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The focal lesion alters the excitation–inhibition (E–I) balance and healthy functional connectivity patterns, which may recover over
time. One possible mechanism for the brain to counter the insult is global reshaping functional connectivity alterations. However, the
operational principles by which this can be achieved remain unknown. We propose a novel equivalence principle based on structural
and dynamic similarity analysis to predict whether specific compensatory areas initiate lost E–I regulation after lesion. We hypothesize
that similar structural areas (SSAs) and dynamically similar areas (DSAs) corresponding to a lesioned site are the crucial dynamical
units to restore lost homeostatic balance within the surviving cortical brain regions. SSAs and DSAs are independent measures, one
based on structural similarity properties measured by Jaccard Index and the other based on post-lesion recovery time. We unravel
the relationship between SSA and DSA by simulating a whole brain mean field model deployed on top of a virtually lesioned structural
connectome from human neuroimaging data to characterize global brain dynamics and functional connectivity at the level of individual
subjects. Our results suggest that wiring proximity and similarity are the 2 major guiding principles of compensation-related utilization
of hemisphere in the post-lesion functional connectivity re-organization process.
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Introduction
One of the fundamental queries in systems neuroscience is
”How does the brain adapt to post-lesion recovery and whether
some general normative patterns exist irrespective of individual
variations in lesion extent and locations? What are compensatory
mechanisms critical to brain network recovery during the
post-injury period, including changes in local homeostasis and
widespread coordinated cortical activity?” Here, we propose
a detailed computational framework using structural-and-
functional equivalence principles by demonstrating that the
brain’s normative spontaneous dynamical pattern is compen-
sated by restoring local homeostasis post-lesion, and the compen-
satory brain areas are primarily recruited utilizing 2 major guiding
principles related to network topology, structural similarity
and wiring proximity of compensation-related utilization of
hemisphere (CRUH) in the post-lesion functional re-organization.

The term ”focal lesion” (Gratton et al. 2012; Aerts et al. 2016)
refers to biological perturbation to the anatomical architecture,
e.g. damage of a region due to stroke (ischemic stroke due to
atherosclerosis, hemorrhagic stroke) (Aerts et al. 2016), traumatic

brain injury (TBI) (Werner and Engelhard 2007), glioma (Duffau
et al. 2003) can qualitatively alter short- and long-term brain
functions. In lesions, neurons that are deprived due to lack of
oxygen, and energy from standard metabolic substrates, cease
to function in seconds and show severe signs of anatomical
damage after 2 minutes (Murphy et al. 2008). In the first few
days or weeks after injury, regular patterns of synaptic activity in
peri-infarct (Gao et al. 1999; Bolay et al. 2002; Carmichael et al.
2004; Brown et al. 2009) and even distant functionality-related
structure are interrupted (Bütefisch et al. 2003). Failures in the
energy-dependent processes due to loss of inputs from adjacent
tissue (Hossmann 2006) lead towards cell death (Besancon 2008),
abnormal neuronal firing rates (Maeda and Miyazaki 1998), and
may even lead to delayed neuronal injury (Arundine 2003), which
inflict local to global level excitation–inhibition (E–I) balance on
the neuronal network (Wang 2003; Arundine and Tymianski 2004).
These mechanical and cellular alterations can cause chronic
functional disabilities, including motor deficits (e.g. hemipare-
sis), sensory (e.g. hemianopia), and higher-order cognitive pro-
cesses (e.g. aphasia, hemispatial neglect) (Musuka et al. 2015) and
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abnormal movement synergies (Willer et al. 1993; Cirstea and
Levin 2000).

Studies have revealed the mechanism for lesion recovery and
identified associated factors in primate, and non-primate (Kolb
and Whishaw 1998; Witte 1998; O’Reilly et al. 2013). For example,
the cerebral cortex triggers a plastic mechanism in adjacent
and remote areas in post-lesion phases, correlated with limited,
spontaneous restoration of function (Gerloff et al. 2006; Nudo
2007; Alia et al. 2017). Two significant factors are involved in
the plasticity mechanism in lesion recovery (Murphy and Corbett
2009), (i) an amount of surviving diffuse and redundant con-
nectivity in the central nervous system, and (ii) new functional
circuits can form through remapping between related cortical
regions. Homeostatic plasticity is a negative feedback-mediated
form of plasticity, also known as synaptic scaling (Murphy and
Corbett 2009), that keeps network activity at the desired set point
(Turrigiano and Nelson 2004). It helps maintain a stable ratio of
excitation and inhibition and sustains the desired working point.
Nevertheless, local E–I homeostasis engenders functional recov-
ery by increasing excitation and attenuating inhibition in both
perilesional and distant cortical areas (Buchkremer-Ratzmann
et al. 1996; Bütefisch et al. 2003; Huynh et al. 2016). In addition,
enhancement of cortical excitability in surviving cortical areas
would compensate for the lost structural circuits (Carmichael and
Chesselet 2002) and functional deficits (Nelles et al. 1999; Ward
2005; Winhuisen et al. 2005).

Other key investigations suggest that graph theoretical
properties of structural and functional networks plays a crucial
role in capturing several aspects of lesion-induced alterations
in topological properties of large-scale structural and functional
brain networks (Alstott et al. 2009; Crofts et al. 2011; Adhikari
et al. 2015; Griffis et al. 2019; Moreira da Silva et al. 2020).
However, these studies have yet to systematically investigate
region-specific roles in post-lesion functional restoration of brain
networks. A recent longitudinal study on mTBI showed notable
changes in structural and functional brain networks in the post-
lesion recovery phase (Dall’Acqua et al. (2017). However, they
did not identify specific regions participating in the functional
recovery process. They found no association between damaged
functional and structural connections after TBI (Dall’Acqua et al.
(2017).

Previous studies have reported network properties, such as
nodal strength, participation coefficient, and modularity, played
a decisive role in finding the short-term and long-term effects of
lesion (Vattikonda et al. 2016; Adhikari et al. 2017; Tao and Rapp
2021). However, the region-specific role of anatomical networks
in association with the post-lesion global functional recovery still
needs to be fully uncovered and remains an open question. From a
dynamical systems perspective, the brain is a spatially organized
system (Lashley 1950) with time-dependent signal propagation
along multiple pathways, each capable of adapting to changes
in transmission fidelity (Murphy and Corbett 2009). Thus, brain
dynamics is governed by underlying anatomy, and the underlying
intrinsic biological parameters (Caeyenberghs et al. 2013).
However, regional specificity in association with the intrinsic
parametric role must be elucidated as to how specific regions
may play a vital role by adapting intrinsic parameters in shaping
emerged brain dynamics to compensate for structural damage
following lesions. With this knowledge gap and motivation, we
hypothesize that regions with similar incoming and outgoing
connections corresponding to a lesion site, labeled as similar
structural areas (SSAs) in this study, could be the potential
candidate for re-establishing E–I balance (at the level of both

