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Phonon polariton modes in layered anisotropic heterostructures are a key building block for modern nanopho-
tonic technologies. The light-matter interaction for evanescent excitation of such a multilayer system can be
theoretically described by a transfer-matrix formalism. This method allows us to compute the imaginary part
of the p-polarized reflection coefficient Im (rpp), whose resonant features are commonly used to evaluate the
polariton dispersion of the multilayer structure. This reflection coefficient, however, does not reveal how the
different layers contribute to these resonances. We present an approach to compute layer-resolved polariton
resonance intensity in arbitrarily anisotropic layered heterostructures, based on calculating the Poynting vector
extracted from the transfer-matrix formalism under evanescent light excitation. Our approach is independent of
the experimental excitation conditions, and it fulfills a strictly proved conservation law for the energy flux. As
a testing ground, we study two state-of-the-art nanophotonic multilayer systems, covering strong coupling and
tunable hyperbolic surface phonon polaritons in twisted MoO3 double layers. Providing a new level of insight
into the polaritonic response, our method holds great potential for understanding, optimizing, and predicting new
forms of polariton heterostructures in the future.

DOI: 10.1103/PhysRevB.107.235426

I. INTRODUCTION

Layered heterostructures provide a versatile platform for
the construction of nanophotonic devices, enabling extensive
functionality of light propagating through nanoscale strati-
fied systems [1]. The tremendous progress reported using
layered systems is significantly fueled by polaritons—strong
light-matter interaction featuring strongly localized, immense
electric field strengths—advancing a variety of nanophotonic
fields such as optoelectronics [2,3], photovoltaics [4,5], po-
laritonic optics [6–8], or sensing [9]. In particular, layered
systems that are composed of strongly optically anisotropic
polar crystals currently receive increasing interest due to their
capability of supporting infrared polariton modes of high
propagation directionality, so called hyperbolic phonon po-
laritons (hPhP) [10–14]. While in isotropic polar crystals,
phonon polaritons arise in the frequency region of negative
permittivity between the transverse optical (TO) and longi-
tudinal optical (LO) phonon modes, hPhPs in anisotropic
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crystals arise at frequencies where the permittivity is only neg-
ative along one (type I hyperbolic) or two (type II hyperbolic)
principal crystal axes. Thin films of materials with out-of-
plane anisotropy, such as hexagonal boron nitride (hBN),
support volume-confined hPhPs, which have proven to enable
subdiffraction imaging and hyperlensing [15,16]. Materials
with strong in-plane anisotropy, such as molybdenum triox-
ide (MoO3), on the other hand, support in-plane hyperbolic
phonon polaritons (ihPhPs) featuring directional propagation
in the surface plane. The potential of these materials has only
recently captured attention, as demonstrated in particular by
the seminal work of several groups on twisted MoO3 layers
[17–21], where the twist angle enables control over the ih-
PhP wavefront geometries, propagation characteristics, and its
topology.

Advances in the field of polaritonic nanophotonics often
are only feasible with the aid of a robust theoretical framework
for the simulation of the optical response of the material
system in question. For layered heterostructures, a 4 × 4
transfer-matrix method (TMM) [22] has proven useful in this
context, as it is able to provide the reflection and transmission
coefficients as well as the local electric fields of a multilayer
system consisting of any number of arbitrarily anisotropic
materials. Furthermore, the analysis of the Poynting vector
S allows for a layer-resolved calculation of the absorption
and transmittance in the system even for fully anisotropic
constituent materials [23]. However, strongly confined polari-
tons typically are evanescent modes, i.e., they feature in-plane
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momenta k larger than the momentum of light in vacuum
k0, and thus they cannot be accessed in a free-space exci-
tation scheme. This condition for the excitation has to be
accounted for in both the experimental as well as the theo-
retical observation of polaritons, and it is met, for instance, in
prism-coupling techniques such as the Otto geometry [24–26]
or the Kretschmann-Raether configuration [27]. While in par-
ticular the Otto geometry allows for a systematic, thorough
study of phonon polaritons and has proven to be quite versatile
[8,28–30], the intrinsic properties of the polariton modes in
the sample are inevitably modified by the presence of the cou-
pling prism. Other optical excitation techniques where large
momenta are achieved by scattering off a nanoscale object,
such as scattering-type scanning near-field optical microscopy
(s-SNOM) [31,32], on the other hand, cannot fully be de-
scribed theoretically using a 4 × 4 transfer-matrix method,
due to the deviation from a stratified system by the scattering
source.

