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Tipping elements are nonlinear subsystems of the Earth system that have the potential
to abruptly shift to another state if environmental change occurs close to a critical
threshold with large consequences for human societies and ecosystems. Among these
tipping elements may be the Amazon rainforest, which has been undergoing intensive
anthropogenic activities and increasingly frequent droughts. Here, we assess how ex-
treme deviations from climatological rainfall regimes may cause local forest collapse that
cascades through the coupled forest–climate system. We develop a conceptual dynamic
network model to isolate and uncover the role of atmospheric moisture recycling in
such tipping cascades. We account for heterogeneity in critical thresholds of the forest
caused by adaptation to local climatic conditions. Our results reveal that, despite this
adaptation, a future climate characterized by permanent drought conditions could
trigger a transition to an open canopy state particularly in the southern Amazon. The loss
of atmospheric moisture recycling contributes to one-third of the tipping events. Thus,
by exceeding local thresholds in forest adaptive capacity, local climate change impacts
may propagate to other regions of the Amazon basin, causing a risk of forest shifts even
in regions where critical thresholds have not been crossed locally.

climate tipping elements | Amazon rainforest | tipping cascades | network dynamics | droughts

The Amazon rainforest is the most biodiverse terrestrial ecosystem and plays a funda-
mental role in regulating the global climate (1, 2). However, human-induced impacts
and climatic extremes are increasingly threatening the forest’s integrity and the services it
provides (3, 4). Furthermore, forest changes might not be gradual, but could be rather
abrupt due to nonlinear interactions, as suggested by simulation studies (5, 6), data-
based approaches (7, 8), conceptual models (9–11), and long-term experiments (12, 13).
Therefore, parts of the Amazon rainforest may be bistable, meaning that they could tip
to an alternative state of low tree cover. The Amazon has been identified as a climate
tipping element (14) and may be in danger of approaching or exceeding its tipping point
(3, 15, 16). While a system-wide tipping point remains debated, local feedbacks can lead
to alternative stable states (local-scale tipping elements) (7, 8).

The transgression of such a local-scale tipping point could, for instance, be caused
by declining average precipitation levels or with increasing dry spells and severity of
extreme droughts (17–19). Changes in precipitation regimes are already occurring over
southern Amazon regions where the length of the dry season has been increasing by
1 mo since the mid-1970s (19, 20). This finding is largely consistent with several further
data-based, artificial-intelligence–based, and observation-based studies from regional to
Amazon basin-wide investigations, suggesting a later onset and earlier demise of the wet
season due to changes in the South American Monsoon System (21–25). At the same time
a bipolar trend has been found: While many regions in the Amazon basin have become
drier overall, regions in the western part of the Amazon basin have received more rainfall
during the last decades (26–28).

A lengthening and strengthening of the dry season in the southern Amazon basin have
also been confirmed by modeling studies from CMIP5 (Coupled Model Intercomparison
Project Phase 5) simulations as well as empirical precipitation models (19, 29, 30). In
regions where dry periods last longer than 4 mo, it is likely that vital functions of the
Amazon rainforest are impacted (3, 29). Those are also the parts of the rainforest that are
losing resilience fastest since the beginning of this century, as a recent study suggests (16).

The Amazon is not a uniform forest as trees can adapt to local long-term water stress
conditions (17). Ecologically speaking, such adaptations may be translated as different
drought tolerance strategies (31), such as variable rooting depth systems (32–34) and
embolism resistance (35), which are likely to define more dry-affiliated plant community
assemblages (36). Indeed, plant recruitment has been shifting toward more dry-affiliated
community assemblages in response to dry season intensification (37). Such local-scale
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heterogeneity can determine a variety of thresholds in plant
mortality in response to current and future changes in rainfall
regimes. Furthermore, a higher diversity in hydraulic traits among
plants and trees has been shown to lead to larger resilience
against droughts, and hydraulic adaptation is key to tropical forest
resilience (31, 38, 39). Forest adaptation can therefore ensure
that plants will operate close to their physiological maximum, but
this creates vulnerabilities when the climate changes faster than
the ecosystem can respond (40). In the case that trees die back
locally, these climatic changes can be propagated by the forest
itself, because trees contribute to precipitation regionally through
the atmospheric moisture recycling feedback (41).

Trees recycle part of the precipitated water through atmo-
spheric moisture recycling (41). They do so by extracting water
from deeper soil levels and releasing it through their leaves (tran-
spiration) and by intercepting precipitation that can evaporate
before infiltrating the soil (interception evaporation). The total
amount of atmospheric moisture recycling accounts for up to
half of the precipitation over the Amazon basin and moisture is
recycled up to six times (42, 43). Thus, the rainforest depends on
itself, because precipitation and evapotranspiration recycling cy-
cles propagate spatially through the basin and promote cascading
forest development (42). The positive interplay between the forest
and regional precipitation also implies that local perturbations
can propagate in space via atmospheric moisture recycling (44,
45). Under deforestation, a strong reduction in this atmospheric
recycling potential has been projected for the Amazon basin (46)
and observed for the southern Amazon basin (45). The latter is a
region that strongly depends on the additional water supply from
recycling, illustrating the potential for cascading moisture effects
throughout the Amazon rainforest. In other words, the Amazon
rainforest can be considered as a network of local-scale tipping
elements that are connected via atmospheric moisture recycling
(9, 47).

As a result of state transitions, there would be a reduction of
the atmospheric moisture transport between different parts of the
Amazon. These, in turn, would decrease precipitation and increase
water deficit downstream, exacerbating the tipping likelihood
since the forest would then be closer to, or have crossed, its bound-
aries of physiological operation (9). Recent severe droughts such
as in 2005 and 2010 already impacted the rainforest as revealed
and analyzed by many different modeling (48, 49), comparative-
historical (50–52), and empirical studies (53, 54). During these
droughts, the trees decreased their investment in defense and
maintenance, followed by a decrease in photosynthesis activity
(55, 56).

