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Short abstract (150 words) 

Brain world representation emerges not by philosophy but from integrating simple followed by more 

complex actions (due to drives, instincts) with sensory feedback and inputs such as rewards. Our 

simulation provides this world representation holistically by identical information encoded as 

holographic wave patterns for all associative cortex regions. Observed circular activation in cell culture 

experiments provides building blocks from which such an integrative circuit can evolve just by 

excitation and inhibition transfer to neighbouring neurons. Large-scale grid-computing of the 

simulation brought no new emergent phenomena but rather linear gains and losses regarding 

performance. The circuit integrates perceptions and actions. The resulting simulation compares well 

with data from electrophysiology, visual perception tasks, and oscillations in cortical areas. Non-local, 

wave-like information processing in the cortex agrees well with EEG observations such as cortical 

alpha, beta, and gamma oscillations. Non-local information processing has powerful emergent 

properties, including key features of conscious information processing. 

 

Introduction    

The human brain relies on the complex interplay of different neuronal circuits; both serial processing 

and neuronal recognition as well as integrative properties and holistic processes are important1-6. 

However, a computer model for this emergent development of such integrative processing is still 

missing. We find that in our simulation, key features of consciousness emerge including the integration 

of voluntary movement, a world model and a model of the self7. It requires a high enough number of 

high level perceptrons or microcircuits7 in Mountcastle columns to allow serial processing as well as a 

sufficiently strong non-local wave processing circuit. The simulation suggests that below a critical 

threshold of 1 billion neurons the integration power of the circuit breaks down and encoded subjective 

presence becomes too short to allow planning or voluntary action. Anatomical data and various 

electrophysiological measurements agree well with the in silico model. There are matching data on the 

break-down of integrative functions in Alzheimer´s disease and Schizophrenia. Our high-level 

simulation provides local processing units with the same information: Mountcastle columns and 

perceptrons8, or basic neuronal circuits such as the gamma generating microcircuits7. We provide a 

highly detailed view on emergence in information processing at different levels (genes, signaling, 

neurons, brain). Scaling up experiments suggest that no new emergence level arises using grid 

computing, but instead this produces linear gains in perception and processing as well as performance 

losses due to communication overhead.   (234 words) 
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Results 

Netlogo, a multi-agent programmable modelling environment9, models signal transmission between 

neurons, non-local signal processing, neuronal activity, and emergent cortical wave patterns. 

Information for survival is (i) selected by evolution and (ii) stored internally on ever higher levels (Fig. 

1a-e; DNA, encoded protein networks; instructed neuronal networks; human language; eq. S1, 

supplement). Stimulation of signalling cascades and activating neural cells generate wave patterns 

from simple rules. The BDNF /TrkB protein network illustrates how this is programmed inside neuronal 

cells on a molecular level10-14. (Fig. 1a-e and supplement; Video 1, chemical activation of cultured 

neurons; Video 2, signalled wave patterns in glial cells https://www.biozentrum.uni-

wuerzburg.de/bioinfo/computing/neuro). Through such patterns, identical information may be 

provided to all Mountcastle columns15,16, actual decoding or storage happens in individual columns. 

The resulting central circuit stores, mediates and integrates instincts, drives, and adaptive behavior 

into emerging conscious thoughts. 

This central circuit displays key properties of consciousness, including the integration of sensory inputs 

with voluntary actions. It results from basic neuronal circuits of shells of activating and inhibitory 

neurons (about 104 Mountcastle columns or 109 neurons). A world representation iteratively evolves 

from such a central circuit not as a philosophical insight but rather from a feedback loop of simple and 

then ever more complex actions and resulting rewards. Encoded as a holographic wave pattern, the 

same information reaches all conscious cortex regions: the same world view, and it integrates actions 

(“will”).  

𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛0(𝑖 + 1)
= activation0(i) + 𝑠𝑙𝑜𝑝𝑒_𝑜𝑙𝑑(𝑖)

+;(𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛0<(𝑖) − 𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛0(𝑖))/𝑘 ∗ 𝑁𝐼_𝑠𝑙𝑜𝑝𝑒𝑣
C

<DE

 

 (eq. 1; Hamiltonian-like field equation; details in Fig. 1b and Fig. 2c and the supplement) 

Next, a high number of our simulations (Fig. 1a-e and f) were coupled on a large computer grid (open-

source C code available at https://github.com/DescartesResearch/BrainSimulation). Parallel 

computing sped up the perception simulations (Fig. 1g), exhibiting constant performance due to the 

linear increase of computation time based on the number of nodes. We simulated up to 400 000 nodes 

in real time using a resolution of 1 tick per millisecond and 24 core server system with 6 MB of cache 

(Fig. 1g). Perception speed as well as communication and processing time all increased linearly. Hence, 

after emergence of a holographic medium (simulating 104 Mountcastle columns of 105 neurons each 
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for decoding)155, further processing power did not lead to new emergence levels but just to linear gains 

and losses. 

