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Abstract 39 

Transcriptomic imputation approaches offer an opportunity to test associations between disease 40 

and gene expression in otherwise inaccessible tissues, such as brain, by combining eQTL 41 

reference panels with large-scale genotype data. These genic associations could elucidate signals 42 

in complex GWAS loci and may disentangle the role of different tissues in disease development. 43 

Here, we use the largest eQTL reference panel for the dorso-lateral pre-frontal cortex (DLPFC), 44 

collected by the CommonMind Consortium, to create a set of gene expression predictors and 45 

demonstrate their utility. We applied these predictors to 40,299 schizophrenia cases and 65,264 46 

matched controls, constituting the largest transcriptomic imputation study of schizophrenia to 47 

date. We also computed predicted gene expression levels for 12 additional brain regions, using 48 

publicly available predictor models from GTEx. We identified 413 genic associations across 13 49 

brain regions. Stepwise conditioning across the genes and tissues identified 71 associated genes 50 

(67 outside the MHC), with the majority of associations found in the DLPFC, and of which 51 

14/67 genes did not fall within previously genome-wide significant loci. We identified 36 52 

significantly enriched pathways, including hexosaminidase-A deficiency, and multiple pathways 53 

associated with porphyric disorders. We investigated developmental expression patterns for all 54 

67 non-MHC associated genes using BRAINSPAN, and identified groups of genes expressed 55 

specifically pre-natally or post-natally.  56 

  57 
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Introduction  58 

Genome-wide association studies (GWAS) have yielded large lists of disease-associated loci. 59 

Despite this, progress in identifying the causal variants driving these associations, particularly for 60 

complex psychiatric disorders such as schizophrenia, has lagged much further behind. 61 

Interpreting associated variants and loci is therefore vital to understanding how genetic variation 62 

contributes to disease pathology. Expression Quantitative Trait Loci (eQTLs), which are 63 

responsible for a substantial proportion of gene expression variance, have been posited as a 64 

potential link between associated loci and disease susceptibility1–5, and indeed have yielded 65 

results for a host of complex traits6–9. Consequently, numerous methods to identify and interpret 66 

co-localisation of eQTLs and GWAS loci have been developed10–13. However, these methods 67 

require simplifying assumptions about genetic architecture (i.e., one causal variant per GWAS 68 

locus) and/or linkage disequilibrium, may be underpowered or overly conservative, especially in 69 

the presence of allelic heterogeneity, and have not yet yielded substantial insights into existing or 70 

novel loci.  71 

 72 

Biologically relevant information can be extracted by transcriptomic investigations, as recently  73 

described by the CommonMind Consortium14 (CMC), thanks to  detailed RNA-sequencing in a 74 

large cohort of genotyped individuals with schizophrenia and bipolar disorder14. These analyses 75 

however are underpowered to detect with statistical confidence differential expression of genes 76 

mapping at schizophrenia (SCZ) risk loci, due to the small effects predicted by GWAS combined 77 

with the difficulty of obtaining adequate sample sizes of neurological tissues14. Still, such 78 

methods do not necessarily identify all risk variation in GWAS loci. Transcriptomic imputation 79 

is an alternative approach that leverages large eQTL reference panels to bridge the gap between 80 

large-scale genotyping studies and biologically useful transcriptome studies15,16. This approach 81 

seeks to identify and codify the relationships between genotype and gene expression in matched 82 

panels of individuals, then impute the genetic component of the transcriptome into large-scale 83 

genotype-only datasets, such as case-control GWAS cohorts, which enables investigation of 84 

disease-associated gene expression changes. This will allow us to study genes with modest effect 85 

sizes, likely representing a large proportion of genomic risk for psychiatric disorders14,17.  86 

 87 
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 The access to the large collection of dorso-lateral pre-frontal cortex (DLPFC) gene expression 88 

data collected by the CommonMind Consortium14 affords us a unique opportunity to study and 89 

codify relationships between genotype and gene expression. Here, we present a novel set of gene 90 

expression predictor models, built using CommonMind Consortium DLPFC data14. We compare 91 

different regression approaches to building these models (including elastic net15, Bayesian sparse 92 

linear mixed models and ridge regression16, and using max eQTLs), and benchmark performance 93 

of these predictors against existing GTEx prediction models. We applied our CMC DLPFC 94 

predictors and 12 GTEx-derived neurological prediction models to predict gene expression in 95 

schizophrenia GWAS data, obtained through collaboration with the Psychiatric Genomics 96 

Consortium (PGC) schizophrenia working group, the “CLOZUK2” cohort, and the iPSYCH-97 

GEMS schizophrenia working group. We identified 413 genome-wide significant genic 98 

associations with schizophrenia in our PGC+CLOZUK2 sample, constituting 67 independent 99 

associations outside the MHC region. We demonstrate the relevance of these associations to 100 

schizophrenia aetiopathology using gene set enrichment analysis, and by examining the effects 101 

of manipulation of these genes in mouse models. Finally, we investigated spatio-temporal 102 

expression of these genes using a developmental transcriptome dataset, and identified distinct 103 

spatio-temporal patterns of expression across our associated genes.  104 

 105 

 106 

 107 

 108 

 109 

 110 

 111 
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Results 113 

Prediction Models based on CommonMind Consortium DLPFC expression 114 

Using matched genotype and gene expression data from the CommonMind Consortium Project, 115 

we developed DLPFC genetically regulated gene expression (GREX) prediction models. We 116 

systematically compared four approaches to building predictors15,16 within a cross-validation 117 

framework. Elastic net regression had a higher distribution of cross-validation R2 (RCV2) and 118 

higher mean RCV2 values (Supplementary Figures 1, 2A) than all other methods. We therefore 119 

used elastic net regression to build our prediction models. We compared prediction models 120 

created using elastic net regression on SVA-corrected and uncorrected data14. The distribution of 121 

Rcv2 values for the SVA-based models was significantly higher than for the un-corrected data14,18 122 

(ks-test; p<2.2e-16; Supplementary figure 1B-C). In total, 10,929 genes were predicted with 123 

elastic net cross-validation Rcv2 > 0.01 in the SVA-corrected data and were included in the final 124 

predictor database (mean Rcv2  = 0.076).  125 

 126 

To test the predictive accuracy of the CMC-derived DLPFC models, and to benchmark this 127 

against existing GTEx-derived prediction models, genetically-regulated gene expression (GREX) 128 

was calculated in an independent DLPFC RNA-sequencing dataset (the Religious Orders Study 129 