Even though occasional strong droughts have long-lasting im-
pacts on drought-induced tree mortality as well as further adverse
drought legacies (57, 58), the rainforest might be able to withstand
those incidental droughts. However, the adaptations of the forest
may become insufficient to withstand permanent or prolonged
increases in drier conditions (59). Indeed, observations from
rainfall exclusion experiments in the Amazon rainforest (e.g., in
the Tapajos or Caxiuanã National forest in Brazil) have reinforced
this perspective (4, 60–62). The moisture profile in these rainfall
exclusion experiments has been shifted from evergreen forest close
to or beyond the transition edge to the savanna rainfall regime (4).
While there has not been an instantaneous response of the forest to
rainfall exclusion, it required only around 3 y before an increased
tree mortality was observed (4, 12, 13). The reason has been
argued to lie in the deep rooting systems of the trees, exploiting
remaining soil moisture reserves (4). However, as soon as the long-
term soil moisture has fallen below half of the potential water
uptake ability of the trees, the tree mortality increases nonlinearly,
especially among larger trees (12, 13). Overall, transitions from a

rainforest to an alternative state were rare in the past, even though
the Amazon has been significantly drier during the last glacial
period (63). Although recent environmental changes have not
been large enough to cause system-wide changes (64), some lines
of evidence for potential state shifts (also outside of hydrology-
induced transitions) are accumulating: 1) Parts of the Amazon
rainforest in the south or closer to human settlements are found
to lose resilience quicker than other parts (16). 2) Fire-induced
transitions from forest to white-sand savanna states during the
last 40 y have been found in several floodplains of the Amazon
rainforest (65). 3) On top of that, vegetation conversions, i.e.,
community composition changes, from mesic to xeric species,
have also been observed in multiple biomes globally, including in
the Amazon (59, 66).

At the same time, models have projected that the major drought
event of 2005 in the Amazon might occur more frequently under
unmitigated global warming, up to 9 out of 10 y by 2060 (67,
68). This trend has been confirmed in the latest generation of
CMIP6 models, which is largely consistent with the CMIP5
model generation (69, 70). High-emission scenarios ([Shared
Socioeconomic Pathway] SSP3-7.0 and SSP5-8.5) project that
precipitation may strongly decrease over the Amazon basin (69).
Therefore, it seems indeed plausible that the future climate will
resemble extreme drought events that occurred in the past 20
y with a strong epicenter in the southern and eastern Amazon
rainforest basin (70).

By reconstructing dynamic atmospheric moisture recycling
networks from the recent past, we can study how climate change
may exceed the adaptation capacity of the forest and subsequently
trigger local tipping points that cascade through the Amazon rain-
forest system. We integrate the following in a dynamic network
model: 1) the local-scale tipping behavior of the Amazon forest,
2) the long-range coupling by atmospheric moisture flows, and 3)
the adaptation of the forest to annual precipitation and droughts
(Fig. 1). Specifically, we use a conceptual dynamical system to
model local tipping points based on a local empirical relation
between tree cover, mean annual precipitation (MAP), and dry
season intensity (maximum cumulative water deficit [MCWD]).

We assume that the Amazon rainforest, on a level of 1◦ × 1◦

grid cells, is adapted to its local values of MAP and MCWD over
20 y (1984 to 2003). This implies that parts of the forest that have
experienced drier conditions in the past are also more tolerant to
droughts in the future in our model, which is in line with earlier
research (17, 37). The reason is that forest ecosystems have adapted
to local environmental conditions by selecting functional traits
that increase their overall ability to persist under natural climate
variability and other stressors at play (31, 35, 71). We integrate
the nonlinear forest ecosystems into our dynamical systems ap-
proach (Materials and Methods, Network of Coupled Nonlinear
Differential Equations). To account for possible spatial variability
and uncertainties (for instance, due to different soil properties),
we create an ensemble of 100 members to investigate future
drought conditions. This allows us to propagate the associated
uncertainties thoroughly (Materials and Methods, Adaptation and
Computation of Critical Thresholds and Ensemble Construc-
tion). Further, we construct the atmospheric moisture recycling
network, which connects the different parts of the forest, using
output from atmospheric moisture-tracking simulations and a
global hydrological model (Materials and methods, Data) (42, 43).

It is possible that the future climatological rainfall regime
would incorporate more extreme droughts and could resemble a
permanent drought (68–70). Here, we focus on the effects of these
future scenarios of droughts on the stability of parts of the Amazon
rainforest. Hence, we do not look into other adverse influences
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Fig. 1. Nonlinear effects and atmospheric moisture recycling network in the Amazon rainforest. (A) Dynamical property of each 1◦ × 1◦ grid cell of the
rainforest depicted as state of the grid cell versus MAP value. The state of the grid cell is limited by full forest cover (state value: 1.0) and an alternative
state (open canopy, dry forest, savanna, treeless state value: −1.0). Between these two stable states, tipping occurs when the MAP value has fallen below its
adaptation-specific MAPcrit value. Since we are focusing on drought-induced tipping events from forest to nonforest states in this study, each cell is stable only
on the brown states, but not on gray states (since we are not simulating a recovery of the forest). The gray dashed line represents the border separating the
upper from the lower stable state (unstable manifold). The blue arrow depicts a potential reduction in precipitation that is sufficient to trigger a tipping event
in this specific cell. (B) Same as in A for MCWD. (C) Exemplary atmospheric moisture recycling network, where each forest circle represents a 1◦ × 1◦ grid cell,
whose dynamics are shown in A and B. The different grid cells receive precipitation and experience evapotranspiration. The interaction between the different
cells arises from the atmospheric moisture transport from evapotranspiration to precipitation. Through this mechanism, effects of reduced tree cover would be
enhanced and tipping cascades are possible. (D) Atmospheric moisture recycling network for the hydrological year 2014 thresholded for links above 15 mm/y to
maintain visibility. In the simulation results, links above 1 mm/y are used. The dominant flow direction comes from the Atlantic Ocean through easterly winds,
reaches the Andes, and then bends southward along the Andes. Atmospheric moisture recycling links based on separate months and the dry/wet season can
be found in SI Appendix, Figs. S1–S3 comparing the year 2014 with the extreme drought year 2010.

such as fire or deforestation. We explore a large range of different
possible future climate states in the Amazon basin, building on
realistic precipitation and evapotranspiration patterns from the
recent past. Scenarios (i.e., future potential climate normals) are
built by perpetuating the observed climatic anomalies from 2004
to 2014 in an equilibrium experiment. This also means that we
do not look into the effects of single years. Compared to average
conditions, the investigated future scenarios range from wet (e.g.,
2009) to extremely dry conditions (two “droughts of a century”:
2005 and 2010) (51, 72). Overall, this allows us to draw on
realistic rainfall and evapotranspiration patterns based on earlier
drought and nondrought years, instead of artificially and more
arbitrarily making use of rainfall reduction experiments or climate
model forecasts.