A common way to circumvent the specifics of the exci-
tation method in the simulations is to calculate the optical
response solely of the sample, with an excitation beam featur-
ing large in-plane momenta k/k0 > 1. This evanescent wave
excitation has proven insightful into the supported polariton
mode dispersion [6,29,33–36]. In particular, the imaginary
part of the p-polarized reflection coefficient Im (rpp) is known
to peak at frequencies where the system supports a polariton
mode, thus providing a means to map out the intrinsic po-
lariton dispersion. Here, the reflection coefficient rpp is the
ratio of the p-polarized component of the reflected field and
the p-polarized incident field. It is well established that any
guided mode of a system is linked to poles in the scatter-
ing coefficients [37]. In layered heterostructures comprising
several materials that support polaritons, however, the method
of using Im (rpp) only reveals the resonances of the overall
system, while it remains unresolved how the different layers
contribute to that resonance. For plane-wave far-field excita-
tions with k/k0 < 1, a layer-resolved calculation framework
for energy flux and absorption in anisotropic multilayers has
been explored [23], but to the best of our knowledge an equiv-
alent method for evanescent excitation with k/k0 > 1 has not
been discussed in the literature so far.

Here, we present an approach for layer-resolved calcu-
lation of the relative intensity of polariton resonances in
arbitrarily anisotropic layered heterostructures by analyzing
the light absorption under evanescent excitation. The method
of using Im (rpp) for the determination of the polariton disper-
sion has been successfully and continuously used for several
years. The peak positions coincide with resonant modes of
the system, in particular in the absence of loss, where the
poles of the reflection coefficient reveal the system’s guided
modes [37]. For real systems with finite loss, however, the
amplitude of these resonances is usually not discussed, and
analysis of these amplitudes has remained empirical. Here we
build on this empirical knowledge, expanding the established
method of analyzing Im (rpp) by a layer-resolved calculation
of energy flow based on the Poynting vector obtained from
a 4 × 4 TMM. In particular, we introduce and strictly prove a
conservation law for the energy flow in the system that is valid
for evanescent excitations. Our method is then implemented
in an open-access computer program [38]. We demonstrate

the power of our method by calculating the layer-resolved
polariton resonances in two state-of-the-art polaritonic sys-
tems, covering strongly coupled surface phonon polaritons
(SPhPs) in an aluminum nitride (AlN)/silicon carbide (SiC)
heterostructure, and tunable ihPhPs in twisted MoO3 layers on
a quartz (SiO2) substrate. The relative intensity of the polari-
ton resonances in the different layers of the sample systems
provides new insight into the formation mechanisms of po-
laritons in complex heterostructures, and will thus prove very
useful in guiding the targeted design of polariton structures.

II. METHOD

The TMM we employ in this work has been described in
detail previously [22]. For the calculation of the layer-resolved
polaritonic response of the sample system, we further use an
extended formalism based on the TMM [23], providing the
time-averaged Poynting vector �S p

i (z) for p-polarized incident
light, in layer i, at position z:

�S p
i (z) = 1

2 Re
[ �E p

i (z) × �Hp∗
i (z)

]
, (1)

where �Ei(z) and �Hi(z) are given elsewhere [23]. Note that this
formalism is originally designed for propagating incident light
with k/k0 < 1. Further on [Eq. (5)], we extend the method to
evanescent excitation with k/k0 > 1. The coordinate system
is chosen such that the z-axis points along the surface normal,
the exciting light beam is incident in the x − z-plane, and
the origin of the coordinate system lies in the interface plane
between the isotropic, lossless semi-infinite incident medium
(i = 0) and the first layer (i = 1). The multilayer system
comprises N layers of thicknesses di, and layer i = N + 1
is the semi-infinite substrate. Because polaritons are typically
excitable by p-polarized light [8], we focus on p-polarization
in the following and omit the specification of the incoming
polarization.

