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5Centre de Physique Théorique, Ecole Polytechnique, CNRS,
Institut Polytechnique de Paris, 91128 Palaiseau Cedex, France
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The pairing symmetry of Sr2RuO4 is a long-standing fundamental question in the physics of
superconducting materials with strong electronic correlations. We use the functional renormalization
group to investigate the behavior of superconductivity under uniaxial strain in a two-dimensional
realistic model of Sr2RuO4 obtained with density functional theory and incorporating the effect
of spin-orbit coupling. We find a dominant dx2−y2 superconductor mostly hosted by the dxy-
orbital, with no other closely competing superconducting state. Within this framework we reproduce
the experimentally observed enhancement of the critical temperature under strain and propose a
simple mechanism driven by the density of states to explain our findings. We also investigate the
competition between superconductivity and spin-density wave ordering as a function of interaction
strength. By comparing theory and experiment, we discuss constraints on a possible degenerate
partner of the dx2−y2 superconducting state.

INTRODUCTION

Almost 30 years after the discovery of superconductiv-
ity in Sr2RuO4 (SRO) [1], the symmetry of its supercon-
ducting order parameter (SCOP) remains an open ques-
tion. Initially, its similarities with 3Helium made it a
prime candidate for spin-triplet pairing [2], corroborated
by various measurements [3–11]. Along with observa-
tions of time-reversal symmetry breaking (TRSB) sup-
porting a two-component order parameter [12, 13], the
superconducting (SC) state was believed for a long time
to be a chiral p-wave spin-triplet. However, conflicting
evidence presented in various studies remained to be ex-
plained [14, 15]. First, the presence of nodal excitations
is unexpected in a chiral p-wave SC [16–19]. Second,
the low critical field Hc2 exhibited by SRO is typical for
Pauli-limited spin-singlet SC [20] and the transition into
the normal state upon applying a magnetic field appears
to be first-order [21, 22], with indications of a Fulde-
Ferrell-Larkin-Ovchinnikov state for a certain parameter
range, strongly pointing to a singlet SCOP [23]. Third,
no topologically protected edge states predicted in chiral
p-wave states [24] were observed in experiments [25–27].

In recent years, the chiral p-wave picture has basi-
cally been dismissed. First, the careful replications of
key nuclear magnetic resonance experiments previously
interpreted as supporting spin-triplet pairing have high-
lighted a heating effect and instead concluded that the
SCOP corresponds to spin-singlet pairs [28–30]. Second,
applying uniaxial strain along the x principal crystallo-
graphic axis was found to enhance the critical temper-
ature (Tc) [31, 32]. This enhancement was shown to

be maximal where the FS undergoes a Lifshitz transi-
tion, corresponding to a van Hove singularity (vHs) in
the density of states (DOS), at a time-reversal invariant
momentum point, inconsistent with odd-parity SCOPs
like p-wave [33]. Nowadays, a consensus appears to be
crystallizing around the spin-singlet and even-parity na-
tures of the SCOP, yet the debate is still ongoing. While
ultrasounds experiments support the conclusion of a two-
component order parameter [34, 35] inferred by the ob-
servation of TRSB and the splitting between Tc and the
TRSB transition temperature [36, 37], there are no two-
temperature signature in bulk thermodynamical experi-
ments such as specific heat and elastocalorimetry as well
as scanning SQUID microscopy [38–41]. As a result of
this plethora of experimental evidence, SRO can be seen
both as a critical playground for testing new theories with
the goal of potentially unifying some of these contradict-
ing observations and as a testbed to verify whether our
interpretations of specific experiments are valid. Either
way, it constitutes an ideal system to considerably ad-
vance our understanding of the mechanisms for uncon-
ventional superconductivity [42].

Many theoretical proposals have been put forward
as potential SCOPs. Initially classified as a chiral p-
wave [43–49], the recent experimental evidence motivated
new proposals, including s + id [50–53], d + ig [53–55],
a combination of even and odd-parity irreducible repre-
sentations (irreps) [56], Eg d + id [57, 58], inter-orbital
pairing [59, 60] and dx2−y2 plus odd-frequency [61, 62].
A general overview of possible ordering states in terms of
their irreducible representations is given in Ref. 59, 63.

In this paper, we investigate the leading supercon-
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ducting instabilities of SRO using functional renormal-
ization group (FRG) calculations [64], applied to a real-
istic model of the electronic structure derived from den-
sity functional theory (DFT) [65] that includes spin-orbit
coupling (SOC). Note that previous studies of SRO using
FRG were performed on tight-binding models, fitted to
photoemission spectroscopy measurements [45, 55, 66–
69]. In order to compare to experiments, we study the
effect of uniaxial strain, tracking the evolution of Tc as
well as the type of ordering. We find a phase diagram
with two different magnetic orders that compete with a
single SCOP transforming like the B1g irrep (often la-
belled as dx2−y2 -wave). This competition is found to de-
pend sensitively on the choice of interaction parameters.
We show that a proper range of parameters lead to an in-
crease of the superconducting Tc in good agreement with
experiments.