With our model experiments, we analyze the Amazon rainforest
cells as local-scale tipping elements of the atmospheric moisture
recycling network on a resolution of 1◦ × 1◦ to assess their

impact on the Amazon-wide system stability (Fig. 1). Using this
approach, we provide a bottom–up quantification of Amazon
system stability to reveal where cascading effects of atmospheric
moisture recycling have the potential to induce domino effects in
forest cover loss.

Results

Tipping Due to Drier Conditions. To investigate a range of possi-
ble future water deficits and precipitation anomalies, we study the
extent of the tipped area with respect to a range of future possible
scenarios (climate normals), in which precipitation, evapotranspi-
ration, and moisture transport patterns would consistently look
like the year 2004, 2005, . . ., 2013, or 2014. For that purpose,
we use the so-called Z-score measure (Eqs. 2 and 3), which
represents how many SDs the conditions are away from the mean
of the control period (1984 to 2003). We find a correlation
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Fig. 2. Vulnerability of the rainforest against MCWD-based drought inten-
sity. (A) The total tipped area is shown over the course of the normalized
drought index based on the MCWD Z score. The tipped area represents
the number of tipped cells in the model where each 1◦ × 1◦ cell has an
area of approximately 111 × 111 km2. (B) Ratio of the tipped area due to
network effects for each simulated scenario (new climate normal). This shows
the effects of cascading transitions, which can reach orders of 1.5 · 106 km2

depending on the evaluated scenario representing the hydrological years
2004 to 2014. The same analysis was performed for a MAP-based index
(SI Appendix, Fig. S4). A sensitivity analysis for a stronger and a weaker
moisture recycling network reveals the robustness of the obtained results
(SI Appendix, Fig. S5). Sc., scenario.

between ZMCWD and the tipped area, where a higher index reflects
a larger tipped area (Fig. 2A). The future scenarios resembling
the environmental constraints of the drought years 2005, 2007,
and 2010 (i.e., if those years become the new climate normal)
show the largest tipped area. The 2005 and 2010 droughts have
been termed “once-in-a-century droughts” (72) and are together
with 2007 the years with the highest drought conditions in our
study period (2004 to 2014) (53). The scenario for the year
2010 shows the highest tipped area, closely followed by the 2005
and 2007 scenarios. The reason for this small difference between
2005 and 2010 might be that, while 2010 had the most extreme
ZMCWD index, 2005 shows the most extreme rainfall anomalies
as measured by ZMAP (SI Appendix, Fig. S4). Indeed 2005 had
the highest rainfall anomalies within the 2004 to 2014 period
when accounting only for rainfall that originated from oceanic
moisture (i.e., neglecting recycled moisture) (42). Therefore, the
increase of the tipped area with increasingZMCWD can be expected
from our approach, suggesting that the investigation of tipping
reasons and regional distributions of the drought patterns affecting
local rainforest stability are the most important properties to
investigate.

We separate local-scale tipping events into primarily induced
tipping events from MAP or MCWD and secondary tipping
induced by network effects (tipping cascades). Our model shows
that up to 1.5 · 106 km2 of the local tipping events are due to
cascading effects from the atmospheric moisture recycling net-
work depending on the scenarios’ drought strength in terms of its
ZMCWD score (see network effects in Fig. 2B). The cascading effects
are heterogeneously distributed among the investigated years, but
are especially strong for the years that show the strongest drought
signatures (i.e., future climate normals resembling 2005, 2007,
and 2010). This is probably due to the fact that many cells are
shifted toward their local tipping point and some of them across
it. Consequently, with further reduction of atmospheric moisture
transport, more cells in these scenarios transgress their calculated
threshold. Therefore, if drought conditions intensify in the future,
cascading tipping may increase disproportionally.

We also compared these results with the results of an only
MAP-based normalized drought index ZMAP (Eq. 3) and find that

the future scenarios are considerably more adverse with respect
to ZMCWD than to ZMAP (larger ZMCWD values are reached
compared to ZMAP; Fig. 2 and SI Appendix, Fig. S4). As a sen-
sitivity experiment, we further assessed whether the extent of the
tipped area will increase under different levels of the empirically
obtained moisture transport strength and hence of the regional
precipitation recycling ratio. We find robust results for both a 25%
increase and a 25% decrease in the amount of water transported
between pairs of forest cells (SI Appendix, Fig. S5), indicating that
the results are not sensitive to uncertainties in the moisture flows.

Vulnerability Maps. Over the range of simulated scenarios, one
region shows very high vulnerability and a second region mod-
erate to high vulnerability (see vulnerability in Fig. 3A). These
regions, located in the southeastern and southern to southwestern
Amazon, are affected by a combination of MCWD anomalies
and network effects. As expected from Fig. 2, the vulnerabil-
ity patterns vary strongly from scenario year to scenario year
(SI Appendix, Fig. S6), but the vulnerable regions in the southeast
and southwest recur across many simulated scenario years.

We investigate the vulnerable regions in detail since, in our
model, small changes in the state already have an impact on
the atmospheric moisture recycling network, even though the
respective cell does not qualitatively change state. This can be
realized if the environmental conditions shift a rainforest cell
close to, but not across, its local tipping point. We define a shift
toward the local tipping point without an actual local tipping
event as the closeness to tipping. We find that this closeness to
local tipping is highest in the southeast of the Amazon basin and in
the subsequent dominant downwind direction toward the Andes.
The largest average shifts toward the local tipping point are located
around and close to, but not directly at, the most endangered
region in the southeast. The reason is that these cells are already
tipped in most cases and do not contribute to the average closeness
to tipping (Fig. 4A). However, this is expressed by the high
variability among the ensemble members (see southeastern region
and downwind in Fig. 4B).

Although local tipping points are thresholds by definition, our
model indicates that effects on the Amazon forest–rainfall system
already occur before MCWD or MAP reaches that point. This
agrees with observations that droughts can have significant im-
pacts on photosynthesis and evapotranspiration that may last for
years (73, 74), which might in the end also affect the composition
of the trees together with long-term effects on light availability.
A threshold-only model cannot account for these effects on evap-
otranspiration. In our model, however, also partial state changes
are accounted for; i.e., evapotranspiration scales with distance to
the threshold of state change (tipping point). In other words,
when a forest becomes drier, it generates less evapotranspiration,
an effect that may cascade through the atmospheric moisture
network and the entire forest system. Thus, even though our
approach is conceptual, it allows us to identify which areas are
most vulnerable to the invisible effect of the atmospheric moisture
recycling network. The magnitude of this effect is on the order of
20 to 40% for many regions over the entire southern Amazon
with a small region in the very southeast of the Amazon reaching
40 to 60%. This represents an average evapotranspiration decrease
of ∼10 to 25% due to a shift toward the tipping point in these
Amazon regions (Fig. 4A).

