(LDPC) error-correcting codes [3]. Dynamics governed
by Hamiltonians of this type are amenable to cluster
expansions, which have long been used in both classi-
cal and quantum statistical mechanics of lattice models
[4–8], leading to results such as the uniqueness of Gibbs
states [9,10], efficient approximation schemes for parti-
tion functions [11,12], the decay of correlations [13–15],
and concentration bounds [16,17]. Despite their long his-
tory, cluster expansions have typically been applied to
equilibrium properties, while dynamics have been rarely
considered.

The paper is structured as follows. In the remainder of
this section, we summarize the main results and give an
overview of their implications for the complexity of quan-
tum dynamics. In Sec. II, we define the cluster notation
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used throughout. Section III discusses the results and the
algorithm for local observables. In Sec. IV, we describe
corresponding results for the Loschmidt echo. Physical
consequences of these results are discussed in Sec. V. We
conclude in Sec. VI with further remarks and open ques-
tions. The main text provides an overview of all the proof
techniques, while technical details that are less crucial to
the understanding are placed in appendixes.

A. Summary of results

Our first main result concerns the dynamics of a few-
body observable A under a local Hamiltonian H .

Result 1 (informal version of Theorem 6). Given a
local Hamiltonian H, a few-body operator A, and a prod-
uct state ρ, there exists an algorithm that approximates
tr(eiHtAe−iHtρ) up to additive error ε with a run time of at
most

poly

[(
1
ε

eπ |t|/t∗
)exp(π |t|/t∗)

]
, (1)

where t∗ is a positive constant.

The scaling with the time t is rather unfavorable but
the computational cost is independent of the system size.
Moreover, for any constant value of t, the run time has a
polynomial dependence on 1/ε, which is an improvement
over all previously known algorithms, such as those based
on Lieb-Robinson bounds. Cluster expansion can thus be
seen as an alternative approach to analyzing the effective
locality and light-cone structure of many-body dynamics.

Our second result characterizes the complexity of com-
puting the Loschmidt echo, tr(e−itHρ).

Result 2 (informal version of Theorem 12). Given a
local Hamiltonian H, a product state ρ, and |t| < t∗L, there
exists an algorithm that approximates log tr(e−iHtρ) up to
additive error ε with a run time of at most

n × poly

[(
n

1 − |t|/t∗L

1
ε

)1/ log(t∗L/|t|)]
, (2)

where t∗L is a positive constant.

A key insight of this work is that when ρ is a product
state, the objects analyzed in Results 1 and 2 fit the frame-
work of cluster expansions that are commonly applied to
the partition function tr(e−βH ) [11,17,22]. We give a novel
proof of the convergence of these expansions based on the
counting of trees.

In both algorithms, the cluster expansions enable an effi-
cient grouping of the terms of a Taylor series by clusters of

subsystems. Crucially, we show that only connected clus-
ters contribute. Because the number of connected clusters
grows at most exponentially with the size of the cluster,
we can establish the convergence of the cluster expansion
at short times by bounding the magnitude of the individ-
ual terms. The computational cost of the approximation
algorithms follows by estimating the cost of computing a
truncated cluster expansion while controlling the trunca-
tion error. For local observables, we are able to extend the
algorithm beyond the radius of convergence of the cluster
expansion using analytic continuation. The doubly expo-
nential dependence on the evolution time t in Result 1 is a
direct consequence of the analytic continuation scheme.

The above results have several important physics impli-
cations. Result 2 implies that dynamical phase transitions
[23] cannot occur at times t ≤ t∗L for local Hamiltonians
and product initial states. In addition, it establishes a novel
quantum speed limit [24] that is independent of the system
size, in stark contrast to previous results for general initial
states [25,26]. A generalization of Result 2 to the multi-
Hamiltonian Loschmidt echo tr(ρ

∏
l e−itH (l)

), with H (l)

local Hamiltonians, allows us to prove Gaussian concen-
tration bounds of local observables on states evolved for a
short time, a case not covered by previous results [27–29].
More precisely, we show that the probability of measur-
ing H (2) in the evolved product state ρ(t) = e−itH (1)

ρeitH (1)

away from the mean tr(ρ(t)H (2)) by δ is suppressed by
eO(−δ2/n).

B. Complexity of dynamics

Our main results have nontrivial consequences for the
computational complexity of short-time quantum dynam-
ics, which are summarized in Table I. For observables,
it is known that approximating 〈A(t)〉 with additive error
ε = 1/poly(n) up to times t = poly(n) is BQP-complete.
This follows from the fact that determining the state of a
single qubit at the output of a circuit with poly(n) gates
is BQP-complete, combined with the existence of local
Hamiltonians that simulate arbitrary quantum computa-
tions [18]. At the same time, Theorem 6 shows that we can
compute 〈A(t)〉 classically with a similar error with compu-
tational cost poly(n) as long as t = O(1). This indicates a
transition in the complexity of simulating local observables
as the system evolves. The exact nature of this transi-
tion and the computational complexity of the intermediate
regime t ∼ polylog(n), where the cluster expansion fails to
be efficient, remains an open problem.

For the Loschmidt echo, there are two meaningful
notions of approximation. The first one is with a small
multiplicative error, which is equivalent to a small addi-
tive error in the logarithm. For this, Theorem 12 shows
that there is an efficient approximation algorithm for times
|t| < t∗L with polynomial cost in both n and 1/ε. Unlike in
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TABLE I. The computational complexity of computing the quantities in the leftmost column with additive error ε = 1/poly(n),
where n is the system size, for different times. All expectation values are with respect to product initial states. The constants t∗ and
t∗L are independent of the system size but depend on the details of the problem. Entries highlighted in blue are results from this work.
Question marks denote regimes where the computational complexity is unknown.

t < t∗, t∗L t = O(1) t = O(polylog(n)) t = O(poly(n))

〈A(t)〉 P P ? BQP-complete [18]
log〈e−iHt〉 P #P-hard [19,20] #P-hard #P-hard
〈e−iHt〉 P ? ? BQP-complete [21]

Theorem 6, it is not possible to extend this result to arbi-
trary times. If we take ρ ∝ I, L(t) becomes an imaginary-
time partition function. Approximating this for |t| = O(1)

even with an O(1) multiplicative error has been shown to
be #P-hard for 2-local classical Ising models [20]. Hence,
there is only a constant gap between the times accessible
with our algorithm and the #P-hard regime, where an effi-
cient algorithm is unlikely to exist. The complexity of the
analogous problem for real partition functions and the ther-
modynamic free energy has been recently considered in
Ref. [30].

We may also consider the weaker additive approxima-
tion to the Loschmidt echo. Since |L(t)| ≤ 1, Theorem
12 also implies that we can efficiently approximate the
Loschmidt echo to an ε-additive error for |t| < t∗L. Calcu-
lating the Loschmidt echo for circuits of polynomial size
with additive error ε = 1/poly(n) is BQP-complete [21].
To the best of our knowledge, the intermediate regime has
not been explored.

II. SETUP

A. Hamiltonian

We consider a set of n spins, V. Each spin v ∈ V is asso-
ciated with a local Hilbert space Hv, with dimHv = d.
The total Hilbert space is formed by the tensor product
space H =⊗v∈V Hv. We call a subset of spins X ⊆ V a
subsystem. For any linear operator A on H, we denote its
support by X = supp(A), i.e., X is the smallest subsystem
in V on which A acts nontrivially.

Next, we formally define the notion of local Hamiltoni-
ans. Given a set of subsystems S, we write a Hamiltonian
H as

H =
∑
X ∈S

λX hX , (3)

where each λX is a real coefficient and hX is a Hermitian
operator acting on the subsystem X such that supp(hX ) =
X . The coefficients satisfy |λX | ≤ 1 and are chosen such
that ‖hX ‖ = 1, where ‖ · ‖ is the operator norm. A Hamil-
tonian is called k-local if it is a sum of terms that act on at
most k sites or, equivalently, |X | ≤ k for all X ∈ S.

To characterize the connectivity of the Hamiltonian, we
define the associated interaction graph G [22]. Given a set

of subsystems S, the interaction graph G is a simple graph
with vertex set S. There is an edge between two vertices X
and Y if the respective subsystems overlap. We denote the
maximum degree of the interaction graph by d. Through-
out this work, we only consider k-local Hamiltonians for
which, in addition, d is independent of the system size n.
Each local term in the Hamiltonian therefore only over-
laps with a constant number of other terms, which includes
many physically relevant cases such as Hamiltonians with
finite-range interactions. We point out that the number of
terms |S| in these Hamiltonians increases at most linearly
with the number of spins n.

B. Clusters

We define a cluster as a nonempty multiset of subsys-
tems from S. Here, multiset refers to a set with possibly
repeated elements but without ordering. We use bold-font
letters V, W, . . . to denote clusters. We call the number of
times a subsystem X appears in a cluster W the multiplic-
ity μW(X ). If X is not contained in W, then μW(X ) = 0.
The size |W| =∑X ∈S μW(X ) of a cluster is the number
of subsystems that it contains, including their multiplicity.
The set of all clusters of size m is denoted by Cm and the
set of all clusters by C =⋃m≥1 Cm.

We associate with every cluster W a simple graph GW,
the so-called cluster graph. The vertices of GW correspond
to the subsystems in W, with repeated subsystems also
appearing as repeated vertices. Two distinct vertices X and
Y are connected by an edge if and only if the respective
subsystems overlap, i.e., X ∩ Y = ∅. We say that a cluster
W is connected if and only if GW is connected. We use
the notation Gm for the set of connected clusters of size m
and G =⋃m≥1 Gm for the set of all connected clusters. The
following statement concerning the number of connected
clusters is an essential ingredient of our algorithms.

Lemma 1 (Proposition 3.6 of Haah et al. [22]). Given a
subsystem X ∈ S, the number of clusters in Gm that con-
tain X is bounded from above by (ed)m. Moreover, there
exists a deterministic classical algorithm with run time
exp(O(m log d)) that outputs a list of all such clusters.

The classical algorithm is given as Algorithm 1 in Haah
et al. [22, Sec. 3.4].
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(a) (b)

(c) (d)

FIG. 1. A cluster of three subsystems W = {W1, W2, W3} that
is (a) connected, (b) disconnected, (c) completely connected to A,
and (d) not completely connected to A. The black dots indicate
individual spins and crosses highlight spins that form the support
of A.

The union W = V1 ∪ V2 of two clusters V1 and V2 is
defined as the union of the multisets, adding all multiplic-
ities such that μW(X ) = μV1(X ) + μV2(X ) for all X ∈ S.
Another set of clusters of special interest is formed by the
clusters connected to the support of a few-body operator
A. We say that a cluster W is completely connected to A
if and only if the cluster graph GW∪{supp(A)} is connected,
where we assume for simplicity that A acts on a subsys-
tem contained in the Hamiltonian such that supp(A) ∈ S.
We denote the set of such clusters of size m by GA

m and
GA =⋃m≥1 GA

m. The different sets of clusters are illustrated
in Fig. 1.

Before proceeding, we introduce further notation related
to clusters. It is sometimes convenient to assign a
(nonunique) ordering to the subsystems in a cluster.
For W ∈ Cm, we then write W = {W1, W2, . . . , Wm}. We
make frequent use of the shorthands λW =∏X ∈S λ

μW(X )

X
and W! =∏X ∈S μW(X )!. We often take derivatives with
respect to the parameters of the Hamiltonian for all subsys-
tems contained in a cluster W. To this end, we define the
cluster derivative DW, which acts on any function of the
Hamiltonian parameters λ = {λX : X ∈ S}, as

DWf (λ) =
[∏

X ∈S

(
∂

∂λX

)μW(X )
]

f (λ)

∣∣∣∣∣
λ=0

. (4)

Here, the subscript λ = 0 means to set λX = 0 for all X ∈
S after taking the derivatives. Hence, the cluster derivative
isolates the contribution from the monomial λW.

