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Accelerating materials-space exploration for thermal insulators
by mapping materials properties via artificial intelligence
Thomas A. R. Purcell 1✉, Matthias Scheffler 1,2, Luca M. Ghiringhelli 1,2✉ and Christian Carbogno 1✉

Reliable artificial-intelligence models have the potential to accelerate the discovery of materials with optimal properties for various
applications, including superconductivity, catalysis, and thermoelectricity. Advancements in this field are often hindered by the
scarcity and quality of available data and the significant effort required to acquire new data. For such applications, reliable
surrogate models that help guide materials space exploration using easily accessible materials properties are urgently needed.
Here, we present a general, data-driven framework that provides quantitative predictions as well as qualitative rules for steering
data creation for all datasets via a combination of symbolic regression and sensitivity analysis. We demonstrate the power of the
framework by generating an accurate analytic model for the lattice thermal conductivity using only 75 experimentally measured
values. By extracting the most influential material properties from this model, we are then able to hierarchically screen 732
materials and find 80 ultra-insulating materials.
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INTRODUCTION
Artificial-intelligence (AI) techniques have the potential to
significantly accelerate the search for novel, functional materials,
especially for applications where different physical mechanisms
compete with each other non-linearly, e.g., quantum materials1,
and where the cost of characterizing the materials makes a large-
scale search intractable, e.g., thermoelectrics2. Due to this inherent
complexity, only limited amounts of data are currently available
for such applications, which in turn severely limits the applicability
and reliability of AI techniques3. Using thermal transport as an
example, we propose a route to overcome this hurdle by
presenting an AI framework that is applicable to scarce datasets
and that provides heuristics able to steer further data creation into
regions of interest in materials space.
Heat transport, as measured by the temperature-dependent

thermal conductivity, κL, is a ubiquitous property of materials and
plays a vital role for numerous scientific and industrial applications
including energy conversion4, catalysis5, thermal management6,
and combustion7. Finding new crystalline materials with either an
exceptionally low or high thermal conductivity is a prerequisite for
improving these and other technologies or making them
commercially viable at all. Accordingly, finding new thermal
insulators and understanding where in materials space to search
for such compounds is an important open challenge in this field.
From a theory perspective, thermal transport depends on a
complex interplay of different mechanisms, especially in thermal
insulators, for which strongly anharmonic, higher-order effects can
be at play8. Despite significant progress in the computational
assessment of κL in solids9,10, these ab initio approaches are too
costly for a large-scale exploration of material space. For this
reason, computational high-throughput approaches have so far
covered only a small subset of materials11–13. Experimentally, an
even smaller number of materials have had their thermal
conductivities measured, and <150 thermal insulators
identified14,15.

Recently, increased research efforts have been devoted to
leveraging AI frameworks to extend our knowledge in this field. In
particular, various regression techniques have been proven to
successfully interpolate between the existing data and approx-
imate κL using only simpler properties11,14,16,17; however, using
these techniques to extrapolate into new areas of materials space
is a known challenge. More importantly, the explainbility of these
models is limited by their inherent complexity. Physically
motivated, semi-empirical models, e.g., the Slack model18, perform
slightly better in this regard because they encapsulate information
about the actuating mechanism. Recent efforts have used AI to
extend the capabilities of these models2,16,19,20 to increase their
accuracy in estimating κL. However, the applicability of such
models is still limited by the physical assumptions entering the
original expressions2,19. A general model that removes these
assumptions and achieves the quantitative accuracy of AI
approaches, while retaining the qualitative interpretability of
analytical models, is however, still lacking.
In this work, we tackle this challenge by using a symbolic

regression technique to quantitatively learn κL, using easily
calculated materials properties. While symbolic regression meth-
ods are typically more expensive to train than other kernel based
methods, such as Kernel-Ridge Regression (KRR) and Gaussian
Process Regression (GPR), their prediction errors are typically
equivalent to other methods and their natural feature reduction
and resulting analytical expressions make them a useful method
for explainable AI, as further illustrated below21. Furthermore, the
added cost of training does not affect the evaluation time of the
given models, meaning the extra time only has to be spent at the
beginning. The inherent uncertainty estimate in methods like GPR,
allows for a prediction of where the resulting models are expected
to perform worse; however, we also propose a method to get an
ensemble uncertainty estimate for symbolic regression that can be
applied more generally to these types of models. We further
exploit the feature reduction of SISSO and expand upon its
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interpretability by using a global sensitivity analysis method to
distill out the key material properties that are most important for
modelling κL and to find the conditions necessary for obtaining an
ultra-low thermal conductivity. From here, we use this analysis to
learn the conditions needed to screen materials in each step of a
hierarchical, high-throughput workflow to discover new thermal
insulators. Using this workflow we can then establish qualitative
design principles that lend themselves to general application
across material space and use them to find 80 materials with an
ultra-low κL.

RESULTS
Symbolic regression models for thermal conductivity
We use the sure-independence screening and sparsifying operator
(SISSO) method as implemented in the SISSO++ code22. This
method has been used to successfully describe multiple applica-
tions including the stability of materials23, catalysis24, and glass
transition temperatures25. To find the best low-dimensional
models for a specific target property, in our case the room
temperature, lattice thermal conductivity, κL 300 Kð Þ, SISSO first
builds an exhaustive set of analytical, non-linear functions, i.e.,
trillions of candidate descriptors, from a set of mathematical
operators and primary features, the set of user-provided proper-
ties that will be used to model the target property. Here we are
focusing on room temperature data only because that is what is
the most abundant in the literature and relevant for potential
applications; however, some temperature dependence will be
inherently included via the temperature dependence of our
anharmonicity factor σA. For this application the primary features
are both the structural and dynamical properties for seventy-five
materials with experimentally measured κL 300 Kð Þ17,26–43 (see
Section IV D and Supplementary Note 1 for more details). By using
the experimentally measured values for κL we avoid the issues
related to the inconsistent reliability of different approaches to
calculating κL for different material classes44,45, and hopefully
create a universal model for it. For many of the materials of
interest here the standard Boltzmann Transport approach will be

unreliable44,45, but the fully anharmonic ab initio Green-Kubo
approach is unnecessarily expensive to use for all materials45.
Combining theoretical and experimental data in this way allows
one to avoid both the cost or unreliability of calculating, κL and
the challenges of experimentally synthesizing and characterizing
candidate materials. As long as all samples are consistent across
each feature, AI and ML based models will adapt the computa-
tional features to the experimental target.
Figure 1b illustrates the main goal of the work: to learn which