Memory and Ageing Project, ROSMAP19). We compared predicted GREX to measured 130 

ROSMAP gene expression for each gene (Replication R2, or RR2) for the CMC-derived DLPFC 131 

models and twelve GTEx-derived brain tissue models15,20,21 (Figure 1, Supplementary Figure 132 

2B). CMC-derived DLPFC models had higher average RR2 values (Mean RR2 = 0.056), more 133 

genes with RR2 > 0.01, and significantly higher overall distributions of RR2 values than any of the 134 

twelve GTEx models (ks-test, p<2.2x10-16 across all analyses; Figure 1). Median RR2 values were 135 

significantly correlated with sample size of the original tissue set (rho=0.92, p=7.2x10-6), the 136 

number of genes in the prediction model (rho=0.9, p=2.6x10-5), and the number of significant 137 

‘eGenes’ in each tissue type (rho=0.95, p=5.5x10-7; Figure 1C). Notably, these correlations persist 138 

after removing obvious outliers (Figure 1C).  139 

 140 

To estimate trans-ancestral prediction accuracy, genetically regulated gene expression was 141 

calculated for 162 African-American individuals and 280 European individuals from the NIMH 142 

Human Brain Collection Core (HBCC) dataset (supplementary figure 2B). RR2 values were 143 
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higher on average in Europeans than African-Americans (average RR_EUR2 = 0.048, RR_AA2 = 144 

0.040), but were significantly correlated between African-Americans and Europeans (rho=0.78, 145 

p<2.2 x10-16, Pearson test; supplementary figure 3).  146 

 147 

Application of Transcriptomic Imputation to Schizophrenia 148 

We used CMC DLPFC and the 12 GTEx–derived brain tissue prediction models to impute 149 

genetically regulated expression levels (GREX) of 19,661 unique genes in cases and controls 150 

from the PGC-SCZ GWAS study22. Predicted expression levels were tested for association with 151 

schizophrenia. Additionally, we applied CMC and GTEx-derived prediction models to summary 152 

statistics from 11 PGC cohorts (for which raw genotypes were unavailable) and the CLOZUK2 153 

cohort. Meta-analysis was carried out across all PGC-SCZ and CLOZUK2 cohorts using an 154 

odds-ratio based approach in METAL. Our final analysis included 40,299 cases and 65,264 155 

controls (Figure 2A).  156 

 157 

We identified 413 genome-wide significant associations, representing 256 genes in 13 tissues 158 

(Figure 3A). The largest number of associations were detected in the CMC DLPFC GREX data 159 

(Figure 3C; 49 genes outside the MHC, 69 genes overall). We sought replication of our CMC 160 

DLPFC SCZ-associations in an independent dataset of 4,133 cases and 24,788 controls in 161 

collaboration with the iPSYCH-GEMS SCZ working group (Figure 2B). We found significant 162 

correlation of effect sizes (p=1.784 x10-04; rho=0.036) and –log10 p-values (p=1.073 x10-05; 163 

rho=0.043) between our discovery (PGC+CLOZUK2) and replication (iPSYCH-GEMS) 164 

samples. Non-MHC Genes reaching genome-wide significance in our discovery sample (49 165 

genes) were significantly more likely to reach nominal significance in the replication sample, and 166 

had significantly more consistent directions of effect than might be expected by chance 167 

(binomial test, p=2.42 x10-05, p=0.044). (Suppl. info).  168 

 169 

To identify the top independent associations within genomic regions, which include multiple 170 

associations for a single gene across tissues, or multiple nearby genes, we partitioned genic 171 

associations into 58 groups defined based on genomic proximity and applied stepwise forward 172 

conditional analysis within each group (Supplementary Table 1). In total, 67 genes remained 173 

genome-wide significant after conditioning (Table 1; Figure 3A-B). The largest signal was 174 
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identified in the CMC DLPFC predicted expression data (24 genes; Figure 3C), followed by the 175 

Putamen (7 genes). 19/67 genes did not lie within 1Mb of a previously genome-wide significant 176 

GWAS locus22 (shown in bold, Table 1); of these, 5/19 genes were within 1Mb of a locus which 177 

approached genome-wide significance (p<5x10-07). The remaining 14 genes all fall within 178 

nominally significant PGC-SCZ GWAS loci (p<8x10-04), but did not reach genome-wide 179 

significance.  180 

 181 

Implicated genes highlight SCZ-associated molecular pathways and gene set analyses  182 

We tested for overlap between our non-MHC SCZ-associated genes and 8,657 genesets 183 

comprised of 1) hypothesis-driven pathways and 2) general molecular database pathways. We 184 

corrected for multiple testing using the Benjamin-Hochberg false discovery rate (FDR) 185 

correction23.  186 

 187 

We identified three significantly associated pathways in our hypothesis-driven analysis (Table 188 

2). Targets of the fragile-X mental retardation protein formed the most enriched pathway 189 

(FMRP; p=1.96x10-8). Loss of FMRP inhibits synaptic function, is comorbid with autism 190 

spectrum disorder, and causes intellectual disability, as well as psychiatric symptoms including 191 

anxiety, hyperactivity and social deficits24. Enrichment of this large group of genes has been 192 

observed frequently, in the original CommonMind analysis14, by colleagues investigating the 193 

same PGC and CLOZUK2 samples26 as well as by investigators studying autism24,27.  There was 194 

a significant enrichment among our SCZ associated genes and genes that have been shown to be 195 

intolerant to loss-of-function mutations28 (p=5.86x10-5) as well as with CNVs associated with 196 

bipolar disorder29 (p=7.92x10-8), in line with a recent variant-based study of the same 197 

individuals26. 198 

 199 

Next, we performed an agnostic search for overlap between our schizophrenia-associated genes 200 

and ~ 8,500 molecular pathways collated from large, publicly available databases. 33 pathways 201 

were significantly enriched after FDR correction (Table 2, Suppl. Table 2), including a number 202 

of pathways with some prior literature in psychiatric disease. We identified an enrichment with 203 

porphyrin metabolism (p=1.03x10-4). Deficiencies in porphyrin metabolism lead to “Porphyria”, 204 

an adult-onset metabolic disorder with a host of associated psychiatric symptoms, in particular 205 
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episodes of violence and psychosis30–35. Five pathways potentially related to porphyrin 206 

metabolism, regarding abnormal iron level in the spleen, liver and kidney are also significantly 207 

enriched, including 2/5 of the most highly enriched pathways (p<2.0 x10-04). The PANTHER 208 

and REACTOME pathways for Heme biosynthesis and the GO pathway for protoporphyrinogen 209 