local and global brain scale) in the post-injury period. Hence, the
prediction of SSAs is one of the fundamental contributions of
this study. The second fundamental contribution to identifying
dynamically similar areas (DSAs) using readjustment time, a
dynamic measure indicating the re-establishment of local E–I
balance post-lesion. For example, a region that helps compensate
for motor deficit should get incoming motor information from
its adjacent or distant areas, thus would be functionally relevant
and structurally equivalent. SSA may form complementary or
redundant connections in the surviving areas, providing an
alternative pathway for information fidelity after the lesion.
Thus, SSAs (or DSAs) could lead the adaptive mechanism to
compensate for lost local homeostasis and inter-areal excitability,
further reshaping collective activity. It can be noted that SSAs are
identified from a healthy brain connectome, which captures the
structural features of an individual. DSAs are predicted based on
the structural connectivity of the lesion node’s neighbors and
collective population dynamics of the remaining anatomical
network (excluding the lesion site). Thus, the prediction of
DSAs relies on the interplay between the structural features
and underlying model parameters. It is also important to
note that brain damage (TBI, stroke, epilepsy) causes loss of
structural information. Hence, identifying compensatory brain
regions (SSAs) from the lesion brain is no longer available.
However, using DSAs, we can identify these potential com-
pensatory areas corresponding to a specific lesion site. These
compensatory areas may drive functional compensation and
post-lesion functional recovery. Thus, the third contribution of
the study is that DSA offers a methodological improvement
over the traditional method of relying on healthy structural
connectivity features (e.g. the Jaccard coefficient). Finally, the
study provides a fresh perspective on how certain notable areas
(ipsilesional and contralesional) influence post-lesion recovery
mechanisms, specifically, compensation-related utilization of
hemispheres.

We have systematically addressed the following questions: (i)
What changes in E–I balance cause altered neural activity after
early brain injury due to anatomical network damage? (ii) Which
are the notable areas that re-adjust their inhibitory weights to
balance E–I homeostasis and sustain a target firing rate ∼ 4 Hz?
(iii) What processes are related to the post-injury functional re-
organization within the surviving structural network? To address
these questions, we utilized 2 measures, e.g. time to re-establish
E–I balance in local areas and modulated local inhibitory weights.
Next, we find signatures from the structural properties in cor-
relation with coordinated neural dynamics, and finally, identify
the mechanisms displaying correlations between the parameters
controlling local E–I homeostasis and structural network simi-
larity measure, e.g. the Jaccard coefficient. We provide demon-
strative evidence that we can predict brain areas initiating com-
pensatory post-lesion adaptive mechanisms using in silico stim-
ulation of the personalized whole-brain mean field model. As
a proof-of-concept, we use the structural similarity and func-
tional E–I homeostatic mechanisms as equivalence principles to
demonstrate that it can find accurate ways to pinpoint a general
road map to functional brain network recovery overcoming lesion
diversity.

Material and methods
Participants
Resting state MRI data from 49 healthy subjects (31 females),
ages ranging from 18 to 80 years (mean age 41.55 ± 18.44 years),
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have been collected at Berlin Center for Advanced Imaging,
Charité University Medicine, Berlin, Germany (Schirner et al.
2015). The participants are healthy, and no history of neurologic
or psychiatric conditions was reported in Schirner et al. (2015). All
participants gave written informed consent to the group (Schirner
et al. 2015), and the study was performed under the compliance of
laws and guidelines approved by the ethics committee of Charité
University, Berlin, Germany.

Anatomical connectivity
Resting-state MRI, diffusion-weighted MRI, and functional MRI
were performed on a 3 Tesla Siemens Tim Trio MR scanner using
a 12-channel Siemens head coil. Detailed information on the data
acquisition parameters can be found in Schirner et al. (2015).
We did not process the raw data. The data were pre-processed,
and structural connectome was generated previously, using the
pipeline by Schirner et al. (2015).The cortical gray matter was
parcellated into 34 regions of interest (ROIs) in each hemisphere
following the Desikan-Killiany parcellation (Desikan et al. (2006).
The ROIs with their abbreviations are listed in Table S1 of the
Supplemental Material.

Empirical functional connectivity
Participants are subjected to a functional MRI scan in eyes-
closed awake resting-state condition. Resting-state BOLD activity
was recorded for a duration of 22 minutes (TR = 2 s) (Schirner
et al. 2015). The pre-processing steps are detailed in the
Supplemental Material. After pre-processing, the BOLD time
series for each region was aggregated and z-transformed. The
pairwise Pearson correlation coefficient was computed to obtain
the resting-state functional connectivity (rsFC) matrix for each
subject.

Definitions and descriptions
Before outlining the pipeline and workflow, it is important to
define and describe the terminologies relevant to the study. The
following terms are defined below: Jaccard coefficient, virtual
lesion, DMF model, virtual lesion model, re-adjusted inhibitory
weights, and time to reach E–I balance.

Jaccard coefficient (JC): The JC is used to measure the pairwise
correlation between any 2 brain areas. It is defined as the ratio
between the sum of the weights of their common neighbors and
the total weights of their neighbors (Hilgetag et al. 2000). The
weighted Jaccard coefficient is expressed as JC = A∩B

A∪B , where A and
B represent the neighbors (specifically, the edge strengths with
neighbors) of any 2 brain areas from the anatomical connectome
of healthy subjects. The JC is measured in the healthy brain before
the occurrence of a virtual lesion at the level of an individual
subject.

Similar structural areas (SSAs): JC of a lesion node is sorted in
descending order and the top 25% areas having higher JC values
are referred to as SSAs. SSAs correspond to a lesion site share a
similar topological property with the selected lesion node.

Whole-brain computational model: We use a reduced
dynamic mean field (DMF) model (Wong and Wang 2006) to
engender lesion effects. The DMF is an approximation of a spiking
network model (Deco and Jirsa 2012; Deco et al. 2014) consisting of
populations of excitatory and inhibitory neurons with excitatory
NMDA synapses and inhibitory GABA synapses. DMF is described
by a set of coupled nonlinear stochastic differential equations

given below,
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IE,I
i is the input current to area i and superscripts represent exci-

tatory (E) and inhibitory(I) populations in that area. rE,I
i is the

population firing rate of excitatory or inhibitory populations of
area i. SE,I

i is the average excitatory (inhibitory) synaptic gating
variable of area i. I0 is the effective external input scaled by wE

and wI for excitatory and inhibitory populations. w+ is the local
excitatory recurrence, JN is the excitatory synaptic coupling, and
Ji is the local feedback inhibitory synaptic coupling. wII is the
local inhibitory recurrence. Cij is the i, jth entry in the SC matrix,
obtained from diffusion imaging (MRI data), that scales the long-
range excitatory currents between jth and ith regions. G repre-
sents global coupling strength which scales long-range excitatory
connections. To find optimal G, the DMF model is simulated for
different values of G. The optimal value of the coupling strength
is optimized by fitting the algorithm on the Berlin dataset by
Vattikonda et al. (2016). For detailed descriptions, check Fig. 3a
in Ref. Vattikonda et al. (2016). It was assumed that the DMF
exhibited neural complexity following a balanced homeostasis
resembling the resting state at this optimal parameters set. The
optimal value of G is chosen based on the highest correlation
between empirical and simulated FC when the excitatory firing
rate sustains at ∼4 Hz within all brain regions (Burns and Webb
1976; Shadlen and Newsome 1998; Deco et al. 2008; 2014; Adhikari
et al. 2015). Firing rates are statistical measures that describe
the average activity of neurons over a specific time period. Mean
spontaneous rates of 4.5 Hz and stimulus-evoked rates of 10.6
Hz were observed in broad-spiking neurons (Mitchell et al. 2007;
Deco et al. 2008; 2014; Haider et al. 2013). MATLAB 2021b is used
to perform all the numerical simulations. Euler’s method, with a
step size of 1 ms, has been used to generate the synaptic activity
of each area. The whole model is simulated for 10 minutes, where
the first 2 minutes of transients are discarded. Default parameter
values are selected from Ref. Deco et al. (2014) and presented in
Supplemental Material, Table S2.