For any function f (λ), we define its cluster expansion
as the multivariate Taylor-series expansion in λ. With the
above notation, the cluster expansion can be concisely
written as

f (0) +
∑
W∈C

λW

W!
DWf (λ). (5)

Our goal is to establish conditions under which the clus-
ter expansion converges to f (λ) for different functions of
interest.

We illustrate the above concepts by an example in
Appendix B 1.

C. Cluster partitions

A partition P of a cluster W is a multiset of clusters
{V1, V2, . . . , V|P|} such that W = V1 ∪ V2 ∪ · · · ∪ V|P|.
We are particularly interested in partitions where every
element is a connected cluster. We refer to these as par-
titions of W into connected subclusters. The set of all such
partitions is denoted by Pc(W).

We introduce several quantities characterizing cluster
partitions. We use tildes to distinguish these from simi-
lar quantities describing clusters. The multiplicity μ̃P(V)

is defined as the number of times the cluster V appears in
the partition P. The size |P| =∑V∈G μ̃P(V) is the number
of clusters in P, including their multiplicities. We also use
the shorthand

P! =
∏
V∈G

μ̃P(V)! (6)

For every partition P ∈ Pc(W), we define a simple graph
G̃P, called the partition graph of P. The vertices of G̃P
are the clusters in P. Two clusters V, V′ ∈ P are con-
nected by an edge if and only if they overlap, that is, there
exist subsystems X ∈ V and Y ∈ V′ such that X ∩ Y = ∅.
Alternatively, we may obtain G̃P from GW as follows. For
every V ∈ P, we merge the corresponding vertices in GW
into a single vertex and remove all loops. If any of the
remaining edges are repeated, they are reduced to a sin-
gle edge. Figure 2 shows an example of a partition graph
and illustrates its connection to the cluster graph.

III. LOCAL OBSERVABLES

A. Cluster expansion

We consider the expectation value of an observable
A for an initial product state ρ evolving under a local
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(a)

(c)

(b)

FIG. 2. An illustration of cluster and partition graphs. (a) A
connected cluster W = {W1, W2, W3, W4} composed of four sub-
systems. The dots indicate individual spins. (b) The correspond-
ing cluster graph GW. The dashed outlines show the partition
P = {{W1}, {W2, W3}, {W4}} of W into connected subclusters.
(c) The partition graph G̃P associated with P.

Hamiltonian H . After time t, we have

〈A(t)〉 = tr
(
eiHtAe−iHtρ

)
. (7)

Due to the dependence of H on the parameter set λ, we
may think of 〈A(t)〉 as a function of λ. The corresponding
cluster expansion is given by

fA(t) = 〈A(0)〉 +
∞∑

m=1

∑
W∈Cm

λW

W!
DW〈A(t)〉. (8)

For W ∈ Cm, the cluster derivative can be explicitly evalu-
ated as

DW〈A(t)〉 = (it)m

m!

×
∑
σ∈Sm

tr
([

hWσ(1)
, · · · [hWσ(2)

, · · · [hWσ(m)
, A
]]]

ρ
)

, (9)

where the sum runs over all permutations of the indices
{1, 2, . . . , m}.

For simplicity, we assume that the support of A is con-
tained in the set of subsystems S of the local supports of
the Hamiltonian, although this constraint can be readily
relaxed. We establish the convergence of the cluster expan-
sion for short times in two steps. First, we show that only
clusters that are completely connected to A contribute to
the sum.

Lemma 2. For any cluster W /∈ GA,

DW〈A(t)〉 = 0. (10)

Proof. Consider W /∈ GA
m for any integer m > 0. For every

σ ∈ Sm, there exists a positive integer k ≤ m such that
the intersection of Wσ(k) with Wσ(k+1) ∪ Wσ(k+2) ∪ · · · ∪

Wσ(m) ∪ supp(A) is empty. Then,
[
hWσ(k) , · · ·

[
hWσ(k+1)

, · · ·[
hWσ(m)

, A
]]] = 0 and the commutator in Eq. (9) van-

ishes. �
Second, we need to bound the magnitude of the

cluster derivative when it does not vanish. Note that
there are at most 2m in the nested commutators of
Eq. (9). Repeated application of the triangle inequality
then yields

∣∣tr ([hWσ(1)
, · · · [hWσ(2)

, · · · [hWσ(m)
, A
]]]

ρ
)∣∣ ≤

2m‖A‖. Hence, we find that for any W ∈ GA
m,

|DW〈A(t)〉| ≤ (2|t|)m‖A‖. (11)

By combining these observations, we are able to prove
convergence of the cluster expansion for short times.

Proposition 3. Consider an operator A for which
supp(A) ∈ S and let |t| < t∗ = 1/(2ed). Then,∣∣∣∣∣∣〈A(t)〉 − 〈A(0)〉 −

M∑
m=1

∑
W∈GA

m

λW

W!
DW〈A(t)〉

∣∣∣∣∣∣
≤ ed‖A‖ (|t|/t∗)M+1

1 − |t|/t∗
. (12)

Proof. Consider the error of neglecting all clusters of size
m > M from the cluster expansion. Since |λX | ≤ 1 for all
X ∈ S, we can bound this error by∣∣∣∣∣∣

∞∑
m=M+1

∑
W∈GA

m

λW

W!
DW〈A(t)〉

∣∣∣∣∣∣ ≤
∞∑

m=M+1

(2|t|)m|GA
m|‖A‖.

(13)

By assumption, supp(A) ∈ S, which allows us to obtain
every cluster in GA

m by starting from a cluster W ∈ Gm+1
that contains X = supp(A) and reducing the multiplic-
ity μW(X ) by 1. It follows from Lemma 1 that

∣∣GA
m

∣∣ ≤
(ed)m+1. Substituting this bound into Eq. (13) yields a geo-
metric series, which converges when |t| < t∗. Convergence
of this series implies the convergence of the cluster expan-
sion such that fA(t) = 〈A(t)〉 and leads to the error bound
in the lemma. �

We highlight that Proposition 3 holds for any quantum
state ρ. The restriction to product states only becomes rel-
evant when bounding the computational cost. In addition,
the proposition is valid for complex values of t.

B. Computation for short times

We now discuss the computational cost of estimating
〈A(t)〉 for a time |t| < t∗ up to additive error ε‖A‖. For
simplicity, we only give the asymptotic scaling of the
algorithm with ε and |t|/t∗ and suppress the dependence
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on constant parameters such as the locality k or the connec-
tivity d of the Hamiltonian. Moreover, we exclude issues
of finite numerical precision, which have been addressed
rigorously by Haah et al. [22], from our considerations.

Our approximation algorithm computes the cluster
expansion for all clusters up to size M , the value of which
is determined by ε and |t|/t∗. For all m ≤ M , we proceed
in two steps:

(i) Enumerate all the connected clusters in GA
m

(ii) Compute and add the contributions of every cluster

Step (i) can be carried out by using the algorithm in Lemma
1 to first compute clusters of size m + 1 containing X =
supp(A) and by subsequently reducing the multiplicity of
X by one. The run time is exp(O(m)). The computational
effort of step (ii) is dominated by the evaluation of the
sum over nested commutators in Eq. (9). We show in
Appendix A that this can be done for a product state in
time exp(O(m)) by suitably grouping the m! terms of the
sum.

Together, the two steps lead to the following run time of
the approximation algorithm.

Proposition 4. Let ρ be a product state and |t| < t∗ =
1/(2ed). There exists an algorithm that outputs an estimate
f̂A(t) with run time

poly

[(
1

1 − |t|/t∗
1
ε

)1/ log(t∗/|t|)]
(14)

such that
∣∣∣〈A(t)〉 − f̂A(t)

∣∣∣ ≤ ε ‖A‖.

Proof. According to Proposition 3, truncating the clus-
ter expansion at order M > log ed/(1 − |t|/t∗)ε/ log t∗/|t|
leads to an error that is bounded from above by ε‖A‖.
Following the above discussion of enumerating the clus-
ters and computing their contributions, we see that the
cluster expansion truncated at order M can be evaluated
in time exp(O(M )). Picking the smallest integer M that
guarantees the desired error bound yields Eq. (14). �

C. Computation for arbitrary times

The convergence result of Proposition 3 is indepen-
dent of the system size n. Hence, 〈A(t)〉 remains analytic
in the thermodynamic limit for all complex values of
t that satisfy |t| < t∗. Given any t0 ∈ R, we may write
〈A(t)〉 = tr

(
eiH(t−t0)Ae−iH(t−t0)ρ ′), where ρ ′ = e−iHt0ρeiHt0

is another quantum state. This shows that 〈A(t)〉 is analytic
on a disk in the complex plane of radius t∗ around any point
on the real axis. Stated differently, 〈A(t)〉 is analytic for all
complex values of t satisfying |Im(t)| < t∗. This analytic

(a) (b)

FIG. 3. An illustration of the analytic continuation scheme.
(a) The function φ(z) is analytic in the domain |z| ≤ R. The blue
circle is the unit circle. (b) The function 〈A(tφ(z))〉 is analytic for
all z such that |Im[tφ(z)]| < t∗. Given t ∈ R, tφ(z) maps the unit
circle to the elongated shape outlined by the blue curve.

structure provides a strategy to compute 〈A(t)〉 for a prod-
uct state ρ for all t ∈ R and any system size n by means of
analytic continuation.

While there are many approaches to analytic contin-
uation, we pick here a concrete method that employs a
function φ(z) that maps a disk onto an elongated region
along the real axis. For some R > 1 and w > 0, we assume
that φ(z) satisfies the following three properties:

(i) φ(z) is analytic on the closed disk DR = {z ∈ C :
|z| ≤ R}.

(ii) φ(0) = 0 and φ(1) = 1.
(iii) |Im(φ(z))| ≤ w for all z ∈ DR.

We show below, using an explicit example, that such a
function exists.

Next, we define f (z) = 〈A(tφ(z))〉, where t ∈ R is the
time at which we want to evaluate 〈A(t)〉. It follows from
property (ii) that f (1) = 〈A(t)〉. Because 〈A(t)〉 is analytic
when |Im(t)| < t∗, properties (i) and (iii) together ensure
that f (z) is analytic on DR, provided that w|t| < t∗. These
relations are illustrated in Fig. 3.

Next, we compute the Taylor series of f (z) at z = 0 up
to order M . With 〈A(t)〉 =∑∞

l=0 Altl and φ(z) =∑∞
l=0 φlzl,

we have

1
k!

dkf (z)
dzk

∣∣∣∣
z=0

=
k∑

l=1

Altl
∑

m1,...,ml≥1
m1+···+ml=k

φm1 · · · φml , (15)

where we use the fact that φ0 = 0. We can obtain Altl from
the cluster expansion as Altl =∑W∈Gl

λWDW〈A(t)〉/W!,
which takes time exp(O(l)) to evaluate. The sum over the
Taylor coefficients of φ(z) involves

( l−1
k−1

) ≤ 2l−1 terms.
Assuming that the individual coefficients φl can be com-
puted in time exp(O(l)), it thus takes time exp(O(k))
to compute the kth Taylor coefficient of f (z), and time
exp(O(M )) to compute the full Taylor series up to
order M .
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To bound the truncation error of the Taylor series, we
make use of the following standard result in complex
analysis (see, e.g., Ref. [12, Proposition 18]).

