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We use projected entangled-pair states (PEPS) to calculate the large deviation statistics of the dynamical
activity of the two-dimensional East model, and the two-dimensional symmetric simple exclusion process
(SSEP) with open boundaries, in lattices of up to 40 × 40 sites. We show that at long times both models
have phase transitions between active and inactive dynamical phases. For the 2D East model we find that
this trajectory transition is of the first order, while for the SSEP we find indications of a second order
transition. We then show how the PEPS can be used to implement a trajectory sampling scheme capable of
directly accessing rare trajectories. We also discuss how the methods described here can be extended to
study rare events at finite times.
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Introduction.—Tensor network (TN) techniques,
whereas most actively developed in the context of quantum
many-body physics [1–6], offer powerful numerical tools
for much more general problems. They are based on an
efficient parametrization of the many-body state in terms of
local tensors (multidimensional arrays) connected accord-
ing to a graph that, in general, responds to the structure of
correlations in the state. In the last few years we have seen
progress in their application to compute statistical pro-
perties of dynamical trajectories in classical stochastic
systems. The first application was to the long time
statistics—the dynamical large deviation (LD) regime—
of one-dimensional lattice systems using variational algo-
rithms (such as density matrix renormalization group [7], or
DMRG) to approximate the leading eigenvectors of tilted
Markov generators by matrix product states (or MPS, see,
e.g., Ref. [2]) [8–15]. Building on these results, we recently
introduced (i) a method which exploited MPS to efficiently
sample long-time rare trajectories, and (ii) an MPS time
evolution to precisely compute trajectory statistics at finite
times [16].
The suitability of the TN ansatz for these problems is

rooted in the fact that the targeted eigenvectors have low
correlations. More concretely, for local problems, we

expect them to fulfill (up to small corrections) a so-called
area law [17], according to which the “entanglement” (or a
mathematically analogous quantity for classical probability
vectors [18]) with respect to a bipartition is upper bounded
by the size of its boundary. This scaling is captured by the
MPS family in one spatial dimension. In higher dimen-
sions, a suitable generalization with area law is provided by
the projected-entangled pair states (PEPS) [19], which were
recently applied to the classical asymmetric exclusion
process in two dimensions in Ref. [20]. A computationally
cheaper alternative, without an area law but accommodat-
ing more entanglement than MPS, is that of tree tensor
networks [21], used, for example, in Refs. [22,23] (in
combination with a time-dependent variational principle
[24]) to study driven problems.
Here we use PEPS to study the LDs of the dynamical

activity in two paradigmatic two-dimensional models, the
2D East model (also known as North-or-East model)
[25–28], and the 2D symmetric simple exclusion process
(SSEP) with open boundaries where particles can be
injected and removed [29]. We are able to accurately
estimate the leading eigenvector of the tilted generator—
and thus the LDs—of these models, and construct a close-
to-optimal dynamics to directly sample the corresponding
rare trajectories. Such an algorithm requires efficient
sampling from the PEPS, and we show how to do this
in the context of trajectory sampling. We benchmark our
methods, showing how the PEPS allows for a controlled
accuracy of optimal dynamics. We demonstrate that both
models have a phase transition between active and inactive
dynamical phases, a first-order transition for the 2D East
and a second-order transition for the 2D SSEP.
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Models.—The models we study here live in a two-
dimensional square lattice of size N ¼ L × L, with each
site being occupied by a binary variable nk ¼ 0 or 1, where
k ¼ ðkx; kyÞ denotes the position of the site for kx; ky ¼
1 � � �L. Their continuous-time dynamics is defined by a
Markov generator (e.g., see Refs. [35,36]),

W ¼
X

x;y≠x
wx→yjyihxj −

X

x

Rxjxihxj; ð1Þ

where jxi and jyi are configurations on the lattice, wx→y the
transition rate from x to y, and Rx ¼

P
y≠x wx→y the escape

rate out of x. We can write this as W ¼ K −R, where K
contains the off-diagonal transition rates, and R the
diagonal escape rates.
The first model we consider is the 2D East model