RESULTS

Electronic structure. — To describe the low energy
electronic structure of SRO for the different strain val-
ues, we perform ab initio DFT calculations downfolded
onto the t2g orbitals of the ruthenium atoms using max-
imally localized Wannier functions as detailed in the
methods section. The local SOC parameter λSOC is fixed
at 200 meV, consistently with the predicted correlation-
induced enhancement over the DFT value and in agree-
ment with the FS determined by photoemission experi-
ments [70–74].

Note that the addition of SOC breaks the SU(2) spin
symmetry, but preserves an orbitally dependent SU(2)
(so called pseudospin) symmetry [62]. We keep the SOC
fixed for all strain values [75].

In order to account for strong electronic correlations
in this multi-orbital system, we use for most parts
of this paper the O(3) symmetric Hubbard-Kanamori
parametrization of the interaction Hamiltonian [76],
which involves two key energy scales: the on-site Hub-
bard repulsion U and the Hund coupling J - see meth-
ods. As done routinely in FRG calculations [43, 45, 67–
69, 77–88], we neglect the flow of the self-energy in our
calculations. Hence, the interaction parameters (U, J)
should be considered as effective interactions with signif-
icance within our FRG framework rather than having a
first-principle meaning. In this perspective, it is impor-
tant to explore how the various instabilities are tuned by
varying the interaction parameters.

The FS and the density of states (DOS) obtained
from this downfolded t2g model are displayed on Fig. 1.
The left column corresponds to the unstrained system
(εxx = 0) and the right columns to the optimally uniax-
ially strained system for which the Fermi level is at the
vHs (εxx = εvHs

xx ). Note that εvHs
xx does not include quasi-

particle renormalization and therefore is not the same
value as in experiments. The D4h space group symme-
try of the unstrained system is lowered down to D2h by

FIG. 1. Density of states (upper panels) and Fermi surface
(lower panels) for the three t2g orbitals of the unstrained (left)
and the optimally strained (right) systems. The optimal stain
of 0.8% corresponds to the system being closest to the Lifs-
chitz transition. Here, a (b) is the lattice parameter in the
x (y) direction, with a = b in the εxx = 0 case. The black
dots indicates the position of the vHs of the dxy orbital. The
three dominant spin-density wave ordering vectors q1, q2 and
q3 are highlighted in black, gray and pink, respectively. The
first Brillouin zone is marked by a black square. We mark the
Γ and Z point by red crosses. Furthermore, we labelled the
α, β and γ sheets on the FS for εxx = 0.

uniaxial strain and the B1g irreducible representation of
D4h, of greatest relevance to our study, turns into the
A1g irreducible representation of D2h.

Note the slightly unusual presentation of the FS in
Fig. 1: this is due to the transformation from a tetragonal
basis into a x-y plane which has to be done in this fashion
to ensure periodicity of the downfolded model in the two-
dimensional primitive cell. Due to this, we have not a
single but two kz values in the first primitive cell, i.e.
the Z-point is located at the corner of the black square.

The lowering of the symmetry under uniaxial strain
lifts the degeneracy between the dxz and the dyz orbitals,
as seen in the DOS in Fig. 1. It also splits the dxy van-
Hove singularity into two parts: one drifting away from
the FS (x-direction) and one drifting towards the FS and
crosses it at the Lifschitz transition (εvHs

xx ∼ 0.8% strain).
On the FS shown in Fig. 1, we also highlight the dom-
inant nesting vectors of the bare particle-hole suscepti-
bility (χ0

PH), see App. A. First, q1 = (2π/3a, π/3b) (and
all those related by symmetry) connects the α and β
sheets of the FS. Second, q2 = (π/2a, π/2b) is connecting
two van-Hove singularities and should become relevant
at large interactions. Third, q3 = (π/3a, π/3a) also con-
nects the α and β sheet of the FS. These vectors are
consistent with the dominant spin fluctuations observed
in neutron scattering experiments [89, 90]. Note that
there is a family of nesting vectors connecting α and β
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FIG. 2. Phase diagrams in the U -J parameter space for the
unstrained (left) and the optimally strained (right) systems.
The background color indicates the critical scale Λc, propor-
tional to the ordering energy scale, with the corresponding
color bar on the right. The phases are either a B1g supercon-
ductor (A1g under uniaxial strain), two different spin-density
waves (SDWs) or a Fermi-liquid (FL). The q-vectors associ-
ated to the SDWs are shown in Fig. 1.

sheet, all close to q1.
With these insights from the non-interacting FS and

DOS in mind, we proceed with the phase diagrams as a
function of U and J for the unstrained and the εxx = εvHs

xx

cases. The results are presented on Fig. 2. The back-
ground color corresponds to the energy scale Λc (ex-
pressed in meV) at which a divergence of the correspond-
ing coupling is observed. The fastest divergent coupling
corresponds to the dominant instability, which can either
be superconductivity (in which case Λc is expected to be
proportional to the Berezinskii–Kosterlitz–Thouless [91–
93] critical temperature TBKT) or a spin-density wave
(SDW) (in which case Λc can be interpreted as the char-
acteristic scale associated with the growth of the corre-
lation length) [94]

At the lowest U and J values, we find no divergence
down to the lowest energy scale resolvable with our mo-
mentum resolution, and thus conclude that the system
remains in the Fermi liquid (FL) state down to that scale.
Apart from this unique point, we find three types of in-
stabilities. Up to moderate U and low but finite J , we
find a dx2−y2 superconducting instability (corresponding
to B1g symmetry for the unstrained system, turning into
A1g for the strained one). Upon increasing U or J , we
find that the dominant instability becomes a SDW with
ordering vector q1. At even larger U and J , the system
undergoes a high-temperature transition to another SDW
phase characterized by the ordering vector q2. These or-
dering vectors are visible in both non-interacting and in-
teracting susceptibilities. Since we do not incorporate
the effect of the self-energy, we cannot observe the shift
of the q3 peak observed in Ref. [52].