Feedback inhibition control: FIC algorithm, proposed by
Deco et al. (2014) is a recursive process to establish and maintain
E–I balance in individuals and across all cortical subunits. The
detailed FIC steps are found in the supplementary material. We
simulated the model with the FIC algorithm for 10 s time windows.

Virtual lesion: The virtual focal lesion is introduced into an
individual subject’s SC by targeted node removal. Expressly, all the
connections to and from the focal lesioned site have been set to
zero in the SC matrix.

Virtual lesion model: We put the DMF model on top of a
virtually lesioned SC of a single subject, together labeled as a
virtual lesion model. Individual node dynamics are governed
by the stochastic DMF model spatially coupled via lesioned SC
matrix. In principle, any other form of lesioned SC (real, virtual),
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if incorporated into the dynamical model, can produce similar
effects of lesion depending on the lesion type, location, and extent.

Post-lesion modulated local inhibitory weight (J′): The modu-
lated local inhibitory synaptic weights (J′i) at individual nodes, in
case of a lesion are compared against the weights (Ji), estimated
from healthy brain condition. The change in inhibitory synaptic
weight for ith area is calculated as: dJJi = J′i-Ji.

Re-adjustment time (RT): In the process of FIC, different brain
regions require different simulation times to achieve the optimum
firing rate and a balanced E–I homeostasis. While resetting the
E–I balance until the entire brain reaches the desired balanced
state, we track the simulated time windows of individual regions,
defined as the re-adjustment time (RT). We store the elapsed
time RT and J′ for all regions during the FIC process, where the
measuring units are s and mMol, respectively.

Dynamical similar areas (DSAs): First, we sort both RT and |dJJ|
in descending order. We choose the top 25% areas from the sorted
RT and dJJ. We then find the intersection of the sorted areas to
identify the common areas in RT and dJJ. The identified common
areas from the 2 measures are the DSAs.

DSA = AIRT|1:N ∩ AIdJJ|1:N,

where AIRT and AIdJJ represent the area indices identified from the
sorted RT and |dJJ| respectively. N= total number of ROIs × 25%.

Overlapping between SSAs and DSAs: We consider only those
regions which are common in both SSAs and DSAs, i.e. the over-
lapping regions between SSAs and DSAs.

Summary of the method
We used a personalized mean-field model trained by healthy SC
features and FC as inputs where the system parameters were
optimized based on FC–FC fitting (Deco et al. 2014; Vattikonda
et al. 2016). Once optimized, the model could learn healthy con-
nectome from non-invasive MRI and fMRI data and map inter-
individual functional differences. Later, we used this model and
fed the damaged SC (virtually lesioned connectome) to generate
subject-wise FCs for 2 lesion conditions. Hence, only symmetry
breaking in the system is induced by individuals’ anatomical
topology. This primarily motivates us to examine the inter-subject
variability and consequences of different lesion locations based
on the topological differences. The symmetry-breaking condition
is utilized to extract subject-wise differentiating features from
anatomical connectome.

Results
To test our hypothesis, we simulate a virtual lesion model.
The virtual lesion is introduced by deleting incoming and
outgoing connections of a node in the structural connectome
of healthy subjects (Alstott et al. 2009; Vattikonda et al. 2016).
Fig. 1a shows a large-scale dynamical mean field (DMF) model

(Cabral et al. 2012; Deco et al. 2014) on top of the virtually lesioned
structural connectivity (SC), labeled as the virtual lesion model.
A feedback inhibition control (FIC) algorithm (Deco et al. 2014),
a negative feedback-mediated form of plasticity, re-adjusts local
inhibition synaptic weights to restore E–I balance and target firing
rate of ∼4 Hz (Burns and Webb 1976) in the post-injury period. We
did not consider other virtual lesion types, such as edge deletion
or multi-region damage (Alstott et al. 2009; Vattikonda et al.
2016). The pre-processed data of 49 healthy subjects are taken
from the Berlin data set (Schirner et al. 2015). Desikan-Killiany
(Desikan et al. 2006) parcellation divides the brain into 68 regions
of interest.

The mathematical framework is set for 3 conditions based on
the SC status and the E–I balance state. Three rows display the 3
operant conditions for model simulation in Fig. 1b.

The top row in Fig. 1b describes the healthy condition when SC
remains intact, and the E–I balance is maintained. We derive the
JC matrix from the healthy SC. The SSAs correspond to a given
lesion site from a healthy individual’s SC based on the JC measure
before lesion occurrence. We store the local inhibitory weights (Ji)
in parallel by running the FIC algorithm. The FIC algorithm helps
in establishing E–I balance in the whole brain. Under the same
operant condition, we synthetically generate healthy FC from the
model simulation. The obtained inhibitory synaptic weights (Ji) are
further considered as initial values for inhibitory plasticity in the
following 2 conditions for the virtual lesion analysis.

In the middle row of Fig. 1b, the virtual lesion is introduced into
the healthy SC, resulting in loss of E–I balance, i.e. a short-term
loss of E–I balance due to lesion impact, as our second condition.
Next, we simulate the virtual lesion model without FIC to capture
altered FC for further comparison with healthy and other post-
lesion conditions.

The lower row in Fig. 1b depicts the condition after the lesion
when the FIC restores the E–I balance. At this condition, the
adaptive nature of the brain re-adjusts the local inhibitory weights
to restore the desired E–I balance. It allows the damaged brain
to sustain at desired firing rate ∼4 Hz. The virtual lesion model
with the FIC is simulated to generate re-organized FC, which
is compared against the altered FC obtained from the previous
condition. While we numerically simulate the lesioned model,
we store re-adjusted synaptic inhibitory weights (J′) and capture
re-adjustment time (RT) during the re-establishment of local E–I
balance in an individual area. Further, the curated RT and J′ are
correlated with the measured JC values corresponding to a lesion
site. As we are more interested in finding changes in inhibitory
synaptic weights, we calculate dJJi= J′i-Ji for all areas. Based on the 2
measured quantities (RT and J′), we estimate DSAs while observing
the global homeostatic condition. We unveil the functional affin-
ity for alternation and re-organization pattern of the brain after
lesion by correlating SSAs, identified from anatomical measure JC,
and DSAs from simulation parameters (RT, dJJ).

It is worth mentioning that the first condition is a one-time
process, whereas the following 2 steps are repeated for different
virtual lesion sites at the single subject level. All 3 steps have been
repeated for individual subjects and further analyzed at the group
level.