Lemma 5. We denote by DR the closed disk of radius R
centered at z = 0 in the complex plane, i.e., DR = {z ∈
C| |z| ≤ R}. Let f (z) be a complex function that is bounded
by |f (z)| ≤ F and analytic for all z ∈ DR. Given α < 1, for
all z ∈ DαR, the error of approximating f (z) by a truncated
Taylor series of order M is bounded by

εM (z) =
∣∣∣∣∣f (z) −

M∑
m=0

1
m!

f (m)(0)zm

∣∣∣∣∣ ≤ αM+1

1 − α
F . (16)

Combining this lemma with the above considerations for
computing the Taylor series yields an algorithm to estimate
〈A(t)〉 for all t ∈ R.

Theorem 6. Given t > 0, there is an algorithm that out-
puts the estimate f̂A(t) with run time

poly

[(
1
ε

eπ t/t∗
)exp(π t/t∗)

]
(17)

such that for any product state ρ,∣∣∣〈A(t)〉 − f̂A(t)
∣∣∣ ≤ ε ‖A‖ . (18)

Proof. We bound the truncation error of the Taylor series
of f (z) at z = 1 by letting α = 1/R in Lemma 5. This
yields

εM (1) ≤ 1
RM (R − 1)

max
z∈DR

|f (z)| . (19)

By the same argument that we use to show that 〈A(z)〉 is
analytic for all |Im(z)| < t∗, Proposition 3 implies that

〈A(z)〉 ≤ ed
1 − |Im(z)|/t∗

‖A‖ (20)

for all z satisfying |Im(z)| < t∗. Since |Im(φ(z))| ≤ w,
assuming wt/t∗ < 1, we have

max
z∈DR

|f (z)| ≤ ed
1 − wt/t∗

‖A‖. (21)

Hence,

εM (1) ≤ ed
1 − wt/t∗

1
RM (R − 1)

‖A‖. (22)

The parameters R and w cannot be chosen entirely at will
owing to the constraints on φ(z). We do not attempt to

address this issue in general but instead consider the con-
crete example φ(z) = log(1 − z/R′)/ log(1 − 1/R′) with
R′ > R > 1, inspired by Ref. [31, Lemma 2.2.3]. This
function clearly satisfies the requirements (i) and (ii). For
requirement (iii), we assume that the branch of the log-
arithm is chosen such that |Im(φ(z))| ≤ −π/[2 log(1 −
1/R′)]. We therefore set w = −π/[2 log(1 − 1/R′)].
Recalling that w < t∗/t, we separately let wt/t∗ = η for
some η < 1. We can always choose R < R′ such that
R′m(R′ − 1) = 2RM (R − 1), allowing us to replace R by R′
in Eq. (22) at the cost of a factor of 2. For the particular
choice of φ(z), we thus obtain

εM (1) ≤ 2ed
1 − η

(
1 − e−π t/2ηt∗

)M (
eπ t/2ηt∗ − 1

)
‖A‖.

(23)

It follows from this expression that truncating at
order M > eπ t/2ηt∗ log

(
2ed/1 − η1/εeπ t/2ηt∗) guarantees

an error εM (1) ≤ ε‖A‖. Thus, our output f̂A(t) is the Taylor
series of f (z) at z = 1 up to the smallest integer satis-
fying the lower bound on M . Since the computational
cost is exponential in M , the theorem follows by setting
η = 1/2. �

The above approach yields an algorithm to estimate
〈A(t)〉 with a computational cost that scales polynomially
with 1/ε for any fixed real time t. The cost, however,
has a doubly exponential dependence on t/t∗, which ren-
ders this approach unsuitable for practical computations at
long times. The chain of disks, another common method
of analytic continuation, also yields a doubly exponential
dependence of the computational cost on the time t [32].
We conjecture that this scaling is an unavoidable conse-
quence of analytic continuation. More efficient continua-
tion algorithms may be available if the analytic domain
of 〈A(t)〉 extends along the imaginary direction beyond a
constant. This is, however, not possible in general because
there exist local observables and Hamiltonians for which
〈A(t)〉 becomes nonanalytic in the thermodynamic limit at
a constant imaginary time [33]. This also indicates that our
convergence result is optimal up to an improvement of t∗
by a constant factor. We remark that the above procedure
can be adapted to not only yield expectation values with
product initial states but also an M -local approximation of
the operator A(t).

D. Comparison with the Lieb-Robinson bound

The Lieb-Robinson bound [34] offers an alternative
method for computing the time evolution of local opera-
tors. It implies that∣∣〈A(t)〉 − 〈eiHltAe−iHlt〉∣∣ ≤ Ce(vt−l)/ξ‖A‖, (24)

where C and ξ are constants and v is the Lieb-Robinson
velocity. The Hamiltonian Hl =∑X ∈S: dist(X ,A)≤l λX hX
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contains all local terms within the graph distance
dist(X , A) between the operators X and A on the interac-
tion graph G.

To compute 〈A(t)〉 to within additive error ε‖A‖, it
suffices to compute 〈e−iHltAeiHlt〉 on a region of radius
l = vt + ξ log(C/ε). In a lattice in D dimensions, the
computational cost of performing exact diagonalization
on this region is exponential in [vt + ξ log(C/ε)]D =
ξD logD [evt/ξ (C/ε)

]
. For D > 1, this yields an algorithm

the cost of which is superpolynomial in both evt/ξ and
1/ε, as opposed to the polynomial dependence on 1/ε

in Theorem 6. The difference is even more marked in
expander graphs, for which the number of sites at a dis-
tance l grows as exp(O(l)). The Lieb-Robinson method
has a run time that is exponential in poly(1/ε) and doubly
exponential in t for such graphs.

IV. LOSCHMIDT ECHO

A. Cluster expansion

We now focus on the Loschmidt echo

L(t) ≡ tr
(
e−iHtρ

)
, (25)

where ρ is a product state on the n qubits. This is an impor-
tant quantity in the study of dynamics of quantum systems.
It appears in diverse contexts such as quantum chaos [35],
as the characteristic function of the local density of states
[36], and in algorithms for quantum simulation [37]. As we
discuss below, it is also a key quantity in the description of
dynamical phase transitions and other relevant phenomena.

We consider the logarithm log L(t), the multivariate Tay-
lor expansion of which can be written in terms of cluster
derivatives as

fL(t) =
∞∑

m=1

∑
W∈Cm

λW

W!
DW log L(t). (26)

Our goal is to establish sufficient criteria for the conver-
gence of this expansion. Working with the logarithm of
L(t) greatly reduces the number of clusters involved, since
only connected ones contribute.

Lemma 7. If ρ is a product state, then for any discon-
nected cluster W,

DW log L(t) = 0. (27)

Proof. Since W /∈ G, there exists a decomposition W =
WA ∪ WB such that the cluster graphs GWA and GWB
are disconnected components of GW. We define HA =∑

X ∈WA
λX hX and HB =∑X ∈WB

λX hX , where each sub-
system is included at most once in the sum, even if it
appears with higher multiplicity in the cluster. Clearly,

supp(HA) ∩ supp(HB) = ∅, which implies [HA, HB] = 0
and

DW log L(t) = DW log tr
(
e−iHAte−iHBtρ

)
. (28)

For ρ a product state, we further have

tr
(
e−iHAte−iHBtρ

) = tr
(
e−iHAtρ

)
tr
(
e−iHBtρ

)
(29)

and thus

DW log L(t)

= DW log tr
(
e−iHAtρ

)+ DW log tr
(
e−iHBtρ

)
. (30)

The first term vanishes because HA is independent of λX
for any X ∈ WB. Similarly, the second term is independent
of λX for X ∈ WA. �

Hence, we can restrict the sum in Eq. (26) to connected
clusters.

We next bound the cluster derivative using the bounded
connectivity of the cluster and partition graphs. Many
properties of a graph G are captured by the Tutte polyno-
mial TG(x, y) (see, e.g., Ref. [38]). For instance, TG(1, 1)

is the number of spanning trees (or spanning forests if the
graph is not connected), TG(2, 1) is the number of forests,
and TG(2, 2) is 2|E|, where |E| is the number of edges.

Using the Tutte polynomial, the cluster derivative of
log L(t) can be concisely expressed as in the following
lemma.

Lemma 8. For any W ∈ Gm, the cluster derivative of
log L(t) can be written as

DW log L(t) = (−it)m

×
∑

P∈Pc(W)

(−1)|P|−1NP(W)TG̃P
(1, 0)

∏
V∈P

〈hV〉s, (31)

where we introduce the symmetrized expectation value

〈hV〉s = 1
|V|!

∑
σ∈S|V|

tr
(

hVσ(1)
hVσ(2)

· · · hVσ(|V|)ρ
)

(32)

and the combinatorial factor

NP(W) = W!
P!
∏

V∈P V!
. (33)

We prove this lemma in Appendix B 2. A similar state-
ment has been reported by Mann and Helmuth [11], with
Helmuth, Perkins, and Regts [39] pointing out the relation
to the Tutte polynomial.

We make use of Lemma 8 to derive the following upper
bound on the cluster derivative.
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Proposition 9. Let W ∈ Gm. Then,

∣∣∣∣ 1
W!

DW log L(t)
∣∣∣∣ ≤ [2e(d + 1)|t|]m. (34)

We defer the proof to Appendix B 4. In rough terms,
it proceeds by observing that |〈hV〉s| ≤ 1 and 0 ≤
TG̃P

(1, 0) ≤ TG̃P
(1, 1), where TG̃P

(1, 1) is equal to the
number of spanning trees of G̃P. The sum of these trees
over all partitions can then be bounded by the number of
spanning trees of the original cluster graph GW. This num-
ber is smaller than an exponential in m times W!, yielding
Eq. (34).

Having bounded each term in the cluster expansion, it
remains to bound the number of terms, i.e., the number of
connected clusters of size m. This is done with Lemma 1
and the fact that there are |S| subsystems on the lattice such
that the total number is bounded by |S|(ed)m.

The main result of this section is the following theorem.

Theorem 10. The logarithm of the Loschmidt echo,
log L(t), is analytic for |t| < t∗L = 1/[2e2d(d + 1)] and the
truncation error of the cluster expansion can be bounded
by

∣∣∣∣∣log L(t) −
M∑

m=1

∑
W∈Gm

λW

W!
DW log L(t)

∣∣∣∣∣
≤ |S| (|t|/t∗L)

M+1

1 − |t|/t∗L
. (35)

Proof. Lemma 7 and Proposition 9, together with the
bound on the number of clusters, imply that

∣∣∣∣∣
∑

W∈Gm

λW

W!
DW log L(t)

∣∣∣∣∣ ≤ |S|[2e2d(d + 1)|t|]m. (36)

The result then follows by considering the weight of the
terms of the Taylor expansion with m > M . �

The overall argument of this section mirrors the steps of
previous results on Gibbs states [17,22]. Our new technical
contributions are the expression for the cluster derivative
in Lemma 8 and the bound in Proposition 9, for which we
use a novel proof strategy based on counting trees. We note
that convergence results similar to Theorem 10 can also be
proved using the general framework of abstract polymer
models [8,10,11].

B. Computation of the Loschmidt echo

The above Taylor approximation allows for an efficient
classical estimation of the Loschmidt echo for short times.