To calculate the transmittance up to layer i and position z,
the z-component of the Poynting vector at the corresponding
position is normalized by the z-component of the Poynting
vector of the incoming excitation beam Sinc,z:

Ti(z) = Sz
i (z)

Sz
inc

, (2)

and the transmittance T into the substrate i = N + 1 at the
interface with layer N is given by

T = Sz
N+1(D)

Sz
inc

, (3)

where D = ∑N
i=1 di is the thickness of the multilayer system.

Using Eq. (2), the layer-resolved absorption can be calculated
as follows:

Ai = Ti(d1,...,i−1) − Ti(d1,...,i−1 + di ), (4)

where d1,...,i−1 = ∑i−1
i=1 di is the thickness of all layers through

which the incident light has propagated before reaching the
layer i.

For a propagating excitation beam with k/k0 < ε0, Sz
inc is

real-valued, as specified in Eq. (22) of Ref. [23], and A and
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T correctly describe the absorption and transmission, respec-
tively. For an evanescent incident beam with k/k0 > 1 in the
isotropic, lossless incident medium, however, Sz

inc is purely
imaginary, since an evanescent beam features no net energy
flow in the z-direction. As a consequence, for evanescent
excitation, this would lead to a zero denominator in Eq. (2).
Here, we therefore normalize to the imaginary part of Sz

inc
instead, as can be calculated from Eq. 22 of Ref. [23] with
the following modification:

�Sinc(0) = 1
2 Im[ �E0,inc(0) × (�k0,inc × �E0,inc(0))∗], (5)

where �E0,inc(0) is the electric field of the incoming evanescent
wave at the first interface at z = 0, and �k0,inc is the wave vector
of the p-polarized incident beam.

The layer-resolved “absorption” calculated according to
Eq. (4) conveniently reflects the relative intensities of a po-
lariton mode present in the different layers of a multilayer
structure, as we will demonstrate in the following section.
Analogously to Im (rpp), T and A take values larger than 1
in the case of k/k0 > ε0, as expected in the case of evanescent
excitations.

Strikingly, the sum of the layer-resolved quantities Ai and
T fulfills the following conservation law:

2 Im(rpp) =
N∑

i=1

Ai + T , (6)

where we calculate rpp employing a TMM [22]. This equa-
tion constitutes the conservation between the resonance
intensity distributed between the layers of the system de-
scribed by Ai and T , and the overall resonance intensity, here
found to be 2 Im (rpp).

Proof of the conservation law

In the following, we will strictly prove Eq. (6) for arbi-
trarily anisotropic heterostructures provided that the medium
from which the wave impinges is refractive, lossless, and
isotropic [Re (ε0) > 0 and Im (ε0) = 0]. Let us us specifically
consider the first interface of such a heterostructure, be-
tween the incident medium and the first layer with arbitrarily
anisotropic permittivity ε1. The incident p-polarized light will
be evanescent for q2

x > ε0, where qx is the normalized in-plane
momentum qx = kx/k0 conserved throughout the heterostruc-
ture. Without loss of generality, we can write the incident
and reflected electric fields at z = 0 as �Einc = (qzi, 0, qx )
and �Erefl = rpp(−qzi, 0, qx ) + rps(0, qx, 0), and the corre-
sponding magnetic fields as �H(inc) = (0, ε0, 0) and �Hrefl =
rpp(0, ε0, 0) + rps(qziqx, 0,−q2

x ), where qzi = √
ε0 − q2

x is the
normal-to-surface component of the incident momentum, and
rpp and rps are the p-pol-in p-pol-out and p-pol-in s-pol-out
reflection coefficients, respectively.

