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Ab initio Green-Kubo simulations of heat transport in solids: Method and implementation
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Ab initio Green-Kubo (aiGK) simulations of heat transport in solids allow for assessing lattice thermal
conductivity in anharmonic or complex materials from first principles. In this work, we present a detailed account
of their practical application and evaluation with an emphasis on noise reduction and finite-size corrections in
semiconductors and insulators. To account for such corrections, we propose strategies in which all necessary
numerical parameters are chosen based on the dynamical properties displayed during molecular dynamics
simulations in order to minimize manual intervention. This paves the way for applying the aiGK method in
semiautomated and high-throughput frameworks. The proposed strategies are presented and demonstrated for
computing the lattice thermal conductivity at room temperature in the mildly anharmonic periclase MgO, and
for the strongly anharmonic marshite CuI.
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I. INTRODUCTION

Heat transport is an important phenomenon in many
branches of physics and adjacent fields, be it materials sci-
ence investigating technologically relevant compounds [1,2],
or astrophysics and earth sciences, where thermodynamic
properties of planets are studied [3,4]. In dielectric solids,
thermal transport is mostly determined by the conduction of
heat energy in the form of thermal nuclear motion (lattice
thermal conductivity), and electronic heat transport, photonic
heat radiation, as well as convective contributions due to
mass transport can be neglected [5]. Ab initio simulations
of the lattice thermal conductivity are typically performed
in the framework of phonon theory: The potential-energy
surface (PES) is approximated by force constants which
can be obtained either as potential-energy derivatives or in
a renormalized, temperature-dependent fashion [6–8]. The
equation of motion is solved for the harmonic, second-
order terms, which results in decoupled phonon modes.
Higher-order terms, up to fourth order [9], are included
via perturbation theory to compute phonon lifetimes. The
Boltzmann transport equation (BTE) [10,11] then yields par-
ticlelike conduction contributions to the thermal conductivity.
Additional contributions from wavelike conduction are ac-
counted for in the Wigner transport formulation [12]. These
contributions are particularly important in complex crystals
when the individual phonon modes overlap.
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However, thermal insulators with κ < 10 W/mK, of im-
portance for applications such as thermal barrier coatings in
heat engines [2,13] or thermoelectric materials for waste-heat
recovery [1], are often strongly anharmonic [14], and the
phonon picture underlying the Boltzmann or Wigner trans-
port equations likely breaks down even when renormalized,
temperature-dependent force constants are used [15]. The
Ioffe-Regel criterion [16] poses a formal limit for the validity
of the phonon picture and therefore perturbative formalisms
[12]. This intuitive criterion states that phonons are only well-
defined quasiparticles if their lifetimes exceed their oscillation
periods. Nonperturbative approaches based on Green-Kubo
(GK) theory [17–19] do not suffer from this shortcoming
since the heat flux is evaluated in molecular dynamics sim-
ulations and all anharmonic effects are taken into account.
Accordingly, the GK method covers the transport mecha-
nisms described by the Boltzmann and Wigner transport
equations, but also the regime beyond the Ioffe-Regel crite-
rion in which the phonon picture becomes invalid [12,20].
Its extension to first-principles frameworks, i. e., the ab ini-
tio Green-Kubo (aiGK) technique, was introduced recently
[21,22]. By evaluating the ab initio heat flux along ab initio
molecular dynamics (aiMD) trajectories, GK theory can be
used to access the thermal conductivity in a nonperturbative
way on the basis of a fully ab initio description of the PES.
Simplifying model assumptions about the PES such as the
(quasi)harmonic approximation are therefore not needed. This
makes aiGK a suitable tool for the parameter-free study of
materials of arbitrary anharmonic strength whenever the nu-
clear dynamics can be described by aiMD simulations, i.e., at
temperatures where nuclear quantum effects can be neglected
[23], and at which the system is not close to a structural phase
transition [24].

While aiGK offers an encompassing framework for
first-principles heat transport simulations, its practical
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implementation brings a set of challenges that need to be ad-
dressed: The noise due to thermodynamic fluctuations in small
ensemble sizes of less than ten aiMD trajectories with tens of
picoseconds simulation time each, and finite-size effects when
using supercells of hundreds atoms only. These hurdles are of
particular importance in crystalline systems where finite-size
effects can be significant because readily accessible supercell
sizes are not sufficient to describe all relevant length scales
[25,26], as opposed to amorphous systems and liquids where
vibrations are more localized [27].

Several ideas to reduce noise [28,29] and account for finite-
size effects [21] have been suggested in the literature. Their
application to practical calculations, however, requires edu-
cated choices for several numerical parameters. Furthermore,
no unified framework addressing both problems is available
to date, hindering broader application of aiGK methods for
crystals. In this work, we present and discuss such a frame-
work and its numerical implementation in FHI-VIBES [30]
for two test systems: Periclase magnesium oxide (MgO), and
marshite copper iodide (CuI). Both are simple binary, cubic
compounds; however, CuI is much more anharmonic [14],
and BTE simulations overestimate its thermal conductivity
significantly [31].

We demonstrate the implementation in detail for the case
of periclase MgO which is well known in the literature of
first-principles heat transport techniques [32–34]. We discuss
the impact of noise-reduction and finite-size-extrapolation
techniques, and propose strategies to apply such corrections
without human intervention by choosing the required nu-
merical parameters using the available aiMD data: First, we
present a real-time scheme to remove noise from the heat flux
autocorrelation function (HFACF), which enables to choose
cutoff times in a numerically robust way based on a “first
dip” criterion, i.e., the time when the HFACF drops to zero
for the first time [35]. The two-step procedure comprises
discarding noncontributing terms from the flux-based physical
arguments [36], and subsequent noise filtering that preserves
the integrated thermal conductivity. Next, we discuss a size
extrapolation scheme for periodic solids, adapted from the
one first introduced in Ref. [21], which allows to correct for
finite-size effects of simulation cells used in aiMD simula-
tions. Finally, we discuss convergence in the simulation times.
This approach is then applied to the strongly anharmonic CuI.
Good agreement with the literature is obtained in both cases.