Theorem 10 guarantees that to approximate log L(t), it suf-
fices to calculate the terms in the series up to some order
M . Recall that the mth-order term is given by

∑
W∈Gm

λW

W!
DW log L(t). (37)

As in Sec. III B, we need two steps to calculate these: (i)
enumerate all the connected clusters in Gm and (ii) compute
and sum the cluster derivative for every connected cluster
according to Eq. (37). Lemma 1 addresses the first step. For
the second one, we need to bound the cost of computing
cluster derivatives. Related bounds have previously been
stated in several works [11,22,40], where the computation
has proceeded either by directly differentiating log L(t) or
by summing the terms of an expansion similar to that in
Lemma 8. Here, we pursue the latter approach, stating the
computational cost in the following proposition. As in Sec.
III, we ignore complications arising due to finite numerical
precision.

Proposition 11. There exists a deterministic algorithm
that outputs DW log L(t) for W ∈ Gm with run time
exp(O(m)).

Proof. The algorithm evaluates the expression in Lemma
8. There are three nontrivial contributions to the run
time:

(i) Enumerating the partitions of W into connected
subclusters. This takes time exp(O(m)) by the fol-
lowing algorithm. Assign to each subsystem in
W a unique label from the set {1, 2, . . . , m}. List
all compositions of m, i.e., ordered tuples of pos-
itive integers (n1, n2, . . . , nl) such that their sum
equals m. There are 2m−1 distinct compositions,
which can be enumerated in time exp(O(m)). For
each composition, find all connected clusters V1
of size n1 that are contained in W and include
the subsystem labeled 1. By Lemma 1, this step
can be carried out in time exp(O(n1)) by enumer-
ating all clusters connected to subsystem 1 and
removing the ones that are not contained in W.
Next, for each V1, find all connected clusters V2
of size n2 that are contained in W \ V1 and include
the subsystem with the smallest label remaining
in W \ V1. This step takes a computational time
exp(O(n2)). We iterate this procedure, removing
the new cluster Vi from the original cluster in
every step until W =⋃l

i=1 Vi. The procedure takes
time exp(O(n1)) exp(O(n2)) · · · exp(O(nl)) = exp
(O(m)). The above steps produce a list of length
exp(O(m)), which includes all desired partitions.
Duplicates may appear, although these can be
removed in time exp(O(m)).
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(ii) Computing the Tutte polynomial TG̃P
(1, 0), where

G̃P has |P| ≤ m vertices. This can be done in time
exp(O(|P|)) using the algorithm by Björklund et al.
[41].

(iii) Computing the symmetrized expectation value 〈hV〉s
for V ∈ Gl with l ≤ m. The approach in Appendix
A—Eq. (A2) in particular—can be adapted to carry
out this computation in time exp(O(l)).

�
With these ingredients, the main result is as follows.

Theorem 12. For times |t| < t∗L = 1/[2e2d(d + 1)], there
exists a classical algorithm with run time

|S| × poly

[( |S|
1 − |t|/t∗L

1
ε

)1/ log(t∗L/|t|)]
(38)

that outputs f̂L(t) such that | log L(t) − f̂L(t)| ≤ ε.

Proof. Theorem 10 implies that the truncation error of the
cluster expansion is smaller than ε when keeping terms up
to M > log |S|/(1 − |t|/t∗L)ε/ log t∗L/t. With Lemma 1 and
Proposition 11, this determines the run time in Eq. (38).

�
For a fixed t < t∗L, the run time is polynomial in 1/ε as

well as in the number of terms |S|, which is proportional to
the system size n. The output approximates the Loschmidt
echo by exp[f̂L(t)] with a multiplicative error

e−ε
∣∣∣ef̂L(t)

∣∣∣ ≤ |L(t)| ≤ eε
∣∣∣ef̂L(t)

∣∣∣ . (39)

Unlike in the case of local observables, it is in general
not possible to analytically continue the Loschmidt echo
beyond t∗L because the zeros of L(t), and thus any non-
analyticities of log L(t), may be located anywhere in the
complex plane, including the real axis.

C. Generalized Loschmidt echo

We now show that similar results hold for a Loschmidt
echo with multiple Hamiltonians, defined as

L(t1, t2, . . . , tK) = L({tl}) = tr

(
K∏

l=1

e−iH (l)tlρ

)
. (40)

We assume that each of the K Hamiltonians {H (l)} satisfies
the same conditions as in Sec. II, so that they can all be
written as

H (l) =
∑
X ∈S

λ
(l)
X h(l)

X . (41)

We define the set of labeled subsystems SK = {(X , l) :
X ∈ S, l ∈ {1, 2, . . . K}}, where the additional index keeps

track of the Hamiltonian. The corresponding interaction
graph GK may be viewed as K copies of the original inter-
action graph G, where vertices are connected if the sub-
systems overlap, independent of which copy they belong
to. Note that if the maximum degree of the original inter-
action graph G was d, then the maximum degree of GK is
K(d + 1) − 1.

A cluster W is now defined as a multiset of elements
from SK , with the set of clusters of size m denoted by
CK

m and the set of connected clusters by GK
m . The multi-

plicities of a subsystem and Hamiltonian label in a clus-
ter are denoted by μW((X , l)). The cluster graph GK

W is
again constructed by connecting subsystems that over-
lap, independent of the Hamiltonian with which they are
associated.

With this notation, the logarithm of the Loschmidt echo
permits the cluster expansion

fL({tl}) =
∞∑

m=1

∑
W∈GK

m

λW

W!
DW log L({tl}). (42)

Here, we introduce natural generalizations of our short-

hands, λW =∏(X, l)∈SK

(
λ

(l)
X

)μW((X, l))
, W! =∏(X, l)∈SK

μW((X, l))!, and the cluster derivative

DWf ({tl}) =
⎡
⎣ ∏

(X, l)∈SK

(
∂

∂λ
(l)
X

)μW((X, l))
⎤
⎦ f ({tl})

∣∣∣∣∣∣
λ=0

.

(43)

As we show in Appendix C, the results of Sec. IV A carry
over directly, as long as we take into account the increased
maximum degree of the interaction graph GK . In particular,
this means that for W ∈ GK

m ,

∣∣∣∣ 1
W!

DW log L({tl})
∣∣∣∣ ≤ [2eK(d + 1)]m

K∏
l=1

|tl|ml , (44)

where ml is the number of terms in W associated with H (l).
Note the additional factor of K , which effectively reduces
the threshold time by 1/K .

The analysis of the computational cost is similar to that
in Sec. IV B, as detailed in Appendix C. Hence, we obtain
an analog of Theorems 10 and 12.

Theorem 13. Let τ = K
∑K

l=1 |tl|/t∗L, where t∗L = 1/[2e2

d(d + 1)]. The logarithm of the generalized Loschmidt
echo, log L({tl}), is analytic for τ < 1 and its Taylor series
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converges as∣∣∣∣∣∣log L({tl}) −
M∑

m=1

∑
W∈GK

m

K∏
l=1

λW

W!
DW log L({tl})

∣∣∣∣∣∣
≤ |S| τ

M+1

1 − τ
. (45)

Moreover, there exists a classical algorithm with run time

|S| × poly

[( |S|
1 − τ

1
ε

)K/ log(1/τ)
]

(46)

that outputs f̂L({tl}) such that | log L({tl}) − f̂L({tl})| ≤ ε.

We highlight again that the computational cost scales
polynomially with the number of Hamiltonian terms |S|
and the inverse error 1/ε. The number of Hamiltonians
K enters in the shortened threshold time t∗L/K and in the
exponent in Eq. (46) as a computational overhead.

V. FURTHER IMPLICATIONS

Besides leading to efficient classical algorithms, the con-
vergence of the cluster expansion has important physical
consequences, which we discuss below.

A. Concentration bounds

Given a quantum state ρ, the outcome of a measure-
ment of an observable A is a random variable. Assuming
a projective measurement onto the eigenspaces of A, the
probability of outcome x is given by Pr(x) = tr[�(x)ρ],
where �(x) is the projector onto the eigenspace of A with
eigenvalue x. A concentration bound is an upper bound
on the probability Pr[|x − tr(ρA)| ≥ δ], i.e., the probability
that x deviates from its mean tr(ρA) by more than δ. We
focus on the Hamiltonian H =∑X λX hX as the observ-
able. The energy distribution of a state plays an important
role in thermalization and equilibration [42,43] and its con-
centration properties place limitations on the performance
of variational quantum algorithms [29,44].

As a warm-up example, suppose that the Hamiltonian
terms hX act on distinct single sites and that ρ is a product
state. Then, the measurement outcome of H is equal to the
sum of the measurement outcomes of hX , which are inde-
pendent random variables. The Chernoff-Hoeffding bound
for independent random variables implies that

Pr[|x − tr(ρH)| ≥ δ] ≤ 2 exp
(

− δ2

2
∑

X ‖hX ‖2

)
. (47)

We note that the denominator in the exponent is propor-
tional to the system size n such that deviations from the
mean energy of order

√
n are strongly suppressed.

This simple argument fails when the terms hX in the
Hamiltonian overlap or when ρ is not a product state
because the outcomes of the measurements hX are no
longer independent. Nevertheless, similar bounds hold
for local Hamiltonians and sufficiently weakly corre-
lated states. A number of proof techniques have been
employed to establish such results [27,28,45], including
cluster expansion [40] (for results on large deviations, see
also, e.g., Ref. [16]).

To illustrate the method, we use cluster expansion to
give a concise proof of a concentration bound for the
energy of product states, reproducing the main result of
Ref. [27]. It follows from a standard argument (see, e.g.,
Ref. [40, Corollary 1]) that the probability of obtaining a
measurement outcome x that is greater than the average
energy by at least δ is bounded according to

Pr [x − tr(ρH) ≥ δ] ≤ e−δν tr
[
ρ eν(H−tr(ρH))

]
. (48)

Next, we apply Theorem 10 with t = iν, where 0 ≤ ν < t∗L.
Taking M = 1, the theorem implies that

∣∣log tr(ρeνH ) − ν tr(ρH)
∣∣ ≤ |S| (ν/t∗L)

2

1 − ν/t∗L
. (49)

Substituting into Eq. (48) yields

Pr [x − tr(ρH) ≥ δ] ≤ exp
[
−δν + |S| (ν/t∗L)

2

1 − ν/t∗L

]
. (50)

Choosing ν = δ(t∗L)
2/4|S| (which is always possible since

δ/|S| ≤ 1 and t∗L < 1) and applying the same bound for
Pr(x − tr[ρH ] ≤ δ), we obtain

Pr[|x − tr(ρH)| ≥ δ] ≤ 2e−(δt∗L)2/8|S|. (51)

We observe that this bound has the same dependence on
δ and the system size as the bound for the special case in
Eq. (47).

Theorem 13 enables us to extend the bound beyond
product states. For short times, we can consider

∣∣∣ log tr
(

e−itH (1)
ρeitH (1)

eνH (2)
)

− ν tr
(

e−itH (1)
ρeitH (1)

H (2)
) ∣∣∣, (52)

from which we obtain the following concentration bound.

Corollary 14. Let H (1) and H (2) be local Hamiltonians, let
ρ be a product state, and let |t| ≤ t∗L/7. The probability that
a projective measurement of the state e−itH (1)

ρeitH (1)
onto

the eigenbasis of H (2) yields a value x that deviates from
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the expectation value tr[e−itH (1)
ρeitH (1)

H (2)] by at least δ is
bounded from above by

Pr
[∣∣∣x − tr

(
e−itH (1)

ρeitH (1)
H (2)

)∣∣∣ ≥ δ
]

≤ 2e
−(δt∗L)2

(250)2|S| . (53)

The proof is shown in Appendix D. The corollary shows
that after evolving a product state for a short time under
a local Hamiltonian, the energy distribution with respect
to a (possibly different) local Hamiltonian is concentrated
around the mean. Previous results along these lines cover
many relevant cases but not time-evolved product states
[17,27–29,45]. Since Theorem 13 works for any num-
ber of Hamiltonians, this corollary can also be extended
to states of the form e−itH (1) · · · e−itH (K)

ρeitH (K) · · · e−itH (1)
,

which often feature in variational quantum algorithms, for
a correspondingly shorter threshold time.