IX metabolic process, which are implicated in the development of porphyric disorders, are also 210 

highly enriched (p=2.2 x10-04, 2.6 x10-04, 4.1 x10-04), although do not pass FDR-correction.   211 

 212 

Hexosaminidase activity was enriched (p=3.47 x10-05) in our results; this enrichment is not 213 

driven by a single highly-associated gene; rather, every single gene in the HEX-A pathway is 214 

nominally significant in the SCZ association analysis (Supplementary Table 2). Deficiency of 215 

hexosaminidase A (HEX-A) results in serious neurological and mental problems, most 216 

commonly presenting in infants as “Tay-Sachs” disease36. Adult-onset HEX-A deficiency 217 

presents with neurological and psychiatric symptoms, notably including onset of psychosis and 218 

schizophrenia37. Five pathways corresponding to Ras- and Rab- signaling, protein regulation and 219 

GTPase activity were enriched (p<6x10-05). These pathways have a crucial role in neuron cell 220 

differentiation38 and migration39, and have been implicated in the development of schizophrenia 221 

and autism40–43. We also find significant enrichment with protein phosphatase type 2A regulator 222 

activity (p=5.24x10-05), which was associated with MDD and across MDD, BPD and SCZ in the 223 

same large integrative analysis44, and has been implicated in antidepressant response and 224 

serotonergic neurotransmission45.  225 

 226 

Predicted gene expression changes are consistent with functional validation studies 227 

To test the functional impact of our SCZ-associated predicted gene expression changes (GREX), 228 

we performed two in-silico analyses. First, we compared directions of effect in our meta-analysis 229 

to those in the CMC analysis of differentially expressed genes between SCZ cases and controls. 230 

This analysis highlighted six loci where expression levels of a single gene putatively affected 231 

schizophrenia risk. All six of these genes are nominally significant in our DLPFC analysis, and 232 

two (CLCN3 and FURIN) reach genome-wide significance. In the conditional analysis across all 233 

brain regions, one additional gene (SNX19) reaches genome-wide significance. The direction of 234 

effect for all six genes matches the direction of gene expression changes observed in the original 235 

CMC paper, indicating that gene expression estimated in the imputed transcriptome reflects 236 
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measured expression levels in brains of individuals with Schizophrenia. Further, this observation 237 

is consistent with a model where the differential expression signature observed in CMC is caused 238 

by genetics rather than environment.  239 

 240 

The original CMC analysis identified 21 eSNP genes using SHERLOCK14,46, of which 17 were 241 

present in our CMC DLPFC analysis. 14/17 genes reached nominal significance (significantly 242 

more than expected by chance, p=3.6x10-16), and 11 reached genome-wide significance 243 

(binomial p-value 6.04x10-55). Additionally, 31 regions contained genes ranked highly by 244 

Sherlock in the original CMC analysis (supplementary data file 2 in Fromer, M. et al. Gene 245 

expression elucidates functional impact of polygenic risk for schizophrenia. Nat. Neurosci. 19, 246 

1442–1453 (2016)14). Of these, 14 regions lay near one of our CMC DLPFC associated genes, 247 

and 13/14 regions had common genes between SHERLOCK and PrediXcan analyses. Five loci 248 

included multiple SHERLOCK genes; in every instance we are able to specifically identify one 249 

or two associated genes from the longer SHERLOCK list.   250 

 251 

To understand the impact of altered expression of our 67 SCZ-associated genes, we performed 252 

an in-silico analysis of mouse mutants, by collating large, publicly available mouse databases47–253 
51. We identified mutant mouse lines lacking expression of 37/67 of our SCZ-associated genes, 254 

and obtained 5,333 phenotypic data points relating to these lines, including 1,170 related to 255 

behavioral, neurological or craniofacial phenotypes. 25/37 genes were associated with at least 256 

one behavioral, neurological or related phenotype (Supplementary table 3). We repeated this 257 

analysis for genes identified in 366 GWAS, including any GWAS for which at least ten mutant 258 

mouse lines exist (105 GWAS). SCZ-associated genes were more likely to be associated with 259 

behavior, brain development and nervous system phenotypes than genes in these GWAS sets 260 

(p=0.057). 261 

 262 

Spatiotemporal expression of SCZ-associated genes indicated distinct patterns of risk 263 

throughout development 264 

We assessed expression of our SCZ-associated genes throughout development using 265 

BRAINSPAN52. Data were partitioned into eight developmental stages (four pre-natal, four post-266 

natal), and four brain regions29,52 (Figure 4A). We noted that SCZ-associated genes were 267 
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significantly co-expressed, in both pre-natal and post-natal development and in all four brain 268 

regions, based on local connectedness53 (Figure 4B), global connectedness53 (i.e., average path 269 

length between genes, supplementary Figure 6), and network density (i.e., number of edges, 270 

supplementary Figure 7). Examining pairwise gene expression correlation (suppl. Fig 8) and 271 

gene co-expression networks (suppl. Fig 9) for each spatiotemporal point indicated that the same 272 

genes do not drive this co-expression pattern throughout development; rather, it appears that 273 

separate groups of genes drive early pre-natal, late pre-natal and post-natal clustering.  274 

 275 

To visualize this, we calculated Z scores of gene expression for each SCZ-associated gene, 276 

across all 32 time-points (Figure 5). Genes clustered into four groups (supplementary fig 10), 277 

with distinct spatio-temporal expression signatures. The largest cluster (Cluster A, Figure 5A; 29 278 

genes) spanned early to late-mid pre-natal development (4-24 weeks post conception), either 279 

across the whole brain (22 genes) or in regions 1-3 only (7 genes). 12 genes were expressed in 280 

late pre-natal development (Figure 5D; 25-38 pcw); 10 genes were expressed in regions 1-3, 281 

post-natally and in the late pre-natal period (Figure 5C), and 15 genes were expressed throughout 282 

development (Figure 5B), either specifically in region four (nine genes) or throughout the brain 283 

(six genes). We used a stratified qq-plot approach54 to examine whether SNPs in cis-regions of 284 

genes in these four clusters are differentially enriched in psychiatric disorders. SNPs in cis-285 

regions of genes in the two pre-natal clusters are more highly enriched than SNPs in cis-regions 286 

of genes in post-natal clusters, and compared to all SNPs, in childhood-onset disorders (ASD and 287 