In detail, diverse sensory input is transformed into holographic interference patterns (Fig. 2a; three 

external and two proprioceptive signals). The same information reaches all pixels, individual 

Mountcastle column in the simulation. The wave pattern results from symmetrical interaction of all 

neighbours, a grid of 100 x 100 =104 Mountcastle columns, about 109 neurons in total, participating in 

the simulation. This mirrors basic qualities of consciousness, transforming diverse signals into a unified 

world view stored in a central wave pattern shared by all participating Mountcastle columns. The 

interference pattern can easily be decoded: Fig. 2b shows different waves involved and overtones. The 

storage capacity of 3x 50 bits during 3 seconds also corresponds quantitatively to conscious 

perception. Proprioceptive signals integrated into the circuit include motor action and pain signals, 

external world input covers all sensory qualities to build up a representation of self and world17 using 

new sensory input as feedback (Fig. 2a). Figure 2c presents a typical neuronal excitatory and inhibitory 

microcircuit7 that mirrors the algorithm described in Fig. 1f and eq. 1. Thus, a substantial amount of 

neuronal brain activity is found to be non-local and wave-like18-20, instead of direct, computer-like 

logical connectivity. We, therefore, hypothesize that the conscious, associative regions of the brain are 

the neurobiological analogue to the algorithm.  

Our non-local, wave-like and holographic processing simulation is highly compatible with EEG and MEA 

recordings (Fig. 3 and 4). This holistic system state perspective indicates possible target points for 

influencing physiological coupling parameters resulting in alternating systems states, such as sleep, 

waking state, anaesthesia, and schizophrenia (for a detailed description, see Fig. 2c, eq. 1, and 

supplement). Peak distributions of multiple electrode arrays (MEA)21 underlying the EEG pattern of 

slow wave sleep, awake state (freely behaving) (Fig. 3a), and anaesthesia network state compare well 

to our simulation (Fig. 3b,c). Ribeiro et al.21 show an equivalent lognormal tail distribution of awake 

and slow wave states, as well as the transformation to power law distribution with onset of 

anaesthesia. Additionally, detailed parallel analysis of in silico (Fig. 3b) and in vitro electrode (Fig. 

recordings S9a,b) show evident similarities in lognormal distribution using the same analytic method. 

The hippocampus22, as well as the model, produce overtones whenever peak input is applied (Fig. 3d). 

Using sine input, the overtone generation is decreased and nearly inhibited in the hippocampus22 

which is also valid for the simulation (Fig. S2). There is a linear dependence of the speed at which the 

waves travel and the maximum frequency that is found in electromagnetic measurements18,19 and in 

the model (Fig. 3e). This collapses at maximum speed of 0.5 m/s and frequency (500 Hz), the maximum 

sampling rate of the model. 
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As estimated for conscious perception23 and subjective presence24, the simulation easily encodes and 

stores over 50 bits of information within 3 seconds (Fig. 4a). The half-width of the peaks using sinus 

wave input is 0.5 Hz within 1 second for this model (see Fig. S6). With a bandwidth of 10-110 Hz, even 

200 bit/second could be coded. Within these ranges, model size has no influence on the decoding of 

the input frequencies and low influence on the generation of overtones (Fig. 4b). As simulated (Fig. 

4c), spontaneous baseline activity of cortical areas organizes after several seconds to minutes without 

external stimuli25,26 around ~8 Hz27-29. Brain coherence measurements without external stimuli30,31 align 

well with the coherence patterns of simulated spontaneous activity in dependence of space and 

frequency (Fig. 4d). The simulated power law behaviour of degree distribution for EEG or FMRI fits EEG 

or FMRI observed (Fig. 4e) and an Ising model of brain criticality32 including variations to altered 

average connectivity (value k) (Fig. 4e). Different pathologies can easily be studied in our model, e.g., 

effects of multiple lesions during Alzheimer’s disease degrading information processing (Fig. 4f) and 

the lack of neuronal correlation on coding in Schizophrenia with a subsequent shift of real input 

frequencies to non-coherence (Fig. 4g). Moreover, a self-organizing theta and beta-band following 

external stimuli superimposed on a holographic carrier was generated in our model and we simulated 

the beta band decline in Schizophrenia (Fig. 4h). Both effects notably match what has been described 

in the literature33,34. Fast ripples35 arise during such a beta band generating stimulus period (Fig. S8). 

Based on the integrated analysis and the effect of undersampling (Fig.S10) we suggest that information 

in the cortex is encoded at a bandwidth >400 Hz. High frequency coding is well supported36.  

 Large-scale models of the brain include the laminar cortex architecture37 and detailed 

neuroanatomic models38. We focus on holistic function and properties of consciousness emerging from 

non-local information processing where holographic models are known to provide a strong 

foundation1,2,5. However, we provide here a first detailed simulation and quantitative model. 

Validation data presented include direct observation of basic neuronal circuits, data from hippocampal 

brain slices, as well as EEG und functional data from animal experiments and a human brain. All support 

our simulation of substantial non-local, wave-like information processing in the cortex. This includes 

(Fig. 3, 4 and S2-S7) slow wave and waking oscillations as self-organized waves corresponding to sleep 

and waking state21 and electrophysiological phenomena: existence of spontaneous baseline activity25-

29, occurrence and decline of overtones22, (de)coherence behaviour30,31, slow wave and waking 

signals21,39, related avalanche distribution in freely behaving and anesthesia state21, wave speed 

behavior18,19, self-organized theta and beta band formation after stimuli33,34, avalanche distribution in 

face of connectivity32, information loss during A.D.40-42Ref, as well as decoherence33,34 and shifted 

decoding in Schizophrenia43. The central circuit simulation has high discrimination and signal resolution 

(Fig. 4a). Detailed parameters (eq. 1; see methods and suppl. material) fit well to known physiology; 

alternative settings for pathologies and non-physiological ranges were also tested. 
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The approach integrates different key theories of consciousness (see also supplement): It implements 

Tononi´s model3 of integrative information processing, incorporates Uexküll´s world representation by 

sensorimotor feedback44 and Bohm’s holonomic brain theory1 hereby is linked with a concrete circuit 

and model. Consciousness is probably a real phenomenon, an emergent property of non-local 

information processing from wave patterns already present in smaller brains. With a critical number 

of neurons (about 108), a holographic medium results, integrating conscious motor, proprioceptive and 

sensory input into a unified model of self and world representation. With a higher number (about 109), 

it integrates at least 150 bits for several seconds allowing to plan and reflect (at least 3 seconds in 

simulation, as observed24). This subjective presence is provided as a holographic brain pattern to all 

participating Mountcastle columns. 