Phase diagram and magnetic orderings. — The q1-
SDW is driven by strong nesting between the α and β
sheets. A corresponding peak in the spin-spin suscep-
tibility has been well discussed both in the context of
experimental observations [6, 95] and theoretical discus-

sions [61, 96]. It should be noted that this vector is
connecting two different values of kz when backfolded
in the three dimensional Brillouin zone. Its in plane ana-
log, q3 = (π/3a, π/3b), was found to be subleading in
earlier three-dimensional studies using the random phase
approximation (RPA) [97]. The q3 peak is also found in
DMFT calculations including vertex corrections [52, 98].
Here, we find the q1 ordering to be the leading one, with
the q3 ordering also diverging but with smaller absolute
magnitude. The increase of Λc can be understood in
terms of the Stoner criterion being fulfilled at a larger
scale for larger U or J . At higher energy scales, the
vHs are strongly smeared. This effect increases the im-
portance of the q2 ordering vector connecting two vHs
points, leading to the emergence of the q2-SDW phase.

When applying uniaxial strain, the parameter range
where we find a SDW is increased. This can be under-
stood from the increase of the DOS at the Fermi level,
which leads to a larger χ0

PH and thereby a smaller inter-
action is required to fulfill the Stoner criterion. Beyond
this effect, straining does not affect the structures of the
phases and the q2-phase is still observable in the same
parameter region, as the changes of the FS due to strain
have counteracting effects: while in the y-direction the
FS touches the vHs, it drifts further away from it in the
x-direction.

Note that as we increase the strain beyond the Lifschitz
transition, we do not find the SDW that is observed in
experiments [36, 39]. The emergence of this phase has
been understood as the removal of all curvature of the γ
sheet between the upper/lower vHs and the X/X ′ points,
which leads to strong nesting along this direction [99].
We do not observe this phase at any investigated strain
value, possibly indicating that quasi-particle renormal-
ization enhances the tendency towards such an instabil-
ity. Further studies are required to identify the crucial
ingredients for the high-strain magnetic phase.

Superconductivity. — In the following, the supercon-
ducting phase is analyzed using a linearized gap equation
on the FS. As shown in Fig. 3, we find a gap that trans-
forms according to a B1g for εxx = 0 (A1g for εxx = εvHs

xx )
representation of the D4h (D2h) point groups. In the
band basis, this state has a dominant overlap with the
dx2−y2 harmonic and its main weight stems from the dxy
orbital. Such a type of superconductor has been observed
in several other studies [50, 54, 55, 61, 62, 96, 99–101].

The spectrum of the pair-pair susceptibility at Λc con-
tains the information of all possible subleading SCOPs.
By analyzing this spectral distribution, we find a clear
separation of the eigenvalue of the dx2−y2 superconduct-
ing state by at least one order of magnitude from all
eigenvalues of other SCOPs, for all parameters investi-
gated. While this excludes any immediate degenerate
state, no statement about the proximity of different sym-
metry states or individual critical temperatures can be
drawn from FRG, because within this method the dom-
inant instability is signalled by a divergent coupling and
susceptibility. However, from the hierarchy standpoint,
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FIG. 3. Spin, orbital and momentum structure of the SCOP of Fig. 2 at U = 1.1 eV and J = 0.22 U . Unstrained εxx = 0
(Optimally strained εvHs

xx ) case on the left (right). Each panel shows the momentum structure of the superconducting gap of a
specific orbital pair. Since the gap function is only known up to a prefactor, we rescale it from −1 to 1, the sign and value is
encoded in the colorbar. Note that only the pseudospin off-diagonal terms are non-zero, thus we only need to represent a 3× 3
matrix. The SCOP transforms like the B1g (A1g) irreducible representation of the D4h (D2h) group.

we still can extract tendencies towards different orderings
as discussed in App. D. This hierarchy reveals that the p-
wave pairing state [43, 45, 69] is always clearly subleading
by a large margin.

The superconducting phase is generated by a spin-
fluctuation mechanism. The couplings U and J are cru-
cial tuning knobs determining the onset of the phase
and also control the transition to the neighbouring mag-
netic phase. When increasing U , the transition to a
SDW is understood from the underlying ladder-type dia-
grams diverging as soon as U becomes larger than the
critical value. Below that critical U , the still strong
spin-fluctuations can drive a superconducting instabil-
ity. However, increasing J has a more complex effect
since it affects two different physical processes, which
we discuss in terms of two distinct couplings, Jss and
Jdd in Eq. (1). Jss promotes spin-flip and pair-hopping
processes, thus reducing the tendency to order magnet-
ically while also increasing pair-correlations. Jdd de-
creases inter-orbital density-density interactions, which
reduces the inter-orbital repulsion between electrons on
the same site. We unravel which of the two effects is most
relevant for a) superconductivity and b) the magnetic
transition. This is achieved by varying the two quanti-
ties independently, first in a simple RPA calculation and
then in a full FRG calculation.

