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Machine-learning driven global optimization of surface
adsorbate geometries
Hyunwook Jung 1, Lena Sauerland1, Sina Stocker1, Karsten Reuter1 and Johannes T. Margraf 1✉

The adsorption energies of molecular adsorbates on catalyst surfaces are key descriptors in computational catalysis research. For
the relatively large reaction intermediates frequently encountered, e.g., in syngas conversion, a multitude of possible binding motifs
leads to complex potential energy surfaces (PES), however. This implies that finding the optimal structure is a difficult global
optimization problem, which leads to significant uncertainty about the stability of many intermediates. To tackle this issue, we
present a global optimization protocol for surface adsorbate geometries which trains a surrogate machine learning potential on-
the-fly. The approach is applicable to arbitrary surface models and adsorbates and minimizes both human intervention and the
number of required DFT calculations by iteratively updating the training set with configurations explored by the algorithm. We
demonstrate the efficiency of this approach for a diverse set of adsorbates on the Rh(111) and (211) surfaces.
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INTRODUCTION
The adsorption energies of key reactants are the most commonly
used descriptors for the activity of heterogeneous catalysts, and
thus play an important role in understanding and designing
catalysts1,2. In the case of small adsorbates (OHx, CHx, NHx) and
ideal metal surfaces, adsorption energies are relatively straightfor-
ward to calculate with first-principles methods. In this case, the
adsorbates feature simple monodentate binding motives and the
number of symmetry inequivalent surface sites on low-index
crystalline facets is small. Indeed, one can even benefit from
simple linear scaling relations to estimate adsorption energies
across different surfaces3.
The situation is different when larger reactants are involved in

the process. A prime example of this is synthesis gas (syngas)
conversion, which is an important industrial process that can be
used to produce valuable chemicals and fuels such as ethanol and
higher hydrocarbons. Here, the reaction network features a wide
range of differently sized intermediates4–7. Understanding the
selectivity of syngas conversion on a given catalyst therefore
inevitably requires at least an approximate notion of the
adsorption energies of these larger molecules.
The main problem with this is that there are typically many local

minima on the adsorbate binding energy surface for larger
adsorbates. This is due to the fact that the possible binding
motives on a catalyst surface are numerous in this case, including
multidentate geometries. Furthermore, the adsorbates may dis-
play significant internal flexibility, so that the convergence of a
local geometry optimization will strongly depend on the details of
the initial geometry used to set up the calculation. These issues
are exacerbated when working with nontrivial surface models
(e.g., high-index, defected or amorphous surfaces). In combina-
tion, these factors presently hinder the robust and reproducible
prediction of the adsorption energies of large, flexible molecules
on catalyst surfaces.
The most common way of addressing this issue is so-called

“brute-intuition”8. This basically means constructing a number of
reasonable starting geometries by hand and carrying out local
relaxation for each in order to find the most stable adsorbate

geometry. However, this approach is clearly biased by the intuition
of the user. To avoid this, a full “brute-force” search can be
performed, which amounts to the high-throughput screening of
all viable candidate geometries9,10. This requires an unbiased and
efficient strategy for enumerating the viable candidates, e.g., via a
graph-based approach (as in CatKit)11 or by sampling in internal
coordinate ranges (as in DockOnSurf)12. Unfortunately, the brute-
force strategy quickly becomes computationally prohibitive due to
the large number of candidates that are typically obtained.
Furthermore, both CatKit and DockOnSurf still require the
definition of molecular conformers, surface binding sites and
anchor-points on the molecule, all of which are themselves
potential sources of bias.
Ultimately, these issues are common to all global optimization

problems. We can therefore draw from the wealth of algorithms
developed for this purpose, such as simulated annealing13, basin
hopping14 or minima hopping (MH)15. These approaches can in
principle be used to perform an unbiased search of the potential
energy surface (PES) without enumerating candidates, but they
are typically prohibitively expensive in conjunction with first-
principles methods like density functional theory (DFT). To
overcome this, semiempirical methods or empirical potentials
have been used5,8,16, but their availability and quality across the
periodic table is often lacking, particularly for the description of
molecule/surface interactions. This makes the use of global
optimization algorithms like MH still rather uncommon in
computational catalysis research.
With the development of machine learning (ML) techniques