For the first time an open-source simulation encapsulates non-local information processing and 

decoding. Resulting shared wave interference patterns allow to provide the same information to all 

participating cortex regions. This may be sufficient to allow emergence of consciousness. While it is 

too early to unequivocally confirm this notion, our simulation reproduces all available observational 

data, including detailed brain electrophysiological wave patterns.  (1500 words) 
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Figure 1: Information is processed on ever higher levels and networks. The principle of selecting better and 
better adapted information stored internally for survival combined with ever higher levels of nodes and super-
nodes is sufficient to imply rather complex emergent behavior. Here, different emergent levels of signal 
processing are exemplarily shown (in a-e) to illustrate how wave-like processing contributes to emergence. (a) 
Genetic information codes the regulation program of cell type-specific signaling networks. (b) For instance, 
signals caused by the brain-derived neurotrophic factor (BDNF) stimulate cellular and synaptic plasticity in 
cortical regions of the brain by activating the receptor tyrosine kinase TrkB. Cell surface TrkB and intracellular 
TrkB (two blue arrows, top) are embedded in a complex intra- and intercellular signaling system with other 
factors (EGF, dopamine, adenosine) to regulate diverse functions in many cell types (details: supplement). (c) For 
this specific protein network, spatiotemporal activation of diverse cascades is caused by neurotrophin-
dependent effects through BDNF/TrkB or by transactivation of TrkB in the absence of neurotrophins. TrkB 
activation in the absence of neurotrophins can cause migration, differentiation, or survival of neural cells, e.g., 
early in development, but can also affect differentiation and plasticity in the adult brain. (e, right) However, a 
new emergent effect can arise if the signaling interactions happen between cells, for instance if differentiation 
of cell types is signaled. Exemplarily, this simulation shows how neurotrophin-independent activation of TrkB by 
either adenosine receptor A2A-R, EGF-receptor (EGF-R), or dopamine receptor D1 (D1-R) activates specific key 
nodes (e.g. the transcription factor CREB) to participate in different cellular functions, such as information 
processing. Other functions (e.g. angiogenesis) are not modelled by this Jimena software simulation (x-axis: 
activation state; y-axis: time, arbitrary units). Modulating the decay time after TrkB activation can block the 
neurotrophin-independent contributions to this basic level of emergence in cellular communication (details: 
supplement). A biological explanation of this simulation might be the regulated cell surface abundance of TrkB. 
(d, left) With synaptic communication between neurons, new dynamic properties of a neuronal network, for 
instance synchronized neuronal activity with wave-like properties, can emerge. This phenomenon is indicated 
here by chemical activation of hippocampal neurons in culture (Video 1; https://www.biozentrum.uni-
wuerzburg.de/bioinfo/computing/neuro). The image shows loci of calcium activity (white circles) projected onto 
an average-projection image of hippocampal neurons loaded with a fluorescent calcium indicator after 
stimulation with a chemical LTP solution (modified from45). Fluorescence intensities are indicated by a rainbow 
look-up table. Similar wave-like patterns are also observed in glia cells showing long-range, wave-like signals after 
local stimulation with glutamate (Video 2, link above). (f) Such wave-like patterns for non-local information 
processing rely on holographic brain microcircuits. To simulate this, three processing steps of each node build 
on each other (see eq. 1 and Figure 2c): First, the derivation of the neighbouring energy (E_N(t-1); activation1n(t)) 
and the own energy state (E(t-1); activation1(t)) leads to the Delta’(t) value (slope_vector(t)) of that specific node. 
Second, this Delta’(t) value is integrated with the Delta(t-1) function (slope_old(t-1)). Third, the updated Delta(t) 
(slope_old(t)) is added to the energy state function of the focused node (E(t-1);activation1(t)) leading to the 
current final energy state (E(t);activation0(t)). Both the new delta (Delta(t); slope_old(t)) and the new energy 
state (E(t);activation0(t)) are then forwarded to the next time step, while the current energy state (E(t-
1);activation1(t)) is forwarded to all neighbouring nodes. The variables a (ratio_neighbour_activation), b 
(ratio_inhibition_activation1), c (neighbour_integration; NI_slopev), d, e, f (slopeo_damping) and g (damping) 
are coupling factors. These modulate the energy transfer between the neuronal nodes. Their default value is 1. 
The variables can be replaced by a function e.g. a damping function (details in supplement). (g) computer cluster 
simulation of non-local information processing in the brain. Shown is a perception task model with 5000 ticks 
with a resolution of 1 tick per millisecond (i.e., 5 seconds of real-time) and its dependence on the number of 
simulated nodes in the cluster. The perception task is done more efficiently with more nodes but there are no 
emergent new properties. Parameters: Average run-time of 5 repetitions are shown as lines, the minimum and 
the maximum run-time as semi-opaque areas of the same color. We are able to simulate up to 50 000 nodes in 
real-time (i.e., the simulation runs faster than the modelled process itself) using a standard 2-core laptop.  
However, it is possible to simulate even more nodes (100 000 and higher) by running the simulation on server 
CPUs. We furthermore observe that the servers show less random influences compared to the laptop 
workstation. This is expected, as we used bare-metal servers with no other competing processes running at the 
time of the simulation. Additionally, we observe that both the laptop and the smaller Skylake server are faster 
for smaller simulations, but are strongly influenced by the number of nodes to simulate. The reason for this is 
the smaller L2-cache. In fact, we observe a strong impact on the performance of the Skylake server at around 
500000 nodes. This is exactly when the node grid gets too big for the L2-cache, which has a serious impact on 
performance. 

