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SUMMARY

Genetics have nominated many schizophrenia risk genes and identified conver-
gent signals between schizophrenia and neurodevelopmental disorders. How-
ever, functional interpretation of the nominated genes in the relevant brain cell
types is often lacking. We executed interaction proteomics for six schizophrenia
risk genes that have also been implicated in neurodevelopment in human induced
cortical neurons. The resulting protein network is enriched for common variant
risk of schizophrenia in Europeans and East Asians, is down-regulated in layer
5/6 cortical neurons of individuals affected by schizophrenia, and can comple-
ment fine-mapping and eQTL data to prioritize additional genes in GWAS loci.
A sub-network centered on HCN1 is enriched for common variant risk and con-
tains proteins (HCN4 and AKAP11) enriched for rare protein-truncating muta-
tions in individuals with schizophrenia and bipolar disorder. Our findings show-
case brain cell-type-specific interactomes as an organizing framework to
facilitate interpretation of genetic and transcriptomic data in schizophrenia and
its related disorders.
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INTRODUCTION

Schizophrenia is a debilitating psychiatric disorder occurring in�0.3% of the global population with severe

repercussions for patients, families, and society.1,2 The last years have seen great advances in mapping the

genetic architecture of schizophrenia, identifying hundreds of common and rare variants that confer risk for

the disorder across diverse populations.3–10 These studies also revealed overlapping genetic signals be-

tween schizophrenia, autism spectrum disorders (ASD), and severe developmental disorders (DD), sup-

porting the importance of neurodevelopmental processes in the pathophysiology of schizophrenia.9–11

However, although the identified schizophrenia risk genes provide a good entry point for systematic

studies of the disorder and its related conditions, their molecular functions and interactions in the brain

remain poorly understood, hindering the development of effective treatments and therapeutics.12,13

In parallel, analyses of postmortem brains from individuals with schizophrenia and integration of genetic

and transcriptomic data from human and mouse brains have converged on cortical excitatory neurons

as a key biological conduit of genetically encoded risk.14–17 This suggests that systematic mapping of

schizophrenia risk genes onto protein-protein interaction (PPI) networks in this cell type could reveal mech-

anisms and pathways underlying schizophrenia.18,19 A seminal study showed that adding extrinsic neuronal

patterning to pluripotent stem cells (PSCs) overexpressing NGN2 generates glutamatergic induced neu-

rons (iNs) that behave like cortical excitatory neurons at the molecular, morphological, and functional

levels.20,21 Here, we leveraged this protocol to perform interaction proteomics for six schizophrenia risk

genes that have also been implicated in neurodevelopment in a neuronal cell model. By integrating the

resulting PPI networks with orthogonal datasets, we showed that our approach creates a unique
iScience 26, 106701, May 19, 2023 ª 2023 The Authors.
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opportunity to investigate the roles of schizophrenia risk genes and their associated pathways in a brain

cell-type-specific context.

RESULTS

Prioritization of schizophrenia index genes with shared neurodevelopmental signals

To identify schizophrenia risk genes as the basis of our interactome experiments we designed and

executed a three-step procedure (Figure 1A and Table S1). First, we identified 445 genes (Set 1) in previ-

ously reported genome-wide significant loci from the Psychiatric Genomics Consortium (PGC) genome-

wide association study3 (GWAS; phase 2). Second, we filtered this set to 37 genes (Set 2) within single

protein-coding gene loci, excluding other genes in loci with more ambiguous association signals. Third,

we integrated data from orthogonal studies (e.g., high-density genotyping, exome sequencing, and earlier

targeted studies of individual genes; STAR Methods and Table S1) to identify a subset of 10 genes (Set 3)

supported by multiple independent lines of evidence. Importantly, we used orthogonal evidence from rare

variant studies of ASD/DD to prioritize schizophrenia risk genes that have also been implicated in neuro-

developmental conditions. We additionally included SYNGAP1 in the major histocompatibility complex

(MHC) region in all three sets because of strong orthogonal evidence for its involvement in schizophrenia

and neurodevelopmental disorders.