B. Dynamical phase transitions

Dynamical phase transitions (DPTs) may be viewed as
a real-time analog of thermal phase transitions [46]. The
cluster expansion naturally constrains the time at which
they can appear. Let us consider an infinite sequence of
local Hamiltonians Hn on n particles under the assump-
tions of Sec. II and product states |�〉 = ⊗n

i=1|φ〉i, such
that gn(t) ≡ log 〈�|e−itHn |�〉. A DPT occurs when the
following function is nonanalytic [23]:

G(t) = lim
n→∞

gn(t)
n

. (54)

The following result is a consequence of Theorem 10.

Corollary 15. G(t) is analytic for t < t∗L, and thus DPTs
can occur only at later times.

The proof is shown in Appendix E. The time scale t∗L
is hence a universal lower bound on the time at which
dynamical phase transitions occur. Nonanalyticities can
appear in the logarithm of the Loschmidt echo at times
t ∼ O(1), as can be seen from the simple case of noninter-
acting spins. This has also been demonstrated analytically
for particular interacting models in one dimension [47].
This shows that t∗L in Theorem 10 can be increased at most
by a constant factor. Note also that Theorem 13 allows
us to extend this corollary to some Floquet systems. The
absence of dynamical phase transitions at short times is
analogous to the fact that thermal phase transitions can
only occur above some threshold inverse temperature β∗
that depends on the details of the system.

C. Quantum speed limits

A quantum speed limit (QSL) is a bound on the time tQSL
that it takes for a state � evolving under a Hamiltonian H

to become orthogonal to itself. Formally,

tQSL = min{t : 〈�|e−itH |�〉 = 0}. (55)

The best-known general limits are the Mandelstam-Tamm
and the Margolus-Levitin bounds [25,26]. When com-
bined, they read

tQSL ≥ π

2
max

{
1

�H
,

1
〈H 〉

}
, (56)

where 〈H 〉 = 〈�|H |�〉, (�H)2 = 〈�|(H − 〈H 〉)2|�〉 and
we assume that all eigenvalues of H are positive. In many-
body systems, however, we typically have that �H ∼ n1/2

and 〈H 〉 ∼ n, so that the bound vanishes with the sys-
tem size. A simple consequence of Theorem 10 gives a
significant improvement on the bound:

Corollary 16. Let H be local and let |�〉 be a product
state. Then, tQSL ≥ t∗L.

Proof. Theorem 10 shows that the logarithm of the fidelity
is analytic for t < t∗L. Since log(x) is nonanalytic at x = 0,
this means that |〈�|e−itH |�〉| > 0 for t < t∗L. �

Alternatively, the QSL also follows from the explicit
lower bound in Eq. (39). By truncating the cluster expan-
sion at order M = 2, we obtain the lower bound

|〈�|e−itH |�〉| ≥ exp
[
−|S| (|t|/t∗L)

4

1 − (|t|/t∗L)2

]
e−�H2t2/2 (57)

for all |t| < t∗L. The dependence on |t|/t∗L in the first expo-
nential is better than in Theorem 10 because all odd orders
in the cluster expansion are purely imaginary and therefore
do not contribute to the absolute value | exp[f̂L(t)]|.

This result shows that the well-known QSLs of Eq. (56)
do not give very tight bounds for product states evolving
under local Hamiltonians. Let us remark that even if the
fidelity does not become zero at early times, it does gener-
ically quickly become exponentially small in system size
[48,49], which can also be seen from the upper bound in
Eq. (39).

VI. SUMMARY AND OUTLOOK

We show that the cluster expansion of many dynami-
cal quantities converges at short times, yielding efficient
classical approximation algorithms as a by-product. We
describe the implications for the complexity of quan-
tum dynamics and discuss consequences for concentration
bounds, which are linked to the performance of variational
quantum algorithms [29,50], dynamical phase transitions,
and quantum speed limits.

The proof strategy of our main results is based on count-
ing the number of clusters that participate and bounding
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their individual contributions to the sum. This last step
diverges from established convergence proofs of cluster
expansions in the literature on abstract polymer models [5,
8,10,51], which are based on iterative arguments. We fol-
low more closely recent papers with results on Gibbs states
[17,22,40], although we use an alternative expression for
the cluster derivative involving the Tutte polynomial of the
partition graph, which may be of independent interest.

Our work opens the door to many future research direc-
tions. It will be interesting to explore the optimality of
our algorithms. For example, is it possible to improve
the time dependence of Theorem 6 to the one given by
the Lieb-Robinson bound (i.e., eO(tD) in D dimensions)
while retaining the polynomial dependence of the inverse
approximation error? Similarly, we may ask whether it
is possible to extend the concentration bound, Corollary
14, to longer times. Related bounds on moments of the
distribution have already been shown to hold for times
up to O(log n) [52]. One could also address in this con-
text whether a sharp breakdown of Gaussian concentration
occurs at longer times, which may be related to dynamical
phase transitions.

From a numerical perspective, our algorithms should be
compared in practice to existing approaches such as the
closely related numerical linked-cluster expansion [53],
which has also been used to approximate quantum dynam-
ics [54–57]. Other related methods are cluster expansions
with tensor-network representations [58,59] and schemes
based on operator-basis expansions [60–62]. While our
approach can be adapted to evolution under local Lind-
bladians by vectorizing the density operator, there is no
obvious way in which noise improves convergence of
the cluster expansion. It is unclear whether this happens
for particular noise models, which could have significant
implications on the classical simulation of noisy quan-
tum circuits [63–65] and on the assessment of quantum
advantage of noisy intermediate-scale quantum (NISQ)
simulators [66].

We show that cluster expansion is useful not only
for the study of systems in thermal equilibrium but also
for dynamical problems. Cluster expansion enables us
to establish the classical approximability of continuous
dynamics for short times, similar to previous results for
quantum circuits [67]. It complements other locality-
based methods such as those derived from Lieb-Robinson
bounds, which have led to important results in both dynam-
ical and equilibrium systems [68]. We hope that our work
stimulates further research into these techniques and into
how they can help us understand other aspects of quantum
many-body problems.
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APPENDIX A: COMPUTATION OF NESTED
COMMUTATORS

We show in this appendix that the nested commutator in
Eq. (9) can be numerically evaluated in time exp(O(M )).
We start by expanding the commutator as

∑
σ∈Sm

[
hWσ(1)

, · · · [hWσ(2)
, · · · [hWσ(m)

, A
]]]

=
∑

I⊆[m]

(−1)m−l
(

m
l

)⎛⎝∑
σ∈Sl

hWIσ(1)
· · · hWIσ(l)

⎞
⎠A

×
⎛
⎝ ∑

σ∈Sm−l

hWJσ(1)
· · · hWJσ(m−l)

⎞
⎠ , (A1)

where the sum over I runs over all subsets of [m] =
{1, 2, . . . , m}, l = |I |, and J = [m] \ I . The elements of I
and J are labeled by I1, I2, . . . , Il and J1, J2, . . . , Jm−l with
some arbitrary ordering. Following Ref. [11], we use an
inclusion-exclusion argument to rewrite each sum over
permutations using the identity

∑
σ∈Sl

hWσ(1)
· · · hWσ(l) =

∑
I⊆[l]

(−1)l−|I |
(∑

i∈I

hWi

)l

. (A2)

Hence, ∑
σ∈Sm

[
hWσ(1)

, · · · [hWσ(2)
, · · · [hWσ(m)

, A
]]]

=
∑

I⊆[m]

(−1)l
(

m
l

)∑
I ′⊆I

∑
J ′⊆J

(−1)|I
′|+|J ′|

×
(∑

i∈I ′
hWi

)l

A

(∑
i∈J ′

hWi

)m−l

. (A3)

We highlight that the sum over the subsets of [m] involves
2m terms as opposed to the m! terms of the sum over the
permutations in Sm. For a k-local Hamiltonian, the sums
over hWi result in an operator that has support on at most
km spins. The writing down of these operators on the
relevant subspace can be achieved in time poly(dkm) =
exp(O(m)). We can also raise them to the kth power with
similar computational effort by diagonalizing the operators
and powering the eigenvalues. Multiplying the resulting
operators by A and ρ and taking the trace again incurs a
computational cost with the same asymptotic dependence
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on m. Finally, we need to perform the sums over I , I ′, and
J ′. There is a total of 4m terms in these sums such that the
overall computational effort indeed scales as exp(O(m)).

APPENDIX B: LOSCHMIDT ECHO

1. Illustrative example

In this appendix, we describe the lowest-order terms
of the cluster expansion for the Loschmidt echo of a 2-
local Hamiltonian. We emphasize that this example serves
merely an illustrative purpose. Our results hold for the
much broader class of Hamiltonians defined in Sec. II.

The spins in this example are arranged on a square lat-
tice as indicated by the black circles in Fig. 4(a). The
Hamiltonian is assumed to be a sum of terms that act on
nearest-neighbor pairs. We note that the Hamiltonian may
also include single-spin terms, as these can be absorbed
into the 2-local interaction terms. Each interaction term
of the Hamiltonian is represented in Fig. 4(a) by a light-
blue diamond placed on the edges of the square lattice.
To construct the interaction graph G, we connect two dia-
monds if their associated edges share a spin [dashed lines
in Fig. 4(a)].

Connected clusters correspond to connected subgraphs
of the interaction graphs. All possible connected clusters
up to translations and rotations of sizes 1, 2, and 3 are
shown in Figs. 4(b) and 4(c).

To gain intuition for what kind of terms appear in the
cluster expansion, we consider the Taylor-series expansion
of log〈e−iHt〉 around t = 0. To third order,

log〈e−iHt〉 = −i〈H 〉t − 1
2
(〈H 2〉 − 〈H 〉2) t2

+ i
6
(〈H 3〉 − 3〈H 〉〈H 2〉 + 〈H 〉3) t3 + O(t4).

(B1)

The terms in the series take the form of cumulants. By
assumption, the expectation value is with respect to a prod-
uct state. This leads to a great number of cancellations
when substituting in H =∑X λX hX because expectation

values of nonoverlapping terms factorize. For example, the
term at second order simplifies to

〈H 2〉 − 〈H 〉2 =
∑

X

λ2
X 〈h2

X 〉 +
∑
X =Y

X ∩Y =∅

λX λY〈hX hy〉. (B2)

We recognize the two sums as the two distinct types of
connected clusters in Fig. 4(c), whereas all disconnected
clusters cancel. Our formalism of the cluster expansion
enables efficient book-keeping of these cancellations at
arbitrary order.

2. Proof of Lemma 8

Formally, the cluster expansion of the Loschmidt echo
is given by

L(t) = 1 +
∑
m≥1

∑
W∈Cm

λW

W!
DWL(t). (B3)

Note that the sum at this point includes both connected and
disconnected clusters. The cluster derivative of L(t) can be
written as

DWL(t) = (−it)|W|〈hW〉s, (B4)

where we remind the reader that the symmetrized expecta-
tion value is defined by

〈hW〉s = 1
m!