primary features are important for modeling κL and what
thresholds of those indicate where thermal insulators are present.
As a result the figure also represents the workflow used to
calculate κL and generate the primary features for the model. All of
the data generated in this workflow will be calculated using ab
initio methods, with each step representing an increasing cost of
calculation, as shown in Fig. 1a. The total cost of calculating these
primary features is several orders of magnitude smaller than
explicitly calculating κL, either with the Boltzmann Transport
Equation or aiGK. While using only compositional and structural
features would further reduce the cost of generating them, it
comes at the expense of decreasing the reliability and explain-
ability of the models. A goal of this work is to learn the screening
conditions needed to remove materials at each step of the
workflow in Fig. 1b and only perform the intensive κL calculations
on the most promising materials. Because of this, we feel that
using the features generated from this workflow is the most
logical set to use. Importantly, as described in Section IV D we use
a consistent and accurate formalism for calculating all features in
this workflow, and therefore expect a quantitative agreement
between these features and their experimental counterparts. Even
if this framework were restricted to explore only high-symmetry
materials, the overall cost of the calculations in a supercell would
be reduced by a factor of one hundred as shown by the non-green
bars in Fig. 1a. In the more general case we would be able to
screen closer to 1000 more materials using this procedure over
the brute-force workflows of calculating κL for all materials. With
the learned conditions one could then create a prescreening
procedure by learning models for each of the relevant structural or
harmonic properties using only compositional inputs, and use
those to estimate κL46; however, that is outside of the scope of this
work.
In practice, we model the log κL 300 Kð Þð Þ instead of κL 300 Kð Þ

itself to better handle the wide range of possible thermal
conductivities. The parity plot in Fig. 2(a) illustrates the
performance of the identified SISSO model when the entire
dataset is used (see Section IV A for more details). The resulting
expression is characterized by d1 and d2

log κSISSO 300 Kð Þ� � ¼ a0 þ a1d1 þ a2d2

d1 ¼ mavgþ200:3Dað Þ2ffiffi
μ

p
Vmþ218:9A3ð Þ3ΘD;1σA

d2 ¼ σA Vmρ
mavg

þ e
�ωΓ;max
27:11THz þ eσ

A

(1)

where a0= 6.327, a1=− 8.219 × 104, and a2=− 1.704 are con-
stants found by least-square regression and all variables are
defined in Table 1. We find that this model has a training root-
mean squared error (RMSE) of 0.14, with an R2 of 0.98 for
log κSISSO 300 Kð Þ� �

. To better understand how these error terms
translate to κL 300 Kð Þ, we also use the average factor difference
(AFD)

AFD ¼ 10x (2a)

x ¼ 1
n

Xn
i

log κLð Þ � log κpredL

� ���� ���; (2b)

where n is the number of training samples. Here, we find an AFD
of 1.30 that is on par if not smaller than models previously found

Fig. 1 The motivation for the work is reducing the number of
calculations needed to approximate the thermal conductivity of a
material. a The number of force evaluations needed to complete
each step of a κL calculation for four representative materials: (1)
Geometry relaxation (green first bar), (2) Harmonic model genera-
tion with Phonopy (yellow, second bar), (3) Evaluating κL via
Phono3py (lavender third bar) or MD (purple fourth bar), and (4)
estimating κL with the σA (light blue). The relaxation step typically
acts on the primitive cells (~10 atoms) while all other are done on
supercells with ~200 or more atoms. The number of force
evaluations for Phono3py assumes all displacements are needed
to calculate the third order force constants for version 2.5.1 (b) The
proposed hierarchical workflow that can screen out materials before
the final calculations.
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by other methods (e.g., 1.36 ± 0.03 for a Gaussian Process
Regression model17 and 1.48 for a semi-empirical Debye-Callaway
Model2). However, differences in the training sets and cross-
validation scheme prevent a fair comparison of these studies for
the prediction error. To see a complete representation of the
training error for all models refer to Supplementary Note 2.
To get a better estimate of the prediction error, we use a nested

cross-validation scheme further defined in Section IV E. As
expected, the prediction error is slightly higher than the training
error with an RMSE of 0.22 ± 0.02 and an AFD of 1.45 ± 0.03. As
shown in Fig. 2(b), these errors are comparable to those of a KRR
and GPR model trained on the same data, following the
procedures listed in Sections IV B and IV C, respectively. We
chose to retrain the models using the same dataset and cross-

validation splits in order to single out the effect of the
methodology itself, and not changes in the data set and splits.
These results show that the performance of SISSO and more
traditional regression methods are similar, but the advantage of
the symbolic regression models is that only seven of the primary
features are selected. Another advantage of the nested cross-
validation scheme is that it creates an ensemble of independent
models, which can also be used to approximate the uncertainty of
the predictions. These results substantiates that our symbolic
regression approach performs as well as interpolative methods
and it outperforms the Slack model, which was originally
developed for elemental cubic solids18. Interestingly, offering the
features of the Slack model to SISSO does not improve the results,
and even some primary features previously thought to be
decisive, e.g., the Grüneisen parameter, γ. are not even selected
by SISSO (see Supplementary Note 5).
A key advantage of using symbolic regression techniques over

interpolative methods such as KRR and GPR is that the resulting
models not only yield reliable quantitative predictions, but also
allows for a qualitative inspection of the underlying mechanisms.
To get a better understanding of how the thermal conductivity
changes across materials space we map the model in Fig. 2c. From
this map we can see that the thermal conductivity of a material is
mostly controlled by d2 with d1 providing only a minor correction.
While these observed trends are already helpful, the complex non-
linearities in both d1 and d2 impedes the generation of qualitative
design rules. Furthermore, some primary features such as Vm and
σA enter both d1 and d2, with contrasting trends, e.g., σA lowers d1
but increases d2. To accelerate the exploration of materials space,
one must first be able to disentangle the contradicting contribu-
tions of the involved primary features.