Figure 2: A neuronal circuit for non-local information processing. (a) Wave patterns are formed by symmetrical 
interaction of neighbours. The internal and external stimuli are copied, statistically processed, compared to 
existing information, and integrated. As a consequence, the entered information is distributed over the whole 
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model, which makes it available at any column after a distinct time period. Red stars indicate external input, 
while blue stars indicate internal input. The pictures were made at 20, 50, 100, 150and 250 ms after stimulus 
onset. Processing of information is time dependent. Hence, the information spreads over the whole model 
founding the basis for an experienced presence (here ~200 ms). Fully integrated information can be depicted 
from each location. The information can be coded in harmonics and phase by means of the complex interference 
pattern. With an FFT, the input information can be decoded. The frequency coding is dependent on sampling 
rate, wave speed and wavelength. This results in an input/ output system of a simulated brain slice exemplified 
as a wave interference model with emergent world and self-representation properties. Input from the external 
world coded in frequency and phase is integrated into an emergent system that consists of unified processing 
units. The overall model is a live processing system. In a living system there is permanent feedback to actions 
caused by drives, instincts etc. by input from the external world. An internal representation of self and outside 
world results44. (b) Decoding: Fast Fourier transform-analysis (FFT) of the neuronal circuit. The example shows 
how, at any place of the simulation, for instance in the multi-electrode array position 3 (MEA3) decoding can be 
efficiently done. The decoding shown is an electrode signal of 12 input frequencies (blue) and generated 
overtones (green) that appear when periodic spike input is applied. Red crosses indicate noise. Only one 
electrode is presented. (c) The holographic brain circuit allows processing calculations, high discrimination and 
signal resolution (compare eq. 1 and Fig. 1b). The 4 neighbours (N1, N2, N3, N4), transfer their energy to a 
representative neuron of a central processing unit. The currently calculated activation of the central processing 
unit (activation1) is comparing its own energy level to that of each neighbouring activation, means the 
activation1 is subtracted from each activation N1-4 (red lines). The subtraction is mediated by inhibition on 
axonal level. This results in act2, act3, act4 and act5. Together they are integrated as slope_vector and added to 
the former slope_old old value of a representative integrating neuron. The energy level of slope_old is transferred 
and integrated into the former activation level of activation0. From there on activation1 is updated and 
activation0 itself contributes to the update of energy level of its neighbours. Via different types of ion channels 
mediating phasic (synaptic), tonic (cell body inhibition, or axodendritic inhibition) the signal transfer within the 
neuronal circuit can be influenced. The coupling factors neighbour_integration (NI_slopev) determine the extent 
of calculated slopev, whereas slopeo_damping and damping determine the extent of updated slope_old and 
activation0 (details in supplement). 

Figure 3: Model validation by EEG data. (a) reproduction of EEG asleep state (slow wave activity, top); and 
waking state (below). References showing highly similar experimental data are given for each subpanel. Top 
shows increased amplitude while the bottom signal shows a higher frequency. A low pass filter and can be used 
to model the slow wave state (decrease of NI_slopev to 0.1), as well as a slight decrease of the carrier frequency 
(0-13Hz) and slopeo_damping (1.0E-3), as well as damping (1.0E-5). Transfer to waking (freely behaving) urges 
increase of NI_slopev to 2.6655 along with slight increase of slopeo_damping (1.0E-2), damping (1.0E-4), and 
carrier (0-23Hz). The size distribution of positive peaks reproduces MEA peak distribution in (b) freely behaving 
(sleep and waking) and (c) anesthetized state. Freely behaving state: lognormal distribution. Observation data: 
Ribeiro et al.21. A power law distribution fits better for anesthesized rats (damping and slopeo_damping is 
increased to 0.001 and 0.1, whereas NI_slopev stays at 2.6655). (d) Systematic analysis of overtones generated 
by the simulation. The cortical architecture of the brain (rodent hippocampus) can produce similar non-local 
overtones22 from short pulsed peak input, sinusoid input decreases these (compare to data in Laxpati et al.22, 
Figure 7). (e) Wave speed increases linearly with maximum frequency in the model. Via the NI energy transfer 
the maximum frequency is adjusted. The speed at which the wave hills travel decreases linear with decrease of 
the energy transfer (NI_slopev). With decrease of NI_slopev the maximum frequency that can be generated and 
decoded is decreasing linearly. Typically, due to the overtone generation the maximum frequency is limited by 
the highest overtone. Close to 500 Hz and an NI_slopev of >2.6, the speed of the simulated waves converges to 
0.5 m/s. A wave speed of cortical waves of  80-107 mm/s at a frequency of ~7 hz is determined by Lubenov and 
Siapas (Figure 4)18 in the hippocampus. Furthermore, a linear relationship between wave speed and frequency is 
described by Zhang and Jacobs 2015 (Figure 4)19.    

