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Short Title: Modelling information processing in the brain 25 

 26 

One sentence summary:  27 

Simulated non-local information processing on a neocolumnar architecture models well 28 

multiple electrophysiological observations of brain activity, including high-frequency activity 29 

during visual perception in primates. 30 

 31 

Abstract (125 words) 32 

The representation of the surrounding world emerges through integration of sensory 33 

information and actions. We present a novel neural model which implements non-local, 34 

parallel information processing on a neocolumnar architecture with lateral interconnections. 35 

Information is integrated into a holographic wave interference pattern. We compare the 36 

simulated in silico pattern with observed in vivo invasive and non-invasive 37 

electrophysiological data in human and non-human primates. Our model replicates the 38 

modulation of neural high-frequency activity during visual perception showing that phase-39 

locked low and high-frequency oscillations self-organize efficiently and carry high information 40 

content. The simulation further models how criticality (high content) of information processing 41 

emerges given a sufficiently high number of correlated neurons. Non-local information 42 

processing, forming one holographic wave pattern, suggests a platform for emergence of 43 

conscious perception. 44 

 45 

  46 
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Introduction 47 

The human brain relies on the interplay of neuronal circuits to form a network underlying 48 

consciousness, defined as subjective experience. Such interplay has been shown to include 49 

serial processing and neuronal recognition as well as integrative properties and holistic 50 

processes 1, 2. Further, coordinated firing and synchronous synaptic activity of neurons are 51 

typical elements of higher order neuronal mechanisms 3, representing information processing 52 

in the brain that correlates with experience 4, 5. Low and high frequency phenomena at the 53 

single cell level up to neural networks, including oscillatory patterns in postsynaptic potentials 54 

and firing activity, can contribute to cellular or synaptic plasticity and thereby shape learning 55 

and memory 3, 6 and many other cognitive processes such as perception 7. 56 

Processing of sensory input in neurons and neuronal circuits have been well defined over the 57 

last decades (Buzsaki et al., 2013; Odegaard et al., 2017; Tononi et al., 2016). Considerably 58 

less is known about how different sensory input is integrated and combined with the current 59 

physical (motor) state and the current cognitive state, including memory or integrated 60 

perception and, ultimately, consciousness. To achieve an integration of sensory and motor 61 

processes, to explain actions and probe consciousness, models have been developed that 62 

capture information generated in neuronal circuits. Such models elucidate the unique 63 

integrative properties of conscious perception, by integrating sensory elements as well as 64 

voluntary actions 1, 5, 8. 65 

Here we asked whether non-local information processing may be at the root of cortical 66 

information processing. We therefore built up a non-local processing model based on a 67 

neocolumnar architecture 2, 9 with lateral connections between the columns. Here, complexity 68 

is generated by repeating simple rules in time and space, which pins down the underlying 69 

process of emergence. Exploiting the advances in computing power for large-scale grid 70 

computing allowed us to apply these simple rules to large networks. The simulation shows 71 

how high frequency pattern encode high information content. This high frequency coded 72 

information, modulated in a wave-like fashion through the lateral connections in the 73 

neocolumns, reaches all participating columns, thereby creating a holistic representation. A 74 
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high enough number of neurons, however, turns out to be essential to form stable high 75 

information content. Importantly, we can demonstrate the phase-locked high and low 76 

frequency (HF and LF) pattern implied by the simulation in multielectrode and ECoG 77 

(electrocorticography) brain recordings in monkeys performing a visual perception task.  78 

 79 

Results 80 

In biological systems, feedback loops exist on the level of DNA, signaling cascades, cellular 81 

or neuronal networks (fig. S1 and fig. S2). In cells, genes encode proteins; these proteins 82 

regulate cellular phenotypes in signaling cascades that are determined by an interplay of 83 

positive and negative feedback (fig. S2). For computational modelling of cells, this 84 

information is used to describe how cellular phenotypes emerge from an interplay of modular 85 

signaling compounds (signaling pathways, as exemplarily shown in fig. S3).  86 

We asked whether the reduction of the architecture of a cellular simulation on a unified 87 

model of activation and inhibition could create a new emergent level of information 88 

processing. For this, we created a simulation based on laterally interconnected microcircuits, 89 

a model for non-local information processing. 90 

The kernel of the model is shown in eq. 1. Computational processing steps of the simulation 91 

are outlined in Fig. 1A (see extended description in Material and methods).  92 
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When we computed the simulation, input signals were convoluted, copied, and spread over 93 

the entire model space (fig. S4). This enabled the interference of all incoming signals 94 

providing “the whole of the information”, as postulated for holography 10. This created a new 95 

level of emergence. Oscillating wave-like signals self-organized and appeared in face of 96 

simple information input to the simulation (fig. S4).  97 
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To probe any new higher emergence level, a high number of our simulations were coupled 98 

on a large computer cluster. Parallel computing sped up the simulations, exhibiting constant 99 

performance due to the linear increase of computation time based on the number of nodes 100 