∑
σ∈Sm

tr
(
hWσ (1)hWσ (2) · · · hWσ (m)ρ

)
, (B5)

in which m = |W|. The symmetrized expectation value has
the property that it factorizes when W is disconnected.
Denote by Pc,max(W) ∈ Pc(W) the partition of W into its

(a) (b) (c) (d)

FIG. 4. (a) The spins (black circles) on a square lattice. The nearest-neighbor interaction is indicated by the light-blue diamonds.
The dashed lines correspond to edges of the interaction graph. (b)–(d) Illustrations of all the connected clusters of size 1, 2, and 3,
respectively, up to rotations and translations. The number of times an interaction term appears in a cluster is determined by how many
dark-blue lines enclose it.
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maximal connected components. Then,

〈hW〉s =
∏

V∈Pc,max(W)

〈hV〉s (B6)

and

λW

W!
DWL(t) =

∏
V∈Pc,max(W)

λV

V!
DVL(t). (B7)

The cluster expansion of the Loschmidt echo becomes

L(t) = 1 +
∑
m≥1

∑
W∈Cm

∏
V∈Pc,max(W)

λV

V!
DVL(t). (B8)

At this point, we take the logarithm, which we again
express in terms of its formal Taylor series,

log(1 + z) =
∞∑

n=1

(−1)n−1

n
zn. (B9)

Combining Eqs. (B8) and (B9) yields

log L(t) =
∞∑

n=1

(−1)n−1

n

∑
m1,...,mn≥1

∑
W1∈Cm1···
Wn∈Cmn

×
⎛
⎝ ∏

V1∈Pc,max(W1)

λV1

V1!
DV1L(t)

⎞
⎠

· · ·
⎛
⎝ ∏

Vn∈Pc,max(Wn)

λVn

Vn!
DVnL(t)

⎞
⎠ . (B10)

We can rearrange the sums to first sum over all clusters
W before considering decompositions of W into connected
clusters V.

log L(t) =
∑
m≥1

∑
W∈Gm

∑
P∈Pc(W)

C(P)
∏
V∈P

λV

V!
DVL(t). (B11)

Lemma 7 allows us to impose that W be connected. The
coefficient C(P) can be determined by considering the
different ways in which the partition P can arise from
the clusters W1, W2, . . . , Wn in Eq. (B10), such that P =⋃n

i=1 Pc,max(Wi). Different elements of P can belong to the
same “parent” cluster Wi if they do not overlap. It is hence
possible to construct assignments of all V ∈ P to parent
clusters W1, W2, . . . , Wn from a proper coloring of the par-
tition graph G̃P with exactly n colors. The vertices colored

with the first color form W1, the second color gives W2,
and so on. From this argument, we find that

C(P) = 1
P!

|P|∑
n=1

(−1)n−1

n
χ∗

G̃P
(n), (B12)

where χ∗
G̃P

(n) is the number of proper colorings of G̃P

with exactly n colors. The combinatorial factor P! removes
overcounting that occurs when P contains clusters with
multiplicity greater than 1 because permuting the colors
of repeated clusters has no effect on W1, W2, . . . Wn.

To complete the proof of Lemma 8, we make use of
the following combinatorial property of graphs, which we
prove in Appendix B 3.

Lemma 17. Given a connected graph G = (V, E), we
denote by χ∗

G(n) the number of proper colorings of G with
exactly n colors. Let TG(x, y) be the Tutte polynomial of G.
Then,

|V|∑
n=1

(−1)n−1

n
χ∗

G(n) = (−1)|V|−1TG(1, 0). (B13)

By applying this lemma to C(P), we obtain

log L(t) =
∑
m≥1

∑
W∈Gm

∑
P∈Pc(W)

(−1)|P|−1

P!
TG̃P

(1, 0)

×
∏
V∈P

λV

V!
DVL(t). (B14)

Finally, taking the cluster derivative of Eq. (B14) yields

DW log L(t) = W!
∑

P∈Pc(W)

(−1)|P|−1

P!
TG̃P

(1, 0)

×
∏
V∈P

1
V!

DVL(t), (B15)

which, using Eq. (B4), can be readily brought into the form
of the expression in Lemma 8.

3. Proof of Lemma 17

To prove Lemma 17, we introduce three more short lem-
mas. The first one relates the number of colorings that use
exactly k colors to the chromatic polynomial.

Lemma 18. Given a graph G, let χ∗
G(k) denote the number

of proper colorings of G that use exactly k colors. More-
over, let χG(k) be the chromatic polynomial, that is, the
number of proper colorings with up to k colors. Then,

χ∗
G(n) =

n∑
k=1

(−1)n−k
(

n
k

)
χG(k). (B16)
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Proof. This lemma follows from a standard inclusion-
exclusion argument. Alternatively, we can prove the state-
ment by direct calculation as follows.

The chromatic polynomial χG(k) can be computed by
picking j ≤ k colors and adding the contributions from

χ∗
G(j ):

χG(k) =
k∑

j =1

(
k
j

)
χ∗

G(j ). (B17)

We substitute this expression into the right-hand side of Eq. (B16) and exchange the order of the sums:

n∑
k=1

(−1)n−k
(

n
k

)
χG(k) =

n∑
k=1

k∑
j =1

(−1)n−k
(

n
k

)(
k
j

)
χ∗

G(j ) =
n∑

j =1

χ∗
G(j )

n∑
k=j

(−1)n−k
(

n
k

)(
k
j

)
. (B18)

When j = n, the last sum evaluates to 1. For j < n, we find instead that

n∑
k=j

(−1)n−k
(

n
k

)(
k
j

)
=
(

n
j

) n∑
k=j

(−1)n−k
(

n − j
k − j

)
=
(

n
j

) n−j∑
k=0

(−1)n−j −k
(

n − j
k

)
= 0. (B19)

Thus,
n∑

k=1

(−1)n−k
(

n
k

)
χG(k) = χ∗

G(n), (B20)

as claimed in the lemma. �
The second lemma connects the chromatic polynomial

to the Tutte polynomial. A proof of this statement can be
found in, e.g., Ref. [69].

Lemma 19. Given a graph G = (V, E) with c connected
components, the chromatic polynomial χG(k) is related to
the Tutte polynomial TG(x, y) by

χG(k) = (−1)|V|−ckcTG(1 − k, 0). (B21)

The third lemma is a simple identity involving sums
over binomial coefficients and powers of integers.

Lemma 20. The following identity holds for any integers
n and k satisfying n > k ≥ 0.

n∑
j =1

(−1)n−j
(

n
j

)
j k = (−1)n−1δk,0. (B22)

Proof. For k = 0,

∑
j =1

(−1)n−j
(

n
j

)
= (−1)n−1 +

n∑
j =0

(−1)n−j
(

n
j

)
= (−1)n−1.

(B23)

For n > k > 0, we observe that

n∑
j =1

(−1)n−j
(

n
j

)
j kxj =

(
x

d
dx

)k

(x − 1)n. (B24)

The lemma follows from the fact that the right-hand side
vanishes at x = 1 for all n > k > 0. �

Proof of Lemma 17. We apply the above three lemmas in
order. From Lemma 18, we have

|V|∑
n=1

(−1)n−1

n
χ∗

G(n) =
|V|∑

n=1

(−1)n−1

n

n∑
k=1

(−1)n−k
(

n
k

)
χG(k).

(B25)

We switch the order of the sums to obtain

|V|∑
n=1

(−1)n−1

n
χ∗

G(n) =
|V|∑

k=1

|V|∑
n=k

(−1)k−1

n

(
n
k

)
χG(k)

=
|V|∑

k=1

(−1)k−1

k
χG(k)

|V|∑
n=k

(
n − 1
k − 1

)
.

(B26)

By the hockey-stick identity, the last sum evaluates to(|V|
k

)
. Combined with Lemma 19, setting c = 1 since G is

connected by assumption, this yields

|V|∑
n=1

(−1)n−1

n
χ∗

G(n) =
|V|∑

k=1

(|V|
k

)
(−1)|V|−kTG(1 − k, 0).

(B27)

The Tutte polynomial TG(x, 0) is a polynomial in x
of degree at most |V| − 1. Therefore, TG(1 − k, 0) is a
polynomial in k of the same maximum degree, which
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allows us to write

TG(1 − k, 0) =
|V|−1∑
n=0

ankn (B28)

for some coefficients an. By substituting into Eq. (B27), we
obtain

|V|∑
n=1

(−1)n−1

n
χ∗

G(n) =
|V|−1∑
n=0

an

|V|∑
k=1

(|V|
k

)
(−1)|V|−kkn.

(B29)

Lemma 20 allows us to simplify the expression to

|V|∑
n=1

(−1)n−1

n
χ∗

G(n) = (−1)|V|−1a0. (B30)

This is the desired expression, since a0 = TG(1, 0). �

4. Proof of Proposition 9

We start from the expression for the cluster derivative in
Lemma 8:

DW log L(t) = (−it)m
∑

P∈Pc(W)

(−1)|P|−1NP(W)TG̃P
(1, 0)

∏
V∈P

〈hV〉s.

Recall the symmetric expectation value 〈hV〉s = 1/|V|!∑
σ∈S|V| tr

(
hVσ(1)

hVσ(2)
· · · hVσ(|V|)ρ

)
and the combinatorial

factor NP(W) = W!/
(
P!
∏

V∈P V!
)
. We rewrite the sum

over cluster partitions of W as a sum of graph partitions
of the cluster graph GW. Here, a graph partition refers
to a partition of the vertices. We only consider parti-
tions into connected subgraphs, meaning that the subsets
of vertices in the partition induce connected subgraphs
on the original graph. For every graph partition of GW
into connected subgraphs, there exists exactly one corre-
sponding cluster partition P ∈ Pc(W). On the other hand,
for every cluster partition, there are exactly NP(W) =
W!/P!

∏
V∈P V! equivalent graph partitions. This com-

binatorial factor arises because repeated subsystems are
indistinguishable at the level of the cluster but give rise
to distinct vertices in the cluster graph. With this,

DW log L(t) = (−it)m
∑

P′∈Pc(GW)

(−1)|P
′|−1

TG̃P
(1, 0)

∏
V∈P

〈hV〉s, (B31)

where, in a slight abuse of notation, Pc(GW) is the set of
partitions of the cluster graph GW into connected compo-
nents and P ∈ Pc(W) is the cluster partition corresponding

to P′. By observing that |〈hV〉s| ≤ 1, we obtain

|DW log L(t)| ≤ |t|m
∑

P′∈Pc(GW)

TG̃P
(1, 0) ≤ |t|m

∑
P′∈Pc(GW)

TG̃P
(1, 1), (B32)

where the last inequality follows from the fact that the
Tutte polynomial TG̃P

(x, y) has positive coefficients. We
bound this sum in two steps, starting with the following
lemma.

Lemma 21. Given a connected cluster W ∈ Gm,∑
P′∈Pc(GW)

TG̃P
(1, 1) ≤ 2mTGW(1, 1). (B33)

Proof. TG̃P′ (1, 1) counts the number of spanning trees of

G̃P, so that∑
P′∈Pc(GW)

TG̃P
(1, 1) =

∑
P′∈P ′

c(GW)

∑
spanning

trees of G̃P

1. (B34)

Given a spanning tree of the cluster graph GW, consider a
bicoloring of the edges into blue and red and delete the red
ones. This separates the edges into disconnected compo-
nents, each of which induces a connected subgraph on GW.
These subgraphs define a partition P′ ∈ Pc(GW), with its
corresponding partition graph G̃P. Moreover, the deleted
red edges can be identified with a spanning tree of G̃P.
Hence, any bicoloring of a spanning tree of GW describes a
term in the double sum on the right-hand side of Eq. (B34).
Conversely, for every term in the sum, we can find at least
one bicolored spanning tree. This procedure is illustrated
in Fig. 5. It follows that the sum is bounded from above by
the number of bicolored trees of GW. The number of edges
of each spanning tree is |W| − 1 = m − 1, so that there are
always 2m−1 distinct bicolorings for every tree. The total
number of spanning trees is TGW(1, 1), which completes
the proof. �

We next bound the number of spanning trees of
TGW(1, 1) given the connectivity of the cluster graph.