Extracting physical understanding by identifying the most
physically relevant features via sensitivity analysis
The difficulties in interpreting the “plain” SISSO descriptors
described above can be overcome by performing a sensitivity
analysis or a feature importance study to identify the most
relevant primary features that build d1 and d2. For this purpose, we
employ both the Sobol indices, i.e., the main effect index Si and
the total effect index STi

47, and the Shapley Additive Explanations
(SHAP)48 metric for the model predictions. To calculate the Sobol
indices we use an algorithm that includes correlative effects first
described by Kucherenko et al.49, and later implemented in

Fig. 2 Error evaluation for the presented models. a Comparison of the predicted κSISSO 300 Kð Þ against the measured κL 300 Kð Þ for the model
trained against all data. The gray shaded region corresponds to the 95% confidence interval. b Violin plots of the mean prediction error of all
samples for the SISSO, KRR, and GPR models using all features (red, left) and a reduced set including only σA, ΘD,∞, and Vm (blue, right) and the
Slack model. Gray lines are the median, white circles are the mean of the distributions, the boxes represent the quartiles, and the whiskers are
the minimum and 95% absolute error. For all calculations the parameterization depth and dimension are determined by cross-validation on
each training set. The red stars and blue hexagons are the outliers for the box plots. c A map of the two-dimensional SISSO model, where the
features on the x− and y− axes correspond to the two features selected by SISSO. The labeled points represent the convex-hull of the scatter
plot and related points.

Table 1. List of the primary features used in this calculation.

Name Symbol Unit Domain

Anharmonicity Score (aiMD)8 σA — [0.075, 1.0]

Anharmonicity Score (one-shot8) σAOS — [0.075, 1.0]

Maximum Phonon Frequency at
the Γ-point

ωΓ,max THz [0.1, 200]

High-Temperature Limit of the
Debye Temperature

ΘD,∞ K [10, 1000]

Average Phonon Temperature ΘP K [10, 10,000]

Heat Capacity CV J mol−1

K−1
[10, 5000]

Speed of sound vs m s−1 [500,
10,000]

Density ρ Da Å−3 [0.25, 10]

Molar Volume Vm Å3 [2.5, 1000]

Minimum Lattice Parameter Lmin Å [1, 100]

Maximum Lattice Parameter Lmax Å [1, 100]

Mean Lattice Parameter Lavg Å [1, 100]

Reduced Mass μ Da [0.2, 300]

Minimum Atomic Mass mmin Da [1, 300]

Maximum Atomic Mass mmax Da [1, 300]

Mean Atomic Mass mavg Da [1, 300]

Number of Atoms nat Z [1, 1000]
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UQLAB50,51. The main advantage of this approach is its ability to
include correlative effects between the inputs, which if ignored
can largely bias or even falsify the sensitivity analysis results52.
Qualitatively, Si quantifies how much the variance of
log κL 300 Kð Þð Þ correlates with the variance of a primary feature,
x̂i , and STi quantifies how much the variance of log κL 300 Kð Þð Þ
correlates with x̂i including all interactions between x̂i and the
other primary features. For example, Sobol indices of 0.0 indicate
that log κL 300 Kð Þð Þ is fully independent of x̂i , whereas a value of
1.0 indicates that log κL 300 Kð Þð Þ can be completely represented
by changes in x̂i51. Moreover, STi <Si implies that correlative effects
are significant, with an STi ¼ 0 indicating that a primary feature is
perfectly correlated to the other inputs51.
The SHAP values constitute a local measure of how each feature

influences a given prediction in the data set. This metric is based
on the Shapley values used in game theory for assigning payouts
to players in a game based on their contribution toward the total
reward48. In the context of machine learning models each input to
the model represents the players and the difference between
individual predictions from the global mean prediction of a
dataset represents the payouts53. The SHAP values then perfectly
distribute the difference from the mean prediction to each feature
for each sample, with negative values indicating that the feature is
responsible for reducing the prediction from the mean and a
positive value is responsible for increasing it.53. A similar metric is
the Local Interpretable Model-agnostic Explanations (LIME)
values54. LIME first defines a local neighborhood for each data
point, and then uses a similar algorithm to SHAP to compare each
prediction against their corresponding local area. Because of the
computational complexity of calculating SHAP values makes their
exact calculation intractable with a large number of features, these
values can be approximated by the Kernel SHAP method48.
Originally the Kernel SHAP method assumed feature

independence48, but was recently advanced to include feature
dependence via sampling over a multivariate distribution
represented by a set of marginal distributions and a Gaussian
Copula53. However, there are some cases for small data sets with
highly correlated features where the SHAP values are qualitatively
different from the true Shapley values55.
Figure 3 compares the different sensitivity metrics including

and excluding feature dependence. To get the global values of the
SHAP and LIME indexes we take the mean absolute value for each
feature across all 75 materials, but other metrics have been
proposed in the literature and it is not clear which one is best56–58.
However the local information contained in metrics such as SHAP
and LIME is an advantage they have over global metrics such as
the Sobol indexes as it allows for the identification of regions in
the material space that do not follow the global trends.
Comparing the plots in Fig. 3a and b illustrates the importance
of not treating the input primary features as independent, as all
four sensitivity analysis metrics are qualitatively wrong under that
assumption. This is likely a result of sampling over physically
unreachable parts of the feature space, e.g., areas with a high
density, low mass, and high molar volume, and suggests that
caution should be used when applying these techniques to highly
correlated datasets. The impact of this is demonstrated in
Supplementary Fig. 3, where we explicitly simplify the model to
remove some of the dependencies. All three indexes that include
correlative effects show that σA, Vm, ΘD,∞, and ωΓ,max predomi-
nately control the variance of κSISSO 300 Kð Þ. The main difference
between Si and the kernel SHAP metrics is the relative importance
of ΘD,∞ and ωΓ,max when compared against Vm and σA. The
difference between these results could be from the the Sobol
indexes globally sampling the region of ΘD,∞ > 1300 K instead of
relying on the two materials in that regime or Si over-estimating its
importance because the higher correlation between ΘD,∞ and the
other inputs. In fact, the low values of STi also imply that there are
significant correlative effects in place between these inputs, and
no single feature can be singled out as primarily responsible for
changes in κSISSO 300 Kð Þ. For instance, the similarity between the
importance of ωΓ,max and ΘD,∞ is because they are strongly
correlated to each other, and only one of them needs to be
considered (see the Supplementary Fig. 2). The importance of
these features is further substantiated in Fig. 2b, where we
compare the performance of the models calculated using the full
dataset and one that only includes σA, Vm, and ΘD,∞. For all tested
models, we see only a slight deterioration in performance with a
predictive AFD of 1.87, 1.77, and 1.77 for the SISSO, KRR, and GPR
models, respectively, compared to 1.45 for the models trained
with all features. This result highlights that the trends and the
underlying mechanisms describing the dependence of κL 300 Kð Þ
in materials space are fully captured by those features alone.
Even more importantly, our model captures the interplay

between these features across materials, as demonstrated in the
maps in Fig. 4. These maps showcase the strong correlation
between κSISSO 300 Kð Þ and σA, Vm, and ΘD,∞, and that materials
with high anharmonicity, low-energy vibrational modes, and a
large molar volume will be good thermal insulators. Figure 4
shows the expected value of κSISSO 300 Kð Þ, EX̂ κSISSO 300 Kð Þ��X̂� �

,
for different sets of input features, X̂ , shown on the axes of each
plot. We then overlay the maps with the actual values of each
input for all materials in the training set to evaluate the trends
across different groups of materials. Figure 4c confirms that σA is
already a good indicator for finding thermal insulators, with most
of the materials having κL 300 Kð Þ within one standard deviation of
the expected value. For the more harmonic materials with σA < 0.2,
the vanishing degree of anharmonicity is, alone, not always
sufficient for quantitative predictions. In this limit, a combination
of σA and Vm can produce correct predictions for the otherwise
underestimated white triangles with a σA < 0.2, as seen in Fig. 4a.
In order to fully describe the low thermal conductivity of the

Fig. 3 The feature importance metrics for the models. Si (first bar,
dark blue), STi (second bar, light blue), mean absolute SHAP index
(third bar, brown), and LIME index (fourth bar, yellow) for each
feature in the model by treating the inputs as (a) dependent feature
and (b) independent features. The Sobol indices are plotted on the
left y-axis and the SHAP and LIME indexes are plotted on the right y-
axis.
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remaining highlighted materials both ΘD,∞ and Vm are needed as
can be seen in Fig. 4a, b, d and e. Generally, this reflects that the
three properties σA, ΘD,∞, and Vm are the target properties to
optimize to obtain ultra-low thermal conductivities.
These results can also be rationalized within our current

understanding of thermal transport and showcase which physical
mechanisms determine κL in material space. Qualitatively, it is well
known that good thermal conductors typically exhibit a high
degree of symmetry with a smaller number of atoms, e.g.,
diamond and silicon, whereas thermal insulators, e.g., glass-like
materials, are often characterized by an absence of crystal
symmetries and larger primitive cells. In our case, this trend is
quantitatively captured via Vm, which reflects that larger unit cells
have smaller thermal conductivities. Furthermore, it is well known
that phonon group velocities determine how fast energy is
transported through the crystal in the harmonic picture59, and
that it is limited by scattering events arising due to anharmonicity.
In our model, these processes are captured by ΘD,∞, which
describes the degree of dispersion in the phonon band structure,
and the anharmonicity measure, σA respectively. In this context, it
is important to note that, in spite of the fact that these qualitative
mechanisms were long known, there had hitherto been no
agreement on which material property would quantitatively
capture these mechanisms best across material space. For
instance, both the γ, the lattice thermal expansion coefficient,
and now σA, have been used to describe the anharmonicity of a
material. However, when both γ and σA are included as primary
features, only σA is chosen (see Supplementary Note 5 for more
details). This result indicates that the σA measure is the more
sensitive choice for modeling the strength of anharmonic effects.
While γ also depends on anharmonic effects, they are also

influenced by the bulk modulus, the density, and the specific heat
of a material.

Validating the predictions with ab initio Green-Kubo
calculations
To confirm that the discovered models produce physically
meaningful predictions, we validate the estimated thermal
conductivity of four materials using the ab initio Green-Kubo
method (aiGK)10,45. This approach has recently been demon-
strated to be highly accurate when compared to experiments45,
using similar DFT settings for what is done in this work. In
particular aiGK is highly accurate in the low thermal conductivity
regime that we are studying here. For details of how we calculate
κL see the methodology in Section IV J. For this purpose, we chose
BrBaCl, LiScS2, CaF2, and GaLiO2, since these materials represent a
broad region of the relevant feature space that also test the
boundary regions of the heuristics found by the sensitivity analysis
and mapping, as demonstrated by the yellow stars in Fig. 4.
Figure 5 shows the convergence of the thermal conductivity of the
selected materials, as calculated from three aiMD trajectories. All
of the calculated thermal conductivities fall within the 95%
confidence interval of the model, with the predictions for both
CaF2 and ClBaBr being especially accurate. The better performance
of the model for these materials is expected, as they are more
similar to the training data than the hexagonal Caswellsilverite like
materials. In addition, quantum nuclear effects play a more
important role in LiScS2 and GaLiO2 than CaF2 and ClBaBr, which
can also explain why those predictions are worse than CaF2 and
ClBaBr. Overall these results demonstrate the predictive power of
the discussed model.

Fig. 4 The expected value of κSISSO 300Kð Þ relative to select primary features. The expected value of κSISSO 300 Kð Þ, EX̂ κSISSO 300 Kð Þ��X̂� �
,

where X̂ is (a) σA; Vm
� 	

, (b) ΘD;1; Vm
� 	

, (c) σA
� 	

, (d) ΘD;1
� 	

, and (e) Vmf g. EX̂ κSISSO 300 Kð Þ��X̂� �
is calculated by sampling over the multivariate

distributions used for the sensitivity analysis, and binning the input data until there are at least 10,000 samples in each bin. The red line in
(c–e) corresponds to EX̂ κSISSO 300 Kð Þ��X̂� �

and the pink shaded region is one standard deviation on either side of the line. The gray shaded
regions represent where a thermal conductivity of 10 Wm−1 K−1 or lower is within one standard deviation of the expected value. On all maps
all materials in the training set are displayed. The green circles correspond to rock-salts, the blue diamonds are zincblende, the light blue
pentagons are wurtzites, and black triangles are all other materials. All points with a κL 300 Kð Þ less than one standard deviation below the
expected value based on σA are highlighted in white. The points in (c–e) correspond to the actual values of κL 300 Kð Þ for each material.
Additionally we include four materials outside of the training set (yellow stars) whose thermal conductivities we calculate using ab initio
molecular dynamics.
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Discovering improved thermal insulators
Using the information gained from the sensitivity analysis and
statistical maps of the model, we are now able to design a
hierarchical and efficient high-throughput screening protocol split
into three stages: structure optimization, harmonic model gen-
eration, and anharmonicity quantification. We demonstrate this
procedure by identifying possible thermal insulators within a set
of 732 materials, within those compounds available in the
materials project60 that feature the same crystallographic proto-
types61,62 as the ones used for training. Once the geometry is
optimized we remove all materials with Vm < 35.5 Å(60 materials)
and all (almost) metallic materials (GGA bandgap < 0.2 eV), and are
left with 302 candidate compounds. We then generate the
converged harmonic model for the remaining materials and
screen out all materials with ΘD,∞ > 547 K or have an unreliable
harmonic model, e.g., materials with imaginary harmonic modes,
leaving 148 candidates. Finally we evaluate the anharmonicity, σA,
for the remaining materials (see Section IV D) and exclude all
materials with σA < 0.206, and obtain 110 candidate thermal
insulators. To avoid unnecessary calculations, we first estimate σA