Both materials are studied at the level of the generalized
gradient approximation (GGA) using the PBEsol functional
and light-default basis sets in FHI-AIMS [37,38]. Supercells
are 3 × 3 × 3 extensions of the conventional, cubic unit cells,
with 216 atoms each. The molecular dynamics (MD) simu-
lations are performed via FHI-VIBES [30]. The aiGK method
as described here is implemented in FHI-VIBES as well. Force
constants for the size extrapolation via harmonic mapping are
obtained by regression from the MD runs via the temperature-
dependent effective potentials (TDEP) code [7,39]. The MD
runs are thermalized using the prethermalization technique
outlined in Ref. [40] using finite-difference force constants
obtained via PHONOPY [41]. Afterwards, a Langevin thermo-
stat at the target temperature (300 K) is used to perform
NVT sampling. After an initial sampling period of 2.5 ps,
the cell parameters are adjusted such that thermal pressure is

minimized to below 5 kilobars in order to account for thermal
expansion [42]. Starting conditions for the NVE simulations
are chosen from an NVT run for the relaxed supercell at least
2 ps apart. The time step for the MD simulation was chosen
as 5 fs, which corresponds to a tenth of the shortest period
duration of the harmonic spectrum of MgO (ωmax ≈ 20 THz).
The heat flux is sampled less frequently since heat transport is
dominated by the slow vibrations, and all results are reported
for a heat-flux sampling period of 20 fs. We have checked that
further decreasing the heat-flux sampling frequency does not
change the results significantly.

The work is organized as follows: In Sec. II, we review
Green-Kubo theory in order to highlight the steps necessary
for the numerical implementation. Section III presents our
approach for noise reduction based on physical arguments and
real-time signal analysis which allows to truncate the GK time
integral in a numerically robust way. Section IV presents the
updated version of the size-extrapolation scheme first intro-
duced in Ref. [21]. To complete the method description, we
discuss results for MgO in Sec. V, and compare to available
experimental and computational literature. After completing
the discussion of the method for MgO, we apply the scheme to
CuI in Sec. VI, and conclude with some remarks on simulation
time convergence in Sec. VII.

II. GREEN-KUBO THEORY

Let us start with a short summary of classical thermal trans-
port in the framework of GK theory [18,19,43]: The thermal
conductivity tensor at temperature T is given as the canonical
ensemble average defined by the phase-space integral

καβ (T ) = 1

Z

∫
d� καβ[�] e− 1

kBT H[�]
, (1)

where � ≡ (R1, . . . , RN ; P1, . . . , PN ) are phase-space config-
urations for N atoms with positions RI and momenta PI . H[�]
is the Hamiltonian of the system with corresponding partition
function Z , kB is the Boltzmann constant, and α, β denote
the Cartesian components of the tensor. For each phase-space
configuration �, the thermal conductivity is computed as

καβ[�] = V

kBT 2
lim

tc→∞

∫ tc

0
dt Cαβ

JJ [�](t ), (2)

with the HFACF,

Cαβ
JJ [�](t ) = lim

t0→∞
1

t0 − t

∫ t0−t

0
ds Jα[�(t + s)]Jβ[�(s)]

≡ 〈Jα (t )Jβ (0)〉, (3)

where the phase-space points �(t ) in the trajectory are ob-
tained from the time evolution generated by the many-body
Hamiltonian of the system, H[�] by propagating the initial
configuration �(0) ≡ � for a time t . Jα[�(t )] ≡ Jα (t ) is the
the heat flux component evaluated for the configuration �(t )
and 〈·〉 is the shorthand notation for the time average in
Eq. (3).

In order to evaluate these equations in finite simulations,
the integrals need to be discretized and truncated to finite
domains. First, Eq. (1) is approximated by taking a finite set
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of M starting configurations �i(0) ≡ �i, so that

καβ (T ) ≈ 1

M

M∑
i=1

καβ[�i], (4)

where the starting conditions �i are chosen from NVT MD
simulations for the thermodynamic conditions of interest. For
each starting condition �i, NVE MD simulations are per-
formed to generate the time evolution of the system, �i(t ),
and evaluate the heat flux J(t ) along this trajectory. The sim-
ulation is performed for a total simulation time t0, thereby
truncating the time integral in Eq. (3). This time needs to be
large enough to cover the time scales of the physical processes
relevant for heat transport. From the resulting autocorrelation
function of finite length, the thermal conductivity components
are computed via Eq. (2). For each component, a cutoff time
tc < t0 is chosen to avoid integrating parts of the HFACF after
it has effectively decayed, since its tail can be heavily affected
by statistical fluctuations stemming from finite size and time
effects [44–47], or tiny but systematic drifts that accumulate
in the long-time limit, e.g., when the average flux 〈J〉t does
not vanish exactly over the simulation time or appears slightly
skewed.

After computing the thermal conductivity tensor for each
trajectory, the final value is given by Eq. (4), i.e., by the mean
of the individual trajectories. The statistical error due to the
finite ensemble average is estimated by the standard error,
i.e., the standard deviation of the mean,

�καβ (T ) = 1√
N

√
1

N

∑
i

(καβ (T ) − καβ[�i])2
. (5)

From the Cartesian components of the thermal conductivity
καβ (T ), the scalar thermal conductivity κ (T ) is obtained via

κ (T ) = 1

3

∑
α

καα (T ). (6)

In principle, these equations can be evaluated as is, and con-
vergence in size and time can be checked by simply increasing
the respective scales. While this is computationally possible
when using analytical force fields [48], this is certainly not
desirable in the ab initio case, where the cost per time step
is considerably higher: Here, the accessible size and
timescales are typically orders of magnitude lower, and ad-
ditional steps to increase the amount of information that can
be extracted from the comparatively short simulations are
pivotal.

III. CUTOFF TIME AND NOISE REDUCTION

For a robust identification of the cutoff time tc, we first
reduce noise from the HFACF as much as possible. This is
achieved in two steps: First, we redefine the ab initio heat
flux used in this work such that terms not contributing to
the thermal conductivity are discarded [36]. Second, we filter
remaining contributions from the HFACF that do not con-
tribute to the integrated thermal conductivity. This allows to
determine the cutoff time even in the presence of noise based
on a “first dip” criterion, i.e., by choosing the time when the
HFACF drops below zero for the first time.