Lemma 22. Consider a set of supports S such that the
maximum degree of the associated interaction graph G is
d. Given a connected cluster W ∈ Gm,

1
W!

TGW(1, 1) ≤ [e(d + 1)]m+1. (B35)

Proof. Let us fix W1 ∈ W as the root of a spanning tree.
Any spanning tree can be constructed by picking for each

020340-17



DOMINIK S. WILD and ÁLVARO M. ALHAMBRA PRX QUANTUM 4, 020340 (2023)

(a)

(b)

(c)

(d)

FIG. 5. (a) A cluster graph GW with a particular graph partition indicated by the dashed outlines. (b) The corresponding partition
graph. (c) The three bicolored spanning trees that we identify with this graph partition. (d) The red edges define a spanning tree on the
partition graph.

vertex W2, W3, . . . Wm one of the edges incident on it.
The number of choices is γ (W2)γ (W3) · · · γ (Wm), where
γ (Wk) is the degree of the vertex associated with Wk in
GW. It follows that

TGW(1, 1) ≤ γ (W1)γ (W2) · · · γ (Wm). (B36)

This product of degrees can be bounded as in the proof
of Ref. [22, Proposition 3.8]. The degree of a vertex
associated with Wk can be written as

γ (Wk) = μW(Wk) − 1 +
∑

X ∈N (Wk)

μW(X ), (B37)

where N (Wk) is the set of neighbors of Wk in the inter-
action graph G. We sum the degrees over all distinct
subsystems that appear in W:

∑
X ∈S : μW(X )>0

γ (X ) =
∑

X ∈S : μW(X )>0

×
⎛
⎝μW(X ) − 1 +

∑
Y∈N (X )

μW(Y)

⎞
⎠ ≤ m − 1 + dm.

(B38)

The double sum is bounded by dm because each μW(Y)

appears in it at most d times. Finally, we bound

1
W!

γ (W1)γ (W2) · · · γ (Wm)

=
∏

X ∈S : μW(X )>0

(
μW(X )− 1 + ∑

Y∈N (X ) μW(Y)
)μW(X )

μW(X )!

(B39)

≤ em
∏

X ∈S : μW(X )>0

(
μW(X )− 1 + ∑

Y∈N (X ) μW(Y)

μW(X )

)μW(X )

(B40)

≤ em
(

m − 1 + dm
m

)m

≤ [e(d + 1)]m. (B41)

�
The bound on the cluster derivative follows from the two

lemmas and Eq. (B32).

APPENDIX C: GENERALIZED LOSCHMIDT
ECHO

In this appendix, we prove Theorem 13. To this end,
we first establish Eq. (44). We again start from the formal
cluster expansion of the Loschmidt echo:

L({tl}) = 1 +
∑
m≥1

∑
W∈CK

m

λW

W!
DWL({tl}). (C1)
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The cluster derivative takes the more complicated form

DWL({tl}) =
[

K∏
l=1

(−itl)ml

ml!

]
tr

×
⎡
⎣
⎛
⎝ ∑

σ∈Sm1

h(1)
W1, σ(1)

· · · h(1)
W1, σ(m1)

⎞
⎠

· · ·
⎛
⎝ ∑

σ∈SmK

h(K)
WK, σ(1)

· · · h(K)
WK, σ(mK )

⎞
⎠ ρ

⎤
⎦ .

(C2)

Here, ml = |Wl| and Wl are the parts of W associated with
the Hamiltonian H (l). Despite these complications, one can
readily check that we still have

λW

W!
DWL({tl}) =

∏
V∈Pc,max(W)

λV

V!
DVL({tl}). (C3)

Here, the components are disconnected if their subsystems
do not overlap, irrespective of the Hamiltonian label. The
remaining arguments from Appendix B 2 carry over and
we obtain

1
W!

DW log L({tl}) =
∑

P∈Pc(W)

(−1)|P|−1

P!
TG̃P

(1, 0)

×
∏
V∈P

1
V!

DVL({tl}). (C4)

By using the fact that |DWL({tl})| ≤∏K
l=1 |tl|ml and fol-

lowing the steps in Appendix B 4, we arrive at an upper
bound for the cluster derivative. The only change is that
the relevant interaction graph is GK , which has maximum
degree K(d + 1) − 1 given the maximum degree d of G.
For W ∈ GK

m , this yields Eq. (44).
To prove the convergence statement in Theorem 13, we

observe that

∑
W∈GK

m

K∏
l=1

|tl|ml ≤
∑

W∈Gm

∑
m1,...,mK ≥0

m1+···mK =m

m!
m1! · · · mK !

K∏
l=1

|tl|ml

=
(

K∑
l=1

|tl|
)m

|Gm| ≤ |S|
(

ed
K∑

l=1

|tl|
)m

, (C5)

where we use the bound on |Gm| from Lemma 1. Combin-
ing these results yields∣∣∣∣∣∣
∑

W∈GK
m

λW

W!
DW log L(t)

∣∣∣∣∣∣ ≤ |S|
[

2e2Kd(d + 1)

K∑
l=1

|tl|
]m

.

(C6)

The convergence of the cluster expansion for this gener-
alized Loschmidt echo follows in an analogous fashion to
Theorem 10.

To prove the bound on the computational cost in
Theorem 13, we closely follow the proofs of Proposition
11 and Theorem 12, keeping in mind that the degree of
the relevant interaction graph is K(d + 1) − 1. Through-
out, we only keep the dependence on K explicit, while
suppressing the dependence on d = O(1).

The computational cost of step (i) of the proof of Propo-
sition 11 is modified to exp(O(m log K)). Step (ii) remains
unchanged, as the computational cost of evaluating the
Tutte polyonomial only depends on the number of ver-
tices. In step (iii), we have to evaluate Eq. (C2) instead
of the simpler symmetrized expectation value. Neverthe-
less, by rewriting the sums over permutations using Eq.
(A2), this can still be carried out in time exp(O(n)). Hence,
the cluster derivative of the generalized Loschmidt echo
can be computed in time exp(O(m log K)). By Lemma
1, the run time of the algorithm enumerating the clusters
is |S| × exp(O(m log K)). We conclude that the truncated
cluster expansion of the generalized Loschmidt echo that
includes all clusters up to size M can be computed with
a total run time |S| × exp(O(M log K)). Choosing M >

log |S|/(1 − K
∑

l |tl|/t∗L
)
ε/ log t∗L/K

∑
l |tl| completes the

proof.

APPENDIX D: PROOF OF CONCENTRATION
BOUND

Let us assume that tr(ρeitH (1)
H (2)e−itH (1)

) = 0 for sim-
plicity. We write the cluster expansion of log L({t, ν, −t}) ≡
log tr(ρeitH (1)

eνH (2)
e−itH (1)

) as

fL({t, ν, −t}) = log tr(ρeitH (1)
eνH (2)

e−itH (1)
)

=
∑
m≥1

∑
W∈G3

m

λW

W!
DW log L({t, ν, −t}), (D1)

where we have three Hamiltonians. However, note that
since fL({t, 0, −t}) = 0, only the clusters with at least
two terms h(2)

X from H (2) contribute. This means that the
smallest power of ν is 2. That is,

fL({t, ν, −t}) =
∑
m≥2

∑
W∈G3

m: m2≥2

λW

W!
DW log L({t, ν, −t}),

(D2)

where m2 is the number of subsystems in W associated
with H (2). Now, given Eq. (44) and the bound on the
number of clusters in Lemma 1, we have that

|fL({t, ν, −t})| ≤
∑
m≥2

∑
W∈G3

m: m2≥2

|t|m−m2νm2(6e(d + 1))m

(D3)
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≤ |S|
∑
m≥2

(6e(d + 1))m(ed)m

⎛
⎜⎜⎝ ∑

m1,m3≥0, m2≥2
m1+m2+m3=m

m!
m1!m2!m3!

|t|m−m2νm2

⎞
⎟⎟⎠ (D4)

≤ |S|
∑
m≥2

(6e2d(d + 1))mν2m2

⎛
⎜⎜⎝ ∑

m1,m2,m3≥0
m1+m2+m3=m−2

(m − 2)!
m1!m2!m3!

|t|m−m2νm2

⎞
⎟⎟⎠ (D5)

= |S|
∑
m≥2

(6e2d(d + 1))mν2m2(2|t| + ν)m−2, (D6)

where in the second line we write the sum over combina-
tions with at least two terms from H (2) (i.e., the number of
ways in which one can arrange m objects in three boxes,
with at least two objects in one of them). In the third line,
we bound this sum by m2 times the number of ways of
arranging m − 2 elements in three boxes. Finally, we use∑

m≥2 m2am−2 = 4 + a2 − 3a/(1 − a)3 and the definition
of t∗L in Theorem 10 to obtain

fL({t, ν, −t}) ≤ |S|
(

3ν

t∗L

)2 4 + (3(2|t| + ν)/t∗L)
2[

1 − 3(2|t| + ν)/t∗L
]3 . (D7)

Now take |t| ≤ t∗L/7, so that 1 − 3(2|t| + ν)/t∗L ≥ 1/7 −
3ν/t∗L. We obtain

log tr(ρ(t)eνH (2)
) ≤ 5|S| (3ν/t∗L)

2(
1/7 − 3ν/t∗L

)3 . (D8)

Choosing ν = ηδ(t∗L)
2/|S| with η = 1/(90 × 73) then

leads to

e−δν tr
[
ρ(t)eνH (2)

]
≤ e−(δt∗L)2/(250)2|S|, (D9)

under the condition that δ ≤ |S|/t∗L, which is trivially satis-
fied since δ ≤ |S| and t∗L < 1. Together with the inequality

Pr[|x − tr[ρ(t)H (2)]| ≥ δ] ≤ 2e−δν tr(ρ(t)eνH (2)
), (D10)

this proves the result.

APPENDIX E: PROOF OF COROLLARY 15

From Eq. (26) we have the series expansion

gn(t)
n

= 1
n

( ∞∑
m=1

∑
W∈Gm

λW

W!
DW log Ln(t)

)
. (E1)

Theorem 10 shows that gn(t) is analytic for t < t∗L and any
finite n, such that

∣∣∣∣∣
∑

W∈Gm

λW

n × W!
DW log Ln(t)

∣∣∣∣∣ ≤ ed|S|
(1 + e(d − 1))n

(|t|/t∗L)
m.

(E2)

For local Hamiltonians, |S|/n ≡ C = O(1) and thus

∞∑
m=m0

(
t
t∗L

)m

Ced < ∞. (E3)

We apply Tannery’s theorem to the sequence {∑W∈Gm
λW/

nW!DW log Ln(t)}. This implies that we can place the limit
inside the sum as

G(t) =
∞∑

m=0

lim
n→∞

∑
W∈Gm

λW

nW!
DW log Ln(t). (E4)

That G(t) is analytic follows from the fact that
limn→∞

∑
W∈Gm

λW/nW!DW log Ln(t) ≤ (t/t∗L)
mCed.
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Dynamics of Loschmidt echoes and fidelity decay, Phys.
Rep. 435, 33 (2006).

[36] J. Emerson, S. Lloyd, D. Poulin, and D. Cory, Estimation
of the local density of states on a quantum computer, Phys.
Rev. A 69, 050305(R) (2004).

[37] S. Lu, and M. Carmen Bañuls, and J. I. Cirac, Algorithms
for Quantum Simulation at Finite Energies, PRX Quantum
2, 020321 (2021).