For the simple RPA calculation, we calculate χ0
PH at

Λ = 11.6 meV. We chose U = 0.3 eV to circumvent the
Stoner instability and vary Jss and Jdd between 0.0U
and 0.3U independently. The dominant components of
the bare susceptibility are presented in Fig. 6 of App. C.
In general, we observe that varying Jss has barely any ef-
fect on χRPA

PH . Jdd, on the other hand, increases the inter-
orbital components by a significant amount. Therefore
we expect Jss to have a weaker impact on the supercon-
ducting transition. Physically this is expected since Jss

hampers the spin-fluctuations which are required to ob-
tain an effective attraction required by the superconduct-
ing state. To support this claim and understand better
the underlying interference mechanism, we developed a
simple 2-band toy model in App. C.

In the full FRG simulation, we verify these conclu-
sions, i.e. increasing Jss leads to a transition only at
much larger values than the one for Jdd. See Fig. 7 of
App. C. Interestingly, Jss will generate a stronger admix-
ture of higher order angular momentum superconductiv-
ity hosted by the dyz and dxz orbitals. These are however
still sub-leading to the dx2−y2 superconducting state.

Influence of strain. — Finally, we compare our re-
sults with experiments. We do so by examining the effect
of strain from εxx = 0.0% to εxx = 1.3% on the leading
instability of different (U, J) combinations. The general
behavior of Tc is consistent with earlier studies [67, 99],
while the predicted phases partially differ. The different
critical scales Λc can be interpreted as an estimate for
Tc of the instability. The results for all superconducting
data points are summarized in Fig. 4.

For systems that start with a large initial critical scale
at zero strain (Λc(εxx = 0)), no significant enhancement
with respect to strain is found. The enhancement of Tc
is much larger when Λ(εxx = 0) is smaller. This effect
can be understood by looking at the DOS: large energy
scales, or large temperatures, correspond to smeared out
features in the DOS. Thus, the shift of the vHs due to
strain is irrelevant since the vHs is not resolved, i.e. the
DOS at the Fermi level does not change under strain. The
lower Λc, the sharper the vHs will become. Therefore, its
shift enhances the DOS at the FS more strongly which
in turn leads to a larger increase of Tc. Thus, a lower
Λc(εxx = 0) yields an enhancement of Tc with εxx which
is both larger and taking place over a narrower range of
strain. Once the vHs has crossed the Fermi level, Tc is ex-
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FIG. 4. Effect of strain εxx on the critical scale Λc for dif-
ferent values of U and J (upper left) and values of U and J
for each line given in the upper right. DOS in the dxy or-
bital depending on ε (lower left) and theoretically predicted
enhancement of Λc due to uniaxial strain as a function of its
value for εxx = 0 (lower right). Each dotted line in the upper
left plot corresponds to one U − J combination given in the
upper right. There is a clear correlation between Λc(εxx = 0)
and the ratio of increase in Tc which can be seen in both
the upper left and lower right panels. The experimental data
points in the lower right plot are extracted from [102]. A pro-
posed mechanism that explains this enhancement is detailed
in the text.

pected to go down again since we rapidly reduce the DOS
at the Fermi level when straining further. This proposed
explanation leads to a natural experimental prediction:
by studying samples of different purity, one should find
different widths and heights of the enhancement.

To compare our results to experiments, we evaluate
Λc(ε

vHs
xx )/Λc(εxx = 0) and plot it versus Λc(εxx = 0),

hence measuring the increase of the critical scale depend-
ing on the initial one. We extract the corresponding ex-
perimental values from Ref. 102 by calculating the ratio
of the maximal Tc and the Tc at εxx = 0. These results
are summarized in Fig. 4. We observe that the experi-
ments indeed fit to the data predicted by FRG and we can
extract a line of U and J combinations along which the
experiment is reproduced. We find that the values on the
line are around U = 1.1, 1.4 eV and J = 0.143 U, 0.1 U .
Again, we emphasize that these should be considered as
effective values valid within our FRG formalism.

DISCUSSION

In summary, we studied SRO starting from a first-
principles description of its electronic structure and us-
ing a diagrammatically unbiased FRG approach. Using
this framework, we investigated the influence of uniax-
ial strain as well as different contributions of Hund’s
coupling. We identified that the inter-orbital interac-

tion reduction due to the density-density term Jdd is the
main driving force favoring superconducting order, which
we found to be a pseudospin-singlet dx2−y2 . Lastly, we
showed that the experimental increase of Tc as a func-
tion of strain can be recovered on a quantitative level
from FRG simulations and from a comparison to these
experiments we extracted effective values of the interac-
tion parameters.