The raw ab initio virial heat flux used in this work was
introduced in Ref. [21] and is given for a phase-space point
�(t ) = { R(t ), P(t ) } by

Jraw[�(t )] ≡ Jraw(t ) = 1

V

∑
I

σI (t )ṘI (t ), (7)

where σI (t ) ≡ σI [R(t )] is the contribution of atom I to the
virial stress tensor for the configuration R = (R1, . . . , RN ) at
the given time t as derived and discussed in Refs. [21,49], and
ṘI (t ) = PI (t )/MI is the velocity of atom I with mass MI . In
this definition of the heat flux, convective contributions that
become important in liquids and gases are entirely neglected
[5,50].

A. Discarding noncontributing terms

We split the raw flux into two parts,

Jraw(t ) = 1

V

∑
I

δσI (t )ṘI (t )

︸ ︷︷ ︸
(1)

+ 1

V

∑
I

〈σI〉t ṘI (t )

︸ ︷︷ ︸
(2)

, (8)

where 〈σI〉t is the time-averaged atomic virial, and δσI (t ) is
the time-dependent part. In the absence of diffusion, the sec-
ond term is the total time derivative of a bounded vector field,∑

I 〈σI〉 ṘI (t ) = d
dt

∑
I 〈σI〉 UI (t ), where UI (t ) = RI (t ) − RI

is the displacement of atom I from its reference position in the
lattice, RI . Contributions to the heat flux that can be written
in this form do not contribute to the integrated transport coef-
ficient, as can be elegantly shown using the “gauge theorem”
discussed in detail in Refs. [28,36,51]. We therefore discard
the second term from the flux, and proceed using the following
gauge-fixed heat flux expression:

J(t ) = 1

V

∑
I

δσI (t )ṘI (t ). (9)

In compounds with two or more elements, the individual
average virials 〈σI〉 can be significant, and discarding the
noncontributing part from the raw heat flux reduces the noise
in the HFACF considerably, as shown for the case of MgO
in Fig. 1 (red curves compared to gray curves). We note that
this amount of noise reduction is difficult to achieve by means
of mere filtering: The blue curves in Fig. 1 are obtained by
filtering the raw HFACF obtained with the flux defined in
Eq. (8) with the filter discussed below in Sec. III B. It is
apparent that leveraging the gauge theorem by using the flux
defined in Eq. (9) instead reduces the variance in the HFACF
much more significantly, and is furthermore physically rigor-
ous. Finally, we enforce a vanishing expectation of the flux
to remove bias from the resulting quantities due to the finite
time of the simulation by removing the finite-time average,
J(t ) → δJ(t ) = J(t ) − 〈J〉t .

We note in passing that the above argument holds for any
heat flux that can be written in a virial-based form similar
to Eq. (7), e.g., common heat flux expressions for empirical
or machine-learned force fields [52]. For such force fields,
a noise-reduction approach similar to the one presented here
was very recently developed independently and applied suc-
cessfully by Pereverzev and Sewell [53].
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FIG. 1. Heat flux autocorrelation function (HFACF) Cyy
JJ (t ) in

MgO for the yy component as defined in Eq. (3), and its cumulative
integral, i.e., the thermal conductivity κyy(t ) defined in Eq. (10) as
function of integration time t . Shaded gray, Cyy

JJ (t ) and κyy(t ) obtained
by using the raw flux as defined in Eq. (7); purple, using only the
filter discussed in Sec. III B; red, using the gauge-fixed flux defined
in Eq. (8); black dashed curves, after applying noise filtering to
the gauge-fixed quantities as explained in the main text. The cutoff
time tc is chosen based on the “first dip” of the gauge-fixed and
noise-filtered HFACF.

B. Noise filtering

After obtaining the gauge-fixed heat flux by discarding
the noncontributing term, there is still a considerable level
of noise in the HFACF which hinders a robust identification
of the time at which it is effectively decayed, i.e., the cutoff
time tc. Available techniques to identify cutoff times, such
as the first avalanche method introduced in Ref. [35], typi-
cally require system-dependent parameters, such as a tolerable
signal-to-noise ratio or window sizes for moving average
computation. To overcome this issue, we suggest an approach
that does rely only on one single parameter which is chosen
based on the vibrational spectrum of the material: Motivated
by the fact that the integrated HFACF, i.e., the cumulative
thermal conductivity

κ (t ) = V

kBT 2

∫ t

0
dt ′ CJJ (t ′), (10)

is already a much smoother function than the HFACF itself,
we apply a moving window average to κ (t ) instead of CJJ (t ).
The remaining parameter is the window size for the filter. It
is chosen based on the vibrational spectrum of the material
by taking the period length corresponding to the slowest sig-
nificant frequency, twindow = 1/ωmin, which is chosen to be
the first peak in the vibrational density of states (VDOS).
To ensure that κ (t ) vanishes identically at t = 0, the filter
is applied to the cumulative thermal conductivity extended
antisymmetrically to negative times via κ (−t ) = −κ (t ), a
property which follows from the time symmetry of CJJ (t )
[54]. Thereby all noise and noncontributing parts of higher

frequency are effectively filtered from κ (t ), while all relevant
time integrals are preserved by construction. As required, the
cumulative κ’s before (red curve) and after filtering (black
dashed curve) lie right on top of each other in the lower panel
of Fig. 1. As in the previous section, we stress that using the
gauge-fixed heat flux is crucial to access the integrated κ (t ),
as shown in the lower panel of Fig. 1 in comparison to the case
where only the filter was used to smoothen κ (t ) obtained from
the raw flux (blue curve).