Invoking the continuity of the incident, reflected, and trans-
mitted in-plane fields Ex

1 = Ex
0,inc + Ex

0,refl and Hy
1 = Hy

0,inc +
Hy

0,refl at the interface allows for explicit expressions for the
transmitted Poynting vector at z = 0 right behind the interface

in medium 1:

Re
(
Sz

1

)
(z = 0) = Re( �E1 × �H1

∗
)x

= Re( �E0,inc × �H∗
0,inc + �E0,refl × �H∗

0,refl

+ �E0,inc × �H∗
0,refl + �E0,refl × �H∗

0,inc)z

= Re(ε0qzi(r
∗
pp − rpp))

= 2ε0

√
q2

x − ε0 Im(rpp), (7)

where we made use of Re ( �E0,inc × �H0,inc∗ )
z = Re ( �E0,refl ×

�H0,refl∗ )
z = 0, as well as Re (−iqzi ) = √

q2
x − ε0. Please note

that the reflected cross-polarized electric (magnetic) field
components that arise for birefringent media do not con-
tribute to the energy flow since they are inherently parallel to
the respective incident magnetic (electric) field, respectively,
such that the cross products vanish. For a non-birefringent
medium where ε1 is a diagonal tensor, rps vanishes and
Eq. (7) also holds. Finally, since Im (S0,inc)

z = Im (E0,inc ×
H∗

0,inc)
z = Im (qziε0) = ε0

√
q2

x − ε0, we find that

Re
(
Sz

1

)

Im
(
Sz

0,inc

) (z = 0) = T (z = 0) = 2 Im(rpp). (8)

Equation (8) strictly links the energy content of the light
field at the first interface Re (Sz

1)(z = 0) to Im (rpp). Since
Re (Sz

1)(z) describes the real energy flow, it needs to be strictly
monotonous with increasing z, such that Eq. (8) together
with Eqs. (2)–(4) directly proves Eq. (6) for any heterostruc-
ture, provided the incident medium is isotropic and lossless.
Equivalent expressions can also be derived for s-polarized
evanescent excitation.

This finding justifies quantitatively the common use of
Im (rpp) to determine the polariton resonances in the het-
erostructure. The resonance peaks correspond to enhancement
of energy flow into the heterostructure. Thus, our results show
that Im (rpp), and in particular its amplitude, can be directly
related to absorptive resonances not just qualitatively but also
quantitatively, where also the contribution of energy flow into
the substrate T should be accounted for.

In the following, we will apply our method to two sam-
ple systems that have been discussed in recent literature,
demonstrating that our results are not only in accordance with
previous findings, but they also provide additional insights
into the resonance behavior of polariton modes in layered
heterostructures.

III. STRONGLY COUPLED ENZ POLARITONS

At frequencies close to zero crossings of the real part of the
dielectric permittivity ε, a material features epsilon-near-zero
(ENZ) light propagation with remarkable properties of the
ENZ photonic modes [39], such as high emission directional-
ity [40,41], enhanced nonlinear-optical conversion efficiency
[42,43], and tunneling through narrow distorted waveguide
channels [44,45]. In a polar crystal, ENZ conditions are met
at the LO phonon frequency ωLO, and an ENZ polariton can
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FIG. 1. Strong coupling between an AlN ENZ mode and a SiC SPhP. (a) Sketch of the AlN/SiC structure, illustrating the strong coupling
of a SPhP of a bare SiC substrate and an ENZ mode of a freestanding AlN film. (b) Analytical dispersion of the uncoupled SiC SPhP (blue
line) and AlN ENZ mode (green line), as well as the resulting strongly coupled modes in the heterostructure (red lines) featuring an avoided
crossing. (c) Dispersion of the strongly coupled modes obtained by calculating the total resonance intensity Im (rpp). (d), (e) Layer-resolved
distribution of the resonance intensity in AlN and SiC, respectively. In (c), (d), and (e), the analytical dispersions of the uncoupled SiC SPhP
(blue lines) and AlN ENZ modes (green lines) are plotted for reference. (f), (g) Mode partition of the AlN film and the SiC substrate for the
upper and the lower dispersion branch, respectively.

be found in subwavelength-thin polar crystal films [46–48].
However, a thin-film ENZ polariton is a nonpropagating mode
due to its intrinsically flat dispersion close to ωLO, thus hin-
dering its usability for effective nanoscale communication
applications. This limitation can be overcome by strongly
coupling an ENZ polariton to a propagating SPhP, as has been
demonstrated for an aluminum nitride (AlN) thin film/silicon
carbide (SiC) heterostructure [29]; see Fig. 1(a). By com-
bining the advantages of the constituent uncoupled modes,
the resulting ENZ-SPhPs feature strong electrical field en-
hancement characteristic for ENZ modes, while maintaining
a propagative character typical for SPhPs.