over the past decades, there is promise that the computational
bottleneck towards the unbiased search for ground-state adsor-
bate geometries can be overcome with a data-driven approach.
Specifically, ML surrogate models can replace DFT calculations
with orders of magnitude lower computational cost. Importantly,
this can be achieved with little sacrifice of accuracy, provided that
the training configurations are sufficiently representative of the
PES. Indeed, there are already ML models which accurately predict
adsorption energies, mostly focusing on simple adsorbates on
different surface models11,17–19. Recently, these efforts have been
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expanded toward larger adsorbates with promising results4,20–22,
though these approaches still rely on a static representation of the
adsorbate/surface systems and avoid a full global optimization of
the geometric structure. Since ML surrogate models have already
shown great potential in local23–28 and global29–38 geometry
optimization problems, we herein want to expand this approach
to obtain an efficient and universal algorithm for finding the
global minimum geometries of adsorbate/surface systems.
Specifically, we present an active learning workflow based on

Gaussian Approximation Potentials (GAP)39, which constructs its
own training set on-the-fly during constrained MH simulations. Only
a small number of single-point DFT calculations are used for training,
while the GAP PES is used to thoroughly explore the configuration
space, yielding a diverse set of promising candidates. These can be
further refined with local DFT relaxations. Importantly, the necessary
hyperparameters of the ML model are automatically determined by
robust heuristics, leading to a method with high data-efficiency and
requiring minimal human intervention.

RESULTS
Global optimization workflow
The idea of iteratively generating training data for ML potentials
goes back at least to the work of Behler and Parinello40. De Vita
and coworkers subsequently showed that, in the context of

molecular dynamics simulations, training sets can actually be
constructed completely on-the-fly, using Gaussian Process models
with uncertainty estimation41. This concept was recently further
developed by Bokdam and co-workers42 and Kozinsky43,44 and co-
workers. For the task of exploring adsorbate binding motives on
catalyst surfaces, plain molecular dynamics (MD) simulations are
typically insufficient, however, as they easily get trapped in local
basins. Furthermore, an uncertainty-driven training scheme would
likely overemphasize high energy configurations at the expense of
local and global minima.
The global optimization protocol presented herein follows a

similar philosophy as the GAP-driven random structure search
(RSS) proposed by Deringer, Pickard and Csányi45 in two aspects.
First, it requires no assumptions about the adsorbate geometry or
site a priori. Secondly, the global structure search and GAP fitting
are performed simultaneously, since a pool of candidate structures
is iteratively generated by MH and used to select new training
samples. Nonetheless, the specific setting of searching for surface-
adsorbate geometries requires a specialized workflow, since RSS is
ill-suited for maintaining the molecular identity of the adsorbates.
The full protocol is composed of three parts. In the first part,

iterative GAP fitting is performed, using a series of MH searches to
generate new training samples. Once this training process is
converged, an extensive MH production run is performed, using
parallel simulations that contribute to a shared pool of minima.
From this pool, a diverse set of promising structures is selected,
using Kernel Principal Component Analysis (PCA) and k-means
clustering. These structures are subsequently locally relaxed at the
DFT level. The full workflow is illustrated in Fig. 1 and the
individual steps will be described in detail in the following.

Iterative training. The workflow is initiated by providing a SMILES
string46 representing the adsorbate and the relaxed geometry of the
clean surface as input. A rough gas-phase geometry of the
adsorbate is obtained using the Merck Molecular Force Field
(MMFF)47 as implemented in RDkit48. It should be noted that
empirical force fields like MMFF are not well suited for describing
(poly-)radical adsorbates that frequently occur in heterogeneous
catalysis. Nevertheless, the obtained geometries are sufficient for our
purpose, as they avoid unphysical contacts, preserve the bonding
topology of the adsorbate and yield reasonable bond lengths, which
are in turn used for defining so-called Hookean constraints8. These
ensure that the molecular identity of the molecule of interest is
maintained throughout the simulation (see Methods section).
Additionally, the metal surface atoms are constrained for all GAP
simulations, whereas only the lower layers of the surface are
constrained in the final DFT relaxation (see Fig. 1b).
The initial geometry is then randomly placed onto the catalyst

surface and the energy and forces of the full system are
evaluated with DFT. This single configuration represents the
initial training set of the GAP. Not surprisingly, the quality of the
corresponding potential is low and results in rather unphysical
structures for the first MH run (see Fig. 2). While these structures
are therefore not very useful from a global optimization