The Tipping Reason and Cascading Effects. We reveal that, over
the whole set of simulated scenarios (2004 to 2014), the direct
effect of MCWD-induced tipping is prevalent (64.0 ± 5.0%)
over the 35.9 ± 4.9% that are due to cascading failure (Fig. 3B).
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Fig. 3. Vulnerable regions and tipping reason. (A) The likelihood of tipping (vulnerability) as an average over all ensemble members and all evaluated scenarios
resembling the hydrological years 2004 to 2014. The southeastern region is more vulnerable than other regions, but also the southern and southwestern regions
are affected. In SI Appendix, Fig. S6, the yearly results can be found. (B) Overall tipping reason averaged over the entire Amazon basin with error bars as the SD
over all years and all 100 ensemble members. A version separated into the future drought scenarios 2004, 2005, . . ., 2014 can be found in SI Appendix, Fig. S7
for all these potential future drought scenarios. MAP does not contribute to tipping events (probability is less than 0.1%) and is thus omitted here. (C) Regionally
resolved tipping reason in the case that MCWD is the reason for a tipping event. (D) Same as for C, but showing network effects (cascading effects of the
atmospheric moisture recycling network) are the tipping reason. Note that A is the sum of C and D.

Moreover, transitions of the forest due to MAP as a primary
reason are nearly completely negligible since they are responsible
for less than 0.1% of all local tipping events. The reason that
MAP does not appear as an important cause for the emergence
of tipping events may lie in the fact that cumulative water deficit
is more sensitive to changes in the dry season conditions than
annual precipitation. Therefore, the recent intensification of the
dry season in parts of the Amazon (3) results in a larger Z score
for MCWD than for MAP.

The cascading network effects are especially strong close to the
region of direct MCWD-induced tipping and downwind from

that. MCWD is the most important reason for local tipping events
in the southeast, whereas network effects are more important
west of this region (Fig. 3 C and D). Overall, the region in
the southeast is vulnerable with respect to MCWD since it has
a moderate interannual variability (SD) of MCWD, while the
intra-annual precipitation variability (mean) MCWD value is
high (SI Appendix, Fig. S9 C and D). Together with increasing
MCWD values in this region in the scenario period (2004 to
2014) compared to the calibration period (1984 to 2003), this
leads to relatively many MCWD-induced tipping events, which
can then spread out farther via network effects (tipping cascades).
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Fig. 4. Mean shift toward the tipping point (closeness to tipping). (A) Mean shift to the tipping point as an average over all ensemble members. It can be seen
that the shift is larger in the southern part of the Amazon rainforest, meaning that this region is more vulnerable than the northern part. (B) SD of A over all
ensemble members. Note that cells are accounted for only if the cell is not in the tipped regime in the respective simulation run. Since the closeness to tipping
is translated linearly into a reduction of evapotranspiration, a second color bar indicates this change (A) together with its SD (B). A version separated into the
future scenarios resembling the conditions from 2004 to 2014 can be found in SI Appendix, Fig. S8.
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Discussion

Based on the assumption that tipping processes in the Amazon
rainforest are conditioned by local to regional-scale adaptation,
we estimate that tipping cascades can become responsible for
around one-third (35.9 ± 4.9%) of the local tipping events in the
Amazon rainforest. These cascades occur even when considering
that the forest is adapted to local climatic conditions, which has
not been considered by earlier studies (9). The reason is that drying
is amplified by the atmospheric moisture losses that result from
reduced evapotranspiration and, hence, moisture recycling, which
in turn affects precipitation levels regionally. By constructing
a dynamic network of forest cells connected by forest-induced
atmospheric moisture flows, we reveal how and where the Amazon
is vulnerable to tipping cascades. Local tipping due to fluctuating
dry-season intensity (as measured by MCWD) is the dominant
driver (64.0 ± 5.0%) compared to fluctuations in annual rain-
fall. With a potential increase of future extreme drought events
(67–70), the average regional climate will be drier and some
parts of the rainforest might thus be set under imminent risk of
instability and could transition into a less-covered or non–forest-
covered state. We uncover that local tipping events occur most
frequently in the southeastern Amazon (Fig. 3).

A reduction in evapotranspiration has been found in earlier
research and, in conjunction with a longer dry season and defor-
estation (44, 45), has been suggested to play out strongly in the
southern Amazon, the same region where we find the largest frac-
tion of local tipping events. Also, state-of-the-art CMIP6 models
provide additional evidence that the Amazon rainforest is among
the regions worldwide that would be hit hardest by climate-
change–induced precipitation decreases and extreme drought
increases (+200 to 300% until 2071 to 2100 in SSP3/SSP5
scenarios compared to 1851 to 1880) (69, 70). Particularly, the
southern and eastern regions in the Amazon basin are projected to
suffer from these intensified droughts (70). Therefore, persistent
drought conditions as postulated in this study are possible in the
mid- to late-21st century under unmitigated global warming.

Further, it should be noted that the highly impacted south-
ern and southeastern Amazon regions are also the regions that
are strongly affected by three additional factors reducing their
resilience. First, extended tipping cascades can be expected due
to local interaction structures and reduced downwind moisture
transport (Figs. 3 and 4). Second, they are also two of the regions
located along the “arc of deforestation” and therefore already
suffer from the pressure of human-induced activities, such as
deforestation, ranching, and extensive agriculture (16, 75, 76).
Third, these regions, as well as the whole Amazon rainforest, are
threatened by road infrastructure projects (77, 78) and lack of or
poorly enforced environmental policies (79, 80).

At the same time, human-induced changes such as deforesta-
tion also affect the evapotranspiration negatively, which might
then increase the frequency and severity of droughts together with
ongoing climate change (43, 81, 82). Besides deforestation, the
Amazon rainforest can be impacted adversely by, among others,
temperature extremes, fires, or further degradation. But since our
aim was to understand the role of tipping events and cascades
based on adaptive capacities through the atmospheric moisture
recycling network, we tailored our model to the effect of drought-
induced instabilities. With this procedure, we are able to find
regions where the adaptive capacity might be outpaced under fu-
ture more consistent droughts. Therefore, these other effects (fire,
temperature extremes) are not quantified in this study. Over-
all, our results emphasize the relevance of the atmospheric
moisture recycling network as an ecosystem service whose
(partial) breakdown, combined with an increased number of

climate-change–induced extreme droughts, could trigger sub-
stantial changes across the Amazon basin.