The dispersions of both the uncoupled AlN ENZ mode
(green line) and the SiC SPhP (blue line) as well as the
strongly coupled modes (red lines) are plotted in Fig. 1(b),
calculated with an analytical formula for a three-layer system
[48,49]. Characteristically for strong coupling, the ENZ-
SPhP dispersion lines exhibit an avoided crossing while
approaching the dispersion lines of the uncoupled modes with
increasing distance to the dispersion crossing point. Accord-
ingly, the mode nature along each of the strongly coupled
mode dispersions undergoes a transition across the avoided
crossing, while at the avoided crossing, both strongly cou-
pled modes have identical characteristics such as electric
field enhancement and spatial confinement [29], sharing equal
measures of both uncoupled modes. To verify and visualize
this transition of mode nature across the strong-coupling re-
gion, we apply our method here to calculate the polariton
resonance intensity in the AlN/SiC heterostructure resolved
for each layer.

The overall polaritonic response of the material system can
be obtained by calculating Im (rpp), as is shown in Fig. 1(c),
where the entire dispersions of both strongly coupled modes
are reproduced. The layer-resolved calculations obtained from
our method are plotted in Fig. 1(d) (A in AlN) and Fig. 1(e)
(T in SiC). For both layers, only parts of the same dispersion

lines as for Im (rpp) are obtained. In the AlN film [Fig. 1(d)],
the resonance intensity is strongest in close proximity to the
AlN ENZ mode (green line), whereas the intensity fades out
along the SiC SPhP (blue line). In the SiC substrate [Fig. 1(e)],
on the contrary, the resonance intensity is most pronounced
along the SiC SPhP, and almost no intensity can be found
along the AlN ENZ mode. This relative intensity distribu-
tion between the different layers reflects the respective partial
mode nature along the dispersion, changing from the AlN
ENZ mode to the SiC SPhP and vice versa. This behavior
can be demonstrated by quantifying the mode partition P as
follows:

Pi = Ai

2 Im(rpp)
, (9)

and evaluating PSiC and PAlN (blue and green lines) along both
dispersion branches of the strongly coupled polariton modes,
as shown in Figs. 1(f) and 1(g), respectively. Clearly, along
both branches the mode nature undergoes the aforementioned
transition, with a crossing point where the mode exhibits AlN
ENZ and SiC SPhP features in equal measures. Notably, this
crossing point sits at slightly different in-plane momenta for
the upper and the lower branch, corresponding to the momen-
tum where the uncoupled mode dispersions are equidistant to
the respective branch in frequency-momentum space.

An alternative approach to obtain the relative mode dis-
tribution in the multilayer system would be to calculate the
layer-resolved absorption for excitation with a propagating
wave (k/k0 < 1) via Otto-type prism coupling. However, in
this scheme, the relative absorption of the polariton modes is
distorted by the coupling prism, because the AlN ENZ and
the SiC SPhP modes feature distinct critical gaps of optimal
coupling conditions. In contrast, our approach is free of the
influence of the excitation method, revealing consistent ad-
ditional information about the mode nature of the strongly
coupled modes in the AlN/SiC heterostructure.
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FIG. 2. Tunable phonon polaritons in twisted MoO3 layers. (a)–(d) Im (rpp) as a function of in-plane momenta kx/k0 and ky/k0 for a 200 nm
MoO3/200 nm MoO3/SiO2 heterostructure, as illustrated in the inset, at four different twist angles α = 0◦, 30◦, 63◦, 90◦ of the upper MoO3

layer, respectively. The calculations reveal a topological transition at the magic twist angle α∗ = 63◦ from an ihPhP to an elliptical SPhP. We
also show the expected dispersion for each individual rotated MoO3 layer as bright red (top layer) and dark red (bottom layer) dashed lines, to
illustrate how the total dispersion relates to the dispersion of each layer. (e)–(h) Layer-resolved resonance intensity A1 in the upper and (i)–(l)
in the lower MoO3 layer, (m)–(p) T in the SiO2 substrate, and (q)–(t) polar plots of the resonance intensities of all four quantities along the
dispersion of the first-order SPhP mode, each at four different twist angles α, respectively.