Hookean

Fix 
2 Layers

Fix All 
Slab

(b)

Step (Nhop)

E

(c)

Initial Geometry

Fit GAP

Minima Hopping

DFT Validation 

Parallel 
Minima Hopping

Kernel PCA & 
K-means Clustering

DFT Relaxation

YES
NO

Sample 5 structuresUpdate 
Training set

GAP 
Converged?

Sample 10 minima

(a)

Fig. 1 Workflow overview. a Schematic diagram of the global
optimization workflow, with colors representing the use of different
geometric constraints. See text for the heuristics behind the
sampling of 5 structures involved in this workflow. b During minima
hopping, Hookean constraints are imposed on the adsorbate bonds
and the metal slab is fixed (blue). During DFT relaxations, only the
two bottom layers of the slab are fixed (orange). c Exemplary
trajectory of a minima hopping run, illustrating the sampling
strategy of selecting the global minimum and two random local
minima, as well as two random Molecular Dynamics snapshots.

Fig. 2 Putative global minimum configurations of CH3CHOH on Rh(111). At iteration 0 of the iterative training process (left); with the
converged GAP (center); final minimum structure after DFT relaxation (right).
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perspective, they nevertheless help to substantially improve the
GAP, marking high energy regions of the PES. Note that
subsequent iterations begin with newly randomized initial
structures to further aid the MH runs in exploring as different
region of the PES as possible.
Based on these structures, a small number of DFT calculations

is performed. These serve the dual purpose of validating the
quality of the GAP model and generating new training data for
the next iteration. This leads to an important design choice for
the workflow, namely how to select which structures are added
to the training set. Our primary goal is to find the global
minimum geometry for a given combination of adsorbate and
surface. To this end, the GAP should provide accurate
geometries of all local minima and reliably rank their relative
stability. Clearly, minimum structures will thus form an important
part of the training set. However, training only on putative
minima would preclude any infomation about energetic barriers
on the PES and potentially lead to numerical instabilities during
the MD runs required for MH (see Fig. 1c).
To obtain a robust data selection procedure, several options

were considered (assuming a fixed budget of five DFT
calculations per iteration). As a baseline, five random systems
were drawn from all configurations generated by a MH run. This
scheme is termed full random in the following. Since there are
typically many more MD snapshots than relaxed geometries, full
random selection is intrinsically biased towards the former. To
overcome this imbalance a stratified random approach was
tested, where two configurations each were randomly drawn
from the MD snapshots and local minima, while the global
minimum at each iteration was always added to the training set.
This stratification reflects the expected importance of the
respective configurations in the training set.
While random selection tends to be a strong baseline, many

active learning schemes use more sophisticated selection
criteria, e.g., based on estimated uncertainties43,44,49,50 or
farthest-point heuristics7,51,52. We therefore also tested selection
schemes using the Farthest Point Sampling (FPS) method51. In
analogy to the random approaches, these schemes are termed
full FPS and stratified FPS.
All four selection approaches were tested by performing

global searches for eighteen surface/adsorbate combinations
(see SI for details). This reveals that stratification is essential for
converging the energy and force errors on the minima in a
reasonable number of iterations (less than 30). Meanwhile, there
is only a small difference between FPS and random selection,
with the random schemes slightly outperforming FPS overall.
This is in line with previous reports that FPS tends to only be
beneficial when starting from reasonably large datasets, since its
focus on outliers can be problematic for very small training
sets7,51. Based on this comparison, we therefore use the
stratified random approach in the following.