We have performed 2 levels of analysis, (i) anatomical level
analysis and (ii) functional alteration/re-organization analysis.
Significant changes between healthy and altered FCs and altered
and re-organized FCs are captured by parametric test, an indepen-
dent t-test analysis. Functional network properties (measuring
network resilience, segregation, and integration) such as mod-
ularity, transitivity, global efficiency, and average characteristic
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Fig. 1. Workflow. (a) Schematic of the virtual lesion model. SC is generated based on the Desikan-Killiany atlas with 68 regions of interest (ROI). A
dynamical mean field model (DMF) is spatially connected via virtually lesioned SC. The DMF model generates resting-state neural activity using a
feedback inhibition control (FIC) algorithm. Synthetic BOLD series are generated from the neural signals using a hemodynamic model. The FIC is a
recursive process of adjusting local inhibitory feedback weight (J). At optimal conditions, each region maintains balanced homeostasis and an
excitatory firing rate between 2.63-3.55Hz. The pairwise Pearson correlation coefficient determines the simulated resting-state FC. (b) Our analysis is
performed considering 3 conditions, placed in 3 rows. The top row shows healthy conditions. First, the Jaccard coefficient (JC) matrix is calculated from
a healthy SC. Next, the DMF model coupled via healthy SC has been run with the FIC algorithm establishing E–I balance. The final value of each brain
region’s feedback synaptic inhibitory weights (J) is stored beside the synaptic activity. The synaptic gating variables are further processed to generate
model-based rsFC. The seesaw represents the status of the global E–I balance state. The obtained J has been used further as initial values for inhibitory
coupling weights in the model simulation for the rest of the 2 conditions. In the second row, a virtual lesion is introduced to the SC by setting all rows
and columns equal to zero. Next, the virtual lesion model is run without the FIC to generate model-based altered FC. The seesaw represents an
imbalanced E–I state as an early impact of the lesion. The lower row depicts the third condition when E–I balance is restored in the brain. The virtual
lesion model is simulated with the FIC algorithm. Model parameters, such as modulated local synaptic inhibitory weights (J′) and re-adjustment time
(RT), are stored for further analysis. Yellow circles show the model parameters of our interest. Two representative results are shown in (c) and (d). (c)
Identified SSAs are shown for individual subjects and group levels. (d) Estimated DSAs using RT and J′ are shown.

path length are derived to evaluate functional alteration due to
short-term loss of E–I balance (mimicking early lesion phase) and
long-term functional re-organization in the post-lesion phase.

Structural connectivity analysis
Identify SSAs using Jaccard coefficient
Weighted JC are calculated from the individual subject’s healthy
SC. High JC values imply a high structural similarity, whereas low
values yield lesser similarity corresponding to an area of interest
(could be a lesion center). A threshold is put on the obtained JC
values corresponding to a lesion site to identify higher similar
areas. The top 25% areas with higher JC values are considered
as SSAs. Figure 2a shows JC matrix obtained from a healthy SC
(without lesion). Descending order distribution of JC values corre-
sponding to the lesion at lPOPE is plotted in Fig. 2b. The top 25%
similar areas are shown in blue bars and the rest in yellow. In
Fig. 2c, only the top 25% similar areas (blue nodes) are plotted
on the brain surface using BrianNet viewer. Node size implies
JC values. The top 25% SSAs of lPOPE are lCMF, lRMF, lPTRI,
lPREC, rSF, rCMF, lIP, lSP, rRMF, rPREC, lINS, lPCUN, lPCNT, rPTRI,
rPOPE, written in descending order from the similarity indices.
It is observed that the higher similar areas, e.g. rostral, caudate
middle frontal cortex, parietal cortex, insular cortex, and primary

and supplementary motor cortex, are found both in ipsilesional
and contralesional hemispheres. SSAs corresponding to lPOPE for
different subjects are shown in Supplemental Material, Figure
S1a. The SSAs for other lesioned sites are shown in Supplemental
Material. Right POPE has SSAs such as lCMF, lPTRI, lPOPE, and
lRMF in homotopic regions to the left hemisphere (Supplemen-
tal Material, Fig. S1c), including rostral, caudal, precentral, and
postcentral gyrus. SSAs of primary motor regions (left precentral
gyrus, lPREC) are distributed in both hemispheres, including the
caudal (l/rCMF), rostral (l/rRMF), frontal (l/rSF) cortex. Regions are
also in the parietal (lIP, lSP, lPCUN) and insular (lINS) cortex for the
left hemisphere (Supplemental Material, Fig. S1e). The left lateral
occipital (lLOCC), part of the visual cortex has SSAs mainly in the
ipsilesional hemisphere ranging from the parietal lobe (lIP, lPCAL,
lSP, lSMAR, lISTH) to the middle frontal lobe (lCMF) via temporal
regions (lST, lMT, lTT, lFUS) and insular (lINS) cortex (Supplemen-
tal Material, Fig. S1g). Other structural similar areas for different
regions are tabulated in Supplemental Material, Table S3.

Correlation analysis between anatomical (JC) and
dynamical (RT, dJJ) measures
The JC is derived from a healthy SC and used to test our hypothe-
sis, whether the SSAs corresponding to a lesion site are essential
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Fig. 2. Similar structural areas (SSAs) identified by JC for a single subject. (a) JC is evaluated from healthy SC, where A and B are any 2 regions of
interest. (b) Distribution of JC values, considering the lesion to be at left pars opercularies (lPOPE), are plotted in descending order. The red bar is the
selected lesion site (lPOPE). The top 25% areas from the JC values are considered SSAs, shown in blue. The rest of the lower similar areas are shown in
yellow bars. (c) Identified SSAs are shown in sagittal, axial, and coronal brain views. Node sizes represent JC values.

in restoring E–I homeostasis in local regions and eventually within
whole cortical systems. Model-based measurable parameters, re-
adjustment time ( RT), and change in inhibitory weights (dJJ) have
been used to predict the dynamically similar areas (DSAs). We
have simulated the virtual lesion model when the DMF model
is spatially connected via the virtually lesioned SC of a single
subject. Area-wise distribution of JC, RT, and dJJ correspond to
the lesion site at lPOPE is shown in Fig. 3a. A higher RT node
value implies a more extended time required to reach the desired
threshold in excitatory synaptic current for balancing the E–I
ratio. A negative value of dJJ for an area implies a reduction in
its inhibitory weight, i.e. a decrease in inhibition of that area. We
take absolute dJJ for better visualization and description in our
analysis. We find a positive association (r = 0.69) between JC and
RT, which yields that SSAs take longer to re-adjust the E–I balance,
as shown in Fig. 3b. Conversely, a positive correlation between JC
and dJJ, fitted by a linear fitting model with r = 0.8 (see Fig. 3c). It
indicates that the SSAs have tuned their local inhibitory weights.
We find a positive correlation between RT and dJJ, fitted by a
linear regression model (r = 0.88; see Fig. 3d). Overall observations
suggest that SSAs have a strong correlation with DSAs, which
implies the SSAs take longer to modulate their inhibitory weights
to settle the neural activity at the desired set point, i.e. balanced
E–I ratio and target firing rate of ∼4 Hz.