[38] N. Biggs, Algebraic Graph Theory (Cambridge University
Press, Cambridge, United Kingdom, 1993), 2nd ed.

[39] T. Helmuth, W. Perkins, and G. Regts, Algorithmic
Pirogov-Sinai theory, Probab. Theory Relat. Fields 176,
851 (2020).

[40] T. Kuwahara, K. Kato, and F. G. S. L. Brandão, Cluster-
ing of Conditional Mutual Information for Quantum Gibbs
States above a Threshold Temperature, Phys. Rev. Lett.
124, 220601 (2020).

[41] A. Björklund, T. Husfeldt, P. Kaski, and M. Koivisto,
in 2008 49th Annual IEEE Symposium on Foundations
of Computer Science (IEEE, Philadelphia, Pennsylvania,
2008), p. 677.

[42] H. Wilming, T. R. de Oliveira, A. J. Short, and J. Eisert,
Equilibration times in closed quantum many-body sys-
tems, Thermodyn. Quantum Regime: Fundam. Aspects
New Directions (2019).

[43] T. Kuwahara and K. Saito, Eigenstate Thermalization from
the Clustering Property of Correlation, Phys. Rev. Lett. 124,
200604 (2020).

[44] G. De Palma, M. Marvian, C. Rouzé, and D. Stilck
França, Limitations of Variational Quantum Algorithms: A
Quantum Optimal Transport Approach, PRX Quantum 4,
010309 (2023).

[45] G. De Palma and C. Rouzé, Quantum concentration
inequalities, Ann. Henri Poincaré 23, 3391 (2022).

020340-21

https://doi.org/10.1070/rm1980v035n02abeh001622
https://doi.org/10.1007/BF01011092
https://doi.org/10.1007/BF01211762
https://doi.org/10.1007/BF01011153
https://doi.org/10.1063/5.0013689
https://doi.org/10.17323/1609-4514-2004-4-2-511-522
https://doi.org/10.1103/PhysRevX.4.031019
https://doi.org/10.1063/1.4921305
https://doi.org/10.1007/s10955-004-3452-4
https://doi.org/10.1016/j.aop.2020.168278
https://doi.org/10.1007/s11128-005-4482-9
https://arxiv.org/abs/2105.00287
https://doi.org/10.1007/s00037-021-00218-x
https://doi.org/10.1088/1367-2630/13/9/093021
https://arxiv.org/abs/2108.04842
https://doi.org/10.1088/1361-6633/aaaf9a
https://doi.org/10.1088/1751-8121/aa86c6
https://doi.org/10.1016/S0167-2789(98)00054-2
https://doi.org/10.1088/1742-5468/2016/11/113103
https://doi.org/10.1088/1367-2630/18/8/083011
https://arxiv.org/abs/2209.02715
https://doi.org/10.1007/s10543-020-00802-7
https://doi.org/10.1063/1.4936209
https://doi.org/10.1007/BF01645779
https://doi.org/10.1016/j.physrep.2006.09.003
https://doi.org/10.1103/physreva.69.050305
https://doi.org/10.1103/prxquantum.2.020321
https://doi.org/10.1007/s00440-019-00928-y
https://doi.org/10.1103/PhysRevLett.124.220601
https://doi.org/10.1007/978-3-319-99046-0_18
https://doi.org/10.1103/PhysRevLett.124.200604
https://doi.org/10.1103/prxquantum.4.010309
https://doi.org/10.1007/s00023-022-01181-1


DOMINIK S. WILD and ÁLVARO M. ALHAMBRA PRX QUANTUM 4, 020340 (2023)

[46] M. Heyl, Scaling and Universality at Dynamical Quantum
Phase Transitions, Phys. Rev. Lett. 115, 140602 (2015).

[47] L. Piroli, B. Pozsgay, and E. Vernier, Non-analytic behavior
of the Loschmidt echo in XXZ spin chains: Exact results,
Nucl. Phys. B 933, 454 (2018).

[48] L. Campos Venuti and P. Zanardi, Unitary equilibrations:
Probability distribution of the Loschmidt echo, Phys. Rev.
A 81, 022113 (2010).

[49] Á. M. Alhambra, A. Anshu, and H. Wilming, Revivals
imply quantum many-body scars, Phys. Rev. B 101, 205107
(2020).

[50] G. De Palma, M. Marvian, C. Rouzé, and D. Stilck França,
Limitations of variational quantum algorithms: A quan-
tum optimal transport approach (2022), arXiv preprint,
ArXiv:2204.03455.

[51] R. Fernández and A. Procacci, Cluster expansion for
abstract polymer models: New bounds from an old
approach, Commun. Math. Phys. 274, 123 (2007).

[52] A. H. Moosavian, S. S. Kahani, and S. Beigi, Limits of
short-time evolution of local Hamiltonians, Quantum 6, 744
(2022).

[53] M. Rigol, T. Bryant, and R. R. P. Singh, Numerical Linked-
Cluster Approach to Quantum Lattice Models, Phys. Rev.
Lett. 97, 187202 (2006).

[54] M. Rigol, Quantum Quenches in the Thermodynamic
Limit, Phys. Rev. Lett. 112, 170601 (2014).

[55] I. G. White, B. Sundar, and K. R. A. Hazzard, Quan-
tum dynamics from a numerical linked cluster expansion
(2017), arXiv preprint, ArXiv:1710.07696.

[56] J. Gan and K. R. A. Hazzard, Numerical linked cluster
expansions for inhomogeneous systems, Phys. Rev. A 102,
013318 (2020).

[57] J. Richter, T. Heitmann, and R. Steinigeweg, Quantum
quench dynamics in the transverse-field Ising model: A
numerical expansion in linked rectangular clusters, SciPost
Phys. 9, 031 (2020).

[58] A. Molnár, N. Schuch, F. Verstraete, and J. I. Cirac,
Approximating Gibbs states of local Hamiltonians effi-
ciently with PEPS, Phys. Rev. B 91, 045138 (2015).

[59] B. Vanhecke, D. Devoogdt, F. Verstraete, and L. Vander-
straeten, Simulating thermal density operators with cluster
expansions and tensor networks (2021), arXiv preprint,
ArXiv:2112.01507.

[60] C. David White, M. Zaletel, R. S. K. Mong, and G. Refael,
Quantum dynamics of thermalizing systems, Phys. Rev. B
97, 035127 (2018).

[61] T. K. Kvorning, L. Herviou, and J. H. Bardarson, Time-
evolution of local information: Thermalization dynamics of
local observables, SciPost Phys. 13, 080 (2022).

[62] C. von Keyserlingk, F. Pollmann, and T. Rakovszky, Oper-
ator backflow and the classical simulation of quantum
transport, Phys. Rev. B 105, 245101 (2022).

[63] D. Aharonov, M. Ben-Or, R. Impagliazzo, and N. Nisan,
Limitations of noisy reversible computation (1996), arXiv
preprint, ArXiv:quant-ph/9611028.

[64] D. Stilck França and R. García-Patrón, Limitations of opti-
mization algorithms on noisy quantum devices, Nat. Phys.
17, 1221 (2021).

[65] G. González-García, R. Trivedi, and J. I. Cirac, Error prop-
agation in NISQ devices for solving classical optimization
problems (2022), arXiv preprint, ArXiv:2203.15632.

[66] A. J. Daley, I. Bloch, C. Kokail, S. Flannigan, N. Pearson,
M. Troyer, and P. Zoller, Practical quantum advantage in
quantum simulation, Nature 607, 667 (2022).

[67] S. Bravyi, D. Gosset, and R. Movassagh, Classical algo-
rithms for quantum mean values, Nat. Phys. 17, 337
(2021).

[68] M. B. Hastings, Locality in quantum systems (2010), arXiv
preprint, ArXiv:1008.5137.

[69] T. Brylawski and J. Oxley, in Matroid Applications (Cam-
bridge University Press, Cambridge, United Kingdom,
1992), p. 123.

020340-22

https://doi.org/10.1103/PhysRevLett.115.140602
https://doi.org/10.1016/j.nuclphysb.2018.06.015
https://doi.org/10.1103/PhysRevA.81.022113
https://doi.org/10.1103/PhysRevB.101.205107
https://arxiv.org/abs/2204.03455
https://doi.org/10.1007/s00220-007-0279-2
https://doi.org/10.22331/q-2022-06-27-744
https://doi.org/10.1103/PhysRevLett.97.187202
https://doi.org/10.1103/PhysRevLett.112.170601
https://arxiv.org/abs/1710.07696
https://doi.org/10.1103/physreva.102.013318
https://doi.org/10.21468/SciPostPhys.9.3.031
https://doi.org/10.1103/PhysRevB.91.045138
https://arxiv.org/abs/2112.01507
https://doi.org/10.1103/PhysRevB.97.035127
https://doi.org/10.21468/scipostphys.13.4.080
https://doi.org/10.1103/physrevb.105.245101
https://arxiv.org/abs/quant-ph/9611028
https://doi.org/10.1038/s41567-021-01356-3
https://arxiv.org/abs/2203.15632
https://doi.org/10.1038/s41586-022-04940-6
https://doi.org/10.1038/s41567-020-01109-8
https://arxiv.org/abs/1008.5137

	I.. INTRODUCTION
	A.. Summary of results
	B.. Complexity of dynamics

	II.. SETUP
	A.. Hamiltonian
	B.. Clusters
	C.. Cluster partitions

	III.. LOCAL OBSERVABLES
	A.. Cluster expansion
	B.. Computation for short times
	C.. Computation for arbitrary times
	D.. Comparison with the Lieb-Robinson bound

	IV.. LOSCHMIDT ECHO
	A.. Cluster expansion
	B.. Computation of the Loschmidt echo
	C.. Generalized Loschmidt echo

	V.. FURTHER IMPLICATIONS
	A.. Concentration bounds
	B.. Dynamical phase transitions
	C.. Quantum speed limits

	VI.. SUMMARY AND OUTLOOK
	. ACKNOWLEDGMENTS
	. APPENDIX A: COMPUTATION OF NESTED COMMUTATORS
	. APPENDIX B: LOSCHMIDT ECHO
	1.. Illustrative example
	2.. Proof of Lemma 8
	3.. Proof of Lemma 17
	4.. Proof of Proposition 9

	. APPENDIX C: GENERALIZED LOSCHMIDT ECHO
	. APPENDIX D: PROOF OF CONCENTRATION BOUND
	. APPENDIX E: PROOF OF COROLLARY 15
	. REFERENCES


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile ()
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 5
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Average
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Average
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Average
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /PDFX1a:2003
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError false
  /PDFXTrimBoxToMediaBoxOffset [
    33.84000
    33.84000
    33.84000
    33.84000
  ]
  /PDFXSetBleedBoxToMediaBox false
  /PDFXBleedBoxToTrimBoxOffset [
    9.00000
    9.00000
    9.00000
    9.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<

    /BGR <>
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /CZE <>
    /DAN <>
    /DEU <>
    /ESP <>
    /ETI <>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /GRE <>

    /HRV <>
    /HUN <>
    /ITA <>
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /LTH <>
    /LVI <>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
    /POL <>
    /PTB <>
    /RUM <>
    /RUS <>
    /SKY <>
    /SLV <>
    /SUO <>
    /SVE <>
    /TUR <>
    /UKR <>
    /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames false
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks true
      /AddColorBars false
      /AddCropMarks true
      /AddPageInfo true
      /AddRegMarks false
      /BleedOffset [
        9
        9
        9
        9
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /NA
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks true
      /IncludeHyperlinks true
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /NA
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /LeaveUntagged
      /UseDocumentBleed false
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