The filtering is carried over to the HFACF, CJJ (t ), by
numerically differentiating the filtered cumulative thermal
conductivity with respect to time and applying the same filter
on the numerical gradient of κ (t ). The resulting HFACF CJJ (t )
is shown as a black dashed curve in the upper panel of Fig. 1,
and the further reduced level of variance in the HFACF is
apparent. As seen in Fig. 1, κ (t ) reaches a plateau at approx-
imately 8 ps that lasts for several picoseconds. After that,
numerical noise dominates and the accumulated numerical
errors lead to a drop in κ (t ). The “first dip” criterion is used
to detect this plateau numerically in a reliable fashion. For
this purpose, a cutoff time tc is chosen that corresponds to
the time when the signal-to-noise ratio vanishes, i.e., when
CJJ (t ) drops to zero [35]. Note that also different numerical
approaches [29,35,45,46] or a visual inspection of κ (t ) can
be used to identify this plateau. The main advantage of the
“first-dip” criterion used here is that no numerical parameters
have to be chosen, which facilitates automatic evaluation and
the systematic comparison of aiGK simulations with different
trajectory lengths t0. In turn, this results in smoothly converg-
ing thermal conductivities with respect to t0 as shown below
(see Figs. 6 and 7). This reflects that the final, converged val-
ues for κ (t ) are virtually independent from the details used to
choose the cutoff time tc. With the cutoff time tc, the resulting
thermal conductivity for a given component of the thermal
conductivity tensor is given by the value κ = κ (tc) as indi-
cated by the horizontal line in Fig. 1. The presented scheme
will be used for all reported values of thermal conductivity in
the following.

We note that this filter corresponds to a low-pass filter in
Fourier space [29]. However, since we found the real-time
noise-reduction scheme as presented above sufficient to obtain
robust results, we did not investigate additional processing
steps that involve discrete (inverse) Fourier transforms with
further numerical parameters and potential aliasing problems
when only a few thousand data points are available.

IV. SIZE EXTRAPOLATION FOR CRYSTALS

After we have seen how the GK formula is used to compute
thermal conductivities from the ab initio heat flux evaluated
along aiMD trajectories, we discuss an update to the size-
correction scheme for crystals first introduced in Ref. [21].
The aim of this extrapolation is to correct for size effects oc-
curring in aiMD simulations because phonon modes of longer
wavelength than the supercell dimensions are not included.
This is of particular importance in crystals with periodic long-
range order where these modes can contribute significantly
to heat transport. The correction works by computing the
harmonic contribution to the thermal conductivity κha within
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the supercell via

κ
αβ

ha = kB

V

∑
bq

vα
bqv

β

bqτbq, (11)

where V is the system volume, kB is the classical heat capacity
per phonon mode, vbq is the group velocity of a phonon mode
with band index b and wave vector q, and τbq is the lifetime of
the mode extracted from the aiMD trajectory. This contribu-
tion is first computed for the wave vectors q commensurate
with the supercell, κha-supercell, and then extrapolated to the
bulk limit by interpolating the lifetimes to denser q meshes
in the Brillouin zone, κha-bulk. The resulting size-corrected
thermal conductivity is obtained as

κcorrected = κ + κha-bulk − κha︸ ︷︷ ︸
δκha-correction

.

The necessary steps to compute κha, κha-bulk, and therefore
δκha-correction are presented below.

In passing, we like to mention the main differences from
the original approach [21]. Space-group symmetries are now
systematically exploited and all reciprocal-space quantities
are generated from the irreducible part of the Brillouin zone.
This guarantees unambiguous branch matching during the
interpolation. Further minor changes are that lifetimes are
extracted from fitting an exponential decay (cf. Sec. IV B),
and scaled lifetimes are interpolated linearly instead of using
Fourier interpolation (cf. Sec. IV C).

A. Harmonic mapping

In order to map the real-space dynamics to the phonon
picture which allows for interpolating in reciprocal space, we
first define an auxiliary harmonic model determined by the
real-space dynamical matrix

Dαβ
IJ = 1√

MI MJ
�

αβ
IJ , (12)

where �
αβ
IJ are the (α, β ) components of harmonic force con-

stants in the supercell between atom pairs (I, J ). As noted
earlier, we obtain the force constants via the TDEP method
to account for finite-temperature renormalization of phonon
frequencies, eigenvectors, and group velocities [7,39].

Using the crystal periodicity, the Fourier-transformed dy-
namical matrix reads

Dαβ
q,i j =

∑
L

eiq·(Ri−R j−RL )Dαβ

i0, jL, (13)

where { Ri, R j } denote reference positions in the unit cell, RL

is a Bravais lattice vector, and q is a commensurate wave vec-
tor fulfilling q · RL = 2πn with an integer n. The dynamical
matrix yields real eigenvalues ω2

bq and complex eigenvectors
ebq,i via the eigenvalue equation∑

jβ

Dαβ
q,i j eβ

bq, j = ω2
bqeα

bq,i, (14)

where the band index b was introduced to discern branches of
solutions. To directly translate between real-space coordinates
I = (i, L) and reciprocal-space coordinates b, q, we define the

generalized eigenvector

ebq,I ≡ 1√
Nq

e−iq·RI ebq,i (15)

with RI = Ri + RL, which diagonalizes the real-space dy-
namical matrix DIJ defined in Eq. (12), where Nq is the
number of lattice points or commensurate wave vectors in the
supercell, respectively.

Using the generalized eigenvector defined in Eq. (15), we
define normal coordinates ubq and pbq as

ubq(t ) =
∑

I

√
MI ebq,I · UI (t ),

(16)

pbq(t ) =
∑

I

1√
MI

ebq,I · PI (t ),

where UI (t ) = RI (t ) − RI is the instantaneous displacement
of atom I from its reference position RI , and PI (t ) is its
momentum as before. From here, the time-dependent complex
mode amplitude abq(t ) follows [55],

abq(t ) = 1√
2

(
ubq(t ) + i

ωbq
pbq(t )

)
, (17)

from which the time-dependent mode-resolved energy is ob-
tained,

Ebq(t ) = ω2
bq a†

bq(t )abq(t ), (18)

where we note in passing that the harmonic energy expression
familiar from quantum mechanics is recovered by substituting
abq → √

h̄/ωbq abq.
Using the mode-resolved energy, the harmonic heat flux

can be defined as [56]

Jha(t ) = 1

V

∑
bq

Ebq(t )vbq. (19)

For a classical harmonic system, we can use that 〈E2
bq〉 =

(kBT )2 and that cross correlations between different modes
(b, q) 
= (b′, q′) vanish, so that the harmonic thermal conduc-
tivity follows by application of Eqs. (2) and (3),