We find that scenarios with higher MCWD anomalies (i.e.,
that resemble current extreme droughts) show a considerably
larger tipped area. Cascading tipping events are more pronounced
under these circumstances (Fig. 2). These are the drought con-
ditions that can be expected from midcentury onward if climate
change progresses as it would in high-emission scenarios (68–70).
The highest response in our model coincides with the strongest
El Niño ONI (Oceanic Niño Index) indexes during the period
2004 to 2014 (72). It is known that El Niño-related droughts and
other variability patterns affect the stability of the rainforest and
tropical vegetation (18, 83). If the anomalies associated with El
Niño events intensify as projected by CMIP simulations and per-
turbed physics models (84, 85), this would endanger substantial
portions of the Amazon basin (86). However, uncertainties remain
whether strong El Niño events might become more frequent in
the future (87). Overall, there is a low level of agreement among
CMIP models on projected changes in ENSO (El-Niño Southern
Oscillation) variability during the 21st century (88), even though
they agree on the drying signal (70).

It is important to note that, while the droughts in 2005 and
2010 show an elevated ENSO-ONI index, they have also been
attributed to a warmer tropical and subtropical North Atlantic
Ocean (51, 54, 72). Especially the effects on reduced precipita-
tion, leading to reduced atmospheric moisture transport and soil
moisture in the arc of deforestation and the central Amazon basin,
have been linked to changes in the sea surface temperature in the
tropical North Atlantic and the Caribbean (89). Hence a drier
future climate over the Amazon is not determined by persistent
ENSO conditions.

In our study, we assumed that the forest would undergo a state
transition from a forested cell to an only sparsely forested (e.g.,
open canopy or savanna) or entirely forest-free cell. This is in
agreement with a recent model study (90), which shows that a
savanna-like state could become stable in most parts of South
American tropical forests by the end of the 21st century. However,
1) it has recently been discussed that it may be possible to evade
a potential ecological tipping point by the formation of spatial
patterns, leading to higher resilience or a more linear change of the
system (91), and 2) it could also be possible that the alternative
stable state could consist of a dry-forest–like state. Such a species
turnover from wet-affiliated to more dry-affiliated tree species is
already observed in parts of the Amazon rainforest (37). This
would mean that parts of the forest could change to dry forests (4)
instead of savanna-like states, but still the forest would undergo a
functional and species-compositional shift. Instead of a dry forest,
a new social–ecological “equilibrium” state could be driven by
land-use change such as agricultural use or pasture. In both cases
for dry forests (≈750 to 1,000 mm/y) (92) or pasture and soy
(≈500 to 700 mm/y) (93), the evapotranspiration could be higher
than is assumed in this study after local rainforest collapse. The
median value for a scenario resembling 2014, in the case that
the rainforest would be collapsed, is around 400 to 500 mm/y of
evapotranspiration in our model and is of comparable magnitude
to that of pasture or soy (SI Appendix, Fig. S10). Still, if the evapo-
transpiration remains at an even higher level, it is possible that we
would overestimate the potential for tipping cascades. To evaluate
this, we performed a sensitivity analysis with different strengths
of the atmospheric moisture recycling and find a strong ro-
bustness of our results (SI Appendix, Fig. S5). The corresponding
evapotranspiration values for the sensitivity experiment with lower
atmospheric moisture recycling values (25% reduction compared
to the original values) match the evapotranspiration values of dry
forest well (SI Appendix, Fig. S10D).
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Overall, studies producing transition probability density func-
tions based on the general climatic conditions under which a forest
state is possible may be on the conservative side. Such approaches
might underestimate the importance of local adaptations or rather
the importance of forest diversity. Under the common assumption
that trees operate at their maximum performance by optimizing
their trade-off affected trait values in a competitive community
(40), any significant deviation from common local environmental
conditions poses a stress to the established local community
(37, 94). It is not that this community can pick from solutions
found in the overall pool of trait values in the whole Amazon.
The forest community is bound to its local adaptations, i.e.,
expressions. Even under the assumption of extremely plastic traits,
the community would need a lot of time to readjust, which is
especially unrealistic for traits like rooting depth or parameters
related to wood density (33). Therefore, we view our approach
to model adaptation as complementary and a step forward to
“potential landscape” methods in earlier studies (9, 17) and expect
that the actual tipping points and cascades in the Amazon result
from a combination of the crossing of absolute and relative thresh-
olds. Determining these relative effects is a promising avenue for
future research as field-based estimates of local tree adaptations
are starting to become available. Additionally, parameterizing
state transitions across a very broad geographic domain with
very diverse climate, species composition, and soil conditions is
very challenging, and the details of these parameterizations will
strongly impact modeling results. Going forward, more research
into this topic seems warranted.

Furthermore, it could be argued that adaptation of trees takes
significantly longer than the 20 y we used in our study (control
period). In this case, adaptation could have led to a higher
resistance in trees against droughts, at least in older trees that
have experienced a larger range of different climatic conditions.
However, while trees in the Amazon rainforest can easily reach an
age of several hundred years, and some up to more than 1,000 y
(95), the current rate of climate change is unprecedented in the
last 1,000 y and on longer timescales during the Holocene (last
11,700 y) and beyond (88). Therefore, a potential paleo-climate
adaptation of trees and with that an adaptation of the overall
species composition are very likely exceeded by future climate
conditions under global warming. At the same time paleo data on
precipitation and evapotranspiration on the required resolution
are spotty. Still, for some rainfall stations, it has been found that
our dataset is in the same range as precipitation values from the
last 100 y (96). While we consider an adaptation of trees to
past climatic conditions, it should be noted that the atmospheric
moisture network is static and does as such not change during
the simulations, e.g., due to a vegetation shift in some rainforest
cells. Furthermore, our model should not be seen as a prediction,
because it has been developed to be able to perform a risk
assessment, finding the most vulnerable regions in response to
recurrent droughts.

Another important mechanism has been argued to lie in addi-
tional CO2 fertilization of the vegetation under global warming,
accompanied by a potentially more effective intrinsic water-use
efficiency of trees (97, 98). However, it is not finally clarified
how the balance plays out between the positive effect of CO2

fertilization and the negative impacts of global warming due to
elevated atmospheric carbon levels, which has resulted in increased
tree mortality in the Amazon rainforest (99, 100).