Genes implicated in schizophrenia are under strong genetic selection and have elevated expression in the

frontal cortex.9 Therefore, to assess the enrichment of schizophrenia risk genes in Sets 1–3, we compared their

gnomAD22 pLI scores (i.e., the probability of being loss-of-function intolerant, where genes under strong

selection have higher pLI scores) and BrainSpan23 expression to schizophrenia risk genes from the recent

Schizophrenia Exome Sequencing Meta-Analysis (SCHEMA) study.9 In terms of pLI scores, Sets 1–3 all have

increasingly higher scores compared to other genes in the genome (one-tailed KS test p = 1.1e-3, 1.7e-3,

and 1.3e-5 for Sets 1–3, respectively; Figure 1B and Table S2). Set 3 scores are significantly higher than that

of Set 2 (one-tailed KS test p = 5.8e-4), which in turn are higher than that of Set 1 (one-tailed KS test

p = 0.019). Furthermore, Set 3 is under the same degree of constraint as the exome-wide significant

(FDR < 3.7e-3) SCHEMA genes (two-tailed KS test p = 0.23). In terms of gene expression, Set 1 mirrors the

expression profile of random genes during frontal cortical development up until adulthood; Set 2 has a post-

natal expression profile that resembles SCHEMAgeneswith FDR of 0.25–0.5; and Set 3 has a postnatal expres-

sion profile that strongly mirrors the exome-wide significant SCHEMA genes (Figure 1C and Table S3).

Although the lower prenatal expression of Set 3 compared to the SCHEMA genes may be reflecting different

aspects of schizophrenia-related biology captured by common versus rare variants, respectively (Data S4), the

pLI scores and postnatal expression patterns generally support our three-step approach to gene selection

based on refining GWAS data and indicate that Set 3 is enriched for bona fide schizophrenia risk genes.

We proceeded to use Set 3 as the starting point of our experiments and refer to these 11 genes and their en-

coded proteins as ‘index genes’ and ‘index proteins’, respectively.

Interaction proteomics of schizophrenia index proteins in excitatory iNs

To study the expression patterns of the index proteins throughout iN maturation, we tested 58 commer-

cially available antibodies and identified 31 with competency to detect the 11 index proteins (Table S4).

We differentiated iPSCs into neural progenitor cells (NPCs; day 3) and iNs (weeks 2–7) and confirmed pro-

tein expression of CACNA1C, CACNB2, CSMD1, CUL3, GRIN2A, HCN1, RIMS1, SYNGAP1, and TCF4 in

neuron lysates by western blot (Figures 1D and S1). SATB2 and ZNF804A lacked detectable neuronal

expression or high-quality reagents and were excluded from further experiments. When comparing index

protein expression between iNs, non-neuronal cells, and mouse cortex, CACNA1C, CSMD1, GRIN2A,

HCN1, RIMS1, and SYNGAP1 displayed a neuron-specific expression profile.

Next, we tested 42 antibodies for their ability to immunoprecipitate (IP) the index proteins (Table S4) and were

able to IP seven index proteins (CACNA1C, CACNB2, CUL3, HCN1, RIMS1, SYNGAP1, TCF4) in�seven billion

iNs for subsequent mass spectrometry (MS) analyses. In total, we carried out 23 IP-MS experiments at five

neuronal differentiation time points. We performed quality control (QC) and analyzed each experiment using

Genoppi,24 calculating the log2 fold change (FC) and corresponding statistical significance for each protein

identified in the index protein IPs compared to the controls, and then defining proteins with log2 FC > 0

and FDR % 0.1 as the significant interactors of the index protein. We disregarded four IP experiments that

did not meet our QC criteria (i.e., the log2 FC correlation between replicates was < 0.5 or the index protein

itself was not enriched at FDR % 0.1). The remaining 19 high-quality IPs of CACNA1C, CUL3, HCN1,
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Figure 1. Selection of schizophrenia index genes and proteins for interactome experiments

(A) Three-step procedure to identify Sets 1–3 by refining schizophrenia GWAS [PGC phase 2] data, where Set 3 was defined as ‘index genes’ and used as the

basis for downstream experiments. Set 3 genes are color-coded based on the type of orthogonal evidence supporting their involvement in neuropsychiatric

or neurodevelopmental phenotypes.

(B) Cumulative density of gnomAD pLI scores for different gene sets. ‘Genome’ indicates genes in the pLI dataset [excluding Sets 1–3]; ‘Sets 1–3’ indicate

genes in Sets 1–3 with available pLI scores; ‘SCHEMA 5% FDR’ and ‘SCHEMA EWS’ indicate genes with FDR < 0.05 or 3.7e-3 [exome-wide significance] in the

SCHEMA exome sequencing analysis, respectively.

(C) Frontal cortex RNA expression of gene sets across ten developmental stages. Median expression and standard error [SE] of each gene set were derived

from the BrainSpan exon microarray dataset. ‘Random’ indicates genes randomly sampled from the BrainSpan dataset; ‘Sets 1–3’ indicate genes in Sets 1–3

with available BrainSpan data; ‘SCHEMA’ indicates exome-wide significant genes from SCHEMA. Shaded regions indicate median expression of genes with

FDR < 3.7e-3 [exome-wide significance], 0.05, 0.25, or 0.5 in SCHEMA with darker gray indicating greater significance.