Model convergence. In addition to providing training data for the
next GAP model, the DFT calculations are also used to estimate
the out-of-sample error of the current GAP. In principle, the
iterative training procedure can be considered as converged once
the predicted energies and forces for the minima are sufficiently
accurate (while the accuracy for the high temperature MD
structures is less important). However, due to the small number
of calculations performed at each iteration, the Root Mean Square
Deviation (RMSD) with respect to the DFT reference only provides
a noisy estimate of the true out-of-sample error. This is shown in
Fig. 3 for the specific case of CH2CO on Rh(211), where the RMSD
oscillates significantly across iterations. More importantly, the
RMSD can be very low for some iterations and subsequently spike,
meaning that it is not a robust measure of convergence.
To circumvent this issue, we use the Exponential Moving

Average (EMA) of the RMSD to estimate the convergence of the

training procedure:

EMAðiÞ ¼ ð1� αÞEMAði � 1Þ þ αRMSDðiÞ (1)

Here, the hyperparameter α determines how quickly the
weights of previous RMSDs decay in the average, with α= 1.0
recovering the current RMSD at each iteration i. As shown in Fig. 3,
the EMA displays a slower and smoother decay than the RMSD.
We use 0.3 for α throughout the workflow as it exhibits a
reasonable balance between providing a conservative error
estimate without unduly inflating the number of iterations. We
consider the GAP to be converged when the EMA falls below
8meV/atom for the energy and 0.15 eVÅ−1 for the forces. As
usual, these criteria are somewhat arbitrary and have been found
empirically to yield a good balance between data-efficiency and
accuracy for the systems investigated here.

Parallel minima hopping. Upon convergence, the training pro-
cess has already yielded an extensive set of putative minimum
structures. However, the quality of these structures is rather low
for the initial iterations. The converged GAP model is therefore
used in an additional extensive MH production run. To this end,
we use a parallel MH scheme where a number of independent MH
simulations are spawned and explore distinct regions of the PES
simultaneously, sharing the same history of visited minima8. This
avoids the danger of a single MH run spending a significant
amount of time trapped in a PES region far from the global
minimum due to high barriers53. Initial structures are diversified by
random rotations of the rigid molecule with respect to its center of

Fig. 3 Workflow convergence. GAP convergence trend of energy
(top) and force (bottom) root mean squared deviations (RMSD), for
the case of CH2CO on Rh(211). Shaded region corresponds to
RMSD(E) < 8 meV/atom and RMSD(F) < 0.15 eVÅ−1. RMSDs are
shown in red, and the exponential moving average (EMA) of the
RMSD is shown in blue.
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mass and random translations along the metal surface. Forty
parallel processes are executed.
Since the global minimum structure is generally not known a

priori, deciding when to terminate the parallel MH run is non-
trivial. In previous work, the temperature of the MD simulations
has been used as a stopping criterion, since the algorithm
increases the temperature by a certain factor whenever it revisits
known minima54. We also adopt this strategy herein, with each
process performing an independent simulation with its own
temperature and terminating when the temperature reaches
twice the initial temperature (i.e., 4000 K) or a maximum number
of iterations is exceeded (80). Note that convergence is strongly
accelerated in the parallel MH approach, as several processes
commonly fall into overlapping regions of the PES, rediscovering
minima previously found by a nearby walker.

Candidate selection and DFT refinement. The parallel MH produc-
tion run attempts an exhaustive exploration of the adsorbate
conformer and binding site space, which typically results in a large
ensemble of minimum adsorption structures. However, these are
minima on the GAP PES (and additionally subject to the Hookean
constraints on the adsorbate geometry), whereas our goal is to
ultimately obtain the unconstrained minima on the DFT PES. To
this end, a subset of the filtered minima (ten structures in the
current work) is further refined at the DFT level (using the Bayesian
Error Estimation Functional with a non-local van-der-Waals
correction (BEEF-vdW), see Methods section)55.
Naively, one could select the ten lowest energy structures from

the GAP ensemble, given that we are looking for the global
minimum. However, this turns out to be a poor sampling strategy,
because it often yields a set of minima with very similar
geometries. Furthermore, molecular dissociation is sometimes
observed during DFT relaxation, e.g., when the candidate structure
is only a minimum on the constrained PES or because of
inconsistencies between the GAP and DFT PES.
In light of these issues, it is helpful to investigate the structural

diversity within the candidate ensemble prior to selecting
configurations to refine. To this end, we map the structures from
the conformer ensemble into a 2D space using Kernel PCA, with
the averaged SOAP vector as a representation of each system (see
Fig. 4)56,57. This allows the visualization of how the candidate

structures are distributed in terms of their structural similarity. As
we are assuming a fixed computational budget of ten DFT
relaxations, we apply k-means clustering to partition the Kernel
PCA space into k= 10 distinct regions. Finally, the structure with
the lowest formation energy, Eform, (according to GAP) from each
cluster is selected as a representative candidate for DFT relaxation
(for the definition of Eform, see Methods section).