(Fig. 1B). We simulated up to 400,000 nodes in real time using a resolution of one tick per 101 

millisecond on a 24-core server system. Processing time increased linearly with the grid size. 102 

However, further processing power did not lead to new emergence levels but led only to 103 

linear gains and losses of processing power versus communication overhead (Fig. 1B).  104 

The analysis of the wave-like signals (fig. S5) showed similarities to the critical distribution as 105 

defined by the Ising model 11 and as found in recordings of brain activity 12-14. Furthermore, is 106 

has been suggested that critical distributions indeed represent a state of maximal integrated 107 

information processing 15. In our simulation, criticality was stabilized by the model 108 

architecture and respective energy coupling parameters (eq. 1) and was robust over a wide 109 

range of energy coupling modulations (fig. S5). This robustness is in contrast to fragile  110 

critical states in the Ising model, which describes the self-organization of complex second-111 

order phase transitions between the homogeneous states of order (subcritical) and chaos 112 

(supercritical; fig. S5, see also 13).  113 

We found that many properties of our model were in accordance with observations in the 114 

cortex. For instance, microcircuits are typical units of information processing in the brain 3 115 

and critical distributions have also been found in the mammalian cortex 12-14. Therefore, we 116 

asked whether a simulated neocolumnar architecture 2, 9 would also allow wave-like non-local 117 

information processing. 118 

For generating an innercolumnar network with lateral connections, we used a simple 119 

neuronal oscillator design (Fig. 1C), consisting of two types of neurons (inhibitory and 120 

excitatory) and allowing summation as well as subtraction. In the neocolumnar analogue, we 121 

combined excitatory and inhibitory neurons in a feedback loop (representative for the 122 

innercolumnar network) modulated by the neighboring columns (Fig. 1C, the 123 

interconnection). The interconnections build a spatial derivative of the neighboring energy 124 

levels (activation1N1-4) to the previous energy level of the column in the center 125 
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(activation0/1 in red). The spatial derivation is followed by two integration steps of excitatory 126 

neurons (slope_old and activation0/1 in blue) in order to represent temporal integration (Fig. 127 

1C). In sum, the addition, and the subtraction of eq. 1 is here transformed into an interplay of 128 

excitatory and inhibitory neurons. The modulation of the energy transfer between the 129 

neurons, such as electrical or chemical communication within the microcircuit analogue, is 130 

incorporated by the energy coupling parameter NI_slopev, slopeo_damping and damping 131 

(Fig. 1C). Here, slopeo_damping and damping represent neural mechanisms that can 132 

dampen the persistent energy level of neurons, as it happens, for instance, at the cell body of 133 

neurons by the action of the neurotransmitter GABA. The central energy coupling parameter, 134 

NI_slopev, modulates the energy transmission of the transient energy state of a center node 135 

versus its neighboring nodes (spatial derivation; see eq. 1). A decrease NI_slopev 136 

represents a damping of the energy transmission, whereas a decrease of slopeo_damping 137 

and damping facilitate energy transmission. In the simulation of the neuronal microcircuit and 138 

in the neocolumnar neuronal network, NI_slopev represents the simulated transmission of 139 

energy between neurons via synapses, meaning the efficacy of excitatory and inhibitory 140 

synaptic transmission. 141 

After constructing the neocolumnar neuronal network (Fig. 1C), we transferred parameters, 142 

such as diameter, processing speed, timing, and topology from the neocolumnar architecture 143 

to the neocolumnar non-local information processing simulation combining 14,400 144 

neocortical columns (see Materials and methods). If a simple, rhythmic peak signal was 145 

processed in the simulation, the input was time-dependently transformed into a holographic 146 

wave interference pattern that provided all individual neocortical columns with the same 147 

frequency information (see suppl. video S3 and fig. S4). 148 

Other input signals can also be coded into energy level modulations, over time and space. 149 

By design, sensory feedback from the environment is provoked by efferent signals, e.g. 150 

motor action (in blue in Fig. 1C). The sensory feedback is represented by afferent sensory 151 

signals (in grey in Fig. 1C) that interfere with the existing information in the model (Fig. 1C). 152 
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To investigate how different signal input behaves in the model, we considered chaotic, 153 

periodic-peak, sinusoid, and complex signals (suppl. video S4). To simulate broad and 154 

active processing in the brain, we used a complex stimulus consisting of short bursts (50 – 155 