Figure 4: Properties of non-local processing of stimuli in a holographic brain model. (a) Efficient resolution of 
28 different stimuli as complex model input. The input is coded in prime numbers as waves lasting from 5 to 
239 ms. The corresponding frequencies are 5 - 250 Hz. 28 out of 29 input signals and 45 overtones could be 
decoded. For comparison, the undetected frequency is in the non-coding space (<7 hz). (b) Scalability of model-
size: similar wave separation power. A 20x20 matrix, as well as a150x150 matrix is equally resolving 12 peak 
stimuli (13, 17, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61 Hz) without generating artificial frequencies. The matched 
frequencies, overtones, and artificial frequencies are investigated. The x-axis represents the diameter of 
processing units. The left y-axis corresponds to the number of detected artificial signals and overtones. The right 
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y-axis represents the number of input frequencies. (c) Self-organizing baseline activity of the simulation mimic 
observations. This is generated by applying solely spontaneous activity of 100 mV and 0.01% of activated 
processing units each time step in waking state. (d) Spontaneous activity and coherence of human brain 
mirrored. MEA coherence measurement of spontaneous activity (0.01% activated cells firing with 100 mV) in 
absence of stimuli. The stimulating signal lasts 10 seconds. The distance of the MEA electrodes is 0.5 (MEA1-2), 
2 (MEA1-2), 4 (MEA1-3), 8 (MEA1-4), 16 (MEA1-5), 32 mm (MEA6). (e) Avalanche distribution and criticality 
correspond to the human brain. The size distribution of positive peaks in the EEG signal is analyzed according to 
the number of neighbours building a directly connected processing unit (k value). Parameters are the same as in 
Figure 3a (waking), but the number of neighbours is altered. (f) Influence of lesion occurring during Alzheimer’s 
disease on information processing. Axis and parameters are similar to Fig. 4b, except the model size is fixed 
(150x150 processing units) and the x-axis represents the ratio of lesions. (g) Low correlation such as in 
Schizophrenia decreases information content and input separation. Axis and parameters are as in 4f. The 
correlation of columns is altered, as indicated by the x-axis. (h) Beta band decline in schizophrenia. The self-
organizing beta band following a stimulus superimposed on a carrier is shown for healthy (left) subjects and 
Schizophrenic subjects (middle). (right) is the delta of (left) and (middle). The parameters are the same as in 3a 
(waking), whereas the carrier is fixed to 10 Hz and the stimulus to 430 Hz. Th burst length is 30 ms. Here (middle), 
the correlation of information transfer decreased. The color bar indicates activity in µV. 
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Methods (online only; 2995 words) 

Our model predicts the emergence of higher neuronal functions from DNA encoded wiring of networks 

(level 1) and then suitable neuronal circuits (level 2) such that non-local processing of information 

results, allowing on level 3 the emergence of neuronal circuits and the neuronal transport equation 

(eq. 1 in results). 

Molecular Networks (level 1): (i) Storage of internal information in the form of genes as well as all 

higher levels of information storage are central to life: A master equation (eq. S1)46,47 is introduced to 

calculate increase and decrease of different DNA species or higher levels of information storage in 

more complex organisms. (ii) Higher levels of information storage also allow for neurons, brains, and 

learning. Only with this higher neuronal level arises an organism-specific “meaning” in the form of 

adaptive behaviour and understanding of the environment (with multiple and ever more opportunities 

to identify the meaning of all and everything in the best way to improve survival).  

Cellular model (level 2): BDNF network. The model presented in Fig. 1b and in detail in Fig. S1a 

(Topology) and Table S1 (all nodes, interactions, references) were assembled starting from the KEGG 

pathway “ko04722 Neurotrophin signaling pathway”48,49 and editing it further. This pathway presents 

the direct activation mechanisms of the neurotrophins NGF, BDNF, NT3, and NT4 and the subsequent 

activation of the intracellular signalling cascades including the MAPK, PI-3, kinase and PLC pathway. 

The activation of these cascades results in functions like axonal growth, cell migration, cell survival, 

cellular differentiation, and plasticity among others (Fig. S1b). 

Neurobiological Model - Holographic non-local circuit (Netlogosimulation) 

For the purpose of setting up a brain slide simulation, Netlogo 6.0.4, a multi-agent programmable 

environment, is used9. This is a combined approach of programming environmental and visual 

representation, as well as graphical modulation. The program is available at 

https://www.biozentrum.uni-wuerzburg.de/bioinfo/computing/neuro, further simulation details are 

explained in the supplement. 

The simulation models a cortex area of 60 mm in diameter. The input is coming from a lower brain 

centre, like the thalamus, which is implemented by a carrier signal. In this model, the input entering 

the cortex area distributes over the cortex area composed of neuronal columns-like integrating units. 

The information between the units is processed according to the non-local information processing 

hypothesis. This means the information decoded in frequency and amplitude, reaching the cortex is 

shared between all neurons in a wave-pattern like manner. As every unit is processing the information 
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and forwarding it to its neighbours in a similar way, according to the unified neocortical column 

model50, the graphical representation appears wave-like. In consequence, information can be depicted 

for every unit of the model. As the wave-like distribution of the information can explain the appearance 

of the wave-pattern measured by EEG-electrodes and MEA-electrodes, the output is captured by 

simulating MEA-electrodes and EEG-electrodes. The summation of a local population of neurons 

measured by an MEA-electrode is similar to a local-field potential21,51-53. According to the EEG-

electrodes, the signal is composed of an approximated number of around 1300 columns considering 

an EEG-electrode radius of around 10 mm54,55 and a neocortical column diameter of 0.5 mm. The 

interelectrode distance of the MEA is dynamically adjusted to the model size and is 10 mm for this 

study if not stated differently. Further, the signal, which is measured by each electrode of the MEA, is 

likely to examine the activation level of a single activity of one neocortical column (diameter = 0.5 mm). 