Our results highlight the dominance of a single dx2−y2
SCOP that transforms like the B1g representation (A1g

under uniaxial strain). We note that, while this SCOP
agrees with many experimental measurements, it can-
not explain the evidence for two-components and time-
reversal symmetry breaking. From the experimentally
observed behavior of the time-reversal symmetry condi-
tion, we can infer that a partner of our found SCOP
is required to remain invariant under moving the vHs
through the Fermi level. This condition would be for
example fulfilled by states with nodal lines along the x
direction or odd-frequency superconductors [62].

An interesting direction for future studies would be to
investigate the effect of interaction terms consistent with
D4h symmetry but breaking full cubic symmetry. This
could potentially influence the competition between dif-
ferent low energy orders [71]. There are also many poten-
tial routes towards a more accurate investigation of the
superconducting state. First, even though SRO is nearly
perfectly layered, including the third spatial dimension
increases the number of allowed ordering types [63]. Sec-
ondly, including frequency dependencies would allow to
gauge the relevance of the proposed odd-frequency state
and, importantly, allow us to begin the FRG flow from a
correlated starting point i.e. from dressed quasi-particles.
This offers an promising way to increase the accuracy of
FRG by starting for example from a DMFT [103] descrip-
tion of the normal state.

METHODS

Density functional Theory. — We use density func-
tional theory [104–106] and the Quantum ESPRESSO
DFT package [107, 108] with the PBE exchange-
correlation functional [109] to calculate the electronic
structure. Cell parameters and internal coordinates of
the crystal structure in the I4/mmm space group are re-
laxed in the conventional cell until all force components
are smaller than 1 mRy/a0 (a0: Bohr radius) and all
components of the stress tensor are smaller than 0.5 kbar,
yielding a relaxed in-plane (out-of-plane) lattice constant
of a0 = 3.878 Å(c = 12.900 Å). To calculate the strained
structures, we fix one in-plane lattice constant of the con-
ventional cell to the strained value, anew = (1 − s)a0,
and relax the two orthogonal cell parameters as well as
the internal coordinates as described above. After re-
laxation, we use the corresponding primitive unit cells
containing one ruthenium atom each, i.e. three t2g or-
bitals. We use scalar-relativistic ultrasoft pseudopoten-
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tials from the GBRV library [110], with the 4s and 4p
(2s) semicore states for both strontium and ruthenium
(for oxygen) atoms included in the valence. The en-
ergy cutoffs for the wave functions and charge density
are set to 60 Ry and 720 Ry, respectively. We use a
12× 12× 12 Monkhorst–Pack k-point grid to sample the
Brillouin zone, and a smearing of 0.01 Ry utilizing the
Methfessel–Paxton scheme. To describe the low-energy
physics we construct three ruthenium-centered t2g-like
maximally localized Wannier functions for each strained
structure using Wannier90 [111–113]. Spin-orbit coupling
is included by first performing the DFT calculation with-
out it and then adding a local SOC λSOC = 200 meV to
account for the correlation-induced enhancement over the
DFT value.

Functional renormalization group. — In order to ac-
count for strong local electronic correlations in this multi-
orbital system, we consider the Hubbard-Kanamori inter-
action Hamiltonian [76]

Ĥint =
∑
il

Un̂↑iln̂
↓
il +

∑
il1 6=l2

(U − 2Jdd)n̂
↑
il1
n̂↓il2

+
∑

iσl1 6=l2
(U − 3Jdd)n̂

σ
il1 n̂

σ
il2 (1)

−
∑
il1 6=l2

Jssĉ
↑,†
il1
ĉ↓il1 ĉ

↓,†
il2
ĉ↑il2 +

∑
il1 6=l2

Jssĉ
↑,†
il1
ĉ↓,†il1 ĉ

↓
il2
ĉ↑il2

where U is the intra-orbital on-site Coulomb repulsion,
while Jdd (Jss) is the density-density (spin-flip and pair
hoping) part of the Hund’s coupling. In the rotationally
invariant formulation where O(3) symmetry is satisfied,
Jdd = Jss.

The strong electronic correlations emerging from the
Hubbard-Kanamori interactions are incorporated to the
non-interacting downfolded systems using the functional
renormalization group (FRG) [64, 114]. FRG is techni-
cally an exact method to calculate the effective action
functional of a given quantum action. It does so by in-
troducing a scale-dependent cutoff (here we use a sharp
energy cutoff) in the non-interacting propagator of the
system. By taking derivatives with respect to this cut-
off, one generates an infinite hierarchy of flow equations.
In practice, this hierarchy must be truncated to become
numerically tractable, making the method pertubatively
motivated.

In this work, we employ the standard level-2 trun-
cation, neglecting all three and more particle vertices.
The validity of this approximation in the weak-to-
intermediate coupling regime can be motivated by a
power-counting argument to prove the RG-irrelevance of
higher order terms [64]. Furthermore, we neglect the fre-
quency dependence of the interaction, again motivated

by the power counting argument, and the self-energy.
This approach was applied to various systems including
SRO [43, 45, 67–69, 77–88] and can be viewed as an di-
agrammatically unbiased extension of the random phase
approximation.