ADHD, supplementary figure 13), but not adult-onset disorders (BPD and MDD, data not 288 

shown). 289 

 290 

We noticed a relationship between patterns of gene expression and the likelihood of behavioral, 291 

neurological or related phenotypes in our mutant mouse model database. Mutant mice lacking 292 

genes expressed exclusively pre-natally in humans, or genes expressed pre- and post-natally, 293 

were more likely to have any behavioral or neurological phenotypes than mutant mice lacking 294 

expression of genes expressed primarily in the third trimester or post-natally (p=1.7x10-04) 295 

(supplementary figure 11). 296 

 297 

 298 
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Discussion 299 

In this study, we present gene expression prediction models for the dorso-lateral pre-frontal 300 

cortex (DLPFC), constructed using CommonMind Consortium genotype and gene expression 301 

data. These prediction models may be applied to either raw data or summary statistics, in order to 302 

yield gene expression information in large data sets, and across a range of tissues. This has the 303 

significant advantage of allowing researchers to access transcriptome data for non-peripheral 304 

tissues, at scales currently prohibited by the high cost of RNA sequencing, and circumventing 305 

distortions in measures of gene expression stemming from errors of measurement or 306 

environmental influences. Since disease status may alter gene expression but not the germline 307 

profile, analyzing genetically regulated expression ensures that we identify only the causal 308 

direction of effect between gene expression and disease15. Large, imputed transcriptomic datasets 309 

represent the first opportunity to study the role of subtle gene expression changes (and therefore 310 

modest effect sizes) in disease development.  311 

 312 

There are some inherent limitations to this approach. The accuracy of transcriptomic imputation 313 

(TI) is reliant on access to large eQTL reference panels, and it is therefore vital that efforts to 314 

collect and analyze these samples continue.  TI has exciting advantages for gene discovery as 315 

well as downstream applications15,55,56; however, the relative merits of existing methodologies 316 

are as yet under-explored. Our analysis suggests that, overall, sparser elastic net models better 317 

capture gene expression regulation than BSLMM; at the same time, the improved performance of 318 

elastic net over max-eQTL models suggests that a single eQTL model is over-simplified2,15. 319 

Fundamentally, transcriptomic imputation methods model only the genetically regulated portion 320 

of gene expression, and so cannot capture or interpret variance of expression induced by 321 

environment or lifestyle factors, which may be of particular importance in psychiatric disorders. 322 

Given the right study design, analyzing genetic components of expression together with observed 323 

expression could open doors to better study the role of gene expression in disease. 324 

 325 

Sample size and tissue matching contribute to accuracy of TI results. Our CMC-derived DLPFC 326 

prediction models had higher average validation R2 values in external DLPFC data than GTEx-327 

derived brain tissue models. Notably, the model with the second highest percent of genes passing 328 

the R2 threshold is the Thyroid, which has the largest sample size among the GTEx brain 329 
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prediction models. When looking at mean R2 values, the second highest value comes from the 330 

GTEx Frontal Cortex, despite the associated small sample size, implying at least some degree of 331 

tissue specificity of eQTLs architecture.  332 

 333 

We were able to compare TI accuracy in European and African-American individuals, and found 334 

that our models were applicable to either ethnicity with only a small decrease in accuracy. 335 

Common SNPs shared across ethnicities have important effects on gene expression, and as such 336 

we expect GREX to have consistency across populations. There is a well-documented dearth of 337 

exploration of genetic associations in non-European cohorts57,58 We believe that these analyses 338 

should be carried out in non-European cohorts. 339 

 340 

We applied the CMC DLPFC prediction models, along with 12 GTEx-derived brain expression 341 

prediction models, to schizophrenia cases and controls from the PGC2 and CLOZUK2 342 

collections, constituting the largest transcriptomic analysis of schizophrenia to date. Predicted 343 

gene expression levels were calculated for 19,661 unique genes across brain regions (Figure 1C) 344 

and tested for association with SCZ case-control status. We identified 413 significant 345 

associations, constituting 67 independent associations. We found significant replication of our 346 

CMC DLPFC associations in a large independent replication cohort, in collaboration with the 347 

iPSYCH-GEMS consortium. A recent TWAS study of 30 GWAS summary statistic traits55 348 

identified 38 non-MHC genes associated at tissue-level significance with SCZ in CMC- and 349 

GTEx-derived brain tissues (ie, matching those used in our study). Of these, 26 also reach 350 

genome-wide significance in our study, although in many instances these genes are not identified 351 

as the lead independent associated gene following our conditional analysis. Among our 67 SCZ-352 

associated genes, 19 were novel, i.e. did not fall within 1Mb of a previous GWAS locus 353 

(including 5/7 of the novel brain genes identified in the recent TWAS analysis).   354 

 355 

We used conditional analyses to identify independent associations within loci. These analyses 356 

clarify the most strongly associated genes and tissues (Table 1), while we note that nearly 357 

collinear gene-tissue pairs could also represent causal associations. The tissues highlighted 358 

allowed us to tabulate apparently independent contributions to SCZ risk from different brain 359 
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regions, even though their transcriptomes are highly correlated generally. We find DLPFC and 360 

Cerebellum effects, as well as from Putamen, Caudate and Nucleus Accumbens Basal Ganglia.  361 

 362 

We used these genic associations to search for enrichments with molecular pathways and gene 363 

sets, and identified 36 significant enriched pathways. Among novel pathways, we identified a 364 

significant association with HEX-A deficiency. Despite the well-studied and documented 365 

symptomatic overlap between adult-onset HEX-A deficiency and schizophrenia, we believe that 366 

this is the first demonstration of shared genetics between the disorders. Notably, this overlap is 367 

not driven by a single highly-associated gene which is shared by both disorders; rather, every 368 

single gene in the HEX-A pathway is nominally significant in the SCZ association analysis, and 369 

five genes have p < 1x10-03, indicating that there may be substantial shared genetic aetiology 370 

between the two disorders that warrants further investigation. Additionally, we identified a 371 

significant overlap between our SCZ-associated genes and a number of pathways associated with 372 

porphyrin metabolism. Porphyric disorders have been well characterized and are among early 373 

descriptions of “schizophrenic” and psychotic presentations of schizophrenia, as described in the 374 

likely eponymous mid-19th century poem “Porphyria’s Lover”, by Robert Browning59, and have 375 

been cited as a likely diagnosis for the various psychiatric and metabolic ailments of Vincent van 376 