The signals measured by the electrodes are displayed in 12 plots, 6 MEA-plots and 6 EEG-plots, plotting 

time against activation level. The activation levels are stated in µV for the MEA and for the EEG. 

Moreover, the model represents a cortex area of 14 400 neocortical columns. Due to the hypothesis 

that neocortical columns consist of units of around 10 000 neurons50,56-58, the model would come up to 

144 000 000 neurons. This is close to the number of columns approximated for the visual cortex of 20 

000 columns and the somatosensory cortex of 5 000 columns, with respect to their size of 77 mm and 

24 mm in diameter59,60. Since the integration of several inputs is creating a complex interference 

pattern, the information storage capacity of frequency and amplitude is analysed with a fast-fourier 

transform and a peak-distribution approach described by Ribeiro21. The analysed bandwidth is 0–500 

Hz. The analysis is made by Matlab 8.2.0.701, a high-level interpreted language, primarily intended for 

numerical computations (MathWorks, http://www.mathworks.de/products/matlab/). 

The power of the model is dependent on, e.g., the size of the model, the frequency restrictions 

(bandwidth), the number of interacting neighbours, the energy transfer between the neighbours, the 

influence of inhibitory neurons, the damping, the properties of the margin and the intensity and 

synchrony of input. Our simulation of non-local information processing can be extended by several 

modification possibilities. The simulation can be modified by alternating the strength of the signal input 

and of the carrier signal. In order to investigate the influence of synchrony, the number and strength 

of neurons activated in the input region can be varied. Further, the coordinates of the input region are 

variable and can be synchronized. The frequency of the input signal can be individually adapted for 

each of >=21 signals. In addition, the signal strength of each input can be modulated individually. The 

information transfer is dependent on the margin damping, the general influence of slope of energy 

transfer, and the individual influence on the slope of energy transfer of neighbouring columns. There 

is also a wave direction approach included that enables the user to modulate the energy transfer 

towards favoured traveling direction of the wave front. As spontaneous activity is described as a distinct 
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feature of the telencephalon61, it can be activated and adjusted in ratio and activation strength. 

Furthermore, the simulation of Alzheimer’s disease and Schizophrenia are added to the model. 

The simulation parallels electrophysiological phenomena, e.g., coherence decline, self-organized 

baseline formation, overtones, slow wave and waking signals, avalanche distribution in freely behaving 

and anesthesia state, wave speed behavior, self-organized theta band and beta band formation when 

a stimulus is applied, avalanche distribution in face of connectivity, information loss during A.D. and 

Schizophrenia and formation of artificial signals production in Schizophrenia, existence of spontaneous 

activity and cortical size influence. 

Further, paralleling all those electrophysiological phenomena vice versa leads to the discrimination, 

resolution, adjustment, decoding, and determination of biologically relevant parameters that underlie 

brain states and cortical processing (compare Figure 2c). 

On top of this, the simulation offers the possibility to extrapolate by tuning the parameters at levels 

that would be physiologically either devastating or simply not reachable in nature. Doing this, allows 

furthermore detailed comparison to physical systems, such as different holographic processes, for 

instance, holograms and holographic storage of image information. Additionally, brain physiology is 

here turned in to a mathematical formalism (eq. 1) and made comparable in a semantic way to other 

systems treated similarly.  The simulation may even suggest a foundation for other critical equations, 

due to emergence, e.g. sinus-like waves with operating frequency bandwidth originating out of chaos 

for any type of non-local information processing (Fig. 4c; S3, S4). 

All results presented are closely paralleled by existing experimental studies, as cited evaluating cortical 

phenomena. 

 

Mathematical description 

The non-local information processing hypothesis suggests initial uniformity in processing and 

morphology of each unit. The information entering the processing system is distributed system-wide. 

The processing of the model is discrete in time. The energy change of each time step of each unit is 

determined by estimating a slope (slope_vector) from the difference of the averaged present energy 

level of the neighbours (activation1(N1-4)) and its own present activity (activation1). The slope_vector 

is than added to the slope_old of the processing unit under consideration to update the current state 

of the slope. The updated state of the slope is added to the activation1 to generate the current energy 

level (activation0). This represents an integration process with 3 levels of processing of information. 

The first step is a spatial derivation is calculated with no temporal history. In the second step the value 

of spatial derivation is integrated by adding the derivation to the history of derivation (temporal 
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integration). In the third step the updated history of slope is added to the history of energy level in 

order to determine the current energy state (second temporal integration). The derivation of 

activation0 is a temporal derivation and results in a time dependent function. The second derivation 

of activation0 is again a temporal derivation but results in a space-dependent function (all parameters 

shown in the microcircuit in Fig. 2c). 

Neighbour_integration (NI_slopev) modulates the energy transfer of neighbouring neurons and in this 

way the extent of energy update by the slope_vector. NI_slopev operates like a low pass filter, whereas 

damping reduces the energy level, thus reducing propagation of oscillations. Slopeo_damping is not 

impairing propagation, but the duration of resonance oscillations of the system (normal mode or 

eigenschwingung). Besides those symmetrical calculations, modulation of ratio_neighbour_activation 

and ratio_inhibition_activation1 enable alternating influence of the inhibitory dendritic subtraction 

and the excitatory influence of the neighbours (Fig. 2c). Increasing the GABAergic influence induced 

fast gamma waves (Fig. S4 and 62-65), whereas increasing excitatory, uncorrelated or integratory 

influence leads to system collapse (Fig. S4, S5 and 66-68). Marginextradamping implements an extra 

damping for the margin to inhibit wave reflection at a sharp non-processing border. 