100 ms) of high frequency (300 – 500 Hz) superimposed on a reference wave with lower 156 

frequency (1 - 20 Hz) as a reference input signal. When we applied more than 50 of these 157 

complex stimuli, with a random onset, a complex interference pattern and a holistic 158 

representation of the stimuli in time and space appeared (Fig. 1C) (see suppl. video S5). 159 

For the read out, the information processed in the model can be extracted at every point in 160 

phase and frequency and can again be offered to the model (interface design). As any kind 161 

of input information for the simulation is processed into frequency and phase (Fig. 1C), we 162 

used a Fourier transform for the decoding and read out of the simulated signals. To extract 163 

the processed information content from the simulation, the model uses virtual electrodes of 164 

different size (as exemplarily indicated by white circles in Fig. 1C). The user can define the 165 

electrode diameter in number of processing units (columns). Extraction of the information on 166 

its smallest scale is given by the diameter of one column 2, 9. In accordance with Mountcastle 167 

(1997), the diameter of the virtual electrode was set to 500 µm to represent one neocortical 168 

column. Notably, extraction of the signal induced by the complex stimulus described above 169 

(reference signal), with such a small virtual electrode resulted in signals that are primarily 170 

composed of fast ripple-like energy changes (Fig. 1C, shown by electrode 1 - 6). The 171 

dominating fraction of fast oscillations in small electrode signals is similar to those described 172 

from recordings using microelectrode arrays 16. By increasing the diameter of the virtual 173 

electrode, thus measuring multiple columns and ripple-like events at the same time, the 174 

extracted simulated signal looked like typical event-related brain potentials (ERP) (Fig. 1C). 175 

We used virtual electrodes of different diameter (500 µm, 2 mm, 2 cm) to simulate different 176 

electrophysiological recordings (microelectrode recording, as used in MEA; field electrode as 177 

used in EEG) and signals integrated over multiple neocolumns (representative for LFP, ERP-178 

like signals). These simulations show that our model can mimic a broad range of 179 

electrophysiological signals and energy phenomena such as critical distributions, harmonics 180 
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(overtones), coherence patterns, self-organized signal oscillations, and stimulus-induced 181 

high-frequency oscillations (suppl. table 2). 182 

Further, we tested how the model behaves when the energy transmission, representing 183 

changes in synaptic communication, was modulated. A NI_slopev of 0 defines the lower 184 

border for information processing and the input signal remains unmodulated. Above the 185 

critical NI_slopev value of 2.6655 the model collapses. In the range of NI_slopev between > 186 

0 and 2.6655, signals can be processed in frequency and phase in this model, with its given 187 

size. 188 

We tested the model with complex input (see Fig. 1C) and simulated EEG-like read outs. 189 

With the parameter NI_slopev (eq. 1) at 2.6655, representing the upper limit of the model, 190 

the output signal shows fast oscillations that are small in amplitude (Fig. 2A). Shifting the 191 

value to 0.1, slow oscillatory signals with larger amplitudes were formed. A decrease of 192 

inhibitory components in the model, given by the values slopeo_damping (1.0E-4�1.0E-5) 193 

and damping (1.0E-2�1.0E-3), slightly modulated the amplitudes of the virtual waves and 194 

facilitated the formation of regular slow waves. We define these states as waking model state 195 

(upper border of the model; suppl. video S6) or slow wave sleep model state (SWS; suppl. 196 

video S7) (lower border of the model). Based on these definitions (Fig. 2A), we compared 197 

simulated model states with published data (suppl. table 2). First, we tested the peak 198 

distributions of virtual MEA signals of the waking and the SWS state. As shown in Fig. 2B, 199 

both distributions could be fitted with a lognormal function, as seen earlier in biological MEA 200 

recordings of waking and SWS states of the rat brain 14. Starting from the modelled waking 201 

state, an anesthesia-like state (Fig. 2C and suppl. video S8) could be computed by an 202 

increase of the inhibitory influence to virtual cell bodies (inhibitory parameters: 203 

slopeo_damping (1.0E-2 � 1.0E-1) and damping (1.0E-4 � 1.0E-3)). Here, synaptic 204 

transmission parameter NI_slopev was kept constant. We could also observe the 205 

transformation from a lognormal peak distribution to a power law distribution at the onset of 206 

the anesthesia-like state (Fig. 2C) as experimentally observed in 14).  207 
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Subsequently, we asked whether critical distribution values, as indicated by our modelling, 208 

would also appear in ex vivo electrode recordings from hippocampal slices of mice. For the 209 

hippocampus, the peak distribution in signals from field recordings could also be fitted with a 210 

lognormal function (Fig. 2D and fig. S6). This shows a similarity between modelled signal 211 

states of waking and SWS and corresponding field recording signals from hippocampal slices 212 