Next, we aim to estimate the areas with a higher positive
association measured from the correlation between JC and RT, or
JC and dJJ. We have selected the regions that lie on the diagonal
line (violet line) only, shown in Fig. 3e, which are common in
both independent measures. The estimated regions, such as lCMF,
lPTRI, lPCNT, lPREC, lRMF, lSF, lINS, and rRMF, are common in both
SSAs and DSAs, with larger JC and RT values. Similarly, we identify
regions from the correlations between JC and dJJ, such as lCMF,
lPORB, lPTRI, lPCNT, lPREC, lPCUN, lRMF, lSF, lINS, rPREC, and rRMF,
shown in Fig. 3f. Subsequently, we identify the predicted brain
areas obtained from the substantial overlap between their RT and
dJJ values. This approach identifies the following brain regions

lCMF, lIT, lMT, lPTRI, lPCNT, lPREC, lRMF, lSF, lINS, rCMF, rPOPE,
rPTRI, and rRMF (see Fig. 3g). The SSAs, selected from anatomical
measure (JC), are shown in Fig. 3h. The DSAs, identified from
dynamical measures (RT and dJJ), are plotted in Fig. 3i on the glass
brain in sagittal and axial view. Yellow nodes in Fig. 3h and i are
common in both SSAs and DSAs, where blue ones are the non-
overlapping areas. The left pars opercularis (lPOPE) lesion site is
shown in the red sphere. Interestingly, areas identified by the 2
independent analyses, i.e. SSAs and DSAs, have more than 60%
overlapped regions corresponding to the lesion site, lPOPE. The
estimated DSAs corresponding to lesion centers at lPOPE, rPOPE,
lPREC, and lLOCC in different subjects are shown in Supplemental
Material, Figure S1b, S1d, S1f, and S1h, respectively. Other DSAs for
different lesion centers are tabulated in Supplemental Material,
Table S3. A strong correlation between JC and RT or JC and dJJ
and high overlapping between SSAs and DSAs suggest that the
predicted areas play a crucial role in re-establishing local E–I
balance by calibrating their inhibitory weights and help sustain
the target firing rate ( 4 Hz) after the lesion occurrence. Further,
we sequentially introduce virtual lesions to all 68 areas. We inves-
tigate correlations between JC and dynamical measures (RT, dJJ) at
the level of single subjects, as depicted in Supplemental Material,
Figure S2. The correlation between JC and RT in Figure S2a, and
JC and dJJ in Figure S2b is positive for different lesion centers.
Except for a few regions, such as lENT, rENT, lPARH, rPARH, lFP,
rFP, lTT, rTT, lTP, and rTP, other regions display largely weaker or
negative correlations. The estimated SSAs and DSAs are displayed
in Supplemental Material, Figure S3a and b. These 10 nodes have
less number of connections and nodal strength. Lower strength
and degree of a node could be why their SSAs are not participating
in E–I balance (Supplemental Material, Fig. S3e and f).

Inter-subject and inter-hemispheric variability/similarity
Fig. 4 shows the results for 2 subjects and lesion sites at 2 hemi-
spheres. We describe the findings from the 2 independent anal-
yses. The SSAs and DSAs corresponding to the lesion site lPOPE
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Fig. 3. Correlation between anatomical and dynamical parameters corresponding to the lesion at lPOPE. (a) Area-wise distribution of JC, RT, and
dJJ for a single subject. From the derived JC matrix on healthy SC, we only choose the JC values considering the lesion center to be at lPOPE. Next, we
take absolute dJJ values for the rest of our analysis. (b-d) Scatter plots show the correlation between JC-RT, JC-dJJ, and RT-dJJ, respectively. Violet lines
denote a positive correlation between any 2 given measures. Correlation values (r) are given at the top of each plot. (e-g) Areas of interest are identified
considering a higher correlation between JC-RT, JC-dJJ, and RT-dJJ. The regions on the purple lines are common within the 2 measures. We choose DSAs
from the overlapped areas in both RT and dJJ, i.e. the areas lie on the purple line in (g). (h) To compare between SSAs and DSAs, we repeat the identified
SSAs here. (i) The estimated DSAs are shown in sagittal and coronal brain view. The red sphere is the lesion center, lPOPE. Common regions from SSAs
and DSAs are shown in yellow and non-overlapping in blue.

are repeated for one subject in Fig. 4a and b. Estimated common
areas from both SSAs and DSAs are shown in yellow and non-
overlapping in blue. The overlapping regions are lRMF, lPTRI, lCMF,
lINS, lPREC, lPCNT, lSF, and rRMF, respectively.

Inter-subject variability is depicted for another subject
in Fig. 4c and d. The overlapping regions for this subject
are lCAC, lLOF, lPTRI, lCMF, lINS, lPREC, lRAC, rCAC, rCMF,
rPREC, rPTRI, displayed in yellow in Fig. 4c and d. Although
the lesion centers are similar for both subjects; still, the
identified SSAs and DSAs are different in the 2 subjects;
compare Fig. 4a and c, or Fig. 4b and d. Variability in SSAs
arises from individual subjects’ structural/anatomical differences
in brain connectivity and manifest individual-specific SC-FC
correlations.

However, it is interesting to note that the areas predicted for
lesion recovery by JC are similar to the regions predicted by the
dynamical measures (RT-dJJ) in individual subjects (see Fig. 4a and
b or Fig. 4c and d), despite inter-subject structural differences.
While comparing the 2 Fig. 4b and d, the estimated DSAs lie in the

anterior cingulate cortex (l/rRAC, l/rCAC) for subject-2 (Fig. 4d),
whereas no nodes from the anterior cingulate cortex are found for
subject-1 (Fig. 4b). Patterns of subject-dependent variability/simi-
larity in the estimated DSAs and SSAs are consistent for different
lesion locations and tested for several subjects (Supplemental
Material Fig. S1).

Further, we tested our hypothesis for another lesion site in
the right hemisphere, say right pars opercularis (rPOPE), for
the 2 subjects. We find consistent variability patterns in the
results, see Fig. 4e and g or Fig. 4f and h, and similarity in
identified regions, comparison between the SSAs and DSAs in
Fig. 4e and f or Fig. 4g and h. The overlapped regions from the
SSAs and DSAs are shown in yellow, and the non-overlapping in
blue.

Group-level analysis on SSAs and DSAs
A group-level analysis is performed over all 49 subjects to find
the probability of the appearance of a predicted SSA or DSA. We
determine the probability of appearance (PA) of an area as a ratio
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Fig. 4. Inter-subject and inter-hemispheric variability/similarity in SSAs and DSAs. SSAs corresponding to lesion centers at left and right POPE ( red
spheres) are shown respectively in (a, c) and (e, g) for 2 subjects. DSAs are shown respectively in (b,d) and (f,h) for those 2 subjects. Common regions
from SSAs and DSAs are shown in yellow spheres. Abbreviations are written on each subplot’s left side. Overlapping areas in SSAs and DSAs are
yellow, and non-overlapping are blue.

between the number of an SSA (or DSA) that appeared within all
the subjects and the total number of subjects as,

PA = number of appearance of an area in all subjects
total subject

.