Each step of processing can be related to its own biological meaning and modulated in many ways, such 

as integration steps are mediated by excitatory neurons and derivation is set up by a combination of 

excitatory and inhibitory neurons. Damping of slope_old or activation0 is a damping of the cell bodies 

and thereby showing similarities to tonic inhibition69 (Fig. 2c). The calculation of the slope_vector is 

rather regulated by an excitatory-inhibitory balance mediated by axodendritic inhibition, potentially 

near synaptic, and/or indeed synaptic phasic inhibition70-72. 

Schizophrenia simulation is implemented by introducing uncorrelated synaptic information transfer at 

the 3 different steps of information processing shown in Figure 2c. The transmission of the 

slope_vector, slope_old, or activation0/1 can be deregulated randomly at various ratios, causing 

dissociation and beta band decline (see Fig. 4g&h). The Alzheimer model is set up by generating 

randomly no functional units called lesions in the model. The lesions can grow in size. The lesions can 

decrease or impair information distribution over the entire model which decreases information content 

(see Fig. 4f). 

The main algorithm processing the information each time step for each unit can be described 

mathematically. Assuming 8 neighbours with activation levels (activation1(N1-8)), activation of unit in 

focus (activation1/activation0), slope_old, slope_vector, activation3, activation4, 

neighbour_integration (NI_slopev), slopeo_damping, damping, ratio_neighbour_activation, 

ratio_inhibition_activation1 and marginextradamping. 

Main algorithm: 
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1. activation3 =  (activation1(N1)+activation1(N2)+acttivation1(N3)+activation1(N4))/4 

2. activation4 = (activation1(N5)+activation1(N6)+acttivation1(N7)+activation1(N8))/4 

3. slope3 = activation3 – activation1  

4. slope4 = activation4 – activation1 

5. slope_vector = (slope3 + slope4)/2 

6. slope_old = slope_old + slope_vector 

7. activation0 = activation1 + slope_old 

8. activation_change: within the main algorithm activation1 is the present energy level.  

Modulation outside of the main loop is done on activation0. It is important to differ between those 

equal variables, as the processing units are queried several times within a processing step. 

 

The main algorithm is resulting in eq. 1. 

Equation 1 (modulation see supplement): 

i = time steps 

k = number of neighbours neighbours 

𝑠𝑙𝑜𝑝𝑒_𝑣𝑒𝑐𝑡𝑜𝑟(𝑖) =
G (𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛0<(𝑖) − 𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛0(𝑖))

C
<DE

𝑘
 

𝑠𝑙𝑜𝑝𝑒_𝑜𝑙𝑑(𝑖 + 1) = 𝑠𝑙𝑜𝑝𝑒_𝑜𝑙𝑑(𝑖) + slope_vector(𝑖) 

𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛0(𝑖 + 1) = 𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛0(𝑖) + 𝑠𝑙𝑜𝑝𝑒_𝑜𝑙𝑑(𝑖 + 1) 

𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛0(𝑖 + 1) = activation0(i) + 𝑠𝑙𝑜𝑝𝑒_𝑜𝑙𝑑(𝑖) +;(𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛0<(𝑖) − 𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛0(𝑖))/𝑘
C

<DE

 

 

Specific parameters of our simulations as shown in the figures: 

Fig. 2b: Continuous peak input frequencies are 13, 17, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61 Hz. Further 

parameters are set as follows:  NI_slopev = 1.2, slopeo_damping = 0.01, damping = 0.0001, 

marginextradamping = 2, inputstrength = 120 mV and simulation length = 3000 ms.  
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Fig. 3a: EEG signal: 21 sine-like stimuli of 400-500 Hz with 800mV amplitude and a random onset of 

bursts (average 250 ms) of 50 ms length are applied. 20% of stimuli were superimposed on a carrier of 

0-30 Hz with 2400 mV strength. The input of slow wave state and waking state are alike despite an 

increase of NI_slopev from 0.1 to 2.6655 accompanied by a slight increase of slopeo_damping (1.0E-

5à1.0E-4) and damping (1.0E-3à1.0E-2) decreases the amplitudes of waves and facilitates gamma 

oscillations. Raising the carrier frequency from 0-13 Hz to 0-23 Hz favours the usage of the resonance 

frequency (compare baseline in Fig. 4c and S3). In slow wave state low carrier frequencies enhance the 

effect of amplitude increase. The decrease of NI_slopev functions like a low pass filter. The EEG 

electrode radius is 10 mm. 

Fig. 3b&c: Positive peak distribution of the MEA signals for slow wave state and waking state are 

indicated in Fig. 4b. Parameters are as described in Fig. 3a. Turning from waking state to anesthesia 

urges an increase of slopeo_damping (1.0E-2 à 1.0E-1) and damping (1.0E-4 à 1.0E-3). The NI_slopev 

is similar to waking.  

Fig. 3d: Generation of overtones uses 7 Hz continuous peak input, a NI_slopev of 2.6655, 

slopeo_damping of 0.01, damping of 0.0001, marginextradamping of 2, inputstrength of 800 mV and 

a simulation length of 3000 ms. Measurements were done on LFP signals, simply generated by a small 

EEG electrode size (radius = 1 mm). 