[25–28], often studied in the context of the glass transition.
This is a kinetically constrained model such that an excited
site nk ¼ 1, allows (“facilitates”) a site to its North or East
to flip stochastically, see Fig. 1(a). It is parametrized by
c ∈ ð0; 1=2�, which determines the local transitions rates:
0 → 1 with rate c, and 1 → 0 with rate 1 − c, subject to the
kinetic constraint. In addition, we choose open boundary
conditions with nð1;1Þ ¼ 1 fixed. This ensures the entire
state space remains dynamically connected [26]. The
second model is the 2D SSEP. This describes particles
hopping to neighboring sites on a 2D lattice with unit rate,
but only if the target site is not already occupied by a
particle. We also allow particles to be injected or removed
at the boundaries of the lattice with rate 1=2, see Fig. 1(b).
Exact definitions of the models are given in Ref. [30].
Dynamical large deviations.—We consider the statistics

of a dynamical observable K̂ through its probability dis-
tribution PtðKÞ ¼ P

ωt
πðωtÞδ½K̂ðωtÞ − K�, where ωt de-

notes a stochastic trajectory and πðωtÞ its probability. The
corresponding moment generating function is ZtðsÞ ¼P

ωt
πðωtÞe−sK̂ðωtÞ. In the t → ∞ limit, the two obey LD

principles PtðKÞ ≍ e−tφðK=tÞ and ZtðsÞ ≍ etθðsÞ, with the
rate function φðK=tÞ and scaled cumulant generating
function (SCGF) θðsÞ related through a Legendre trans-
form, θðsÞ ¼ −mink½skþ φðkÞ� for k ¼ K=t (for reviews
see Refs. [36–39]).
We focus as an observable on the dynamical activity

[40,41], which counts the number of jumps in a trajectory.
The relevant operator to study is the tilted generator
[36–39], which for the activity reads Ws ¼ e−sK −R,
with the LD statistics encoded in the leading eigenvalue
and (right and left) eigenvector(s), Wsjrsi ¼ θðsÞjrsi and
hlsjWs ¼ θðsÞhlsj.
Projected-entangled pair states.—TN methods allow us

to solve the problem above using a variational ansatz for
jψ si in the PEPS family, a natural generalization of MPS
for area law states and lattices in more than one spatial
dimension [19]. PEPS parametrize the many-body state

with one rank-5 tensor per lattice site, in which the physical
index has the dimension of the site variable (0, 1 in our
case), and the remaining four virtual indices each have
bond dimension DPEPS, determining the maximum number
of parameters in the ansatz,Np ¼ NdD4

PEPS (see Fig. 1 for a
graphical representation). Several TN algorithms exist to
optimize the PEPS by maximizing the expectation of a
local stochastic generator. Crucial to all of them is an
efficient computation of expectation values for local oper-
ators, such as the terms in Ws. We use the boundary MPS
scheme [1,19] (illustrated in Fig. 1), which approximates
the partial contraction of the network by a MPS, whose
bond dimension χB controls the accuracy of the contraction.
A heuristic choice for local problems is χB ∼OðD2

PEPSÞ
(see, e.g., Ref. [42]).
In order to find the PEPS approximation to the leading

eigenvector jψ si we employ time evolution, which effec-
tively projects the ansatz onto the leading eigenvector by
iteratively applying short evolution steps, decomposed in
two-body terms that are applied sequentially [6,43]. After
each operation, the directly affected pair of tensors is
updated. This requires a strategy to approximate their
environment (i.e., the contraction of the remaining TN).
After comparing to quasi-exact [44] results and to a more
expensive strategy, we find that the computationally cheap-
est simple update (SU) [45], with maximal PEPS bond
dimension DPEPS ¼ 4, is enough to achieve sufficiently
accurate measurements of the SCGF in our problems, and

(a) (b)

(c) (d)

FIG. 1. Models. (a) 2D East: an occupied site (black circles)
facilitates flips in neighboring sites (red cells) only in two
directions. (b) 2D SSEP: particles can hop to empty neighboring
sites (black arrows), symmetrically in any direction; particles can
enter or leave at the boundaries (red arrows). PEPS. (c) A PEPS is
parametrized by a tensor per lattice site (red boxes for the top
PEPS), each local tensor with a physical index (purple line) and
four virtual legs (black lines) that connect it to neighboring
tensors. The expectation value of a local operator (orange box) is
obtained by sandwiching it between the PEPS and its adjoint
(shown in green), and contracting (i.e., multiplying and summing
over) the physical (basis) indices. (d) The cost of exact con-
traction scales exponentially with size, so an MPS approximation
(blue tensors) is used for the contraction part of the network, with
the dimension of its virtual bonds (blue legs) controlling
accuracy; see Ref. [30] for details.
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allows us reaching large sizes at low computational
cost, scaling only as OðD5