via σA
OS and then refine it via aiMD when σA

OS>0:4
8. For these

candidate materials, we evaluate κSISSO 300 Kð Þ using Eq. (1). Of the
110 materials that passed all checks, 96 are predicted to have have
a κSISSO 300 Kð Þ below 10 Wm−1K−1, illustrating the success of this
method.
Finally, let us emphasize that the proposed strategy is not

limited to the discovery of thermal insulators, but can be equally
used to find, e.g., good thermal conductors. This is demonstrated
in Fig. 6, in which we predict the thermal conductivity of all non-
metallic and stable materials using the SISSO and KRR models.
Generally, both the SISSO and KRR models agree with each other

with only 28 of the 227 materials having a disagreement larger
than a factor of two and one (LiHF2) with a disagreement larger
than a factor of 5, further illustrating the reliability of these
predictions. We expect that the large deviation for LiHF2 is a
result of the large σA value for that material (0.54), which is
significantly larger than the maximum in the training data. We
can see from the outset histograms of both the SISSO and KRR
models that the hierarchical procedure successfully finds the
good thermal insulators, with only 26 of the 122 materials with a
κL 300 Kð Þ � 10 Wm−1K−1 and 10 of the 80 materials with a
κL 300 Kð Þ � 5 Wm−1K−1 not passing all tests. Of these eight only
the thermal insulating behavior of CuLiF2 and Sr2HN can not be
described by the values of the other two tests that passed.
Conversely, materials that do not pass the test show high
conductivities. When one of the tests fail the average estimated
value of log κL 300 Kð Þð Þ increases to 1.38 ± 0.490 (24.0 Wm−1K−1),
with a range of 0.95 Wm−1K−1 to 741.3 Wm−1K−1. In particular,
screening the materials by their molar volumes alone is a good
marker for finding strong thermal conductors as all of the 15
materials with κL 300 Kð Þ � 100 Wm−1K−1 have a Vm ≤ 45 Å3.

DISCUSSION
We have developed an AI framework to facilitate and accelerate
material space exploration, and demonstrate its capabilities for the
urgent problem of finding thermal insulators. By combining
symbolic regression and sensitivity analysis, we are able to obtain
accurate predictions for a given property using relatively easy to
calculate materials properties, while retaining strong physical
interpretability. Most importantly, this analysis enables us to create
hierarchical, high-throughput frameworks, which we used to
screen over a set of more than 700 materials and find a group
of ~100 possible thermal insulators. Notably, almost all of the
good thermal conductors in the set of candidate materials are
discarded within the first iteration of the screening, in which we
only discriminate by molar volume, i.e., with an absolutely
negligible computational cost compared to full calculations of
κL. Accordingly, we expect this approach to be extremely useful in
a wide range of materials problems beyond thermal transport,

Fig. 5 Validation of the predictions of the model. The conver-
gence of the calculated thermal conductivity of (a) CaF2, (b) ClBaBr,
(c) GaLiO2 (d) LiScS2. All aiGK calculations were done using the
average of three 75 ps (ClBaBr and GaLiO2) or 100 ps (CaF2 and
LiScS2) molecular dynamics trajectories. The dashed lines are the
values of the thermal conductivities predicted by Eq. (1) and the
shaded region is the 95% confidence interval of the prediction
based on the RMSE obtained in Fig. 2b.

Fig. 6 A scatter plot of the prediction of both the SISSO and KRR
generated models for an additional 227 materials from the same
classes as the training set. σA is estimated via σAOS for all materials
with a σAOS � 0:4 in this screening. The dataset is split up into four
subsets based on if the Vm test failed (top, green), ΘD,∞ test failed
(second from top, yellow), σA test failed (third from top, blue), or
none of the tests failed (bottom, purple). The outlets correspond to
the histogram of all predictions using the same break down. The
darker shaded region represents where both predictions are within
a factor of 2 of each other and the lighter shaded region where both
predictions are within a factor of 5 of each other.
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especially whenever (i) few reliable data are available, (ii)
additional data are hard to produce, and/or (iii) multiple physical
mechanisms compete non-trivially, limiting the reliability of
simplified models.
Although the proposed approach is already reliable for small

dataset sizes, it obviously becomes more so when applied to
larger ones. Here, the identified heuristics can substantially help
steer data creation toward more interesting parts of material
space. Along these lines, it is possible to iteratively refine both the
SISSO model and the rules from the sensitivity analysis during
material space exploration while the dataset grows. Furthermore,
one can also apply the proposed procedure to the most influential
primary features in a recursive fashion, learning new expressions
for the computationally expensive features, e.g., σA, using simpler
properties. In turn, this will further accelerate material discovery,
but also allow for gaining further physical insights. Most
importantly, this method is not limited to just the thermal
conductivity of a material, and can be applied to any target
property. Further extending this framework to include information
about where the underlying electronic structure calculations are
expected to fail, also provides a means of accelerating materials
discovery more generally63.