Finally, atmospheric moisture export can supply systems
that are thousands of kilometers away, implying that forest-
induced moisture export is an essential ecological service for
regions beyond the Amazon rainforest itself (101). Therefore, the

preservation of atmospheric moisture recycling might be
considered to play a role in the designation of future protected
areas in the Amazon rainforest. Altogether, preserving the Amazon
and its ecological services is of utmost importance for local,
regional, and global climate stability.

Materials and Methods

Data. The network was constructed using atmospheric moisture-tracking simu-
lations by Staal et al. (42), based on state-of-the-art observation-based moisture-
tracking simulations and the hydrological model PCR-GLOBWB (PCRaster GLOBal
Water Balance model) forced by Earth Resilience in the Anthropocene ERA-
Interim data (102). In that study, first, tree transpiration across South America dur-
ing 2003 to 2014 was estimated using PCR-GLOBWB. This is a global hydrological
model that computes the water balance in two soil layers and a groundwater layer
and accounts for soil distributions, fractional area of saturated soil, and spatiotem-
poral differences in groundwater depth. Next, the atmospheric trajectories of the
tree transpiration flux were simulated using a Lagrangian atmospheric moisture-
tracking model. This model applies three-dimensional tracking of parcels of
moisture that are released in the atmosphere, scaled with the humidity profile
of the atmosphere. For the atmospheric fields, data between 1,000 and 500 hPa
at 50 hPa vertical resolution were used. At each time step, moisture from the
parcels can rain out depending on ERA-Interim precipitation. The model ran with
simulation time steps of 0.25 h, where wind speed and direction were interpo-
lated from ERA-Interim reanalysis on 0.75◦ and 6-h resolution. Moisture parcels
were tracked for 30 d or until less than 5% of the original moisture was present.
The output is on a monthly basis on 0.25◦ resolution. Here, we reconstructed
those simulation results by taking the atmospheric moisture recycling ratios
between 0.25◦ grid cells, building monthly networks of moisture flows between
each pair of cells of a certain resolution for the Amazon region and aggregating
them to 1◦ × 1◦ grid cells. In addition to tree transpiration, we also included
interception evaporation from tree canopies, taken from Staal et al. (2020) (43)
on a monthly and 0.5◦ basis. Furthermore, we accounted for deforestation before
and during the study period by subtracting forest-loss results from Hansen et
al. (2013) (103), see also Staal et al. (43). We thus obtained temporally varying
monthly networks of forest-induced atmospheric moisture flows across the Ama-
zon. For the equations of the Lagrangian moisture-tracking scheme, we refer to
Staal et al. (42).

There is still evapotranspiration from the soil left when the forest at a certain
grid cell is removed; i.e., tree transpiration and interception evaporation are
set to zero. While we do not artificially replace the forest cover by other types
of vegetation directly, the leftover evapotranspiration value is on the order of
500 mm/y, which is a bit less (500 to 1,000 mm/y) than the evapotranspira-
tion value of some agricultural crops, pasture, or Cerrado forest (92, 93, 104)
(SI Appendix, Fig. S10 A and B). Therefore, we performed a sensitivity analysis
to check whether different values in moisture supply make a difference in the
amount of tipping events. By multiplying all links in the atmospheric moisture
recycling network by 1) 125% and 2) 75%, we found that the tipped area and
the network effects are fully consistent with Fig. 2. Thus, our results are robust
for significant differences in moisture transport, also matching the remaining
evapotranspiration of dry forests (SI Appendix, Figs. S5 and S10D).

Monthly precipitation and actual evapotranspiration data for 1984 to 2014
at 0.25◦ resolution were taken from the ERA5 reanalysis dataset (105), and for
robustness comparison in SI Appendix from the Famine Early Warning Systems
Network Land Data Assimilation System (FLDAS) (106). We have taken 20 y as our
adaptation period because in earlier research, 20 y have also been selected as
the tree root adaptation time frame, acknowledging that it may be longer (34).
Further, the ERA5 and FLDAS data from 1984 to 2003 show a similar range of
precipitation values as observational data from across the Amazon basin (96).
In this sense, our data also are representative of observational data from earlier
times (1920s to 1960s) since 1) there is a similar variability in the precipitation
and 2) no strong trend is observed (meaning no decrease or increase in Amazon-
wide precipitation over time) (96). In the end, we have chosen the ERA5 data
for the main text, but both datasets show robust results, not only with regard to
the overall tipping effects, but also with respect to network effects. Also, regional
tipping distributions agree fairly well (SI Appendix, Fig. S11). Note that all our
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simulations are based on hydrological years (starting in October of one calendar
year and going to September of the next calendar year) instead of calendar years
due to the hydrological cycle over the Amazon basin.

Computation of MAP and MCWD. The MAP is derived from the monthly
precipitation values for each cell. The MCWD index is here defined as the absolute
value of the most negative value of cumulative water deficit (CWD) reached over
a hydrological year:

CWDk = CWDk−1 + Precipitationk − Evapotranspirationk

max (CWDk) = 0

MCWD = abs (min {CWDk , CWDk+1, . . . , CWDk+12}), [1]

where k is the number of the month in the hydrological year. We make use of
the actual measured regional evapotranspiration values in each grid cell. At the
beginning of each hydrological year (i.e., the wettest time of the year) we set
CWD0 to zero, assuming that the soil is saturated, following earlier studies (4).
Therefore, this is a conservative measure because legacy effects from drought
conditions in preceding years are not accounted for.

There are several other indexes besides MCWD such as the standardized
precipitation index (SPI), the standardized precipitation evapotranspiration index
(SPEI), and the Linacre water-limitation index (LINACRE) (107, 108). However, we
have used the MCWD index in this study since it has been linked to a potential
climate-change–induced dieback of parts of the Amazon rainforest in earlier
research (4). Furthermore, anomalies from a decadal reference period in MCWD
have been shown to correlate positively with drought-induced tree mortality (49,
109), and finally former studies on tropical forest bistability have also made use
of the MCWD drought index (9, 43, 90). Note that a comparison between the SPI
and MCWD indexes exists (48).