IV. IN-PLANE HYPERBOLIC POLARITONS
IN TWISTED MoO3 LAYERS

In-plane hyperbolic phonon polaritons (ihPhPs) are sup-
ported on polar crystals with in-plane hyperbolicity, that is,
at frequencies where Re (εx ) Re (εy) < 0 (with the crystal
surface lying in the x − y-plane). The dispersion of ihPhPs
takes the form of a hyperbola in the surface plane, oriented
such that the hyperbola minimum lies on the crystal axis
along which Re (ε) < 0, whereas no solution is supported
along the perpendicular surface direction where Re (ε) > 0.
Therefore, ihPhPs intrinsically feature a strong propagation
directionality. At frequencies where both in-plane permittivity
tensor elements are negative, on the other hand, the dispersion
describes an ellipse, and the resulting SPhP can propagate
along any direction in the surface plane.

Recently, it has been demonstrated that by stacking and
twisting two MoO3 layers, the propagation direction of the
supported surface polaritons becomes configurable as a func-
tion of the twist angle α [17,18,20]. Furthermore, at a
specific, frequency-dependent magic angle, the surface po-
lariton performs a topological transition from a hyperbolic
to an elliptical dispersion. The overall change in propagation
direction and topology as a function of α is well-captured
by Im (rpp), as is reproduced in Figs. 2(a)–2(d) in perfect
agreement with the literature. At twist angles α = 0◦ and 30◦
[Figs. 2(a) and 2(b), respectively], the polariton is hyperbolic,
and the propagation direction rotates with α. At the magic
angle α∗ = 63◦, the dispersion transitions from hyperbolic to
elliptical, resulting in flattened dispersion lines that exhibit
diffractionless and low-loss directional polariton canalization
[17]. Finally, at α = 90◦ [Fig. 2(d)], the topological transition
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is completed and the stacked system features an “elliptical”
dispersion (that is, finite in all in-plane directions) of almost
rectangular shape.

To reveal the optical response resolved for each material
layer of the twisted heterostructure, we employ our formalism
to calculate A1 and A2 for the two MoO3 layers, and T for the
SiO2 substrate [the system is sketched in the inset in Fig. 2(o)].
The resonance intensities A1 and A2 for the four twist angles
α = 0◦, 30◦, 63◦, 90◦ in the first and second MoO3 layers are
shown in Figs. 2(e)–2(h) and 2(i)–2(l), respectively, and the
resonance intensity T in the substrate is plotted in Figs. 2(m)–
2(p). For α = 30◦, 63◦, 90◦, we additionally plot the expected
dispersion for each of the two layers (in bright and dark red
dashed lines) without twist, as extracted from Fig. 2(a). There
are at least two general observations of interest in these plots.
(i) The twisted bilayer dispersion follows the single-layer
dispersion in part (either the top layer or the bottom layer
dispersion), but generally offset to larger momenta. This can
be understood as a continuous transition from a single thick
layer to two thinner layers each supporting higher momen-
tum states. Still, the full dispersion always coincides with
the crossing points of the single-layer dispersion. (ii) The
resonance intensity in each layer is generally strongest when
the bilayer dispersion is aligned with its individual dispersion,
and suppressed otherwise.