METHODS
SISSO
We use SISSO to discover analytical expressions for κL 300 Kð Þ64.
SISSO finds low-dimensional, analytic expressions for a target
property, P, by first generating an exhaustive set of candidate
features, Φ̂, for a given set of primary features, Φ̂0, and operators
Ĥm, and then performing an ℓ0-regularization over a subset of
those features to find the n-dimensional subset of features, whose
linear combination results in the most descriptive model. Φ̂ is
recursively built in rungs, F̂ r , from Φ̂0 and Ĥm, by applying all
elements, ĥ

m
, of Ĥm

on all elements f̂ i and f̂ j of F̂ r�1

F̂ r � ĥ
m

f̂ i ; f̂ j
h i

; 8 ĥ
m 2 Ĥm

and 8 f̂ i; f̂ j 2 F̂ r�1:

Φ̂r is then the union of Φ̂r�1 and F̂ r . Once Φ̂ is generated, the nSIS
features most correlated to P are stored in Ŝ1, and the best one-
dimensional models are trivially extracted from the top elements
of Ŝ1. Then the nSIS features most correlated to any of the
residuals, Δi

1, of the nres best one-dimensional descriptors are
stored in Ŝ2. We define this projection as

s ¼ max s0; s1; :::; si; :::; snresð Þ (3)

si ¼ R2 ϕ̂;Δi
1

� �
; (4)

where ϕ̂ 2 Φ̂, and R is the Pearson correlation function. We call
this approach the multiple residual approach, which was first
introduced by the authors65 and later fully described in Ref. 66.
From here, the best two-dimensional models are found by
performing an ℓ0-regularized optimization over Ŝ1 ∪ Ŝ2

67. This
process is iteratively repeated until the best n-dimensional
descriptor is found64.
For this application Ĥm contains: A+ B, A− B, A*B, AB, A� Bj j, Aj j,

Að Þ�1, Að Þ2, Að Þ3, ffiffiffi
A

p
,
ffiffiffi
A3

p
, exp Að Þ, exp �1:0 � Að Þ, and ln Að Þ. In

addition to ensure the units of the primary features do not affect
the final results, we additionally include the following operators:
Aþ βð Þ�1, Aþ βð Þ2, Aþ βð Þ3, ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

αAþ β
p

,
ffiffiffiffiffiffiffiffiffiffiffiffi
Aþ β3

p
, exp αAð Þ,

exp �1:0 � αAð Þ, and ln αAþ βð Þ, where α and β are scaling and
bias constants used to adjust the input data on the fly. We find the
optimal α and β terms using non-linear optimization for each of
these operators22,66,68. To ensure that the parameterization does
not result in mathematically invalid equations for data points
outside of the training set, the range of each candidate feature is
derived from the range of the primary features, and the upper and
lower bounds for the features are set appropriately. When

generating new expressions these ranges are then used as a
domain for the operations, and any expression that would lead to
invalid results are excluded66. The range of the primary features
are set to be physically relevant for the systems we are studying
and are listed in Table 1. Hereafter, we call the use of these
operators parametric SISSO. For more information please refer
to66.
All hyperparameters were set following the cross-validation

procedures described in Section IV E.

Kernel-Ridge regression
To generate the kernel-ridge regression models we used the
utilities provided by scikit-learn69, using a radial basis function
kernel with optimized regularization term and kernel length scale.
The hyperparameters were selected using with a 141 by 141 point
logarithmic grid search with possible parameters ranging from
10−7 to 100. Before performing the analysis each input feature, xi
is standardized

xStandi ¼ xi � μi
σi

(5)

where xstandi is the standardized input feature, μi is the mean of the
input feature for the training data, and σi is the standard deviation
of the input feature for the training data.

Gaussian process regression
To generate the Gaussian Process Regression Models we used the
utilities provided by scikit-learn69, using a radial basis function
kernel with an optimized regularization term and kernel length
scale. The hyperparameters were selected using with a 141 by 141
point logarithmic grid search with possible parameters ranging
from 10−7 to 100. Before performing the analysis each input
feature, xi is standardized

xStandi ¼ xi � μi
σi

(6)

where xstandi is the standardized input feature, μi is the mean of the
input feature for the training data, and σi is the standard deviation
of the input feature for the training data. All uncertainty values
were taken from the results of the GPR predictions, and in the case
of the nested cross-validation the uncertainty was propagated
using

κpredGPR ¼ 1
3

X3
i¼1

κpredGPR;i (7)

σpred
GPR ¼ 1

3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX3
i¼1

σpred
GPR;i

� �2vuut ; (8)

where κpredGPR;i and κpredGPR;i are the respective prediction and
uncertainty of the ith GPR model for a given data point and
κpredGPR and κpredGPR are the respective mean prediction and uncertainty
for a prediction.

Creating the dataset
In this study we focus on only room-temperature data for κL, since
values for other temperatures are even scarcer. However, we note
that an explicit temperature dependence can be straightforwardly
included using multi-task SISSO70, and it is at least partially
included via, the anharmonicity factor, σA8 (see below for more
details). For κL 300 Kð Þ, we have compiled a list of seventy-five
materials from the literature (see Supplementary Table 1 for
complete list with references), whose thermal conductivity has
been experimentally measured. This list was curated from an initial
set of over 100 materials, from which we removed all samples that
are either thermodynamically unstable or are electrical

T.A.R. Purcell et al.

7

Published in partnership with the Shanghai Institute of Ceramics of the Chinese Academy of Sciences npj Computational Materials (2023)   112 



conductors. This list of materials covers a diverse set of fourteen
different binary and ternary crystal structure prototypes61,62,71.
With respect to the primary features, Φ̂0, compound specific

properties are provided for each material. All primary features can
be roughly categorized in two classes: Structural parameters that
describe the equilibrium structure and dynamical parameters that
characterize the nuclear motion. For the latter case, both harmonic
and anharmonic properties have been taken into account. As
shown in Supplementary Note 5, additional features, such as the
parameters entering the Slack model, i.e., γ, Θa, and Va, can be
included. However, these features do not benefit the model and
when included only Va, and not γ or Θa are selected. For a
complete list of all primary features, and their definitions refer to
Table 1.
The structural parameters relate to either the mass of the atoms

(μ, mmin, mmax, mavg), the lattice parameters of the primitive cell
(Vm, Lmin, Lmax, Lavg), the density of the materials (ρ), or the number
of atoms in the primitive cell (nat). For all systems a generalization
of the reduced mass, μ, is used so it can be extended to non-
binary systems,

μ ¼
Xnemp

i

1
mi

 !�1

; (9)

where nemp is the number of atoms in the empirical formula and
mi is the mass of atom, i. Similarly, the molar volume, Vm, is
calculated by

Vm ¼ Vprim

Z
; (10)

where Vprim is the volume of the primitive cell and Z ¼ nat
nemp

. Finally,
ρ is calculated by dividing the total mass of the empirical cell by
Vm

ρ ¼
Xnemp

i

mi

Vm
: (11)

All of the harmonic properties used in these models are
calculated from a converged harmonic model generated using
phonopy72. For each material, the phonon density of states of
successively larger supercells are compared using a Tanimoto
similarity measure