Application to molecular adsorbates on rhodium
To demonstrate the applicability of the proposed workflow in the
context of heterogeneous catalysis, we considered a set of
thirteen small to mid-sized adsorbates on Rh(111) and five on
Rh(211). These were previously studied in detail by Yang et al.5,
while investigating the selectivity of CO hydrogenation on Rh.
Importantly, these authors also used MH simulations to determine
putative global minima, using approximate energies and forces
from a custom density functional tight binding model (DFTB)
implemented in Hotbit58. This allows us to benchmark the
accuracy of the present workflow for a set of complex adsorbates.
To this end, the same computational settings as in Yang et al. are
used (see computational details).
The formation energies obtained from the present workflow are

compared to the ones of Yang et al. in Fig. 5. Here, the global
minima suggested by the proposed workflow mostly display
comparable or lower formation energies than the previously
reported ones, except in two cases where global minima from
Yang et al. are marginally lower lying. This indicates that both the
quality of the GAP potential and the MH search are sufficient to
predict useful starting points for DFT relaxation. The largest
difference was observed for CH3CHOH on Rh(211), where we find
a configuration that lies 0.26 eV lower in energy than the
previously reported global minimum. Clearly, such energy
differences can have significant implications in catalysis.
Given these discrepancies, it is instructive to explore the

differences between the new and previously reported structures
in more detail, as shown on the bottom of Fig. 5. This reveals that
in some cases, large energy differences can be attributed to
different adsorption sites, as for CHCO on Rh(211) and CH2CO on
Rh(111). In other cases, however, the decisive factor appears to be
the orientation and conformation of the adsorbate on the site, as

Fig. 4 Maps of adsorbate configurations. Kernel PCA representation of the adsorbate ensemble for CH3CHOH on Rh(211), highlighting the
clusters obtained via k-means and the respective lowest Eform structures in each group (top, left). Five of the selected geometries are shown in
the bottom frame. Kernel PCA representations colored by Eform (right).
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can be seen for CH3CHOH on Rh(211). Here, both configurations
are attached at equivalent sites but display different orientations.
The proposed GAP/MH workflow is potentially advantageous
compared to discrete graph-based algorithms in this situation,
since it simultaneously explores binding sites and molecular
conformations.
Notably, both the current workflow and the work of Yang et al.

combines MH on an approximate PES with local DFT relaxations.
Nonetheless, our workflow yields a more comprehensive set of
minima which consistently includes low lying minima and even
finds significantly more stable configurations in some cases. The
observed differences likely stem from the use of a DFTB model
(fitted to BEEF+vdW energies) for the MH search in ref. 5. Indeed,
the authors of ref. 5 report that the energetics of their DFTB model
are generally poor and therefore only use it as a structure
generator. However, the current results indicate that reasonable
agreement between the approximate PES used for MH and the
target PES is beneficial for reliably predicting low-energy
adsorbate geometries, even if the candidate structures are
ultimately refined with the target method.

Computational cost
To put the computational benefit of the current workflow into
perspective, we briefly discuss the timings for a representative
system (CH2CO on Rh(211), see SI). In terms of core-hours, the
dominating factors are the DFT single-point calculations used for
generating the training set (15%) and the final DFT relaxations
(81%), whereas the cost of fitting the GAP models and running the
MH simulations is overall almost negligible. Importantly, the cost

for single-point calculations depends on the complexity of the PES
and is thus somewhat system-dependent. In this context, CH2CO
on Rh(211) represents the worst-case scenario among the
adsorbates we studied, requiring 26 iterations to achieve
convergence. In contrast, simpler adsorbates like H2O and CH3

only required 15-16 iterations. Nevertheless, even for a complex
adsorbate like CH2CO, the full workflow is executed in less than
8000 core-hours (on a 40 core Intel Skylake 6148 node). Given that
the bulk of this time is taken up by the local DFT relaxations, our
workflow thus provides a full global optimization at a cost on the
order of a local optimization. For comparison, performing the full
parallel MH run at the DFT level would entail approximately the
155-fold cost.