(D) Western blot analysis of index proteins in iPSCs, NPCs [at day 3 of differentiation], iNs [at weeks 2–7 of differentiation], three cancer cell lines [TF-1, K562,

U937], HEK293 cells, and mouse cortex. SATB2 and ZNF804A are excluded from this panel due to lack of detectable expression in iNs. See also Figure S1,

Data S4, and Tables S1, S2, S3, and S4.
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RIMS1, SYNGAP1, and TCF4 had a median replicate log2 FC correlation of 0.87, with the six index proteins

enriched at a median FDR of 8.2e-4 (Figures 2A, 2B, S2A, S2B; Tables S5 and S6). In addition, we performed

experimental and computational analyses to confirm that, despite using an inclusive FC cutoff (i.e., log2 FC> 0)

to define index protein interactors in the IPs, the interactors showed no obvious quality differences across a

range of different FCs (Data S5).
iScience 26, 106701, May 19, 2023 3
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Figure 2. Cell-type-specific protein interactomes in cortical human neurons

(A) Scatter plot showing log2 FC correlation between replicate 1 [x-axis] and replicate 2 [y-axis] of an IP of CACNA1C at

week 3 of neuron differentiation [Pearson’s r = 0.74].

(B) Volcano plot showing log2 FC [x-axis] and -log10 p-value [y-axis] of the CACNA1C IP from (A). For (A) and (B), the index

protein [CACNA1C] is shown in red, significant interactors [log2 FC > 0 and FDR% 0.1] in green, and non-interactors [i.e.,

other detected proteins] in blue. Known InWeb interactors are indicated by black border circles, with the subset that are

significant in the IP highlighted in yellow [overlap p = 1.8e-2]. Calcium channel components [alpha, beta, and alpha2delta

subunits] are in orange.

(C) Replication rates of a subset of interactions tested in forward or reverse IPs followed by western blotting [IP-WB].

(D) Pairwise co-expression Z-scores between index genes and their interactors [Int], non-interactors [NonInt], known

InWeb interactors [InWeb], and all protein-coding genes [All] derived from a spatial transcriptomic dataset in human

dorsolateral prefrontal cortex. Boxes and whiskers in violin plots indicate the interquartile range [IQR] and 1.5x IQR,

respectively. Double asterisks indicate p < 0.05/6 [adjusting for six pairwise comparisons] as calculated by two-tailed

Wilcoxon rank-sum tests. Number of gene pairs plotted for each gene type is indicated toward the bottom.

(E) The combined interaction network of six index proteins resulting from 19 individual IPs. Index proteins and their

interactors are indicated as red and purple nodes, respectively. Size and color of the interactor nodes scale with the
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Figure 2. Continued

number of index proteins linked to each interactor, with larger and darker nodes representing more recurrent

interactors [distribution shown in upper right pie chart]. Edges represent protein interactions with colors indicating

whether each interaction is known in InWeb [blue] or potentially novel [gray; distribution shown in lower right pie

chart]. See also Figures S2 and S7, Data S5 and S6, and Tables S4, S5, S6, S7, S8, S9, and S10.
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The PPI data contain newly reported and reproducible interactions

Importantly, our experimental design was purposely aimed at generating inclusive PPI datasets that

encompass non-stoichiometric interactions, rather than restricting to direct interactions and core molecu-

lar complexes (Data S6). In previous work, we have established that the replication rate of interactions iden-

tified using a similar IP-MS approach is 70–90%.24 In the current study, we were able to recapitulate these

estimates using a two-pronged approach (Figures 2C and S3–S5, and Table S7). First, we performed west-

ern blots of 45 interactors for the six index proteins on repetition of the index protein IPs and validated 40 of

the interactors (88.9% replication rate). In parallel, we performed reverse IPs using a panel of interactors as

baits, and successfully detected the original index proteins in 23 out of 25 reverse IPs that showed bait

enrichment (92.0% replication rate). The �90% replication rates are in general agreement with the 10%

FDR cutoff we applied to identify significant interactions.

Besides replicating a subset of the index protein interactors, we also used published datasets to assess the

biological validity of our IP-MS data. First, ten of the 19 IPs are further supported by the observation that

they are enriched for known protein interactors derived from the InWeb database25 (Table S5). As an

example, in a CACNA1C IP performed in iNs at week 3 of differentiation, the significant interactors are en-

riched for known CACNA1C interactors in InWeb (p = 1.8e-2), including all known L-type calcium channel

subunits: the extracellular CACNA2D1 and the intracellular CACNB1 and CACNB326 (Figures 2A and 2B).

On the other hand, >94% of the interactors are not found in InWeb nor in an IP of CACNA1C executed in

mouse heart tissue with the same antibody.27 This example illustrates that our neuron-derived PPI data

capture both known and novel biology as expected, given that existing PPI datasets weremostly generated

in non-neuronal context using different experimental methods (Data S6).