S ¼ gp;L ωð Þ � gp;S ωð Þ
kgp;L ωð Þk2 þ kgp;S ωð Þk2 � gp;L ωð Þ � gp;S ωð Þ ; (12)

where S is the similarity score, gp;L ωð Þ is the phonon density of
states of the larger supercell, gp;S ωð Þ is the phonon density of
states of the smaller supercell, A ωð Þ � B ωð Þ ¼ R10 A ωð ÞB ωð Þdω, and
kA ωð Þk2 ¼ R10 A2 ωð Þdω. If S > 0.80, then the harmonic model is
considered converged. From here CV is calculated from phonopy
as a weighted sum over the mode dependent heat capacities.
Both approximations to the Debye temperature are calculated
from the moments of the phonon density of states

hεni ¼
R
dε gpðεÞ εnR
dεgp εð Þ (13)

ΘP ¼ 1
kB

hεi (14)

ΘD;1 ¼ 1
kB

ffiffiffiffiffiffiffiffiffiffiffi
5
3
hε2i

r
; (15)

where gp εð Þ is the phonon density of states at energy ε73. Finally vs
is approximated from the Debye frequency, ωD, by20

vs ¼ Va

6π2


 �1=3

ωD; (16)

where ωD is approximated as

ωD ¼
ffiffiffiffiffiffiffiffi
9nat
a

3

r
(17)

and a is found by fitting gp ωð Þ in the range 0; ωΓ;max

8

� 
to

gp;D ωð Þ ¼ aω2: (18)

To measure the anharmonicity of the materials we use σA as
defined in8

σAðTÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
I;α

FI;α � FhaI;α
� �2� �

ðTÞP
I;α

F2I;α
D E

ðTÞ

vuuuuut ; (19)

in which 〈⋅〉(T) denotes the thermodynamic average at a
temperature T, FI,α is the α component of the force calculated
from density functional theory (DFT) acting on atom I, and FhaI;α is
the same force approximated by the harmonic model8. First we
calculate σA

OS, which uses an approximation to the thermodynamic
ensemble average using the one-shot method proposed by
Zacharias and Giustino74. In the one-shot approach the atomic
positions are offset from their equilibrium positions by a vector
ΔR,

ΔRαI ¼
1ffiffiffiffiffi
MI

p
X
s

ζs Ash ieαsI; (20)

where I is the atom number, α is the component, es are the
harmonic eigenvectors, Ash i ¼ ffiffiffiffiffiffiffiffiffiffi

2kBT
p

=ωs is the mean mode
amplitude in the classical limit75, and ζs= (−1)s−174. These
displacements correspond to the turning-points of the oscillation
estimated from the harmonic force constants, and is a good
approximation to σA in the harmonic limit. Because of this, if
σAOS<0:2 we accept that value as the true σA. Otherwise we
calculate σA using aiMD in the canonical ensemble at 300 K for 10
ps, using the Langevin thermostat. When performing the high-
throughput screening the threshold for when to use aiMD is
increased to 0.4 because that is the point where σA

OS becomes
qualitatively unreliable8.
All electronic structure calculations are done using FHI-aims76.

All geometries are optimized with symmetry-preserving, para-
metric constraints until all forces are converged to a numerical
precision better than 10−3 eV/Å77. The constraints are generated
using the AFlow XtalFinder Tool71. All calculations use the PBEsol
functional to calculate the exchange-correlation energy and an
SCF convergence criteria of 10−6 eV/Å and 5 × 10−4 eV/Å for the
density and forces, respectively. Relativistic effects are included in
terms of the scalar atomic ZORA approach and all other settings
are taken to be the default values in FHI-aims. For all calculations
we use the light basis sets and numerical settings in FHI-aims.
These settings were shown to ensure a convergence in lattice
constants of ± 0.1Å and a relative accuracy in phonon frequencies
of 3%8.
All primary features are calculated using the workflows defined

in FHI-vibes78.

Error evaluation
To estimate the prediction error for all models we perform a
nested cross-validation, where the data are initially separated into
different training and test sets using a ten-fold split. Two
hyperparameters (maximum dimension and parameterization
depth) are then optimized using a fivefold cross-validation on
each of the training sets, and the overall performance of the
model is evaluated on the corresponding test set. The size of the
SIS subspace, number of residuals, and rung were all set to 2000,
10, and 3, respectively, because they did not have a large impact
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on the final results. We then repeat the procedure three times and
average over each iteration to get a reliable estimate of the
prediction error for each sample79.

Calculating the inputs to the Slack model
The individual components for the Slack model were the same as
the ones used for the main models, with the exception of γ, Va and
Θa. For Θa, we first calculate the Debye temperature, ΘD

ΘD ¼ _ωD

kB
(21)

where ωD is the same Debye frequency used for calculating vs (see
Section IV D), kB is the Boltzmann constant, and ℏ is Planck’s
constant. From here we calculate Θa using

Θa ¼ ΘDffiffiffiffiffiffi
nat3

p : (22)

We use the phonopy definition of ΘD instead of ΘD,∞ because it is
better aligned to the original definition of Θa. However, it is not
used in the SISSO training because the initial fitting procedure to
find ωD does not produce a unique value for ΘD and it is already
partially included via vs. To calculate the thermodynamic
Grüneisen parameter we use the utilities provided by phonopy72.
The atomic volume was calculated by taking the volume of the
primitive cell and dividing it by the total number of atoms.

Calculating the Sobol indexes
Formally, the Sobol indices are defined as

Si ¼
Varx̂i EeX i

log κL 300 Kð Þð Þjx̂ið Þ
� �
Var log κL 300 Kð Þð Þð Þ

(23)

STi ¼ 1�
VareX i

Ex̂i log κL 300 Kð Þð ÞjeX i

� �� �
Var log κL 300 Kð Þð Þð Þ

(24)

where x̂i 2 X̂ is one of the inputs to the model, Vara Bð Þ is the
variance of B with respect to a, Ea Bð Þ is the mean of B after
sampling over a, and eX i is the set of all variables excluding x̂i .
Normally, it is assumed that all elements of X̂ are independent

of each other, and this assumption is preserved when calculating
Si and STi in Fig. 3b. As a result of this, the variance of
log κSISSO 300 Kð Þ� �

and the required expectation values would be
calculated from sampling over an nv-dimensional hypercube
covering the full input range, ignoring the correlation between
the input variables. However, in order to properly model the
correlative effects between elements of X̂ , Kucherenko et al.
modify this sampling approach49,51. The first step of the updated
algorithm is to fit the input data to a set of marginal univariate
distributions coupled together via a copula49,51. The algorithm
then samples over an nv-dimensional unit-hypercube and trans-
forms these samples into the correct variable space using a
transform defined by the fitted distributions and copulas (see
Supplementary Note 3 for more details). It was later demonstrated
that when using the approach proposed by Kucherenko and
coworkers to calculate the Sobol indices, Si includes effects from
the dependence of x̂i on those in eX i , while STi is independent of
these effects80. We use this updated algorithm to calculate Si and
STi in Fig. 3a. In both cases we use the implementation in UQLab50

to calculate Si and STi .