DISCUSSION
In this manuscript, a global optimization workflow for surface
adsorbates was presented and tested on important reaction
intermediates for ethanol synthesis on Rh(111) and (211) surfaces.
The workflow is applicable to any kind of adsorbate-surface
system, since no assumption about surface sites or binding motifs
are made. To achieve high computational efficiency, a GAP
surrogate model is used to explore the potential energy surface.
Importantly, this model is iteratively trained during the MH
simulations, achieving high data-efficiency. Furthermore, the
fitting procedure is fully automated, requiring minimum human
intervention thanks to the use of robust heuristics for training set
and hyperparameter selection.

Fig. 5 Relaxed adsorbate configurations. (Upper panel) Comparison of global minima from ref. 5 (blue) and this work (red) for Rh(111) (left)
and Rh(211) (right). Faint red bars indicate additional local minima discovered by the present workflow. (Lower panel) Comparison of
adsorption structures of three example cases with the largest ΔEform compared to ref. 5, where ΔEform is the difference in formation energies
between the putative global minima from ref. 5 and the current work in eV.
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The current work is mainly motivated by surface catalysis, where
the formation energies of reaction intermediates are key
ingredients of microkinetic models. Here, the global minimum
configuration is of particular importance. The exploration of
different adsorbate binding motifs also has other applications,
however, e.g., for simulating spectroscopic properties of surface
adsorbates. In this case, competing conformations may have
different properties, so that good agreement with experiment can
only be obtained by using Boltzmann-weighted averages of the
individual spectra. In principle, the proposed method is also well
suited for these applications, with the caveat that obtaining
accurate conformer ensembles requires a greater number of DFT
relaxations. Further discussion on competing local minima is
included in the SI.
It should furthermore be noted that we have focused on the

low-coverage regime herein by considering single adsorbates in
supercells. Extension to larger coverage and/or multiple adsor-
bates is relatively straightforward. Since the cost of generating the
training data is one of the main contributions to the overall effort,
it would be desirable to further increase the data efficiency of the
models in the future. Here, the use of well-parameterized
baselines models is a promising route23,59. Finally, in order to be
universally applicable, this workflow builds the surrogate model
for each adsorbate from scratch. Clearly, reusing data and/or
models for different adsorbates would be more efficient in many
use cases. This is the subject of ongoing work.
As an alternative to the presented approach, it would in

principle also be possible to fit a single interatomic potential for all
adsorbates and surface types60. In our view, this would be
significantly more challenging, however. While the presented
method does not yield transferable interatomic potentials, the
algorithm itself is transferable to a wide range of adsorbates and
surface types. This means that we can easily generate bespoke
interatomic potentials for a limited but important task (con-
strained MH for a given surface/adsorbate combination) using a
small number of DFT reference calculations and no human
intervention. In practice this has several advantages: On one hand,
these interatomic potentials can directly be tested and validated
for the task at hand, so that extrapolative capabilities are not
required. On the other hand, we do not need to define the range
of adsorbates and surfaces that a transferable interatomic
potential should be applied to at the outset, in order to define a
training set with sufficient coverage. Indeed, reaction network
exploration is usually an iterative process and it is often unclear
which reaction intermediates are important for a given process61.
Overall, the robust and efficient global optimization workflow
presented herein is thus ideally suited for application to complex
processes in heterogeneous catalysis.