Gogh60–65 and King George III66. 377 

 378 

Finally, we assessed patterns of expression for the 67 SCZ-associated genes throughout 379 

development using spatio-temporal transcriptomic data obtained from BRAINSPAN. We 380 

identified four clusters of genes, with expression in four distinct spatiotemporal regions, ranging 381 

from early pre-natal to strictly post-natal expression. There are plausible hypotheses and genetic 382 

evidence for SCZ disease development in adolescence, given the correlation with age of onset, as 383 

well as prenatally, supported by genetic overlap with neurodevelopmental disorders67–69 as well 384 

as the earlier onset of cognitive impairments70–73. Understanding the temporal expression 385 

patterns of SCZ-associated genes can help to elucidate gene development and trajectory, and 386 

inform research and analysis design. Identification of SCZ-associated genes primarily expressed 387 

prenatally is striking given our adult eQTL reference panels, and may reflect common eQTL 388 

architecture across development, which is known to be partial74–76; therefore, our results should 389 

spur interest in extending TI data and/or methods to early development74. Identification of SCZ-390 
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associated genes primarily expressed in adolescence and adult-hood is of particular interest for 391 

direct analysis of the brain transcriptome in adult psychiatric cases.  392 

 393 

eQTL data have been recognized for nearly a decade as potentially important for understanding 394 

complex genetic variation. Nicolae et al1 showed that common variant-common disease 395 

associations are strongly enriched for genetic regulation of gene expression. Therefore, 396 

integrative approaches combining transcriptomic and genetic association data have great 397 

potential. Current TI association analyses increase power for genetic discovery, even while many 398 

open areas of TI remain to be developed, such as leveraging additional data types such as 399 

chromatin modifications77 (e.g. methylation, histone modification), imputing different tissues or 400 

different exposures (e.g. age, smoking, trauma) and modeling trans/coexpression effects. It 401 

remains critical to leverage TI associations to provide insights into specific disease mechanisms. 402 

Here, the accelerated identification of disease associated genes allows the detection of novel 403 

pathways and distinct spatiotemporal patterns of expression in schizophrenia risk.  404 

 405 
  406 
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Online Methods (Limit 3,000 words, at end of manuscript, currently 2,064) 407 

 408 

Creating gene expression predictors for the dorso-lateral pre-frontal cortex 409 

eQTL Data  410 

Genotype and RNAseq data were obtained for 538 European individuals through the 411 

CommonMind Project14. RNA-seq data were generated from post-mortem human dorsolateral 412 

prefrontal cortex (DLPFC). The gene expression matrix was normalized to log(counts per 413 

million) using voom. Adjustments were made for known covariates (including sample 414 

ascertainment, quality, experimental parameters, ancestry) and surrogate variables, using linear 415 

modelling with voom-derived regression weights. Details on genotyping, imputation and RNA-416 

seq generation may be found in the CommonMind Consortium flagship paper14. 417 

 418 

A 1% MAF cut-off was applied. Variants were filtered to remove any SNPs in high LD (r2>0.9), 419 

indels, and all variants with ambiguous ref/alt alleles. All protein coding genes on chromosomes 420 

1-22 with at least one cis-SNP after these QC steps were included in this analysis. SNPs in trans 421 

have been shown not to provide a substantial improvement in prediction accuracy15 and were not 422 

included here. 423 

 424 

Building gene expression prediction databases 425 

Gene expression prediction models were created following the “PrediXcan” method15. Matched 426 

genotype and gene expression data were used to identify a set of variants that influence gene 427 

expression (Supplementary Figure 2A). Weights for these variants are calculated using 428 

regression in a ten-fold cross-validation framework.  All cross-validation folds were balanced for 429 

diagnoses, ethnicity, and other clinical variables.  430 

 431 

All SNPs within the cis-region (+/- 1mb) of each gene were included in the regression analysis. 432 

Accuracy of prediction was estimated by comparing predicted expression to measured 433 

expression, across all 10 cross-validation folds; this correlation was termed cross-validation R2 or 434 

Rcv2. Genes with Rcv2 > 0.01 (~p<0.05) were included in our final predictor database. 435 

 436 
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Prediction models were compared across four different regression methods; elastic net 437 

(prediXcan), ridge regression (using the TWAS method16), Bayesian sparse linear mixed 438 

modelling (BSLMM; TWAS), and linear regression using the best eQTL for each gene 439 

(Supplementary Figure 1A). Mean Rcv2 values were significantly higher for elastic net regression 440 

(mean Rcv2=0.056) than for eQTL-based prediction (mean Rcv2=0.025), BSLMM (mean 441 

Rcv2=0.021) or Ridge Regression (mean Rcv2=0.020). The distribution of Rcv2 values was also 442 

significantly higher for elastic net regression than for any other method (ks-test, p<2.2x10-16). 443 

 444 

Replication of gene expression prediction models in independent data  445 

Predictive accuracy of CMC DLPFC models were tested in two independent datasets. 446 

First, we used data from the Religious Orders Study and Memory and Aging Project 447 

(ROSMAP19). This study included genotype data and DLPFC RNA-seq data78 for 451 448 

individuals of European descent (Supplementary Figure 2B). 449 

 450 

DLPFC genetically-regulated expression (GREX) was calculated using the CMC DLPFC 451 

predictor models. Correlation between RNA-seq expression and CMC DLPFC GREX 452 

(“Replication R2 values” or RR2) was used as a measure of predictive accuracy.   RR2 was 453 

calculated including correction for ten ancestry components, as follows: 454 
Equation 1: RR2 calculation. 455 𝑅𝑅12 = (𝑀 ~ 𝐺𝑅𝐸𝑋 +  𝑃𝐶1 + 𝑃𝐶2 + ⋯ + 𝑃𝐶10) 456 𝑅𝑅22 = (𝑀 ~ 𝑃𝐶1 + 𝑃𝐶2 + ⋯ + 𝑃𝐶10) 457 𝑅𝑅2 = 𝑅𝑅12 -𝑅𝑅22  458 

 459 

Where: 460 𝑀 Measured expression (RNA-seq) 𝐺𝑅𝐸𝑋 GREX imputed expression 𝑃𝐶𝑛 nth Principal Component 

 461 

A small number of genes (158) had very low predictive accuracy and were removed from further 462 

analyses. Cross-validation R2 (Rcv2) values and RR2  values were highly correlated (rho=0.62, 463 

p<2.2e-16; Supplementary Figure 3A). 55.7% of CMC DLPFC genes had RR2 values > 0.01. 464 
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 465 