Computation of the Z Score. TheZ score is used to find the ranges of future
conditions that we are simulating in this work. We simulate ranges from current
conditions up to extreme droughts that are 3.0 SDs away from the mean (Fig. 2).
The MCWD-based Z score is computed by

ZMCWD =
MCWD(year)− μMCWD

σMCWD
. [2]

Here, μMCWD and σMCWD are the average and SD of the calibration period from
1984 to 2003. MCWD(year) is the average MCWD of the specific investigated
year (Materials and Methods, Computation of MAP and MCWD). For comparison,
theZ score based on MAP is computed (Eq. 3) and plotted for comparison, and a
similar relationship between tipped area and a higher MAP-based score is visible
(SI Appendix, Fig. S4), but MAP is no reason for tipping (Fig. 3):

ZMAP =
MAP(year)− μMAP

σMAP
. [3]

Adaptation and Computation of Critical Thresholds. Even though there
might be absolute thresholds at play in the Amazon rainforest (7, 8, 90), modeling
approaches that ignore the possibility of local adaptation may lead to incorrect
estimates of tipping points and tipping cascades. Forests are not everywhere
equally adapted to local climate conditions (33, 39). There are many strategies
within and among forests to cope with, e.g., dry seasons or droughts (34). Our
working hypothesis is that local climate conditions must have led to certain forest
trait adaptations along the logical lines of environmental filtering, competitive
exclusion, and resilience.

For our purpose of computing local adaptation values (local means here based
on a 1◦ × 1◦ grid), we use a calibration dataset from ERA5 from the hydrological
years 1984 to 2003. From there, we compute the 20-y long-term mean of MAP
and MCWD values together with their SDs (SI Appendix, Fig. S9). The critical value
for MAP and MCWD where a state transition occurs is computed for each grid
cell i as

MAPcrit,i = μMAP,i − αi · σMAP,i

MCWDcrit,i = μMCWD,i + αi · σMCWD,i. [4]

μi is the mean,σi the SD of cell i, andαi an adaptation factor that determines the
exact value of the tipping point. Our procedure leads to the effect that regions with
a high MAP as, e.g., in the central Amazon region can only be sustained at higher
MAP values compared to other, typically drier regions, for instance, in the south
of the Amazon basin or close to the Andes. This means that forests in typically
drier regions (e.g., in the southeast of the Amazon basin) can survive with less
moisture than forests in wetter regions. The same arguments are valid for MCWD,
with regional differences from MAP.

Furthermore, higher variability, i.e., a larger SD, in a region leads to higher
adaptation percentage-wise (training effect). In turn, this would also suggest that
regions with a very low SD (e.g., where 3σ < 30 mm/y; SI Appendix, Fig. S9D)
in the central Amazon would shift their state under very small MCWD shocks. It
is unlikely from an ecological perspective that those small MCWD shocks would
lead to an ecosystem transition, and indeed, in our simulations, we only rarely
find tipping events in those low-SD regions due to sufficient precipitation supply.
However, once environmental conditions in these regions become significantly
drier, then local adaptation might become a curse instead of a blessing, especially
in regions with low variability. To stay competitive, very shallow rooting depths
should be expected in regions where MCWD is zero (34). A significant deviation
from the always wet upper soil layer, for which MCWD is a proxy, for many
consecutive years would very likely have significant consequences.

Altogether, we view our adaptation approach as complementary to and a step
forward from potential-landscape methods in earlier studies (9, 17) and expect
that the actual tipping points and tipping cascades in the Amazon result from
a combination of the crossing of absolute and relative thresholds. Determining
these relative effects is a promising avenue for future research as field-based
estimates of local tree adaptations are starting to become available. Specifically,
we see several arguments bringing our approach in line with current literature: 1)
Adaptation to climatic and environmental conditions is key to survival of certain
tree species and, as such, affects the resilience to climatic changes in the Amazon
rainforest (17, 32); 2) those adaptive capacities have in particular been related to
tree strategies to cope with droughts (35, 71), but it has been found that tree
mortality risks increase when the trees experience climatic conditions outside
their adaptive limits (59, 94); and 3) it has been found that even occasional strong
droughts have long-lasting impacts on drought-induced tree mortality (57), and
vegetation conversions have been observed in multiple biomes worldwide in-
cluding the Amazon (59, 66).

Dependence on Adaptation Values. With our settings, we can now compute
what would happen under sustained conditions that resemble the yearly condi-
tions observed in a particular hydrological year of our study period from 2004 to
2014. In our experiments, we assume that each cell starts with full forest cover
(state = 1.0) at t = 0. If we are taking the precipitation, evapotranspiration, and
atmospheric moisture recycling network of a certain year, then we will find some
cells that are unstable since their MAP or, mostly, their MCWD value is below
the critical value (Eq. 4), which is defined with the time series from 1984 to
2003 (SI Appendix, Fig. S12 for ERA5 data and FLDAS in SI Appendix, Fig. S13).
If this is the case, this cell transgresses its threshold and becomes forest cover-
free, which then leads to reduced atmospheric moisture recycling since the
atmospheric moisture transport value is multiplied by the fraction of forest cover.
This means that the atmospheric moisture transport value for tree transpiration
and interception evaporation is set to zero when a forested cell tipped. This can
then drive further cells toward or across their tipping point such that cascading
events can be expected. In the case that a cell is only driven toward, but not across
its tipping point, the effects on atmospheric moisture recycling and tree cover
are still accounted for, assuming that the response of the vegetation is linearly
represented by the state, instead of this effect being zero as in threshold-only
models (9).

The critical values depend on the level of locally different adaptation values
αi (Eq. 4). Thus, it can be expected that a higher adaptation factor leads to a lower
number of tipped rainforest cells and vice versa. To check this, we performed
a sensitivity experiment, where the adaptation values are the same across the
entire Amazon (αi = α ∀i). We performed this sensitivity experiment for 0.3,
0.4, . . . 3.0 SDs. We find that the tipped area indeed goes down with increased
adaptation factors (SI Appendix, Fig. S14A) and observe that the southern and (to
a lesser extent) the western regions in the Amazon rainforest are most vulnerable
(SI Appendix, Fig. S14B). In reality, the true value of adaptation of a certain cell
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is unknown and might vary from location to location. That is why a different
ensemble of simulations with increased robustness is required and the constant
adaptation factor hypothesis (α= αi ∀i) is dropped in favor of an ensemble
approach whereαi is varied locally. Thus, we create a Monte Carlo ensemble with
100 ensemble members for each year in the study period.