In practice, we solve the flow equations from an en-
ergy scale much larger than the bandwidth and then
integrate towards lower energies until we hit a diver-
gence in one of the three diagrammatic channels labelled
the particle-particle (PP), particle-hole (PH) and crossed
particle-hole (PH) channels. A divergence is associated
to a phase transition as the corresponding susceptibility
also diverges. Information of the ordering type can be
extracted from the susceptibilities as well as linearized
gap equations [115].

We employ the truncated unity approximation which
allows us to reduce the memory required computation-
ally [116–118].

For the FRG simulations, we use the TU2FRG
code [118]. For convergence, we include all form-factors
up to a distance of 8.2 Å, which amounts to a total
number of 75 basis functions per orbital in the unit cell.
We checked for convergence by increasing the number of
form-factors included near the phase transition between
the magnetic and the superconducting phase for a few
data points in the phase diagram. The simulations are
performed on a 36 × 36 momentum-mesh in the x − y
plane for the vertex function. The loop integration is
performed using a FFT approach and an additional re-
finement of 45× 45 is employed to achieve higher energy
resolution. The results of the integration do not differ
upon changing the resolution of the loop integration.

By using an enhanced value of the SOC, the effects
of local interactions on SOC are already included on the
single-particle level of the calculations. We do not suffer
from double counting at that level since we neglect the
flow of the self-energy. As a consequence however, our
calculation does not take into account the renormalized
effective mass of quasi-particles.
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and DMK are supported by the Deutsche Forschungs-
gemeinschaft (DFG, German Research Foundation) un-
der RTG 1995, within the Priority Program SPP 2244
“2DMP” — 443273985 and under Germany’s Excellence
Strategy - Cluster of Excellence Matter and Light for
Quantum Computing (ML4Q) EXC 2004/1 - 390534769.
The Flatiron Institute is a division of the Simons Foun-
dation.

[1] Y. Maeno, H. Hashimoto, K. Yoshida, S. Nishizaki,
T. Fujita, J. G. Bednorz, and F. Lichtenberg, Supercon-

ductivity in a layered perovskite without copper, Nature

https://doi.org/10.1038/372532a0


7

372, 532 (1994).
[2] T. Rice and M. Sigrist, Sr2RuO4: an electronic analogue

of 3He?, Journal of Physics: Condensed Matter 7, L643
(1995).

[3] K. Ishida, H. Mukuda, Y. Kitaoka, K. Asayama, Z. Mao,
Y. Mori, and Y. Maeno, Spin-triplet superconductivity
in Sr2RuO4 identified by 17O knight shift, Nature 396,
658 (1998).

[4] K. Ishida, M. Manago, T. Yamanaka, H. Fukazawa,
Z. Q. Mao, Y. Maeno, and K. Miyake, Spin polarization
enhanced by spin-triplet pairing in Sr2RuO4 probed by
NMR, Phys. Rev. B 92, 100502 (2015).

[5] J. A. Duffy, S. M. Hayden, Y. Maeno, Z. Mao, J. Kulda,
and G. J. McIntyre, Polarized-neutron scattering study
of the cooper-pair moment in Sr2RuO4, Phys. Rev. Lett.
85, 5412 (2000).

[6] M. Braden, Y. Sidis, P. Bourges, P. Pfeuty, J. Kulda,
Z. Mao, and Y. Maeno, Inelastic neutron scattering
study of magnetic excitations in Sr2RuO4, Phys. Rev.
B 66, 064522 (2002).

[7] Y. Liu, K. Nelson, Z. Mao, R. Jin, and Y. Maeno, Tun-
neling and phase-sensitive studies of the pairing sym-
metry in Sr2RuO4, Journal of low temperature physics
131, 1059 (2003).

[8] K. Nelson, Z. Mao, Y. Maeno, and Y. Liu, Odd-
parity superconductivity in Sr2RuO4, Science 306, 1151
(2004).

[9] Y. Liu, Phase-sensitive-measurement determination of
odd-parity, spin-triplet superconductivity in Sr2RuO4,
New Journal of Physics 12, 075001 (2010).

[10] K. Deguchi, Z. Q. Mao, H. Yaguchi, and Y. Maeno, Gap
structure of the spin-triplet superconductor Sr2RuO4

determined from the field-orientation dependence of the
specific heat, Phys. Rev. Lett. 92, 047002 (2004).

[11] C. Lupien, W. A. MacFarlane, C. Proust, L. Taillefer,
Z. Q. Mao, and Y. Maeno, Ultrasound attenuation in
Sr2RuO4: An angle-resolved study of the superconduct-
ing gap function, Phys. Rev. Lett. 86, 5986 (2001).

[12] J. Xia, Y. Maeno, P. T. Beyersdorf, M. M. Fejer,
and A. Kapitulnik, High resolution polar kerr effect
measurements of Sr2RuO4: Evidence for broken time-
reversal symmetry in the superconducting state, Phys.
Rev. Lett. 97, 167002 (2006).

[13] G. M. Luke, Y. Fudamoto, K. Kojima, M. Larkin,
J. Merrin, B. Nachumi, Y. Uemura, Y. Maeno, Z. Mao,
Y. Mori, et al., Time-reversal symmetry-breaking super-
conductivity in Sr2RuO4, Nature 394, 558 (1998).