Prediction accuracy was also assessed for 11 publicly available GTEx neurological predictor 466 

databases, and RR2 values used to compare to CMC DLPFC performance. CMC DLPFC models 467 

had higher average RR2 values, more genes with RR2 > 0.01, and significantly higher overall 468 

distributions of RR2values than any of the twelve GTEx brain tissue models (ks-test, p<2.2e-16; 469 

Figure 1A,B).  470 

 471 

To estimate trans-ancestral prediction accuracy, genetically regulated gene expression was 472 

calculated for 162 African-American individuals and 280 European individuals from the NIMH 473 

Human Brain Collection Core (HBCC) dataset79 (Supplementary Figure 2C). Predicted gene 474 

expression levels were compared to DLPFC expression levels measured using microarray. There 475 

was a significant correlation between the European and African-American samples for RCV2 476 

values and RR2 values (rho=0.66, 0.56; Supplementary figure 3B-C). RR2 values were higher on 477 

average in Europeans, but were significantly correlated between African-Americans and 478 

Europeans (rho=0.78, p<2.2e-16, Pearson test; supplementary figure 3D).  479 

 480 

Extension to Summary Statistics 481 

Transcriptomic Imputation may be applied to summary statistics instead of raw dosages, in 482 

instances where raw data is unavailable. However, this method suffers from slightly reduced 483 

accuracy, requires covariance matrices calculated in an ancestrally-matched reference 484 

population80 (usually only possible for European cohorts), and precludes testing of 485 

endophenotypes within the data, and so should not be applied when raw data is available.  486 

 487 

We assessed concordance between CMC DLPFC transcriptomic imputation results using 488 

summary-statistics (MetaXcan80) and raw genotypes (PrediXcan15) using nine European and 489 

three Asian PGC-SCZ cohorts22 for which both data types were available. Cohorts were chosen 490 

to encompass a range of case : control ratios, to test previous suggestions that accuracy is 491 

reduced in unbalanced cohorts80. Covariances for all variants included in the DLPFC predictor 492 

models were computed using MetaXcan80. For all European cohorts, Pearson correlation of log-493 

10 p-values and effect sizes was above 0.95. The mean correlation was 0.963 (Supplementary 494 

Figure 4).  There was no correlation between total sample size, case-control ratio, p-value or 495 
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effect-size. Seven genes were removed due to discordant p-values. For the three Asian cohorts 496 

tested, the mean correlation was 0.91 (Supplementary Figure 5). 497 

 498 

Concordance was also tested for the same nine European PGC-SCZ cohorts, across 12 499 

neurological GTEx prediction databases. All correlations were significant (rho>0.95, p<2.2e-16). 500 

There was a significant correlation between p-value concordance and case-control ratio 501 

(rho=0.37, p=7.606 x10-15). 114 genes had discordant p-values between the two methods and 502 

were excluded from future analyses.  503 

 504 

Application to Schizophrenia 505 

Dataset Collection 506 

We obtained 53 discovery cohorts for this study, including 40,299 SCZ cases and 65,264 507 

controls (Figure 2). 52/53 cohorts (35,079 cases, 46,441 controls) were obtained through 508 

collaboration with the Psychiatric Genomics Consortium, and are described in the 2014 PGC 509 

Schizophrenia GWAS22. The remaining cohort, referred to as CLOZUK2, constitutes the largest 510 

single cohort of individuals with Schizophrenia (5,220 cases and 18,823 controls), collected as 511 

part of an effort to investigate treatment-resistant Schizophrenia26.  512 

 513 

50/53 datasets included individuals of European ancestry, while three datasets include 514 

individuals of Asian ancestry (1,836 cases, 3,383 controls). All individuals were ancestrally 515 

matched to controls. Information on genotyping, quality control and other data management 516 

issues may be found in the original papers describing these collections22,26. All sample 517 

collections complied with ethical regulations. Details regarding ethical compliance and consent 518 

procedures may be found in the original manuscripts describing these collections22,26. 519 

 520 

Access to dosage data was available for 44/52 PGC-SCZ cohorts. The remaining PGC cohorts, 521 

and the CLOZUK2 cohort provided summary statistics. Three European PGC cohorts were trio-522 

based, rather than case-control.  523 

 524 

Additionally, we tested for replication of our CMC DLPFC associations in an independent 525 

dataset of 4,133 cases and 24,788 controls obtained through collaboration with the iPSYCH-526 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 21, 2017. ; https://doi.org/10.1101/222596doi: bioRxiv preprint 

https://doi.org/10.1101/222596
http://creativecommons.org/licenses/by-nc-nd/4.0/


 20 

GEMS schizophrenia working group (effective sample size 14,169.5; Figure 2B, supplementary 527 

information). 528 

 529 

Transcriptomic Imputation and association testing 530 

Transcriptomic Imputation was carried out individually for each case-control PGC-SCZ cohort 531 

with available dosage data (44/52 cohorts). Predicted gene expression levels were computed 532 

using the DLPFC predictors described in this manuscript, as well as for 11 other brain tissues 533 

prediction databases created using  GTEx tissues15,20,21,81 (Figure 1C). Associations between 534 

predicted gene expression values and case-control status were calculated using a linear 535 

regression test in R. Ten ancestry principal components were included as covariates. Association 536 

tests were carried out independently for each cohort, across 12 brain tissues.  537 

 538 

For the 8 PGC cohorts with no available dosage data, the three PGC trio-based analyses, and the 539 

CLOZUK2 cohort, a summary-statistic based transcriptomic imputation approach was used 540 

(“MetaXcan”), as described previously.  541 

 542 

Meta-analysis 543 

Meta-analysis was carried out across all 53 cohorts using METAL82. Cochran’s Q test for 544 

heterogeneity was implemented in METAL82,83, and a heterogeneity p-value threshold of p > 545 