The value PA=1 corresponding to an SSA (or DSA) implies that it
appeared in all the subjects. The values and distribution of the
PA for SSAs corresponding to lPOPE are shown in Figs. 5a, and 5b,
respectively, and the PA values for DSAs are plotted in Fig. 5c
and d. Yellow nodes and bars stand for higher PA values, and
pink shade implies lesser PA values, indicated by the color bar.
It is observed that the SSAs corresponding to the lesion center
at lPOPE, such as lCMF, lPTRI, lPREC, lRMF, and lINS, are found in
all 49 subjects (see Fig. 5a and b). Other SSAs, including the post-
central gyrus, precuneus, posterior cingulate, and contra lesional
frontal regions, are found in more than 90% of the subjects. SSAs
in the right hemisphere, e.g. rPOPE and rPTRI, are found in more
than 50% of subjects. Similarly, the DSAs, including lCMF, lPTRI,
lPCNT, and lRMF, are found in almost all the subjects. We test
the consistency and robustness of our results for other lesion
locations; please check Supplemental Material Figure S3a and b,
and Figure S3e and f.

Although the identification of SSA based on anatomical prop-
erty is entirely independent of the estimation of DSA, both these
proposed methods can crucially identify and predict similar com-
pensatory candidate brain regions likely initiating the post-lesion
recovery process. The higher similarity between SSAs and DSAs
signifies that the similar structured areas corresponding to a
possible lesion site have modulated their local inhibitory weights
and participated in restoring local and global homeostatic E/I
balance.

Functional alteration and re-organization after
lesion
We have used statistical tools to investigate how anatomical
perturbation to a node affects the global functional organization.
The impact of lesion on FC has been categorized into 2 parts:
(i) alteration and (ii) re-organization. Simulated FC is obtained
from the spatiotemporal BOLD signals using pairwise Pearson
correlation. Considering 3 conditions for each subject, we have
synthetically generated healthy FCs, altered FCs when E–I balance
is lost and re-organized FCs when the E–I balance is restored.
Statistical comparison between any 2 conditions, e.g. healthy vs.
altered FCs, and altered vs. re-organized FCs, respectively, deter-
mines significant differences between generated FCs. First, we
calculate the z-score of individual FCs for the 3 conditions. Next,
we perform paired sample t-tests to designate the significant
global changes in the healthy normative pattern, i.e. deviation
from the healthy FC into the altered FC that depicts the direct
impact of lesion on collective dynamics. Similarly, after the global
restoration of E–I homeostatic balance, the post-lesion functional
reconfiguration pattern is investigated by comparing the altered
and re-organized FC. The ROI-wise paired t-test is performed for
each element in the FC matrix between 2 conditions, e.g. healthy
and altered FC group and altered and re-organized FCs, for all
subjects. False discovery rate (FDR) is corrected over the obtained
pP-values from the t-test.

Figure 6 shows ROI-wise FC analysis between 2 conditions, e.g.
healthy-altered FC and altered-reorganized FC, considering lesion
center lPOPE. Subject-wise model-generated healthy FC, altered
FC, and re-organized FC are shown in Fig. 6(a-c), respectively. ROI-
wise t-statistic to find significant changes in the weights between
healthy and altered, as well as altered and re-organized FCs, are
shown in Fig. 6d and e, respectively. Upper triangular elements in
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Fig. 5. Group-level analysis on SSAs and DSAs corresponding to lPOPE. Probability of appearance (PA) of nodes identified by structural and
dynamical measures over subjects corresponding to the lesion at lPOPE are illustrated. (a) Axial, sagittal (left and right) view of the brain for SSAs over
all subjects and the distribution of PA in descending order for SSAs. (b) Descending order distribution of PA for DSAs, axial and sagittal (left and right)
view of the brain for DSAs over all subjects. Yellow areas have higher PA yielding, appearing as SSA and DSA over all subjects. The pink areas appeared
less in both SSAs and DSAs. The red node is the lesion site, lPOPE.

Fig. 6d and e represent the t-statistics corresponding to changed
weights between any given pair of regions. Lower triangular values
in Fig. 6d and e is obtained by putting a threshold on P-values
(P < 0.005). It can be noticed that cortical cohesion is significantly
decreased in the ipsilesional hemisphere but increased in the
contralesional hemisphere, shown by the red and blue lines in
Fig. 6f. Furthermore, when the E–I balance is globally restored,
we observe a significant increase in synchrony in the ipsilesional
hemisphere and a decrease in the contralesional hemisphere,
shown in red and blue in Fig. 6g. Results for other lesion centers
are shown in Supplemental Material, Figure S3.

Discussion
In this work, we have proposed 2 independent measures SSAs
(anatomically self-similar areas) and DSAs (dynamically self-
similar areas), using virtual lesion modeling in predicting
candidate brain regions that initiate the post-lesion recovery
by reestablishing local and global E/I balance. Previous studies
(Bullmore and Sporns 2009; Aerts et al. 2016) have explored
the critical role of network topology in the context of the brain
lesion. However, whether compensatory brain regions could be
predicted based on identifying topologically self-similar and
dynamical self-similar areas (an equivalence principle) is largely
unknown. We have demonstrated the compensatory role of SSAs
corresponding to a lesion site/center in restoring E–I balance
in the local areas and across the whole brain mediated by
the negative feedback form of plasticity. Resetting homeostatic
balance results in post-lesion functional re-organization within

the surviving cortical areas. The homeostasis mechanisms,
governed by the FIC (Deco et al. 2014), are deployed to restore
E–I balance within the virtually lesioned brain regions at the
group and subject-specific level. We measure the simulation time
(called re-adjustment time, RT) taken by each region to re-adjust
their local inhibitory weights (J′) during the re-establishment
of global homeostatic balance after lesion. Our hypothesis of
predicting compensatory brain regions is based on structural
and functional equivalence. Further, the observed compensatory
utilization of the hemisphere is supported strongly based on SC
analysis and FC alteration/rewiring. Our proposed theoretical
framework identifies overlapping compensatory brain regions
during the early and post-lesion recovery phase across all subjects
using 2 independent methods and subject-wise variability. Our
results provide the first unified framework behind observing a
variety of compensatory brain regions identified by earlier lesion
recovery studies (Cao et al. 1999; Winhuisen et al. 2005; Breier
et al. 2009; Sharp et al. 2010; Turkeltaub et al. 2012; Szaflarski
et al. 2013). The cause and consequence of those identified areas
remain a large knowledge gap in the neuroscience literature.
We also report that SSAs are more robust and reliable than
other network properties widely used in the literature (e.g.
clustering coefficient, participation coefficient, node weight)
when harnessing region-specific roles in reshaping near-normal
functional brain connectivity and dynamics to identify the post-
lesion recovery process. The DSAs provide a broader scope for
investigating the post-lesion period when SSA is undetermined.
The predicted areas (SSAs or DSAs) are independent of the
subject’s age and gender. The key compensatory mechanism
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Fig. 6. ROI-wise FC analysis. (a-c) Model-generated healthy, altered, and re-organized FCs are placed in 3 rows. The virtual lesion is introduced at
lPOPE. ROI-wise changes and rewiring between 2 conditions over the subjects are measured using paired t-tests. ROI-wise t-statistics are displayed in
the upper triangular matrices, comparing healthy and altered FCs in (d) and altered and re-organized FCs in (e). Lower triangular entries are the
significant t-statistic, putting a threshold on the p-values (p < 0.05, FDR corrected). The color bar indicates the t-stat value. Stars at the bottom and left
sides of the matrices are significantly changed regions. Glass brain plots in (f) and (g) show, respectively, the significantly changed and rewired links
with related regions. Red and blue edges represent the significant increase and decrease in t-stat values. (f) Due to lost homeostatic balance, cortical
cohesion is reduced in ipsilesional and increased in contralesional. In contrast, (g) spatiotemporal correlation is enhanced in the ipsilesional and
attenuated in the contralesional hemisphere after restoring the E–I balance.