κ
αβ

ha = kB

V

∑
bq

vα
bqv

β

bq

∫ ∞

0
dtGbq(t ), (20)

with the mode-energy autocorrelation function

Gbq(t ) = 〈Ebq(t )Ebq(0)〉〈
E2

bq

〉 . (21)

The lifetime τbq in Eq. (11) is therefore defined by the integral

τbq ≡
∫ ∞

0
dtGbq(t ). (22)

B. Lifetime extraction

For a purely harmonic system, the mode-energy autocorre-
lation function Gbq(t ) does not decay, and the lifetime given
by Eq. (22) diverges. In the presence of phonon-phonon inter-
actions due to anharmonicity, however, Gbq(t ) decays and the
resulting lifetime is finite.
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FIG. 2. Fit of mode lifetimes for MgO at 300 K. Simulation
performed with a time step of 5 fs for a simulation time of 60 ps.
Top: Normalized mode-energy autocorrelation function Gbq(t ) as ob-
tained from the simulation by Eq. (21). Bottom: Analytic expression
given by Eq. (23) after fitting mode lifetimes τbq. The correlation
functions for the six modes at q = (−1/6, −1/6, 0) are highlighted
in red for comparison for times t < 3τbq. The y axis is logarithmic
such that exponential functions appear as straight lines.

In order to evaluate the lifetime τbq via Eq. (22), it is
again necessary to integrate an autocorrelation function. As
already mentioned in the Introduction and Sec. III, this typi-
cally requires to choose an appropriate cutoff time to obtain
numerically stable results. In the case of the lifetimes τbq, we
exploit the advantage that we can integrate distinct phonon
modes individually, in contrast to Sec. III in which the flux
for the whole system was processed at once. In perturbation
theory, the leading contribution to the decay of each phonon
mode can be approximated via [57]

Gbq(t ) ≈ e−2Imbqt ≡ e−t/τbq , (23)

where Imbq is the imaginary part of the phonon self-energy,
and τbq = 1/2Imbq is the corresponding lifetime. Under
this approximation, the integral can be performed analytically
based on the early decay of Gbq(t ), hence allowing to cap-
ture also those long-lived, long-wavelength modes that are
not guaranteed to be accessible via brute-force integration on
the simulation timescales accessible in aiMD simulations. We
compute Gbq(t ) for each mode in the supercell, and obtain
the corresponding lifetime by fitting Eq. (23) for times where
Gbq(t ) > 0.1, in order to avoid fitting noise when Gbq(t )
is effectively decayed. A comparison of numeric correlation
functions via Eq. (21), and the respective analytic correlation
functions given by Eq. (23), is shown in Fig. 2. We find
that the analytic behavior, i.e., exponential decay of Gbq(t ),
is indeed observed for many modes, in particular those with
long lifetime. Some modes deviate more strongly from the
exponential decay, for example, the mode highlighted in Fig. 2

where Gbq(t ) shortly increases after about 2 ps before drop-
ping off again. The integrated correlation function, i.e., the
lifetime, is, however, only mildly affected from wiggles like
this.

C. Lifetime interpolation

For a given simulation { �i(t ) }, the lifetimes τbq are
evaluated for all commensurate q points, and projected to
the symmetry-inequivalent points in the Brillouin zone de-
termined by the space-group operations of the system to
improve the statistics: The irreducible q points in the Brillouin
zone are obtained by iteratively reducing the given grid with
the available symmetry operations for the system obtained
by the spglib package [58]. To avoid band-index matching
problems between different q points, the eigenvectors for the
full grid of commensurate q points are created by solving the
eigenvalue problem in Eq. (14) on the irreducible grid and
transforming the eigenvectors to the reducible points accord-
ing to the transformation rules given in Ref. [59].

In the next step, the lifetimes τbq are interpolated to denser
q-point meshes. For this purpose, the fully anharmonic life-
times τbq at the commensurate q points are used to define one
function λb(q) for each branch b such that

τb (q) = λb(q)ω−2
b (q). (24)

The frequency scaling ensures that λb(q) is only weakly q
dependent, which facilitates a linear interpolation of the life-
times to arbitrary values q̃ in the Brillouin zone via Eq. (24).
For the acoustic modes at q = � = 0, where ω(q → 0) → 0,
the value for λb(�) is obtained by averaging over values at the
surrounding q points. The scaling of lifetimes with ω−2

b (q)
used here is rooted in basic phonon theory as discussed in
detail by Pomeranchuk and Herring, but it is not universal
[60,61]. Other scaling laws can be obtained by using different
limiting assumptions that can, for example, depend on the
crystal structure [61]. However, the quadratic scaling used
here is generally the strongest possible variation consistent
with nondiverging thermal conductivities in the limit of dense
Brillouin zone sampling irrespective of further limiting as-
sumptions [60]. Therefore, it leads to a firm upper bound
for the effect of size extrapolation. Also due to the fact that
this interpolation scheme is fully mode and q resolved via
the function λb(q) and incorporates the fully anharmonic
lifetimes at commensurate q points, no systematic errors as-
sociated to the scaling and interpolation procedure have been
observed in extended validation calculations covering several
different crystal structures [62].

For sampling the interpolated points { q̃ }, we use even-
numbered Monkhorst-Pack grids as implemented in PHONOPY

[41,63], with a maximum grid size of 20 × 20 × 20. The sym-
metrized lifetimes τbq obtained from fitting Eq. (23) as well
as the interpolated lifetimes denoted by τ̃b(q̃) are displayed
as scattering rates (∝ τ−1) in Fig. 3. It is apparent that long-
lived contributions stemming from modes with ω < 5 THz
are introduced through the interpolation (red dots), effectively
capturing modes with lifetimes >100 ps which is beyond the
simulation time of 60 ps. On the other hand, lifetimes for
modes ω > 5 THz are already well captured by the com-
mensurate modes (black dots). This is further substantiated in
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FIG. 3. Scattering rates vs frequency in MgO at 300 K after
fitting Eq. (23) and symmetrizing using space-group operations as
explained in the main text (black dots), and after interpolation to
20 × 20 × 20 grid (red dots). Gray dashed line: Ioffe-Regel limit
τ−1 = ω with 50% margins.