1x10-3 applied to results. A conservative significance threshold was applied to these data, 546 

correcting for the total number of genes tested across all tissues (121,611 gene-region tests in 547 

total). This resulted in a genome-wide significance threshold of 4.1x10-7.  548 

 549 

Effect sizes and direction of effect quoted in this manuscript refer to changes in predicted 550 

expression in cases compared to controls i.e., genes with negative effect sizes have decreased 551 

predicted expression in cases compared to controls.  552 

 553 

Identifying independent associations 554 

We identified a number of genomic regions which contained multiple gene associations and/or 555 

genes associated across multiple tissues. We identified 58 of these regions, excluding the MHC, 556 

based on distance between associated genes, and verified them using visual inspection.  In order 557 
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to identify independent genic associations within these regions, we carried out a stepwise 558 

forward conditional analysis following “GCTA-COJO” theory84 using “CoCo” 559 

(https://github.com/theboocock/coco/), an R implementation of GCTA-COJO. CoCo allows the 560 

specification of custom correlation matrices by the user (for example, ancestrally specific LD 561 

matrices). For each region, we generated a predicted gene expression correlation matrix for all 562 

significant genes (p≤ 1x10-6), as the root-effective sample size (Neff, eqn 2) weighted average 563 

correlation across all cohorts where we had access to dosage data. 564 
Equation 2: Effective Sample Size, 𝑁𝑒𝑓𝑓  565 𝑁𝑒𝑓𝑓 = 4( 1𝑁𝑐𝑎𝑠𝑒𝑠 + 1𝑁𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑠) 566 

 567 

Forward stepwise conditional analysis of all significant genes was carried out using joint linear 568 

regression modeling. First, the top-ranked gene was added to the model, then the next most 569 

significant gene in a joint model is added if significant at a given p-value threshold, and so on 570 

until either all genes are added to the model, or no joint statistic reaches the significance 571 

threshold. 572 

 573 

We calculated effect sizes and odds ratios for SCZ-associated genes by adjusting “CoCo” betas 574 

to have unit variance (Table 1, eqn. 3).   575 
Equation 3: GREX Beta adjustment  576 𝛽 = 𝛽𝐶𝑜𝐶𝑜 𝑥 √𝐺𝑉𝐴𝑅 577 

 578 

Where GVAR is the variance of the GREX predictor for each gene.   579 

 580 

Gene set Analyses 581 

Pathway analyses were carried out using an extension to MAGMA85.  P-values were assigned to 582 

genes using the most significant p-value achieved by each gene in the meta-analysis. We then 583 

carried out a competitive gene-set analysis test using these p-values, using two gene sets: 584 

 585 

1. 159 gene sets with prior hypotheses for involvement in SCZ development, including loss-586 

of-function intolerant genes, CNV-intolerant genes, targets of the fragile-X mental 587 
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retardation protein, CNS related gene sets, and 104 behavioural and neurological 588 

pathways from the Mouse Genome Informatics database14,26,67,86.  589 

2. An agnostic analysis, including ~8,500 gene sets collated from publicly available 590 

databases including GO87,88, KEGG89, REACTOME90, PANTHER91,92, BIOCARTA93 591 

and MGI48. Sets were filtered to include only gene sets with at least ten genes.  592 

 593 

 Significance levels were adjusted across all pathways included in either test using the 594 

Benjamini-Hochberg “FDR” correction in R23.  595 

 596 

Coexpression of SCZ genes throughout development 597 

We investigate spatiotemporal expression of our associated genes using publicly available 598 

developmental transcriptome data, obtained from the BRAINSPAN consortium94. We partitioned 599 

these data into biologically relevant spatio-temporal data sets95, corresponding to four general 600 

brain regions; the frontal cortex, temporal and parietal regions, sensory-motor regions, and 601 

subcortical regions (Figure 4A96), and eight developmental time-points (four pre-natal, four post-602 

natal)95.  603 

 604 

First, we tested for correlation of gene expression for all SCZ-associated genes at each 605 

spatiotemporal time-point. Genes with pearson correlation coefficients >= 0.8 or <=-0.8 were 606 

considered co-expressed. 100,000 iterations of this analysis were carried out using random gene 607 

sets with equivalent expression level distributions to the SCZ-associated genes. For each gene 608 

set, a gene co-expression network was created, with edges connecting all co-expressed genes. 609 

Networks were assessed using three criteria; first, the number of edges within the network, as a 610 

crude measured of connectedness; second, the Watts-Strogatz average path length between 611 

nodes, as a global measure of connectedness across all genes in the network53; third, the Watts-612 

Strogatz clustering coefficient, to measure tightness of the clusters within the network53. For 613 

each spatio-temporal time point, we plotted gene-pair expression correlation (suppl. Fig 8) and 614 

co-expression networks (suppl. Fig 9). 615 

 616 

For each of the 67 SCZ-associated genes, we calculated average expression at each 617 

spatiotemporal point. We then calculated Z-Score of expression specificity using these values, 618 
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and plotted Z-Scores to visually examine patterns of gene expression throughout development 619 

and across brain regions. Clusters were formally identified using a dendrogram cut at height 10 620 

(Suppl. Fig 10).  621 

 622 

In-silico replication of SCZ-associated genes in mouse models 623 

We downloaded genotype, knock-out allele information and phenotyping data for ~10,000 624 

mouse mutant models from five large mouse phenotyping and genotyping projects; Mouse 625 

Genome Informatics (MGI48), EuroPhenome47,97, Mouse Genome Project (MGP47,49), 626 

International Mouse Phenotyping Consortium (IMPC50), and Infection and Immunity 627 

Immunophenotyping (3I98). Where possible, we also downloaded raw phenotyping data 628 

regarding specific assays. In total, we obtained 175,012 phenotypic measurements, across 10,288 629 

mutant mouse models. We searched for any mouse lines with phenotypes related to behavior 630 

(natural, observed, stereotypic or assay-induced); cognition or working memory; brain, head or 631 

craniofacial dysmorphology; retinal or eye morphology, and/or vision or visual dysfunction or 632 

impairment; ear morphology or hearing dysfunction or impairment; neural tube defects; brain 633 

and/or nervous system development; abnormal nociception.  634 

 635 

We compared the prevalence of psychiatric phenotypes in mutant mice for our SCZ-associated 636 

genes to the prevalence among other disease-associated gene sets. We selected 366 GWAS gene 637 

sets, and removed any for which fewer than ten mutant mouse models were included in our 638 

databases, leaving 105 gene sets. We compared the prevalence of 13 different categories of 639 

psychiatric phenotypes, relating to adrenal gland, behavior, brain development, craniofacial 640 

dysmorphology, ear/auditory phenotypes, eye dysmorphology, head dysmorphology, nervous 641 

system development, abnormal nociception, seizures, thyroid gland, vision phenotypes. For each 642 

GWAS gene set, we counted the number of categories with at least one phenotype, and 643 

compared to the number in our SCZ-associated gene set to obtain an empirical p-value.  644 

 645 
Data Availability 646 

Our CMC-derived DLPFC prediction models will be made publicly available. 647 

  648 
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Figure 1: Replication of DLPFC prediction models in independent data.
Measured gene expression (ROSMAP RNA-seq) was compared to predicted genetically-regulated 
gene expression for CMC DLPFC and 12 GTeX predictor databases. Replication R2 values are 
significantly higher for the DLPFC than for the 12 GTEX brain expression models.