demonstrated here suggests a CRUH in the emergence of post-
lesion coordinated cortical cohesion. Most importantly, the
proposed theoretical methods are general and can be applied
to broader lesion categories.

Structural similarity is predictive of functional
recovery
Findings from the structural analysis are divided into 2 parts,
(i) identification of SSAs and (ii) estimation of DSAs. From the
anatomically constrained dynamical mean field model simula-
tion, we have estimated the DSAs, further correlated against
the SSAs. Obtaining the correlation between SSAs and DSAs has
helped to test our proposed hypothesis. Despite the diversity in
inter-individual structural topology, the 2 independent methods
(SSAs and DSAs) provide computational machinery for predict-
ing common brain areas with 60–70% overlaps. To check the
probability of an estimated region being a potential candidate
area for functional recovery, we have measured the probability
of appearance (PA) within all 49 subjects in our data. A higher PA
corresponding to a predicted area indicates a high chance of being
a candidate in all subjects and a high probability of participating
in compensation for the damaged brain.

From the derived PA, the SSAs corresponding to the lesion
at left POPE (associated with language processing) is identified
as CMF, RMF, IFG, PREC and PCNT, and INS in the ipsilesional
hemisphere. Contralesional homologous regions are rPOPE and
rPTRI. Dynamically similar areas for left POPE are found in both
ispi- and contra-lesional hemispheres, including CMF, RMF, PTRI,
PREC, and PCNT. Predicted areas belonging to the SSAs and DSAs
in both ipsi- and contra-lesional regions suggest a CRUH. The pre-
dicted areas are independent of the subject’s age and gender. The
identified SSAs from both hemispheres are also reported in earlier
studies as essential candidates for complete language recovery
after lesion. For example, the recruitment of perilesional tissue
(Warburton et al. 1999), as well as contralesional areas (Cao et al.
1999; Winhuisen et al. 2005; Breier et al. 2009; Sharp et al. 2010;
Turkeltaub et al. 2012; Szaflarski et al. 2013), and participation
of the homologous regions (Weiller et al. 1995; Musso et al. 1999;
Rosen et al. 2000) in association with language recovery are well
documented largely concurs with our findings. Besides, increased
activation of right lesion-homolog IFG has been reported in a
subset of patient groups (Rosen et al. 2000).

For a lesion site at the primary motor region, left postcen-
tral gyrus (lPREC), we have predicted candidate areas as CMF,
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RMF, pars triangularis, superior parietal, superior frontal gyrus,
and precuneus in the ipsilesional hemisphere. Moreover, Superior
frontal and rostral middle frontal regions from the contralat-
eral hemisphere are found in almost all subjects. Our obser-
vations align well with previous findings on ‘motor lesion re-
organization in ipsilateral premotor cortex (Connolly et al. 1994;
Langhorne et al. 2009), recruitment of contralesional motor areas
(Johansen-Berg 2002; Small et al. 2002; Ward et al. 2003). The areas
reported by neurological studies found to be crucial in motor func-
tion recovery (Nelles et al. 1999). Other motor-related brain regions
such as supplementary motor area (SMA), dorsolateral premo-
tor cortex (PMC) and cingulate motor areas (CMA), and insular
cortex (Ward 2005) provides necessary compensation to improve
motor performance (Calautti and Baron 2003) as documented
by previous findings. Also, found to be critical for functional re-
organization in the motor recovery (Liu et al. 2011; Griffis et al.
2019) and matches completely with the predicted brain regions
based on our proposed computational framework.

In contrast, few regions such as entorhinal (ENT), parahip-
pocampal (PARH), frontal pole (FP), temporal pole (TP), and tra-
verse temporal (TT) regions have displayed significantly less cor-
relation between JC and RT (SSAs and DSAs). The weaker asso-
ciation, in this case, may arise due to their sparse connectivity
and weaker anatomical strength. Interestingly, lesions in these
brain regions have less impact on overall homeostasis. Thus, the
damage to these brain regions may restore the lost E–I balance
with comparatively minimal effort. In the above scenario, the
adjacent brain regions participated in resetting local and global
homeostasis other than SSAs (or DSAs), suggesting local wiring
specificity and proximity could be key to initiating the neural
compensatory process.

To this end, we mention 2 major aspects of our findings. First,
a large overlapping brain region predicted by SSAs and DSAs
signifies structurally similar regions primarily participate in the
dynamical re-organization process. These areas reset local E–
I balance after lesion by modulating their inhibitory weights,
thus, displaying the constructive role of SSAs on functional
network recovery. It can be concluded that a higher correlation
between these 2 independent methods (SSAs and DSAs) arises
from the interplay between the structural property and the local
inhibitory weights responsible for emergent globally coordinated
dynamics. Specifically, an emerging local re-adjustment of
inhibitory weights mediates self-organized global brain dynamics
during homeostasis. The second aspect of the findings is that
the SSAs are identified from the healthy subject’s SC analysis.
In contrast, the DSAs are estimated after introducing virtual
lesions in the SC matrix. Thus, a methodological advantage is
that even if, in the clinical phase, healthy FC is unavailable
for a particular patient, the DSAs can be employed as a tool
in patient-specific FC to identify candidate compensatory
brain areas.

The compensatory mechanism
In addition, simulation of the virtual lesion model has helped to
acquire insight into the dynamic origin of the post-lesion compen-
satory mechanism. We find that the regions from both ipsi- and
contra-lesion, with higher structural similarity to the lesion site,
took an extended time to modulate their local inhibitory weights.
Besides, the SSAs, from both hemispheres have reduced regional
inhibition to balance decreased excitation due to degradation in
the excitatory synaptic drive, thus balancing the overall E–I ratio
and sustaining the target firing rate of 4 Hz. As documented

earlier, homeostatic plasticity, a mechanism of up-and-down reg-
ulation of both the presynaptic release of and the postsynaptic
response to neurotransmitters, is essential to maintain a stable
set point and near-normal brain condition (Turrigiano and Nelson
2004). Here, the primarily recruited SSAs from the 2 hemispheres
suggest the dominant role of structural similarity and rewiring
proximity of compensation-related utilization of hemispheres,
which have guided homeostatic plasticity-driven compensatory
mechanisms in re-organizing post-lesion functional brain net-
work recovery.