Ensemble Construction. Eq. 4 determines the critical values for MAP and
MCWD for each 1◦ × 1◦ cell separately. The critical value is dependent on the
local average value as well as the variability of the 20 y before the study period
(ERA5 data from 1984 to 2003). The exact critical value is determined by the
adaptation factor α and must in turn be chosen appropriately. Therefore, we
assume that a cell is on average able to remain in the same state under MAP
and MCWD conditions that are 2 SDs away from their mean, i.e., from their
“experiences” during the previous 20 y. However, as argued above, the exact
value of adaptation is uncertain and might be different in different regions,
also due to several factors that we do not model explicitly in this work. But
we take this into account by drawing the individual adaptation values αi for
each cell i from a β-distribution that is centered at 2 SDs and ranges from
1 to 3 SDs:

β (x, a, b) = (σupper − σlower) ·
xa−1(1 − x)b−1

∫ 1

0
ta−1(t − 1)b−1dt

+ σlower. [5]

Here, we use σupper = 3.0 and σlower = 1.0 for the upper and lower bounds.
We choose a = b = 2.5, which ensures that, on average, 75% of all values lie
between 1.5 and 2.5 SDs and 12.5% lie between 1.0 and 1.5 or between 2.5
and 3.0 SDs, respectively. This means that 75% lie in the central interval and
25% outside (75 to 25 rule). We have taken 2 SDs as our central estimate in
this study and have chosen a β-distribution since it is analogous to a normal
distribution for a fixed interval. With that procedure we construct an ensemble of
100 members of which 3 examples can be found in SI Appendix, Fig. S15. If not
stated otherwise, all results shown are from the average over the 100 ensemble
members.

Network of Coupled Nonlinear Differential Equations. We use a combi-
nation of nonlinear differential equations together with a complex network to
describe the state of the rainforest cells and their interactions (110). We use
this approach instead of a threshold approach since we want to be able to
account for partial changes in the state and their effects on the network. For
instance, such changes can be critical for the tipping of cells that are not coupled
directly, but via an intermediary cell, where partial changes are decisive for the
emergence of a tipping cascade. Indirect effects have been found to account
for 10% and more, already in very simple interaction structures in so-called
motifs (111).

In the differential equation approach in this work, we model the main hydro-
logical parameters and the stability of the rainforest, but no further parameters
such as biotic variables or further ecophysiological processes. The main hydro-
logical properties are the precipitation (MAP), the MCWD, and the atmospheric
moisture recycling. Following the reasoning above, we describe the mathematical
details in the remainder of this section.

Each 1◦ × 1◦ cell is represented by a differential equation of the form

dxi

dt
= x3

i − xi + Fcrit (MAPi, MCWDi), [6]

where xi stands for the state of the rainforest cell and can be interpreted
as the fraction of tree cover. The shape of this function can be seen in
SI Appendix, Fig. S16. Furthermore, Eq. 6 has the normal form of a saddle-
node bifurcation and is a simple form of a differential equation with two stable
states. Such equations have been used to model dynamics in various contexts
such as economics, ecology, and the Earth system (112, 113). The two states
are stable depending on the value of the critical function Fcrit, where +1.0
stands for full tree cover and −1.0 for the alternative state without full tree
cover. Such an alternative state could be a savanna-like state or completely
treeless. It is not possible for a cell to have lower tree cover values than 0%
or values higher than full forest cover such that the state xi is limited to the
interval [−1.0, 1.0]. The advantage of choosing state limits of −1.0 and +1.0

is that the critical value then remains analytically representable and has the
specific value Ccrit =

√
4/27 (SI Appendix, Fig. S16). This value is derived from

the discriminant of the polynomial of Eq. 6. More details can be found in the
literature (112, 114). For other state limits such as between 0.0 and 1.0, this
would have to be dropped since the parameters in front of the cubic and linear
terms of Eq. 6 would be different. Therefore, we decided for prefactors of 1.0 in
front of the cubic and the linear term such that the state limits are −1.0 and
+1.0. As soon as the critical value of Ccrit is reached byFcrit, a state transition will
occur since the upper stable state becomes unstable and only the lower stable
state remains stable. For more details on this equation and the critical value, see
Wunderling et al. (111) and Klose et al. (112).

In our case, the rainforest cells are not independent, but interact via atmo-
spheric moisture recycling such that Eq. 6 becomes

dxi

dt
= x3

i − xi + Fcrit (MAPi, MCWDi)

+

N∑
j=1
j �=i

Mji (ΔMAPji, ΔMCWDji)
xj

2
. [7]

Here, the entries of the critical matrix Mji (ΔMAPji,ΔMCWDji) represent the
strength of the atmospheric moisture recycling link between two grid cells from
j to i. The state xj must be divided by 2 since the distance from the minimum
to the maximum state is 2. Similar forms of the network and the differential
equation have already been used in earlier studies in the literature, but in
a more simplified form than in this work (47, 111). For the computation of
the critical function Fcrit (MAPi, MCWDi) and the critical (interaction) matrix
Mji (ΔMAPji, ΔMCWDji), see SI Appendix, Methods.

Resolution Independence. To check for robustness of our results, we
recomputed our simulations with respect to the resolutions of 1.5◦ × 1.5◦ and
2◦ × 2◦ (SI Appendix, Figs. S17 and S18). For that purpose, we scale the
minimal atmospheric moisture recycling value connecting to rainforest cells
with the area of a cell. In the case of a resolution of 1◦ × 1◦ we take all values
above 1.0 mm/y into account, for 1.5◦ × 1.5◦ all values above 2.25 mm/y, and
for 2◦ × 2◦ all values above 4.0 mm/y. Overall, we find that the vulnerability
patterns are spatially similar (compare Fig. 3A with SI Appendix, Fig. S17). Thus,
the qualitative pattern is the same. The absolute values also show a close
quantitative match within their SDs for all resolutions (SI Appendix, Fig. S18).

Notes on Color Maps. This paper makes use of perceptually uniform color
maps developed by F. Crameri (115).

Data Availability. The ERA5 and FLDAS precipitation and evapotranspiration
data can be accessed online from refs. 105 and 106, and the moisture
recycling data are available from refs. 42 and 43. The model pycascades (pik-
copan/pycascades) (110) that has been used for the numerical simulations
for tipping on networks and the Amazon rainforest is available on Zenodo
under the doi https://www.doi.org/10.5281/zenodo.4153102 (116) and the
code that supports the findings of this study is available on figshare at
https://www.doi.org/10.6084/m9.figshare.20089331 and at (117). Parts of this
research are based on work carried out within the thesis of N.W. (118). In the case
of questions, please contact N.W. All other study data are included in the article
and/or supporting information.
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