PEPSÞ. For further details on
the numerical approach we use see Ref. [30].
Large deviations from PEPS.—The East and SSEP in

one dimension are known to have dynamical phase
transitions in terms of the activity or other dynamical
observables [11,13,40,46–53]. In two dimensions, the
SSEP has a transition in the LDs of the current [20]. We
now provide evidence by means of PEPS for both the 2D
East and 2D SSEP having active-inactive phase transitions.
Figures 2(a)–2(c) show the LD statistics for both the 2D
East model (top) and the 2D SSEP (bottom). For the East
model, we see from Fig. 2(a) that the SCGF follows a linear
response, θðsÞ ≈ skð0Þ, for small s, but at scðLÞ it sharply
changes to another branch. This point corresponds to a
sudden drop in activity, kðsÞ ¼ −θ0ðsÞ, which becomes
discontinuous in the limit N → ∞, see Fig. 2(b). Having
access to both the SCGF and the dynamical activity allows
us to estimate the rate function φðkÞ, shown in Fig. 2(c). We
see a broadening of the rate function around the mean,
indicating the coexistence of active and inactive dynamics.
For comparison, we also show the distribution of a simple
process with the same mean activity, but which is uncorre-
lated in time (black dashed line). All this behavior is
characteristic of a first-order phase transition.

For the SSEP we see something different: Fig. 2(a)
shows no sharp change in θðsÞ, and the activity in Fig. 2(b)
has no discontinuity. This is indicative of a second-order
transition, with the rate function showing critical broad-
ening, see Fig. 2(c), and a divergence in the susceptibility
χðsÞ ¼ θ00ðsÞ, see Fig. 2(d). For both models we can extract
a transition point from the drop in either first or second
cumulant. The top panel of Fig. 2(d) shows how the
transition point scales with L for both models (for a range
of c for the 2D East). We are able to fit the data with the
power laws scðLÞ ∼ L−2α, as shown by the solid lines. We
find the exponents α≳ 1 for the 2D East and α≲ 1 for the
SSEP, see the inset to the top panel of Fig. 2(d).
Optimal sampling of rare trajectories from PEPS.—

Sampling trajectories corresponding to the s ≠ 0 phases is
difficult as they are exponentially rare in system size and
time. The optimal sampling dynamics at long times is given
by the so-called generalized Doob transform [55–59], which
maps the tilted generator into a true stochastic generator for
the rare trajectories,WDoob

s ¼ L½Ws − θðsÞI�L−1, where L is
the leading left eigenvector ofWs as a diagonal matrix. This
gives a new dynamics with the transition rates

w̃x→y ¼
lsðyÞ
lsðxÞ

e−swx→y; ð2Þ

(a) (b) (c) (d)

FIG. 2. Dynamical large deviations and active-inactive transitions from PEPS. (a) The SCGF θðsÞ=L2 for the 2D East with c ¼ 0.3
(top) and the SSEP (bottom) for system sizes N ∈ ½102; 402�. The black dashed line shows the linear response for small s, and the color
dotted lines show the value for s → ∞. (b) The dynamical activity kðsÞ=L2 for the systems in (a). The East is on a log-log scale, and the
SSEP a log-linear scale. (c) The rate function φðkÞ=L2 as a function of activity k=L2 for the systems in (a). The dashed line shows the
Poisson distribution with mean kðs ¼ 0Þ=L2. (d) The transition points scðLÞ for the 2D SSEP (black circles) and the 2D East for
c ∈ ½0.2; 0.5�. The solid lines show the fitted power-law curves scðLÞ ∼ L−2α, with the exponents shown in the inset. The black dashed
line is the exponent for the SSEP, and the symbols are for the East. The symbols can be used to read the value of c in the main figure. The
bottom panel shows the dynamical susceptibility χðsÞ ¼ θ00ðsÞ for the 2D SSEP. All the data was acquired using the SU except for the
black markers, which show (quasi-exact) 2D DMRG data for a N ¼ 10 lattice for comparison.
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with lsðxÞ ¼ hlsjxi. In WDoob
s the counting field s appears

as a physical control parameter, and running dynamics with
rates (2) gives trajectories at s ≠ 0 on demand. While
optimal, WDoob

s is difficult to construct in general as one
needs the exact left leading eigenvector. However, we can
exploit our PEPS approximation to estimate the rates Eq. (2),
similar to Ref. [60] for 1D and MPS, see Ref. [30] for more
information.
To obtain Eq. (2) for the transitions out of a state x we

calculate lsðyÞ from the PEPS using a boundary dimension
χB ¼ DPEPS [61–64], thus entailing a maximum cost
OðND6