Calculating the SHAP indexes
The SHAP values are calculated by treating the features as
independent variables using the original method proposed by
Lundberg and Lee48, as implemented in the python package
SHAP, and as dependent variables using shapr by Aas, et al.53. The
SHAP values are an extension of the Shapley values from

cooperative game theory, that distributes the contribution, v Sð Þ,
of each player or subset of players, S � M ¼ 1; �;Mf g, where M
is the set of all players48,53. The Shapley value, ϕj vð Þ ¼ ϕj , can then
be calculated by taking a weighted mean over the contribution
function differences for all S not containing the player, j,

ϕj ¼
X

S�Mn jf g

Sj j! M� Sj j � 1ð Þ!
M!

v S ∪ jf gð Þ � v Sð Þð Þ; j ¼ 1; � � � ;M;

(25)

where Sj j is the number of members in S53. For a machine
learning problem with a training set yi ; x i

� 	
i¼1;���;ntrain , where yi is

the property value and xi are the target property value and input
feature values for the ith data point in the training set with ntrain
data points48,53, we can explain the prediction of the model, f x�ð Þ
for a particular point, x*, with

f x�ð Þ ¼ ϕ0 þ
XM
j¼1

ϕ�
j ; (26)

where ϕ0 is the mean prediction and ϕ�
j is the Shapley value for

the jth feature for a prediction x= x*. Essentially the Shapley value
for the model describes the difference between a prediction,
y� ¼ f x�ð Þ, and the mean of all predictions48,53. The contribution
function is then defined as

v Sð Þ ¼ E f xð ÞjxS ¼ x�S
� 

; (27)

which is the expectation value of the model conditional on
xS ¼ x�S

48,53. The expectation value can be calculated as

E f xð ÞjxS ¼ x�S
�  ¼ E f xeS ; xS� ����xS ¼ x�S

h i
¼ R f xeS ; xS� �

p xeS���xS ¼ xS�
� �

dxeS ; (28)

where xeS is the subset of all features not included in S and

p xeS���xS ¼ xS�
� �

is the conditional probability distribution of xeS
given xS ¼ xS�48,53. In the case where the features are treated

independently, p xeS���xS ¼ xS�
� �

is replaced by p xeS� �
and v Sð Þ

can be approximated by Monte Carlo integration

v Sð Þ ¼ 1
K

XK
k¼1

f xkeS ; x�S� �
; (29)

where xkeS are samples from the training data, and K is the number
of samples taken48,53. To include feature dependence the marginal
distributions of the training data are converted into a Gaussian
copula and that is used to generate samples for the Monte Carlo
integration53.
Because the number of subsets that need to be explored grows

as 2M for the number of features, calculating the exact Shapley
values for a large number of inputs becomes intractable. To
remove this constraint the problem can be approximated as the
optimal solution of a weighted least squares problem, which can
be described as Kernel SHAP, which is described in refs. 48,53.

Calculating the LIME indexes
For the LIME values we use the LIME package in python54. The
values were calculated using the standard tabular explainer using
all features in the model and the mean absolute value of each
prediction for each feature was used to asses the global feature
importance. The methodology assumes the features are indepen-
dent and for algorithmic details see ref. 54

Calculating the thermal conductivity
To calculate κL, we use the ab initio Green-Kubo (aiGK)
method10,81. The aiGK method calculates the αβ component of
the thermal conductivity tensor, καβ, of a material for a given
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volume V, pressure p, and temperature T with

καβ T ; pð Þ ¼ V

kBT2 lim
τ!1

Z τ

0
hG J½ 	αβ τ0ð Þi T ;pð Þdτ

0 (30)

where kB is Boltzmann’s constant, h�i T ;pð Þ denotes an ensemble
average, J tð Þ is the heat flux, and G J½ 	 is the time-(auto)correlation
functions

G J½ 	αβ ¼ lim
t0!1

1
t0

Z t0�τ

0
Jα tð ÞJβ t þ τð Þdt: (31)

The heat flux of each material is calculated from aiMD trajectories
using the following definition

J tð Þ ¼
X
I

σI
_RI; (32)

where RI is the position of the ith-atom and σI is the contribution of
the ith atom to the stress tensor, σ= ∑IσI

10. From here κL is
calculated as

κL ¼ 1
3
Tr κ½ 	 (33)

All calculations were done using both FHI-vibes78 and FHI-aims with
the same settings as the previous calculations8 (see Section IV D for
more details). The molecular dynamics calculations were done using a
5 fs time step in the NVE ensemble, with the initial structures taken
from a 10 ps NVT trajectory. Three MD calculations were done for
each material and the κL was taken to be the average of all three runs.

DATA AVAILABILITY
All raw electronic structure data can be found on the NOMAD archive (https://
doi.org/10.17172/NOMAD/2022.04.27-1)82. All processed data and figure creation
scripts can be found on figshare (https://doi.org/10.6084/m9.figshare.22068749.v4)83.
A reproduction notebook can be found on the NOMAD AI Toolkit (https://nomad-
lab.eu/aitutorials/kappa-sisso).

CODE AVAILABILITY
SISSO++22 and FHI-vibes78 were used to generate all data and analysis in the paper
and are freely available online in the cited publications. All electronic structure
calculations were done using FHI-aims76, which is freely available for use for
academic use (with a voluntary donation) (https://fhi-aims.org/get-the-code-menu/
get-the-code). The Sobol indexes are calculated with UQLab50,51 (https://
www.uqlab.com/download) and the kernel SHAP values were found with shapr53

(https://github.com/NorskRegnesentral/shapr) which are open source. The python
SHAP library48 was also used for the independent SHAP values, and is open source
(https://github.com/slundberg/shap).
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