Fig. 4, which compares the lifetimes obtained by the described
interpolation procedure with those obtained using third-order
perturbation theory with TDEP force constants fitted to our MD
simulations [7]. The difference observed between the pertur-
bative and the interpolated scattering rates in the 7–12-THz
range is attributed to higher-order anharmonic scattering, in
line with the findings discussed for MgO at higher tempera-
tures in Ref. [64] using a similar harmonic mapping procedure
in larger supercells without interpolation. We also note that all
scattering rates are well below the Ioffe-Regel limit τ−1 = ω

[65]. This limit can be taken as a qualitative rule for estimating
the validity of the phonon quasiparticle picture: Since the
scattering rate is defined as the width of the phonon spectral
function via Eq. (23), τ−1

bq = 2Imbq, rates below this limit
signify sharply peaked, well-defined quasiparticles [12,20].

D. Thermal conductivity extrapolation

For the new, denser grid, an interpolated value,

κ
αβ

ha-int(Nq̃) = kB

V

Nq

Nq̃

∑
b,q̃

vα
b (q̃)vβ

b (q̃)τ̃b (q̃), (25)

can be obtained, where Nq̃ is the number of points in the new
grid, and the factor Nq/Nq̃ accounts for the increased number

FIG. 4. Scattering rates vs frequency in MgO at 300 K. Compar-
isons of the lifetimes obtained via interpolation (cf. Fig. 3) to those
obtained using third-order perturbation theory with the TDEP code
[7,39].

FIG. 5. Size extrapolation correction to bulk limit computed
from Eq. (25) assuming linear convergence in 1/nq, where nq is the
number of q points per Cartesian direction. The offset between κha

and κha-int arises because even grids are used for the extrapolation,
whereas a 3 × 3 × 3 supercell and respective grid of commensurate
q points are used in the simulation.

points. The bulk limit of Eq. (25) is obtained by computing
interpolated values for an increasing density of q points. The
convergence of Eq. (25) is approximately linear in N−1/3

q̃ ≡
1/nq, where nq is number of q points per Cartesian direction.
The slope of this curve can therefore be used to extrapolate
the value of κha to the bulk limit, as shown in Fig. 5. With the
extrapolated value κha-bulk, a correction can be obtained via

δκha-correction = κha-bulk − κha, (26)

from which the final result for the thermal conductivity is
obtained via

κ
αβ

corrected = καβ + δκ
αβ

ha-correction, (27)

where καβ is the value from the aiGK simulation. The interpo-
lation scheme effectively subtracts harmonic contributions to
the thermal conductivity from vibrations commensurate with
the supercell, and extrapolates them to the bulk limit, thereby
including long-range contributions otherwise not present in
the simulation cell. The size-corrected contributions are sub-
sequently added back to the total thermal conductivity.

We note that several approximations are involved in the
scheme outlined above, such as the assumption of exponen-
tial decay of the mode-energy autocorrelation function in
Eq. (23), or neglecting mode cross correlations with (b, q) 
=
(b′, q′) in Eq. (11). However, the dominant contribution to
the size correction in Eq. (26) can be expected to come from
low-frequency, long-lived phonons missing in the simulation
cell, as shown in Fig. 3, for which the approximations listed
above are well justified. The shorter-range contributions of
modes that interact more strongly are fully captured on the ab
initio level, for which the lifetimes are only weakly frequency
dependent, as seen in Fig. 3 when focusing on the regime
where ω > 5 THz.

We also note in passing that the force constants used for
size extrapolation could also be obtained via finite differ-
ences as, e.g., implemented in PHONOPY [41,66,67]. However,
especially for quite harmonic materials such as MgO, we
did not find the extrapolation scheme to be sensitive to sub-
tle differences in the force constants used to describe the
auxiliary (effective) harmonic model. Furthermore, effective
harmonic models extend the applicability of phonon theory to
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FIG. 6. Thermal conductivity κ as function of the simulation
time t0 as defined in Eq. (29). Values are given as the ensemble aver-
age over three independent trajectories. The error bars are computed
according to Eq. (5) as the standard error of the ensemble average.
The blue curve is a logistic curve defined in Eq. (28) fitted to the κ

values; the dashed blue curve is the infinite time limit of the fitted
function. Gray dots represent the thermal conductivity as given by
the simulation without the size-correction scheme. Please note that
the values for κ shown here cannot be directly compared to the
value displayed in Fig. 1 or Fig. 5, because the latter only shows
single components of single runs, which can vary substantially from
the total average.

dynamically unstable high-temperature phases, for example,
in strontium titanate SrTiO3 [68], palladium hydride PdH [8],
or zirconia ZrO2 [21,69]. A detailed account of the feasibil-
ity of the size-extrapolation scheme presented here for these
systems is, however, beyond the scope of the current work.

V. RESULTS FOR MAGNESIUM OXIDE

After we have seen how the cutoff time tc in Eq. (2) can be
obtained, and finite-size errors can be corrected, we discuss
the convergence of the presented scheme as a function of
the simulation time t0 in Eq. (3). We do this for the case of
MgO for three independent trajectories of 60-ps length each.
We truncate every trajectory in 10% steps down to a length
of 6 ps, and apply the workflow presented in the previous
sections to each of the truncated trajectories. Figure 6 shows
that the thermal conductivity converges to a plateau after
about 40 ps, where the value of κ stays constant within the
error bars. The overall shape of the curve can be described
as follows: Simulations shorter than 20 ps sample the early
decay of the HFACF which contribute about 30 W/mK to
the total thermal conductivity. After a simulation time of
25 ps, the late decay of the HFACF is sampled, contributing
more than double the amount to the total thermal conductivity
of 68.8 ± 6.1 W/mK after the total simulation time. In the
plot, this two-step behavior is approximated by a logistic
function

f (t ) = L

1 + exp
(− (t−tinflection )

τ

) + f0, (28)

which captures the second superlinear increase in κ at
tinflection � 29 ps, and models the correct asymptotic behavior

TABLE I. Reference values for the thermal conductivity of per-
iclase MgO at ambient conditions. See also discussion in Ref. [84].
For the ab initio studies, the level of theory is indicated in
parentheses: Local density approximation (LDA) [85] or the GGA
parametrized by Perdew, Burke, and Ernzerhof (PBE) [86].