(Fig. 2D). The anesthesia-like model state, indicated by a power law, was not found in the 213 

biological data (Fig. 2D). Notably, we observed the emergence of harmonics in response to 214 

periodic peak signals in the model (Fig. 2E). These harmonics decline in the simulation when 215 

the signal is sinusoid (fig. S7). Both model findings have been observed in in vivo MEA 216 

recordings 17. 217 

Next, we examined the parameters of our simulation more closely, matching experimental 218 

data are referenced and summarized in the supplement (in particular Table S2). First, we 219 

asked, how many frequencies we can encode in the waking state, with a maximum value of 220 

synaptic transmission (NI_slopev). As shown in Fig. 3A, it was possible to decode more than 221 

150 different frequencies and corresponding harmonics, within 3 s, with one virtual electrode, 222 

from one simulated neocortical column. This temporal aspect in signal emergence 223 

corresponds nicely to consciously processed visual stimuli (50 bits per second) integrated 224 

over 3 s 18. In addition, the half-width of the peaks (in Hz) allows to estimate the coding 225 

potential of the simulation. As the half-width was determined to be ~0.5 Hz within 3 seconds 226 

(see fig. S8) the model could code up to ~329 bit/s in a bandwidth of 7 - 500 Hz at a single 227 

location. Moreover, we showed that the value of synaptic transmission (NI_slopev) defines 228 

the maximum frequency that can be processed and thereby shows a linear correlation to the 229 

speed of the travelling waves (fig. S9), as suggested by observed data earlier 19. In turn, fast 230 

travelling waves are a clear signature of high information processing. 231 

The control of synaptic transmission (NI_slopev) on maximal coding becomes more evident 232 

when outlining the resonating frequencies bands of simulated MEA signals of the states 233 

waking, slow wave sleep and anesthesia, at least when chaotic input is applied. The waking 234 
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state aligns more in the high frequency (HF) bandwidth and the SWS aligns more in the low 235 

frequencies (LF) bandwidth.  236 

In effect, the decrease of the synaptic transmission (NI_slopev function) acts as a low pass 237 

filter and reduces HF coding. Finally, anesthesia seems to suppress HF and LF coding 238 

likewise (Fig. 3B). 239 

Within these ranges, model size has no influence on the direct decoding of the input 240 

frequencies but affects the self-organization of harmonics (fig. S10) allowing increased 241 

number of stable frequencies with increased model size. This becomes obvious when 242 

analyzing the resonating frequencies at different model sizes for spontaneous activity only. 243 

Resonating frequencies and thereby the number of eigenstates drastically increases with 244 

model size (fig. S11). Importantly, the increase in model size potentially enhances phase 245 

coding and this enables more frequencies to be coded in parallel (fig. S11). 246 

Following, the self-organizing effect of the model, simulated, spontaneous activity of cortical 247 

areas organizes after several seconds without external stimuli at around ~8 Hz at waking 248 

(Fig. 3C) and decreases to theta activity in the model SWS state (fig. S12). This matches 249 

well will other experimental observations of baseline activity or recordings during SWS (see 250 

table S2). Furthermore, we found that coherence between simulated MEA electrodes 251 

changes during spontaneous baseline activity dependent on frequency and distance (Fig. 252 

3D). The gradual decline of coherence with increasing frequency and distance between the 253 

electrodes matches with cortical measurements of visual perception tasks (see table S2). 254 

However, sinusoid stimuli can increase the coherence also at higher distances and 255 

frequencies, this counteracts the coherence decline in simulation (fig. S13) and experiment 256 

(see table S2). 257 

We created other model states by fine-tuning of model parameters. Specifically, we faithfully 258 

reproduced anesthesia (Ketamin, Propofol; suppl. video S8 and S9), a rapid-eye-movement 259 

sleep state (REM; suppl. video S10) and disease states including Alzheimer’s disease (AD; 260 

suppl. video S11 and S12) and schizophrenia (suppl. video S13). We compared the 261 
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complexity of the resulting simulated wave patterns using the Lempel Ziv compression (LZC; 262 

Fig. 3E). The complexity measure helped to differentiate between high complex signal 263 

processing and low complex signal processing. Our comparison of states suggests increased 264 

information processing during the waking state or information decline for the SWS, 265 

anesthesia, and REM states. In AD, a high variation of LZC values indicates local differences 266 

in complexity compared to healthy states. In schizophrenia, the LZC value was dependent on 267 

the percentage of uncorrelated energy coupling between simulated neocortical columns. 268 