A. Distribution of RR
2 values of CMC DLPFC predictors in ROSMAP data. Mean RR

2 = 0.056. 
47.7% of genes have RR

2 >= 0.01. 
B. Distribution of RR

2 values of 12 GTeX predictors in ROSMAP data.
C. Table of sample sizes and p-val thresholds for CMC DLPFC and GTeX data. Number of 

samples, number of genes in the prediXcan model and number of eGenes are all significantly 
correlated with predictor performance in ROSMAP data. 
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Figure 2: Analysis outline.
A) Discovery Samples. 41 PGC-SCZ cohorts had available raw genotypes (i). Predicted 

DLPFC gene expression was calculated in each cohort using prediXcan (ii) and tested for 
association with case-control status (iii). 11 PGC cohorts (3 trio, 8 case-control) and the 
CLOZUK2 cohort had only summary statistics available (iv). MetaXcan was used to 
calculate DLPFC associations for each cohort (v). Results were meta-analysed across all 53 
cohorts (vi). This procedure was repeated for 12 GTEx prediction models. 

B) Replication Samples. iPSYCH-GEMS samples were collected in 25 waves (i). Predicted 
DLPFC gene expression was calculated in each wave separately using prediXcan (ii) and 
merged for association testing (iii). A mega-analysis was run across all 25 waves, using 
wave membership as a covariate in the regression (iv)
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Figure 3: SCZ associations results
A) 413 genes are associated with SCZ across 12 brain tissues
B) 67 genes remain significant outside the MHC after stepwise conditional analysis
C) Number of genome-wide significant loci, outside the MHC region,  identified in each 

brain region. Abbreviations are as follows; CB- Cerebellum; CX- Cortex; FL- Frontal 
Cortex; DLPFC- Dorso-lateral pre-frontal cortex; CB HEMI- Cerebellar Hemisphere; 
HIP- Hippocampus; PIT- Pituitary Gland; HTH- Hypothalamus; NAB- Nucleus 
Accumbens (Basal Ganglia); PUT- Putamen (Basal Ganglia); CAU- Caudate (Basal 
Ganglia); CNG- Anterior Cingulate Cortex
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Figure 4: SCZ-associated genes are co-expressed throughout development and across brain regions
A) Brain tissues selected for each of four BRAINSPAN regions. Region 1: IPC, V1C, ITC, OFC, STC, 

A1C; Region 2:S1C, M1C, DFC, VFC, MFC; Region 3:HIP, AMY, STR; Region 4: CB
B) Average clustering coefficients were calculated for all pairs of SCZ-associated genes, and compared 

to permuted gene networks to obtain empirical significance levels. 
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Figure 5: Gene expression patterns for SCZ-associated genes cluster into four groups, relating 
to distinct spatiotemporal expression. 
Brain regions are shown in figure 5a. 

A. 29 genes are expressed in the early-mid pre-natal period (4-24 post-conception weeks)
B. 15 genes are expressed throughout development; sub-clusters correspond to either specific 

expression in region 4, or expression across the brain
C. Ten genes are expressed in the late-prenatal (25-38pcw) and post-natal period
D. 12 genes are expressed in the late pre-natal period (25-39pcw)
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Z-associated genes
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Table 2: Significantly enriched pathways and gene sets  
 
Analysis Gene Set Comp P FDR P 
Hypothesis 
driven 
 

FMRP-targets 1.96x10-08 3.097x10-06 
BP denovo CNV 7.92x10-08 6.257x10-06 
HIGH LOF intolerant 5.86x10-05 0.00309 

Agnostic 
 

Increased spleen iron level 2.72x10-08 0.000245 
Decreased IgM level 6.80x10-07 0.00307 
Condensed chromosome                                                                                                                                                                               1.99x10-06 0.00598 
Chromosome 2.80x10-06 0.00632 
Abnormal spleen iron level 6.79x10-06 0.00765 
Mitotic Anaphase                                                                                                                                                                                         6.39 x10-06 0.00765 
Mitotic Metaphase and Anaphase                                                                                                                                                                           5.13 x10-06 0.00765 
Resolution of Sister Chromatid Cohesion                                                                                                                                                                  5.82 x10-06 0.00765 
Increased liver iron level 1.03 x10-05 0.0103 
Separation of Sister Chromatids                                                                                                                                                                          1.28 x10-05 0.0115 
Regulation of Rab GTPase activity                                                                                                                                                                  1.78 x10-05 0.0123 
Regulation of Rab protein signal transduction                                                                                                                                                      1.78 x10-05 0.0123 
Protein phosphorylated amino acid binding                                                                                                                                                          1.75x10-05 0.0123 
Chromosome 2.57x10-05 0.0165 
Hexosaminidase activity                                                                                                                                                                            3.47x10-05 0.0174 
Abnormal learningmemoryconditioning 3.11x10-05 0.0174 
Abnormal liver iron level 3.47x10-05 0.0174 
Mitotic Prometaphase                                                                                                                                                                                     2.99x10-05 0.0174 
M Phase                                                                                                                                                                                                  3.70x10-05 0.0176 
Positive regulation of Rab GTPase activity                                                                                                                                                         5.93x10-05 0.0232 
Rab GTPase activator activity                                                                                                                                                                      5.93x10-05 0.0232 
Protein phosphatase type 2A regulator activity                                                                                                                                                     5.24x10-05 0.0232 
Replicative senescence                                                                                                                                                                             5.44x10-05 0.0232 
Condensed nuclear chromosome                                                                                                                                                                       7.11x10-05 0.0267 
Ubiquitin-specific protease activity                                                                                                                                                               0.000104 0.0335 
Ras GTPase activator activity                                                                                                                                                                      9.61x10-05 0.0335 
Metabolism of porphyrins                                                                                                                                                                                 0.000103 0.0335 
Kinetochore                                                                                                                                                                                        0.000103 0.0335 
Decreased physiological sensitivity to xenobiotic 0.000127 0.0381 
Antigen Activates B Cell Receptor Leading to 
Generation of Second Messengers                                                                                                                             

0.000124 0.0381 

Phosphoprotein binding                                                                                                                                                                             0.000146 0.0424 
Abnormal dorsal-ventral axis patterning 0.000152 0.0429 
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