PEPSÞ. If we neglect the time edges of trajectories,
we can estimate an time-extensive observable by impor-
tance sampling

hOis ≈
P

αt
OðαtÞgðαtÞP
αt
gðαtÞ

; ð3Þ

where αt denotes a trajectory generated with Eq. (2) (the
reference dynamics), and OðαtÞ is the trajectory observ-
able. The reweighting factor gðαtÞ is

gðωtÞ ¼ e−
R

t

0
dt0Rðt0Þ−R̃ðt0Þ; ð4Þ

where Rðt0Þ and R̃ðt0Þ are the escape rates of the system at
time t0 in the original dynamics and the approximate Doob
dynamics, respectively. Notice that with a large enough
number of trajectories, Eq. (3) can be used to correct on the
imperfections in the reference dynamics due to an imper-
fect PEPS approximation.
Figure 3 shows results from our sampling algorithm for

the 2D East with c ¼ 0.5 and the 2D SSEP, both for system
sizes N ¼ 22 × 22. The average dynamical activity mea-
sured in trajectories (symbols) [with umbrella sampling

Eqs. (3), (4)] coincides with that obtained directly from the
PEPS (solid line), except for DPEPS ¼ 1 for the East model.
The accuracy of our dynamics is quantified by the variance
of the time integrated difference in escape rates, cf. Eq. (4),
which vanishes for the exact Doob rates. We show this for
each D in the insets of Figs. 3: increasing the DPEPS
consistently reduces the variance, indicating a better
sampling dynamics and less need for importance sampling.
The PEPS approximation to the leading eigenvalue gives

us direct access to the long time-averaged properties of
the dynamics. However, the broader range of dynamical
information—such as temporal correlations—can only be
obtained through the simulation of the dynamics in rare
dynamical regimes. The ability to exploiting the PEPS to
define an efficient trajectory sampling scheme for the
biased dynamics allows us to characterize the finite-time
atypical behavior beyond what is directly encoded in the
PEPS approximation. Figure 3(c) illustrates this by show-
ing sample trajectories for the SSEP at s ≠ 0: in the active
phase (s ¼ −0.1 panel), particle hops are plentiful, as
shown in the bar on the left of the panel, and the
configurations visited in the trajectory have a finite density
and show no appreciable clustering; in contrast in the
inactive phase (s ¼ 1.0 panel), hops are scarce and the
configurations have very low density of particles; near
the transition (s ¼ 0.1 panel), configurations show more
pronounced density fluctuations, related to the critical
nature of the transition.
Discussion.—We have shown that the dynamical LDs of

two-dimensional stochastic models can be studied effi-
ciently with PEPS, including the quasi-optimal sampling of
atypical trajectories. Compared to more standard methods
[65–71], PEPS offer the advantage of a computational
cost that scales only polynomially in the system size and
the tensor dimensions DPEPS. Furthermore, the algorithms

(c)(a) (b)

FIG. 3. Optimal sampling of trajectories. (a) Average dynamical activity as a function of s for the 2D East model from CTMC with
importance sampling (symbols), for c ¼ 0.5 and DPEPS ∈ ½1; 4�. The trajectory times are chosen such that on average we expect 100
transitions per trajectory. The solid black line shows the activity measured directly from the PEPS with D ¼ 4 for comparison. Inset:
variance in the time-integrated difference of escape rates, δR2 (see main text). Each data point is calculated from Nsp ∈ ½103; 104�
trajectories. (b) Same but for the 2D SSEP on a 22 × 22 lattice. (c) Representative trajectories for the 2D SSEP for size N ¼ 10 × 10 at
three values of s ≠ 0. The bars on the left of each panel show the times when particle hops occur (yellow and bright lines). The snapshots
on the right show the configurations at the marked times (black or white indicates a particle or hole). See also Refs. [30,54].
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produce an explicit ansatz for the leading eigenvector
encoding the LDs, which allows us to extract all (local)
observables in the biased trajectory ensemble and, as shown
above, to devise a near-to-optimal sampling dynamics.
Additionally, because PEPS form a complete family, by
increasing the bond dimension the quality of the solution
can be systematically improved, a property that can also be
utilized to estimate the error of the approximation. Our
results show that the PEPS ansatz is well suited for these
problems, as a moderate bond dimension suffices to explore
large systems.
We showed here that both the 2D East model and the 2D

SSEP have active-inactive trajectory transitions, of the first-
order and second-order, respectively. Our Letter adds to the
continuously expanding application [8–16,20,22,23,72] of
tensor network methods to study the dynamical fluctuations
in classical stochastic systems.
There are several interesting avenues to pursue building

on this Letter. One is to integrate 2D trajectory sampling via
TNs with a method such as transition path sampling [73]
for investigating statistics of fluctuations at finite times, cf.
Refs. [16,74]. While the current implementations with
PEPS are too demanding to reasonably incorporate tran-
sition path sampling, tree tensor networks [21] are a
promising alternative that could allow to reliably inves-
tigate finite time scaling. We hope to report on this is the
near future.
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