Overall, LZC values compared well to experimentally observed measurements (table S2). 269 

The pathology of AD 20 show a robustness against lesions or defects. To simulate lesions, 270 

we randomly inactivated neocolumns from the model. The simulation could still decode full 271 

information when 4% of all neocolumns were lesioned. Even when 20% of the neocolumns 272 

were lesioned, information decoding was still present (Fig. 3F), however, it appeared rather 273 

localized (suppl. video S11 and S12). Schizophrenia was simulated by lowering the 274 

correlation of synaptic energy transfer between the neurons.  275 

The energy transmission (parameters NI_slopev, slopeo_damping and damping) of some of 276 

the neighboring columns was randomly impaired causing unsymmetrical processing. We 277 

could show that the model is sensitive to uncorrelated processing as this causes the 278 

generation of artificial frequencies that do not correlate with the input frequencies (Fig. 3G). 279 

In our simulation (Fig. 3H) we could replicate uncorrelated neuronal signaling and a distinct 280 

pathology phenomenon of schizophrenia, the decline of the evoked gamma-band 21, 22. 281 

Following a LF-coupled HF stimulus, the recorded processed signal was composed of a self-282 

organizing theta and gamma-band (Fig. 3H, left). In the schizophrenia model (Fig. 3H, 283 

middle), we see a decline of the evoked gamma-band in response to a complex stimulus 284 

(Fig. 3H, right) in line with observations 21-23. Especially, uncorrelated damping (parameter 285 

slopeo) decreases the emergence of self-organized gamma-band in the model.  286 

Other phenomena modelled in our simulation, such as beta band firing (fig. S14), simulation 287 

of epilepsy (fig. S15) and the effect of spatial under-sampling in large electrodes masking HF 288 
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signaling (fig. S16) fit again well with observations and are discussed in the supplemental 289 

material. 290 

In silico, the simulation provides evidence for HF information coding and LF coupling that 291 

self-organizes due to specific resonance properties. If high frequencies are indeed at the 292 

basis of in vivo information transmission, this would suggest HF signals in close to all 293 

electrophysiological recordings. Accordingly, we analyzed the neural response to visual input 294 

(see the used grating stimulus in fig. S17B) in in vivo macaque V1 recordings and compared 295 

it to our in silico model output (fig. S17A and suppl. video S14) in response to comparable 296 

input 24, 25. 297 

Here it is important to consider the different in vivo recording methods. Microelectrodes pick 298 

up neural activity from responding neurons at the site of stimulation, as secured by receptive 299 

field (RF) mapping. Therefore, these neural responses mainly depict incoming sensory 300 

information, which would be, according to our simulation (fig. S18), encoded in the HF signal 301 

and distributed via slower waves to neighboring sites. ECoG, which applies larger electrodes 302 

placed subdurally, picks up neural activity from a larger area. If placed over the site of 303 

stimulation, the recording includes signal from responding neurons as well as surrounding 304 

neurons, not directly driven by the input. As we assume a lateral distribution of information 305 

via low frequency waves, a HF/LF phase relationship is predicted to be particularly visible in 306 

those recordings. To test these considerations by experiment, we compared V1 307 

multielectrode recordings from neurons that were driven by the sensory input to model data 308 

from the site of stimulation. Furthermore, we compared ECoG recordings over V1 with model 309 

data from an area surpassing the site of stimulation. For both, biological and model data, we 310 

could observe the predicted pattern of HF signals coupled to LF signals, self-organized in 311 

face of frequency unspecific stimulation (Fig. 4). Specifically, the V1 multielectrode 312 

recordings (RFs overlapping with the stimulus) showed a broadband HF (200-1000 Hz) 313 

power increase after stimulus onset, comparable to the simulated data generated for the site 314 

of sensory input (Fig. 4A). As could be shown in the animal data, this induced HF increase 315 

largely corresponded to the observed modulation of multiunit and spiking activity, 316 
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respectively (Fig. 4C). The evoked activity is defined as averaged activity over stimulus 317 

onsets thereby highlighting the time-locked modulation. Importantly, the evoked HF activity 318 

showed a temporal pattern independent from MUA and LFP (Fig. 4B). Only this evoked 319 

activity was modulated in its power by a slow phase (Fig 4D). If we assume that this time 320 

locked HF modulation depicts the wave-like lateral distribution of information, we should find 321 

this slow power modulation particularly in neurons surrounding the ones processing the 322 

stimulus. Analyzing ECoG recordings from subdural electrodes placed over V1, picking up 323 

neural activity from the site of visual processing but additionally from a surrounding area, we 324 

indeed find HF increase for induced and evoked data (Fig. 5A and B). Importantly, the 325 

induced HF pattern was already phase modulated similar to the evoked pattern (Fig. 5C and 326 