Fig. 3e: Wave speed estimate by 7 Hz continuous peak frequency. Overtones were generated which 

enabled the detection of maximum frequency that the simulation processed. The speed of the wave 

hills were altered in 7 steps (NI_slopev = 0.01, NI_slopev = 0.2, NI_slopev = 0.5, NI_slopev = 1.2, 

NI_slopev = 2.0, NI_slopev = 2.5 and NI_slopev = 2.6655) resulting in wave speeds of 0.03, 0.13, 0.22, 

0.34, 0.45, 0.49 and 0.53 m/s. Other parameters were set as follows: slopeo_damping of 0.01, damping 

of 0.0001, marginextradamping of 2, inputstrength of 800 mV and a simulation length of 3000 ms. 

Fig. 4a: Parameters for estimating a potential encoding >50 bit: 29 continuous peak prime inputs of 5-

239 hz, NI_slopev = 2.6655, slope_damping = 0.01, damping = 0.0001, marginextradamping = 2, signal 

length = 3000 ms. Analysis was executed on MEA signals. 

Fig. 4b: For performance estimate of model size 12 continuous peak prime stimuli were applied (13, 

17, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61 Hz). Matched frequencies, overtones and noise (artificial 

frequencies) were investigated. X-axis: model size in number of processing units (each 0.5 mm). Y-axis: 

matched input frequencies as number of detected overtones and noise. Further parameters: NI_slopev 

=  2.6655, slopeo_damping = 0.01. damping = 0.0001, marginextradamping = 2.0 and signal length = 

3000 ms. Analysis was executed on MEA signals. 
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Fig. 4c: Baseline is generated applying solely spontaneous activity of 100 mV and 0.01% of activated 

processing units each time step. Further parameters are as follows: NI_slopev =  2.6655, 

slopeo_damping = 0.01. damping = 0.0001, marginextradamping = 2.0 and signal length = 10000 ms. 

Here, the EEG signals was analysized (diameter = 2 cm). 

Fig. 4d: Spontaneous activity and coherence of the human brain mirrored. MEA coherence 

measurement of spontaneous activity (0.01% activated cells firing with 100 mV). The signal length is 

10000 ms. The NI_slopev is 2.6655, slopeo_damping is 0.01, the damping is 0.0001 and 

marginextradamping is 2.0. The distance of the MEA electrodes is 0.5 (MEA1-2), 2 (MEA1-2), 4 (MEA1-

3), 8 (MEA1-4), 16 (MEA1-5), 32 mm (MEA6). 

Fig. 4e: Size distribution of positive peaks in the EEG signal (2 cm in diameter) is analyzed according to 

the number of neighbours building a directly connected processing units (k value). Parameters are the 

same as in Figure 4d, but the number of neighbours is altered as indicated in the figure legend. 

Fig. 4f&g: The Alzheimer’s Disease and Schizophrenia simulation utilize the same starting parameter 

space, as described in Fig. 4b. In difference, in A.D. the x-axis shows the alternating ratio of lesion and 

in Schizophrenia the x-axis shows the variable ratio of uncorrelated processing. The analysis was 

executed on MEA signals. 

For beta band decline analysis in Schizophrenia the input was of sinus wave type. Information is 

transmitted in bursts of, e.g., 50 ms. The information is superimposed on a carrier or reference signal 

and the information is coded in high frequency space (>400 HZ). The information and the reference 

beam can be complex (several different frequencies etc.). The signal is strong projecting on the 

spontaneous activity, a theta band and beta band will self-organize (Figure 4h(left)). Downsizing of the 

different derivation and integration steps (decorrelation) to random values between 1 and 0.8 in 99% 

of the columns regarding uncorrelated4_slopeo, uncorrelated1, and uncorrelated_input, as well as 

12.5% of the columns referring uncorrelated3_slopev results in the beta band decline (Figure 

4h(middle)). In Figure 4h(right) the delta is shown. Further parameters: NI_slopev = 2.6655, 

slopeo_damping = 0.01. damping = 0.0001, marginextradamping = 2.0 and signal length = 10000 ms. 

The EEG signals were analysed using a radius of 1 cm.  

For generating ripples, parameters are as in the Schizophrenia simulation, and the carrier frequency is 

increased to 31 Hz (Fig. S8). 

In vitro field recordings of murine hippocampal slices. Data from73 are analyzed comparing carbachol 

induced gamma oscillations in wt mice and a constitutively active form of the erythropoietin receptor 

in GABAergic neurons (VEPOR+/+)73. Field oscillations were induced with 20 μM carbachol (Sigma–
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Aldrich) in transverse 400 μm hippocampal slices from male mice (27–33 day-old), protocols in74. 

Extracellular recordings were performed in the stratum radiatum of CA3 at 33°C in a Haas-Top 

interface chamber, using a MultiClamp 700B amplifier. Data were sampled at 10 kHz using an Axon 

Instruments Digitizer 1440A with pClamp 10 software (Molecular Devices, Sunnyvale, CA, USA). The 

analysis was equivalent to Fig. 3b,c for baseline activity prior to carbachol application and for 0-15, 15-

30, 30-45, and 45-60 min time segments after carbachol application. Results are displayed in Fig S9a 

(wt) and S9b (VEPOR+/+)73.  

Parameters as in Fig. 4h and Fig. S8 demonstrate the effect of undersampling (Fig. S10). The stimulus 

onset was random. 21 different stimuli per second using an information bandwidth of >400 Hz were 

superimposed on carrier waves ~5 Hz. The location of onset was also random. The signal was smoothed 

in frequency space with a running average using a window size of 120 datapoints. The signal length 

was 8000 ms. 
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