METHODS
Gaussian approximation potentials
Gaussian approximation potentials are ML-based interatomic
potentials that provide accurate representations of high-
dimensional PESs39. Since the GAP methodology has recently
been extensively reviewed62, we only provide a brief overview of
the aspects which are most pertinent to the current paper.
In this work, we use GAPs that contain a two-body term and a

many-body term based on the SOAP representation63. In order to
improve the stability of the potentials in the initial training
iterations (when very little data is available), an additional purely
repulsive two-body baseline potential is added, which prevents
unphysically close contacts between atoms and is zero otherwise
(see SI). Apart from these basic design choices, there are a number
of hyperparameters that need to be set in order to fit a GAP. These
pertain to the basis expansions used in the two- and many-body
representations, element dependent cutoff radii and switching

functions, regularization of the fit and the prior weightings of two-
and many-body terms.
Generally, the hyperparameters in ML models can simply be

optimized, e.g., with respect to the cross-validation error of the
potential. However, cross-validation and similar approaches
require a sufficiently large dataset, in order to obtain a robust
estimate of the generalization error. In the present work, we aim
to develop an active learning workflow which starts from scratch,
so that this is clearly not the case. We therefore use a mix of robust
defaults and simple heuristics to set and update the hyperpara-
meters, as detailed in the SI.
Briefly, physically motivated lengthscale parameters for the SOAP

representation are available for all elements and used without
modification57. Additionally, robust defaults are used for the
remaining hyperparameters necessary for defining the representa-
tions and kernels. This leaves a small number of system-dependent
hyperparameters, namely the regularization strength for energies
and forces (σE and σF) and the prior weights of the two and many-
body terms (δ2B and δMB). These are determined according to the
heuristics discussed in ref. 62, see SI for details.

Constrained minima hopping
Minima hopping is a global optimization algorithm, which has
been extensively applied to surface and bulk structure searching
problems15,53. The basic idea is to use short, high-temperature MD
runs to escape a given minimum on the PES, followed by local
relaxations into the next local minimum. Importantly, MH keeps
track of previously visited minima making it more efficient in
finding new structures. Moreover, the algorithm drives towards
lower energy structures by adaptively adjusting the temperature
and energy threshold parameters, which determine the intensity
of the hopping moves and the acceptance criteria for new
minima. For a detailed description, we refer readers to the original
minima hopping publication15.
In the context of adsobate optimization, a common problem

with MH is that the high temperature MD often leads to the
dissociation of the adsorbate. To address this issue, Peterson
proposed using so-called Hookean constraints on bond distances,
which add a harmonic energy penalty to the total energy when
covalent bonds in the adsorbate are stretched beyond a certain
length, thus preserving the molecular identity of the adsorbate8.
Throughout this work, a spring constant (k) of 20 eVÅ−2 is used.
The threshold distances were set individually for each bond, using
1.05 times the bond distance in the gas-phase molecular geometry
as optimized with the MMFF. In some cases the adsorbate
detaches and remains floating above the metal surface owing to
the high temperature in the MD. To avoid this, an additional
Hookean constraint can be imposed, which pushes the adsorbate
back towards the surface when it moves too far away from it.

Computational details
As representative catalytic surface models, surface slabs were
constructed from (3 × 3) Rhodium (Rh) surface supercells with a
thickness of four metal layers. Both the low-index (111) and
stepped (211) facets were used. Due to their relevance in catalysis
modeling, we report formation energies (Eform) with respect to
gas-phase H2O, CO, and H2:

Eform ¼ Eslabþmol � Eslab �
X

i2fC;H;Og
niεi (2)

where Eslab+mol is the energy of the combined surface and
adsorbate system, Eslab is the energy of the clean slab, εi is the gas-
phase reference atomic energy of element i, and ni denotes the
number of occurrences of element i in the adsorbate molecule.
All DFT calculations were carried out using the plane-wave

QuantumEspresso code64 with the BEEF-vdW functional55.
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Ultrasoft pseudopotentials were used for the description of core
electrons and a kinetic energy cutoff of 500 eV and a charge
density cutoff of 5000 eV were used. The Brilloun zone was
sampled via the Monkhorst-Pack scheme with a 4 × 4 × 1 grid. A
dipole correction was added to compensate spurious polarization
within periodic boundary conditions along z-axis. For DFT
geometry optimization, the Broyden–Fletcher–Goldfarb–Shanno
algorithm was used as implemented in the Atomic Simulation
Environment65.

DATA AVAILABILITY
All reported local/global minimum geometries are available on Figshare with the
identifier https://doi.org/10.6084/m9.figshare.23285156.

CODE AVAILABILITY
The code for the global optimization workflow is provided at https://
gitlab.mpcdf.mpg.de/hjung/gap_workflow_surface.
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