Thermal conductivity
Reference at 300 K (W/mK)

Experiment [73–79] 50–65
de Koker (LDA) [80] ≈75a

Stackhouse et al. (LDA) [33] 58 ± 6b

Tse et al. (PBE) [81] 70.3 ± 8.9
Dekura and Tsuchiya (LDA) [82] ≈54
Plata et al. (PBE) [83] 54.06
Xia et al. (PBE) [15] 50.1–58.7
This work 68.8 ± 6.1

aValue extrapolated from higher temperatures using Eq. (17) from
Ref. [80].
bValue extrapolated from higher temperatures using Eq. (5) from
Ref. [33].

for long times. The asymptotic value of κ (t0 → ∞) = 68.5
W/mK agrees very well with the value after 60 ps of
κ (60 ps) = 68.8 ± 6.1 W/mK. As the largest lifetime in the
simulation corresponds to τ ≈ 15.5 ps, as highlighted in
Fig. 2, we do not expect a significant increase of κ (t0) after
this simulation time. We therefore conclude that the simula-
tion time of t0 = 60 ps can be considered converged, and that
Eq. (28) can be used to model the late increase of κ (t0), in
line with the division into short and long processes commonly
discussed in the literature [70–72]. Furthermore, we note
that the size extrapolation increases the value from κ = 45.5
W/mK to κcorrected = 68.8 W/mK, i.e., the value increases
significantly by about 50%.

We would like to point out that we did not discard an
initial time from the NVE simulations to allow for further
equilibrating after the thermostat is switched off, as is com-
mon practice in the literature on GK simulations [72]. We
did not find this procedure to be necessary: The truncation
of simulation times displayed in Fig. 6 was performed such
that the early time steps in the simulation were discarded;
i.e., a simulation time of t0 = 54 ps corresponds to discarding
the first 6 ps from the trajectory. Since discarding 6 ps or
more did not change the result significantly, its effect can be
assumed to be minor for aiGK simulations.

Comparison to literature

We conclude the discussion for MgO by comparing to
available experimental and theoretical references. These ref-
erences are listed in Table I. The given references show a
significant spread. On the experimental side, the main source
of uncertainty arises from different sample quality, different
measurement techniques, and the fact that thermal conduc-
tivity is usually not the direct observable, but inferred from
thermal diffusivity measurements and other material param-
eters which may imply additional sources of error [79]. The
agreement between our aiGK simulation and experiment is
satisfactory. While our thermal conductivity is larger than
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that of the listed experiments, this is to be expected since
isotope effects are not included in our simulations. The listed
measurements, on the other hand, are not performed for
isotopically pure MgO. Neglecting these isotope scattering
effects can lead to increases of thermal conductivity. Using
TDEP with force constants fitted to our PBEsol trajectories
[7,39], we obtain an increase of 35% in the single-mode
relaxation time approximation and of 46% when solving the
full linearized BTE, in line with the 46% increase reported in
Ref. [34] using the LDA functional. Corrected by this factor,
our result would be 47.1 ± 4.2 W/mK, only slightly below
and within error of the most recent experimental results of
50.1 W/mK obtained by Hofmeister [79].

On the theoretical side, we compare to three other ap-
proaches based on aiMD simulations by de Koker [32,80],
Stackhouse, Stixrude, and Karki [33], and Tse et al. [81].
The quantitative agreement with de Koker and Stackhouse
et al. is acceptable, given that different exchange-correlation
functionals and otherwise computational settings were used.
We note that the higher values found by de Koker are a little
surprising, given that smaller supercells were used, with no
size extrapolation. However, the value of κ ≈ 75 W/mK listed
in Table I is an extrapolation from higher temperatures, where
finite-size effects are likely less important. The agreement
with the study by Tse et al. [81] based on the Einstein relation
introduced in Ref. [87] is very good.

The other theoretical works are based on perturbative BTE
approaches [10]. The listed references use three-phonon scat-
tering to compute phonon lifetimes; the lowest value reported
by Xia et al. [15] is obtained by additionally including fourth-
order scattering which further reduces lifetimes in MgO [9].
The BTE approaches based on third-order scattering listed
here account for isotope scattering and are therefore consis-
tently lower than our aiGK value, since isotope scattering is
more pronounced than higher-order phonon-phonon scatter-
ing in MgO.

Given the comparatively large uncertainty inherent to
thermal conductivity measurement and simulation, the agree-
ment between aiGK and the available literature can therefore
be considered satisfactory. The discussion for MgO further
shows that aiGK can be used for mostly harmonic materials
with considerable phonon lifetimes when a suitable extrapola-
tion scheme is employed.

VI. RESULTS FOR COPPER IODIDE

Next, we apply the scheme as presented above to marshite
CuI, a strongly anharmonic material which becomes a superi-
onic conductor above 643 K [88,89].

The final ensemble-averaged thermal conductivity as a
function of the simulation time is displayed in Fig. 7. Fitting
the logistic function in Eq. (28) to κ (t ) as before, we can
pinpoint the second superlinear increase in κ (t ) to tinflection

� 18 ps, although this increase is visually less pro-
nounced than in MgO. The early increase is domi-
nated by the considerably stronger scattering and there-
fore shorter lifetimes of modes in the optical range, as
shown in Fig. 8. As the lifetimes in the lower fre-
quency range are comparable to those of MgO, we con-
clude that the simulation time of 60 ps is sufficient for

FIG. 7. Thermal conductivity κ for CuI as a function of the sim-
ulation time t0. Curves and symbols are equivalent to those defined
in Eq. (6).

CuI as well. The size-extrapolation scheme increases the
thermal conductivity from κ = 1.12 W/mK to κcorrected =
1.38 W/mK, i.e., by about 23 %, which is in line with the
assumption that finite-size effects become less important in
strongly anharmonic materials.