Local E–I balance impacts global FC recovery
Previous studies have reported that changes in excitability affect
the local E–I balance of the lesion site and distant cortical net-
works (Feeney and Baron 1986), known as diaschisis (Carrera
and Tononi 2014; Dos et al. 2022), suggesting remote disruptions
in FC following lesion impact. These studies have hypothesized
mechanisms underlying neuronal remodeling in the perilesional
area and contralesional hemisphere after motor cortex infarcts
and summarized evidence from previous studies based on anal-
ysis of electrophysiological data that demonstrated brain-wide
alterations in functional connectivity in both hemispheres, well
beyond the infarcted area (Campo et al. 2012; Dos et al. 2022).
Our findings based on FC analyses depict reshaping in the coor-
dinated cortical cohesion, which is not limited to the ipsilesional
hemisphere but also progresses distant from the damaged area
into the contra-lesional hemisphere showing nonlocal effects and
completely aligned with the experimental findings from human
and animal studies depicting brain regions implicated during the
post-lesion functional recovery process.

Our study also observed that an early impact of structural
damage results in a specific signature, the reduction in spatiotem-
poral cortical coherence in the ipsi-lesional hemisphere. On the
contrary, the spatiotemporal coherence increases in the contra-
lesional hemisphere. In the emergent FC, at E–I balanced state
after lesion occurrence, we observed increased synchronous neu-
ral activity in the ipsi-lesional site, while a decreased synchronous
neural activity in the contra-lesional hemispheres. This seesaw
effect in the opposing hemisphere to the lesion center aided
functional restoration. The re-organization pattern in the ipsi-
and contra-lesional hemispheres is similar in all subjects and for
different lesion sites heralding the robustness and consistency of
the findings reported here. In response to structural damage, we
find that the cortical plasticity mechanism related to E–I home-
ostasis facilitates FC rewiring in the contra-lesional hemispheres,
similar to the previous key observations in Alia et al. (2017). Our
proposed computational mechanisms following lesion could be
similar to re-organization in pre-infracted to and distant regions
from the lesion site that may trigger large-scale remodeling of the
cortical networks to compensate for post-lesion deficits (Brown
et al. 2009).

In addition, we have reconfirmed our observations using graph-
theoretical properties of FC (Gratton et al. 2012; Siegel 2016; Tu
et al. 2021) such as transitivity, path length, modularity, and global
efficiency, which are interpreted in terms of lesion impacts, and FC
recovery. Due to lesions, the biological perturbation reshapes the
healthy normative pattern in FC. The loss of inter-area excitatory
synapses predominantly affects coordinated neural dynamics,
which can be observed from the segregated functional network
captured by the increased modularity and decreased global effi-
ciency. However, the damaged brain tries to adapt to the global
changes in functions caused by the homeostatic imbalance across
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the whole brain. Our in-silico investigation suggests that the adap-
tive mechanism compensates for the lost E–I homeostasis, primar-
ily driven by the modulation of inhibition at the local level, mainly
within the SSAs (or DSAs) identified in this work.

Gradual resetting of neural activity to regain the near-normal
function is confirmed by the decreased modularity and increased
global efficiency concerning the altered FCs. The FC integration
has compensated segregation of FC after the damage to under-
lying structural connections. This is in concurrence with the
previous findings of 2 model-based measures: ”integration,” a
theory-based on graph theoretical measure obtained from func-
tional connectivity, which measures the connectedness of brain
networks, and ”information capacity,” an information-theoretic
measure, representative of the segregative ability of the brain
networks to encode distinct stimuli (Adhikari et al. 2017). This
further resets healthy dynamical repertoire driven by the negative
feedback-mediated form of plasticity leading to re-organization
on biological timescale. Further, it is well explained in earlier
studies (Bütefisch et al. 2003; Carmichael 2003) that the global
homeostasis is balanced by increasing excitability in the areas
near and distant to the lesion center, suggesting a direct correla-
tion between the E–I balance and global cortical dynamics (Roy
et al. 2014), which can be one crucial aspect in proper lesion
recovery.

Limitations
There are also limitations of this study. (i) A precise mapping
between the accurate lesion biological time scale and simulation
time is still being determined. Therefore, we cannot predict the
time scale of the actual recovery process. Mapping real-time-
scale with simulation time can bring us closer to uncovering the
true recovery mechanism and will have excellent translational
value. We are currently investigating this mapping in another
research work and out of the scope of this study. (ii) The FIC
mediates the homeostasis mechanism. However, other feedback-
mediated mechanisms may be incorporated into the model to
verify increased excitability due to lesions in individual sub-
jects, which this work does not sufficiently explore. (iii) We did
not incorporate the effect of lesion volume in this study. The
amount of lesion volume and spread are essential factors in FC
re-organization and recovery, which are not addressed here. (iv)
Directed FC also holds the key to understanding how information
flow alters following lesion and during recovery, which future
studies may explore, (v) Finally, how FC is reshaped based on
longitudinal data can validate present findings in a more nuanced
fashion and establish a stronger link between lesion recovery and
functional re-organization elucidating region-specific roles. One
of the potential measures to assess the changes could be the use
of dynamic functional connectivity (Sastry et al. 2023). However,
FCD largely captures temporal correlations at the expense of
spatial/ROI-specific information. Hence, of little value in pre-
dicting SSAs in our study context based on virtual lesions. Fur-
thermore, the mathematical formalism becomes unnecessarily
complex to relate dJJ (change in local inhibitory weights) post-
lesion recovery mechanisms to track DSAs. This renders FCD
less useful as a measure in the context of our primary objective
of predicting compensatory brain areas in large-scale brain net-
works. (vi) The parcellation used in this study is Desikan–Killiany
(DK) parcellation as in by Schirner et al. (2015), which consists of
68 cortical ROIs with 34 ROIs in each hemisphere. SC matrices
generated from each subject’s MRI data are averaged elementwise
to obtain an SC matrix. The connectivity strength between each
pair of 68 areas represents how one area can influence other

areas in the context of a specific model (refer to Computational
model simulating whole brain resting dynamics section). While
using the DK atlas helps simplify numerical simulations, a higher-
resolution parcellation would likely improve predictions for SSAs
and DSAs at a much finer spatial scale.

Conclusion and future aspects
In conclusion, we envision a novel method to identify poten-
tial candidate areas responsible for resetting E–I homeostasis
as possible compensatory mechanisms resulting in near-normal
functional brain network recovery. A fundamental open question
in the literature is how the non-lesioned brain adapts to the post-
injury functional recovery process and whether those areas could
be predicted using a systematic theoretical framework. Although
the lesion recovery process may be complex, the current study
provides a general framework elucidating that brain recovery
involves the utilization of an equivalence principle based on struc-
tural and dynamic similarity to tackle a wide variety of lesions.
Future studies could use controllability theory to narrow the DSA
(SSA) estimation into a specific region on the directed FC network.
Those studies could further pinpoint whether a DSA (SSA) driven
information flow pattern exists in the surviving cortex. Further-
more, how do the candidate brain areas help information fidelity
during the brain network recovery?
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