D). Model data generated for sites only partly overlapping with the sensory input was again 327 

comparable between the simulation and biological data (Fig. 5). The topography of the 328 

stimulus-evoked and stimulus-induced HF power changes further showed that induced HF 329 

power modulation was confined to V1 (Fig. S17C). The evoked HF power change spread to 330 

V2, supporting the idea of information transfer in a temporally correlated fashion (Fig. S17D). 331 

We gave a preliminary report of HF modulation in the above described electrophysiological 332 

recordings 26. 333 

 334 

Discussion 335 

We present a detailed open-source simulation for non-local information processing in a 336 

neocolumnar architecture and compare model output with in vivo neurophysiological data. 337 

Our work indicates that non-local information processing can be at the core of complex 338 

information coding. By this the same information is provided to all participating Mountcastle 339 

columns. With higher numbers of neurons involved, information integration by wave patterns 340 

emerges spontaneously as non-local information processing increases. Our modelling and 341 

experimental data on visual perception in an animal model support that high frequency 342 
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neural activity encodes sensory information, which can be distributed via non-local, low 343 

frequency wave-like patterns across the cortex. 344 

Previously applied large-scale models of the brain include the neocolumnar architecture 2, 9 345 

and first efforts for multimodal neuroanatomic models 27. Furthermore, neuron simulations 346 

have also introduced new concepts such as aggregate-label learning 28. Our model on non-347 

local information processing is generic and general, and just requiring a platform of 348 

microcircuits that are laterally interconnected. This can lead to shared information within 349 

cortical areas and inter-areal binding in a broad frequency range as information medium, and 350 

agrees well with observations from in vivo electrophysiological recordings (e.g. EEG or 351 

ECoG) including different pathologies. This non-local network architecture extends concepts 352 

of positive and negative feedback loops in cellular network architectures to a new emergent 353 

level. When cell networks are processing locally and modular, the non-local architecture 354 

allows for redundant copies of information and holistic distribution of information, so that 355 

each node in the network gets the same amount of information.  356 

At the same time our model profits from and requires only a neocolumnar architecture, as 357 

present in the human brain 2. Information is encoded as a whole in time and space 10 thus 358 

forming interference pattern, that can emerge as clear waves. We focus here on the 359 

integrative properties of the model 5 at the basis of criticality 15 that indicate the maximization 360 

of information integration in frequency and phase. This processing platform serves as an 361 

intersection for continuous processing of world information in a positive and negative 362 

feedback loop 29.  363 

Here, we demonstrate with our model that HF coding self-organizes at maximum frequency 364 

processing due to favored resonance bands of the model that is controlled by the energy 365 

coupling parameter. HF coding is only masked by the effect of undersampling (fig. S16). An 366 

additional emergent level is achieved by increasing the number of processing units, or 367 

neocolumns, that increase the stable resonances for frequencies (fig. S11). This adds 368 

growing phase information (S19 and S20), allowing unit by unit a more complex and stable 369 
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representation of information. By potentiating frequency with phase, encoded complexity 370 

grows exponentially, and soon critical distributions arise that indicate systems that maximize 371 

information integration 15.  372 

In the living system, were we have a sufficient amount of processing units (e.g. microcircuits, 373 

neocortical columns), high frequency activity of the brain is typically captured as multi-unit 374 

activity (MUA), a neural correlate of spiking activity 30, 31. HF activity shows an inter-areal 375 

phase coupling between task relevant areas in a visuo-motor task 32. Importantly, the here 376 

described evoked, time-locked HF changes that are observed during visual processing are 377 

distinct from MUA and LFP. They exist concurrently in and near the site of sensory 378 

processing. Only this evoked HF signal showed a slow phase (~10 Hz) modulation. This 379 

novel observation suggests that the time-locked HF output is ordered by a slow phase 380 

pattern. This coupling between high and low frequencies might form a fundamental core of 381 

neural activity modulation and the coupling arises during sensory processing within a cortical 382 

area.  383 

A prediction of our model applicable to the brain and its anatomy is that when a critical 384 

number of neurons in the brain is reached, a holographic medium might be able to integrate 385 

motor, proprioceptive and sensory input, to into a unified model of self and world 386 

representation. Mini-columns, conceptually part of cortical columns 33 contain about 80-100 387 

neurons 9 and about 50 - 100 minicolumns are organized in a cortical column 33. In our 388 

simulation, about 14,400 neocortical columns with about 104 neurons per column 2 allow 389 

sufficient resolution to store accurate wave patterns. This gives a very rough estimate 390 

regarding the theoretical lower limit required for emergence of such non-local patterns in 391 

brain areas, like the visual cortex. Our model predicts that only a sufficiently high number of 392 

neurons organized in a non-local architecture allows to maximize information integration. 393 