[14] A. P. Mackenzie and Y. Maeno, The superconductivity
of Sr2RuO4 and the physics of spin-triplet pairing, Rev.
Mod. Phys. 75, 657 (2003).

[15] Y. Maeno, S. Kittaka, T. Nomura, S. Yonezawa,
and K. Ishida, Evaluation of spin-triplet su-
perconductivity in Sr2RuO4, Journal of the
Physical Society of Japan 81, 011009 (2012),
https://doi.org/10.1143/JPSJ.81.011009.

[16] K. Izawa, H. Takahashi, H. Yamaguchi, Y. Matsuda,
M. Suzuki, T. Sasaki, T. Fukase, Y. Yoshida, R. Set-
tai, and Y. Onuki, Superconducting gap structure of
spin-triplet superconductor Sr2RuO4 studied by ther-
mal conductivity, Phys. Rev. Lett. 86, 2653 (2001).

[17] E. Hassinger, P. Bourgeois-Hope, H. Taniguchi,
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and C. Bourbonnais (Springer, 2004) pp. 237–296.

Appendix A: Particle-hole susceptibility

In the main text, we explained how we can extract the
value of effective parameters of the interaction suitable
in FRG, here we found U = 1.1 eV and J = 0.143 U .
With these extracted values, we compute the interacting
particle-hole susceptibility χPH at T = 464 K, shown on a
two-dimensional momentum-grid in Fig. 5. We compare
with χPH obtained by solving the Bethe-Salpeter equa-
tion with a vertex extracted using DMFT [98]. FRG
clearly overestimates the correlations at the X-point and
on the connection line between X and M , similarly to
what is obtained using the random phase approxima-
tion [61, 62]. Beyond that, FRG reproduces roughly the
same shape and structure of the susceptibility as DMFT,
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FIG. 5. Interacting particle-hole susceptibility at Λ = 464 K
obtained with FRG at the extracted experimental interaction
parameters U = 1.1 eV and J = 0.143 U . The color scale is
adapted to the one of Ref. [98]. We again mark the first BZ
as a black square and draw the kz = 0 irreducible path as
dotted lines.

but cannot reproduce its shifting of the peaks [52, 98]. As
discussed in App. D, correcting for this overestimation in
the effective interaction might influence the critical en-
ergy scales, but is not expected to drastically alter the
hierarchy of the different order parameters. Most criti-
cally, we show analytically that the leading SDW peak
observed in experiments [90] will also lead to an attrac-
tive interaction in the singlet channel.

Appendix B: Even- vs odd-parity pairing

Here we show the numerical ratio between the lead-
ing even-parity (the B1g d-wave reported in the main
text) and the leading odd-parity eigenvalues for differ-
ent points in U − J space near the boundary with the
q1-SDW phase in Fig. 2. We find that the even-parity
d-wave state always has a much bigger eigenvalue, sig-
naling its dominance. Note that while there is a clear
separation between these eigenvalues, this does not fully
exclude a competition since the odd-parity solution could
diverge at slightly lower energy scales and yet appear to
have a relatively much smaller eigenvalue. This dominat-
ing behavior of the even-parity state is in contradiction
with earlier SM-FRG studies [43, 45, 69]. A possible
discrepancy between our work and theirs is the starting
non-interacting model. Moreover, one can observe that
although it remains very small, the ratio λp/λdx2−y2 be-

comes slightly larger when approaching the SDW transi-
tion.

While this is a clear separation on the level of the
leading eigenvalues, a clear separation in terms of the
critical energy scale of the two phases is harder to be
extracted, since we flow into a divergence this ratio is
bound to be very small except if the critical scale of two
phases are very close to each other. Thus these results
only indicate that the critical energy scales are separated
at least slightly and grow closer when approaching the
magnetic transition without ever interchanging the or-
der. A stronger argument can be made by looking at how
many other eigenvectors are between the leading d-wave
and the leading odd-parity one. We consistently find,
throughout the phase diagram, at least 20 other even-
parity eigenvectors between them. Thus we can safely
conclude that odd-parity is far from dominant.

Appendix C: Effects of Jdd and Jss

In the following, we analyze analytically the effects of
Jss and Jdd in a simplified SU(2) symmetric two-orbital
model. The non-interacting model is assumed to be given
by

Ĥ =
∑
l

∑
ij

tij(c
†
liclj + c†ljcli) (C1)

where l is an orbital and i, j are sites. We first examine
the magnetic channel susceptibility which is given in the
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FIG. 6. Effects of Jdd and Jss on the interacting Suszeptibility
obtained from RPA at U = 0.3 and Λ = 1meV.