As CuI is less abundant than MgO, it is less frequently cov-
ered in the literature. The available references are summarized
in Table II.We slightly underestimate the CRC Handbook
reference of 1.68 W/mK [90], but are clearly above the thin-
film reference of about 0.55 W/mK as reported by Yang and
co-workers [91], which we take as a firm lower limit to the in-
trinsic thermal conductivity of CuI due to boundary scattering.
It is noteworthy that an earlier computational investigation
based on Boltzmann transport theory by Togo and co-workers
reaches a much higher value of thermal conductivity in CuI
of about 7 W/mK [31]. We propose the following expla-
nation based on the findings for other strongly anharmonic
zinc-blende compounds presented by Xia and co-workers
in Ref. [15]: The authors showed that higher-order phonon
scattering can limit the thermal conductivity in zinc-blende
compounds considerably, and including only third-order scat-
tering can overestimate κ by up to 450% in the case of HgTe,
a compound which is less anharmonic than CuI according to
the quantification scheme presented in Ref. [14]. Since the

FIG. 8. Scattering rates vs frequency in CuI at 300 K after fit-
ting Eq. (23) and symmetrizing using space-group operations as
explained in the main text (black dots), and after interpolation to
20 × 20 × 20 grid (red dots). Gray dashed line: Ioffe-Regel limit
τ−1 = ω with 50% margins.
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TABLE II. Experimental values and one theoretical reference for
the thermal conductivity of marshite CuI at ambient conditions.

Thermal conductivity
Reference at 300 K (W/mK)

CRC Handbook [90] (experiment, bulk) 1.68
Yang et al. [91] (experiment, thin film) 0.55a

Togo et al. [31] (theory) 6.55–7.22
This work 1.38 ± 0.14

aThe value from Yang et al. is from a thin-film experiment and,
therefore, can be regarded as a lower bound of the bulk thermal
conductivity [91].

aiGK method is nonperturbative, anharmonic scattering up
to arbitrary order is naturally included, which explains the
variance with BTE results using third-order scattering only.
This is further supported by comparing the scattering rates
displayed in Fig. 8 to the Ioffe-Regel introduced earlier [65]:
Nearly all modes in the optical part of the spectrum >2.5
THz approach or exceed the range τ−1 = ω. Several modes
in the range 1–2 THz approach this limit. As discussed in
Sec. IV C for MgO, a scattering rate in this range signifies a
strong broadening of the phonon spectral function beyond the
perturbative regime which is defined for τ−1  ω [12,20].

VII. REMARK ON SIMULATION TIMES

It is clear that the minimal necessary simulation time t0 is
material dependent and needs to be checked in each study.
It may therefore come as a surprise that 60 ps turned out to
sufficient both for MgO and CuI, although their dynamical
and anharmonic properties are quite different, and one might
a priori expect much longer simulation times to be necessary
for the more harmonic MgO. However, when inspecting the
vibrational properties of both materials, one can infer that
the effective simulation time for MgO is indeed much longer
than for CuI: We define the dimensionless effective simulation
length via

t̃0 = t0ω̄low, (29)

where t0 is the simulation time, and ω̄low is a characteristic
frequency for the slow degrees of freedom of the system, mo-
tivated by the fact that heat transport is usually dominated by
these slow processes. We choose ω̄low as the mean frequency
of the lowest 20% of the vibrational spectrum as shown in
Fig. 9, but emphasize that the argument is not sensitive to
this somewhat arbitrary choice. Using the effective simulation
length as defined in Eq. (29), we see that the simulation for
MgO (t̃0 = 442.2) is effectively 6.5 times longer than that
for CuI (t̃0 = 67.8), due to the stiffer bonding and therefore
faster vibrations present in MgO. Noting that lifetimes tend to
decrease with increasing frequency as argued earlier [61], this
explains why the longest lifetimes in the simulation cell are
of the same order of magnitude in MgO and CuI as shown in
Figs. 3 and 8, despite the much stronger anharmonic character
of CuI.

For novel materials, we therefore suggest to estimate the
necessary simulation times based on the vibrational spectrum
and lifetime estimates according to Eq. (23). Special care
must be taken for slow but harmonic materials, for which
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FIG. 9. Significant portion of the vibrational density of states
(VDOS) [92], and representative low frequency ω̄low for MgO (upper
panel) and CuI (lower panel). Note the different limits on the x axis.

the necessary simulation times might easily be much longer
than those reported here, consistent with GK studies based on
empirical force fields for harmonic materials like silicon [93].

VIII. CONCLUSION AND OUTLOOK

We have presented and applied an implementation of aiGK
simulations based on the first-principles heat flux introduced
in Ref. [21]. Systematically removing noise from the HFACF
allows to estimate cutoff times in a numerically robust way.
We also presented a detailed account of our updated size-
extrapolation scheme based on mapping the aiMD trajectories
to an (effective) harmonic model. The scheme was applied
to MgO and CuI, two simple binary systems of quite dif-
ferent harmonic character: MgO is an example for a stiffly
bonded, harmonic material with quite high thermal conduc-
tivity for a rocksalt compound, whereas CuI is a strongly
anharmonic compound that dynamically destabilizes and be-
comes superionic conducting at higher temperatures [14,88].
Good agreement with the available literature is found for CuI,
and for MgO when correcting for isotope effects.

The presented scheme and its implementation in FHI-
VIBES makes performing, postprocessing, and analyzing aiGK
simulations much more straightforward than previously pos-
sible. The reduced human intervention enables to study heat
transport in materials across material space, in particular for
strongly anharmonic or complex materials, as discussed in
Ref. [62]. Furthermore, approaches such as those based on
BTE can be systematically benchmarked against nonpertur-
bative results obtained from aiGK in the future.

We note in passing that the presented approach can
equally be applied to GK studies based on empirical or
machine-learned force fields [94–100]. Also in these cases,
the presented strategies that rely on physically motivated ap-
proaches and parameters can be helpful to obtain more stable
and systematic data from potentially noisy simulations.
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The presented method is implemented and available in the
open-source package FHI-VIBES [30]. The package builds on
the atomic simulation environment (ASE) [101]. The data and
scripts used to create the plots are made available via figshare
[102]. The raw density functional theory calculations includ-
ing input and output files are accessible via NOMAD [103].
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