This might be a prerequisite for integrating sufficient information to ultimately reach 394 

consciousness.  395 

In summary, simulations and collected observational data all support our central hypothesis 396 

of non-local, wave-like processing of information in the cortex as a root-phenomenon for 397 
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higher brain functions. Here we transfer non-local information processing requiring just a 398 

columnar architecture. Like the higher primate cortex, the neopallium of birds has been 399 

proven to be suited for processing of perceptual and cognitive abilities and recently, it was 400 

found to have a specific columnar architecture 34, 35 which, according to our computer model, 401 

should be similarly well adapted to non-local information processing. Such convergent 402 

evolution in different organism groups (mammals, birds, and maybe others) is a striking 403 

argument that the properties of a columnar architecture are important for higher brain 404 

function. 405 

 406 
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Figure legends  510 

 511 

Figure 1: A non-local information processing model is embedded in a neocolumnar 512 

architecture. (A) The non-local information processing model relies on the unification of an interplay 513 

of activation and inhibition in a microcircuit and their interconnections. (B) A computer cluster 514 

simulation of non-local processing. Shown is a simulation of non-local information processing and its 515 

dependence on the number of simulated microcircuits in a grid (gridsize). The information was 516 

processed more efficiently with more nodes but there were no emergent new properties. (C) The 517 

neocolumnar non-local information processing model combines neocolumns as microcircuits and 518 

interconnects them laterally. The organization of microcircuits in a grid of neocolumnar topology is the 519 

basis of the neocolumnar non-local information processing model. On this processing platform, the 520 

information was represented as a whole, and complex wave interference pattern arise. The 521 

information, such as motor action and feedback from the world, is distributed over the entire model, 522 

thus available at any column over time. The information is encoded in frequency and phase. 523 

Phenomena like fast ripple-like energy changes are formed. ERP-like signals appear as sum of 524 

multiple ripple-like signals. Here, each pixel represents one neocolumnar circuit, which is also valid for 525 

the recorded ripple-like activity. The dashed lines indicate size relations. 526 

 527 

Figure 2: Analysis of the neocolumnar non-local information processing simulation. Distinct 528 

characteristics of the simulations are rooted by the energy transmission of the innercolumnar and 529 

lateral connections. Fundamental energy features are also found in electrophysiological recordings of 530 

the brain and can be utilized to discriminate brain states. (A) A complex input to the model reproduces 531 

EEG-like signals representative for a waking state. The decrease of the energy coupling parameter 532 

NI_slopev only, could switch the model into the simulated slow wave sleep (SWS) state. (B) The peak 533 

distribution of MEA signals at waking and SWS were fitted by a lognormal distribution and thus could 534 

indicate criticality. (C) When simulating anesthesia by increasing the damping and slopeo_damping 535 

simulating damping of the cell bodies the lognormal distribution morphed into a power law distribution. 536 

The shift from a lognormal to a power law fit indicates an increased localization of the signal 537 

processing. (D) Similar lognormal distributions were also found in electrode recordings of hippocampal 538 

brains slice of mice. Here, the power law fit did not apply. (E) Harmonics self-organize in the model in 539 
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response to periodic rectangular input and were visualized in a simulated LFP (shown), EEG and MEA 540 

recordings. The root frequency is shown by a blue cross and the resulting harmonics are indicated by 541 

green stars. 542 

 543 

Figure 3: In silico simulation parameter effects on neocolumnar non-local processing of 544 

stimuli. (A) Efficient resolution of more than 50 stimuli as complex model input indicates the prove of 545 

concept of processing frequency information (blue cross: root frequency; green: harmonics). (B) The 546 

resonating frequency band of MEA signals during simulated waking, SWS and anesthesia. We show 547 

different favored bandwidth according to the respective activation level. (C) Self-organizing baseline 548 

activity of the model at spontaneous activation mimics observations of EEG baselines. (D) Coherence 549 

decreases with frequency and distance when spontaneous activity is the only input. (E) Lempel Ziv 550 

complexity of simulated EEG recordings. The analysis visualizes complexity of information processing 551 

and is used to discriminate different simulated brain states. LZC values are stated as median of six 552 

electrodes and error bars indicate the 15% and 85% quantile. (F) Loss of neocolumns is used to mimic 553 

information processing in Alzheimer’s disease-like state. Processing of information remains robust, 554 

however, with an increasing loss of neocolumns, the spread of information processing is impaired. (G) 555 