Overall, we observe a stark imbalance of how both MoO3

layers contribute to the response, which is dominated by the
top layer. This asymmetry between both layers becomes clear
when we analyze the resonance intensity peak value along
the dispersion of the first-order mode shown in polar plots
in Figs. 2(q)–2(t). Note that the curves are not continuous
for α = 0◦, 30◦, and 63◦ because of the finite plot range
and the divergent nature of the hyperbolic dispersion. The
maximum resonance intensity is strongest in the first MoO3

layer and decreases towards the substrate [Figs. 2(q)–2(t)]. As
a consequence, rotating the first layer dominates the overall
maximum intensity along the dispersion in Im (rpp) (black
lines), which rotates with α. The same is true for T in the
isotropic SiO2 substrate (red lines). The intensity maxima
of A1 and A2 in the first and second MoO3 layer, however,
follow the orientation of the optical axis in the respective
layer, where in the first layer (blue lines), the maximum is
shifted clockwise in the direction of the twist rotation, while in
the second layer (green lines), the maximum is only mildly ro-
tated. This leads to strongly asymmetric intensity distributions
along the dispersion in both MoO3 layers for the hyperbolic
region, that is, at twist angles α = 30◦ and 63◦ [Figs. 2(f) and
2(j) and Figs. 2(g) and 2(k), respectively]. At α = 90◦, finally,
the intensity maximum is oriented along the y-axis and arises
mostly from the first MoO3 layer, while the small fraction of
resonance intensity along the x-axis solely originates in the
second layer.

By resolving the spatial origin of the resonance intensity
layer by layer, our method reveals that the partial resonance
intensity in each MoO3 film is oriented along the respective
polariton-active crystal axis. However, due to the presence
of the respective other MoO3 layer, the partial response in
each MoO3 film can feature strongly asymmetric azimuthal

intensity distributions, depending on the twist angle α. Thus,
the polariton modes of the individual films are modified by
the presence of the adjacent twisted MoO3 film, while not
featuring full hybridization, as has been observed in the pre-
vious example system. Thus, the resulting polariton mode in
the full system cannot easily be seen as the sum of these par-
tial polaritonic responses in each MoO3 layer. Revealing this
layer-resolved information, our method therefore provides a
deeper analysis of the supported ihPhP modes for each topo-
logical state in the twisted MoO3 double-layer heterostructure,
and it may even accomplish the guiding principles for engi-
neering the dispersion.

V. DISCUSSION

The presented method reveals unprecedented details on
the polariton distribution in multilayer systems at low com-
putational cost. Following the recent success of twisted
double-layer structures, we anticipate a high demand for
modeling forthcoming twisted multilayer concepts. Here, our
approach could provide comprehensive data that may signif-
icantly help to identify the guiding principles for designated
design goals. If additionally the relevant physics is driven by
the polariton intensity in a specific layer or at a given interface
of the structure, as expected, for example, for polariton-driven
chemistry, the relevance of our layer-resolved analysis is
enhanced even further. As a natural extension, it would be
highly desirable to be able to quantitatively connect the results
obtained here to experimentally accessible quantities, as, for
instance, the scattering amplitude and phase in nano-FTIR or
s-SNOM, which would enable much enhanced data analysis
capabilities for multilayer structures.

VI. CONCLUSION

In this work, we have presented an approach for the
layer-resolved analysis of the resonance intensity of polariton
modes in arbitrarily anisotropic, birefringent, and absorbing
multilayer media. Our method builds on evaluating reso-
nances in the imaginary part of the reflection coefficient
Im (rpp) for evanescent wave excitation that has been success-
fully used for identifying polariton resonances in the literature
for several years. The resulting layer-resolved resonance in-
tensities that we calculate from the Poynting vectors obtained
from a TMM [22,23] fulfill a strictly proved conservation law,
showing that the resonance intensity expressed in Im (rpp) can
be partitioned into a sum of the resonance intensities in each
system layer which are directly connected to the energy flux
through the structure. Thereby, our analysis also quantitatively
links the resonance amplitudes Im (rpp) to energy flow into
the heterostructure under evanescent wave excitation. The
presented method is implemented in an open-access computer
program [38].

As case studies, we applied our approach to the analy-
sis of two recently studied nanophotonic systems featuring
strong coupling between an ENZ and a propagating SPhP
mode and the modulation of the propagation direction and
the topology of ihPhPs in a twisted bilayer, revealing yet
undiscovered details about the supported polariton modes. By
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enabling one to analyze any multilayer system independent
of the excitation scheme, our method holds great potential
for understanding, optimizing, and predicting new forms of
polariton heterostructures in the future.
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