Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Accelerating materials-space exploration for thermal insulators by mapping materials properties via artificial intelligence

MPG-Autoren
/persons/resource/persons237953

Purcell,  Thomas
NOMAD, Fritz Haber Institute, Max Planck Society;

/persons/resource/persons22064

Scheffler,  Matthias       
NOMAD, Fritz Haber Institute, Max Planck Society;

/persons/resource/persons21549

Ghiringhelli,  Luca M.
NOMAD, Fritz Haber Institute, Max Planck Society;

/persons/resource/persons21413

Carbogno,  Christian
NOMAD, Fritz Haber Institute, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)

s41524-023-01063-y.pdf
(Verlagsversion), 2MB

Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Purcell, T., Scheffler, M., Ghiringhelli, L. M., & Carbogno, C. (2023). Accelerating materials-space exploration for thermal insulators by mapping materials properties via artificial intelligence. npj Computational Materials, 9: 112. doi:10.1038/s41524-023-01063-y.


Zitierlink: https://hdl.handle.net/21.11116/0000-000D-8156-0
Zusammenfassung
Reliable artificial-intelligence models have the potential to accelerate the discovery of materials with optimal properties for various applications, including superconductivity, catalysis, and thermoelectricity. Advancements in this field are often hindered by the scarcity and quality of available data and the significant effort required to acquire new data. For such applications, reliable surrogate models that help guide materials space exploration using easily accessible materials properties are urgently needed. Here, we present a general, data-driven framework that provides quantitative predictions as well as qualitative rules for steering data creation for all datasets via a combination of symbolic regression and sensitivity analysis. We demonstrate the power of the framework by generating an accurate analytic model for the lattice thermal conductivity using only 75 experimentally measured values. By extracting the most influential material properties from this model, we are then able to hierarchically screen 732 materials and find 80 ultra-insulating materials.