In simulated schizophrenia, a low correlation of energy transmission between neurons decreases 556 

frequencies that match to the input frequencies (matches). Frequencies that did not match to the input 557 

frequencies or the respective harmonics increased (artefacts). (H) In modelled schizophrenia, a 558 

gamma-band decline is observed. The self-organizing gamma-band following a stimulus is 559 

superimposed on a reference and is shown for a simulated healthy (left) neocortical model and 560 

simulated schizophrenia (middle). (right) is the delta of both models. The color bar indicates simulated 561 

activity in µV. 562 

 563 

Figure 4: Comparison of model data from the area of stimulation to macaque V1 564 

microelectrode recordings. Analysis of high frequency activity shown for data simulated for a small 565 

pick up area at the site of stimulation (top) compared to the microelectrode recording of V1 neurons 566 

responding to a visual stimulus (bottom). (A) Time frequency representation with respect to visual 567 

stimulus onset (time point 0). Induced (i.e. the mean over power values) broadband power increases 568 
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are prevalent in the model data as well as the microelectrode recordings from macaque V1 (averaged 569 

over 20 sessions, 4863 trials in total). The relative power change refers to a baseline from -0.25 -0 s. 570 

(B) Time frequency representation of evoked (i.e. the frequency demodulation is applied after the 571 

time-domain average so only time-locked information is considered) broadband power increases. 572 

Otherwise same as in A. (C) The temporal evolution of the power (induced and evoked) in the 400 Hz 573 

(model) and 500 Hz band (biological data) (+/- 50 Hz, assessed in periods of 50 ms shifted in steps of 574 

1 ms) is compared to spiking activity (summed over 50 ms, in steps of 1 ms), the MUA (absolute 575 

Hilbert transformed bandpass filtered 750 - 8000 Hz data), the LFP (lowpass filtered at 500 Hz) and 576 

the gamma power (FFT, 60 Hz). An exemplary session (178 trials) is plotted. (D) The evoked (red) 577 

and the induced (green) 400 Hz (model) and 500 Hz power change over time was frequency 578 

demodulated (FFT) to depict slow amplitude phase relationships. Only the evoked power shows a 579 

peak at 10 and 20 Hz. The colored area for the biological data depicts the SE over sessions. 580 

 581 

Figure 5: Comparison of simulation (data from an extended area) to macaque ECoG 582 

recordings. Analysis of high frequency activity shown for data simulated for a pick up area that 583 

includes the site of stimulation as well as neighboring sites (left) compared to the ECoG recording of 584 

V1 during visual stimulation (bottom). (A) Time frequency representation with respect to visual 585 

stimulus onset t (time point 0). Induced (mean over power values) broadband power increases are 586 

prevalent in the model data as well as ECoG recordings from macaque V1 (averaged over 73 trials). 587 

In the TFR, a single electrode above V1 is shown, (see the topographical representation and power 588 

distribution over the whole ECoG grid in Fig S17C). The relative power change refers to a baseline 589 

from -0.25 -0 s. (B) Time frequency representation of evoked (i.e. the frequency demodulation is 590 

applied after the time-domain average so only time-locked information is considered) broadband 591 

power increases (see the topographical power distribution in Fig S17D). Otherwise, same as in A. (C) 592 

The temporal evolution of the power in the 500 Hz (+/- 50 Hz, assessed in periods of 50 ms shifted in 593 

steps of 1 ms) band are compared between the evoked (green, 500Hz power) and induced signal. (D) 594 

The evoked (black) and the induced (green) 400 and 500 Hz power change was frequency 595 

demodulated (FFT) to depict slow amplitude phase relationships. Only the evoked power shows a 596 

slow modulation. No session-wise SE could be calculated.  597 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 29, 2022. ; https://doi.org/10.1101/2022.01.27.477993doi: bioRxiv preprint 

https://doi.org/10.1101/2022.01.27.477993
http://creativecommons.org/licenses/by/4.0/


 23

 598 

 599 

 Fig. 1 600 

 601 

           602 

603 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 29, 2022. ; https://doi.org/10.1101/2022.01.27.477993doi: bioRxiv preprint 

https://doi.org/10.1101/2022.01.27.477993
http://creativecommons.org/licenses/by/4.0/


 24

604 
 Fig. 2 605 

 606 

 607 

 608 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 29, 2022. ; https://doi.org/10.1101/2022.01.27.477993doi: bioRxiv preprint 

https://doi.org/10.1101/2022.01.27.477993
http://creativecommons.org/licenses/by/4.0/


 25

 609 

Fig. 3 610 
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Fig. 4 612 
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Fig. 5 614 

 615 
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