FIG. 7. Effects of Jdd and Jss on the FRG flow results. We ob-
serve that Jdd drives the transition to an ordered state quicker
than Jss indicating that for the underlying interaction mech-
anism it is beneficial to have smaller inter-orbital coupling.

two-particle basis |l1〉⊗ |l2〉. The components of the bare
particle-hole susceptibility are given by

[χ0
PH(Q)]l1l2l3l4KK′ ∝ Gl1l3K+QG

l4l2
K δKK′ (C2)

where G is the one-particle Green’s function and K, K ′

and Q are four-momenta [62, 120]. From this expression,
we find that the bare particle-hole susceptibility is diag-
onal in orbital space. Presuming the two orbitals to be
degenerate, we write

χ0
PH =

 χ1 0 0 0
0 χ2 0 0
0 0 χ2 0
0 0 0 χ1

 . (C3)

In RPA, the vertex is the anti-symmetric static and
local Coulomb tensor. We spin-diagonalize it and take
the magnetic channel, which generates spin-fluctuations.
We have

Γ =

 U 0 0 Jph
0 U − 2Jdd Jsf 0
0 Jsf U − 2Jdd 0
Jph 0 0 U

 , (C4)

where the pair-hopping and spin-flip terms are charac-
terized by Jph and Jsf respectively. Consequently, the
eigenvalues of Γχ0

PH are

λ = χ1(U ± Jph), χ2(U − 2Jdd ± Jsf ) (C5)

with eigenvectors 1
0
0
±1

 and

 0
1
±1
0

 . (C6)

In other words, a pair on l1 can constructively or de-
structively interfere with a pair on l2 via Jph, which en-
hances the intra-orbital components of the susceptibility.
On the other hand, Jsf enhances the inter-orbital com-
ponents. On the other hand, Jdd acts in the same way as
spin flips, affecting only the inter-orbital components of
the interacting susceptibility. However it has twice the
magnitude. Which terms play what role also crucially
depends on the signs of χ1 and χ2;

The corresponding numerical experiments are visual-
ized in Fig. 6. They quantify the effects of the two dif-
ferent couplings and help to gauge their importance for
the phase diagram.

Appendix D: Driving fluctuations analysis

Here, we want to construct a more in depth under-
standing of which spin-fluctuations are responsible for
which pairing instabilities. To this end, we focus on
the dxy orbital again assuming SU(2) symmetry. There-
fore we restrict the analysis to the spin-singlet sector.
The spin-triplet can be obtained by employing the cross-
ing relations. Furthermore, we assume an attractive in-
teraction obtained from RPA like spin-fluctuation C(q),
i.e. without fermionic momentum dependencies. The
starting point for this discussion is the linearized gap
equation, which can be rewritten as

λ∆o1,o2(k) = ΓPo1,o2;o′3,o′4(q = 0, k, k′)

× χo′3,o′4;o3,o4(k′)∆o3,o4(k′) (D1)

where summation over repeated indices is implicit. We
arrive to a simpler picture by transforming this equation
to real-space, introducing the lattice vectors b. We write

∆o1,o2(b) = e−ik·b∆o1,o2(k), (D2)
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which leads us to

λ∆o1,o2(b) = ΓPo1,o2;o′3,o′4(b, b′)

× χo′3,o′4;o3,o4(b′, b′′)∆o3,o4(b′′). (D3)

Now, we are mainly interested in nearest neighbor su-
perconductivity, thus restricting the allowed b to near-

est neighbor form-factors. The two central quanti-
ties in the linearized gap equation are the particle-
particle loop χo′3,o′4;o3,o4(b′, b′′) and the P-channel vertex

ΓPo1,o2;o′3,o′4
(b, b′), which in the following we construct for a

specific choice of a symmetrized basis for the dx2−y2 and
the extended s-wave SCOPs for a purely spin-fluctuation
interaction C(qC = k + k′ − qP ). For this we introduce
the symmetrized form-factors denoted by fb(k):

ΓP (qP = 0, b, b) =
1

4

∫
dk dk′ dr (cos(kx)± cos(ky))(cos(k′x)± cos(k′y))eir(k+k

′)C(r)

=
1

4
[C(rx = 1, ry = 0) + C(rx = −1, ry = 0) + C(rx = 0, ry = 1) + C(rx = 0, ry = −1)] . (D4)

From this we observe immediately two things: First, a
pure spin-spin interaction does not differentiate between
extended s-wave or dx2−y2 (or px and py). It merely gives
a numerical prefactor to be put into the gap equation.
Secondly, that prefactor is just dependent on the value
of C(r) for r on the nearest neighbors; i.e. as long as the
Fourier transform of C is attractive on the nearest neigh-
bor, we generate even superconductivity whose symme-
try is determined by the particle-particle loops fermionic
argument only.

C(r) =

∫
dq eiqrC(q) (D5)

For now, lets assume that C(q) (again we focus on

the dxy orbital) is consisting of δ-peaks at q2 or q1/q3
with unit weight. This allows us to calculate the Fourier
transformation C(r) analytically. We focus on C(rx =
1, ry = 0), since all other terms can be understood via
symmetries. We find C(rx = 1, ry = 0; q2) = −1 and

C(rx = 1, ry = 0; q1) = ei2π/3, meaning that P (q2) = −1
and P (q1) = −0.5. Thus the overestimation of correla-
tions at X amplifies tendency towards superconductivity,
but not towards one specific type. In more general terms,
any transfer momentum of the form qi = (q, q) will gen-
erate attraction in the even channel as long as rqi > π/2.
Below this threshold, the Fourier transformation of C(q)
will become positive and thus generate attractive interac-
tions in the odd-channel. Thus also the predicted leading
momentum transfer found in DMFT should generate at-
traction for a singlet state.
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