We also used brain co-expression data to systematically benchmark all index protein interactors in our

data, reasoning that on average, transcripts of interacting proteins would be more likely to co-localize

across tissues, cell types, and developmental time points (STAR Methods). Indeed, we observed that the

interactors usually have higher co-expression with the index proteins compared to the ‘non-interactors’

(i.e., non-significant proteins detected in IP-MS), known interactors in InWeb, and all protein-coding genes

in a spatial transcriptomic dataset derived from human dorsolateral prefrontal cortex28 (Figure 2D). Similar

trends were also observed in other expression datasets from human or mouse brains29,30 (Figure S2C). This

not only indicates that the interactions we identified in in vitro neurons represent biology found in complex

brain tissues, but further suggests that they may be more enriched for gene relationships in the brain

compared to proteins generally expressed in neurons (represented by the non-interactors) or interactions

found in non-neuronal context (represented by the InWeb interactors). In summary, the experimental

replications, InWeb overlap, and brain co-expression results all support the quality, reproducibility, and

biological relevance of the interactome data we have generated for the schizophrenia index proteins in hu-

man iNs.
The combined PPI networks for six schizophrenia index proteins

When we compared multiple IPs of the same index protein across time points during neuronal maturation

and between cell lines (for CACNA1C, HCN1, and SYNGAP1), we observed significant agreement in terms

of the log2 FC correlation of all detected proteins (median correlation = 0.75; Figures S6A and S6C–S6E).

When we clustered the IPs based on the percentage of overlap between significant interactors, we found

that IPs from the earlier versus the later time points tend to fall into separate clusters, agreeing with known

characteristics of maturing neurons generated using the NGN2-based protocol21 (Figures S6B and S6D–

S6F and Table S8). However, we also observed relatively high percentages of overlap that are statistically

significant across all time points (median percentage = 72%). Overall, these results indicate that our IPs

from different time points capture a large proportion of overlapping biology, which is not unexpected

given that differentiating iPSCs start to express neuronal markers soon after forcing NGN2 overexpression.

Based on these observations, we decided to explore the combined PPI network of each index protein

across time points in downstream analyses.
iScience 26, 106701, May 19, 2023 5
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We merged data from the 19 individual IPs to create nine additional consolidated datasets (Table S9).

These datasets represent the combined PPI network of a single index protein across multiple experiments

or time points (i.e., CACNA1C, HCN1, RIMS1, and SYNGAP1), the combined network of multiple index pro-

teins at one time point (i.e., week 2, 3, 4, and 7), and the combined network of all six index proteins across all

time points (i.e., ‘all combined’). The all combined network contains 1,238 interactors of the six index pro-

teins and, like the CACNA1C IP highlighted above, >96% of the interactions in this network are potentially

novel interactions not found in InWeb (Figure 2E and Table S5). Genes encoding these interactors have

relatively high expression in the frontal cortex throughout brain development similar to schizophrenia

risk genes reaching 5% FDR in SCHEMA (Figure S7A, Table S3, and Data S4). SynGO31 gene set analysis

also found the network to be enriched for genes involved in various biological processes in the synapse

(Figure S7B and Table S10). Overall, we successfully mapped the neuronal protein interactomes of six pro-

teins that are transmembrane (CACNA1C, HCN1), cytosolic (CUL3, SYNGAP1), and involved in multiple

neuronal signaling processes (RIMS1, SYNGAP1, TCF4). The resulting PPI networks include a high percent-

age of newly reported interactions and span many areas of the cell biology of cortical excitatory neurons.
The PPI networks are enriched for genetic risks of schizophrenia, ASD, and DD

To test the networks for association to schizophrenia, we assessed the enrichment of common variant risk

across the networks using PGCGWAS data containing schizophrenia cases and controls of European (EUR)

or East Asian (EAS) ancestry.3,8 For these and all further network enrichment analyses, we created a more

conservative version of the combined networks by excluding proteins that showed up as non-interactors in

any of the source IPs (see ‘stringent interactors’ in Table S9). In total, we performed genetic analyses for 11

interaction networks, including the nine combined networks and two individual IP networks for CUL3 and

TCF4. Importantly, our analyses were conditional on the non-interactors detected in our IP experiments,

meaning that we tested whether interactors in the different networks are enriched for genetic risk

compared to other iN-expressed proteins. If so, this would suggest that our networks are relevant to schizo-

phrenia over and above the background proteome of the neuronal cell model.

Using MAGMA,32 we found that many of the PPI networks are indeed enriched for schizophrenia risk when

conditioned on other iN-expressed proteins. Notably, the enrichment is generally consistent across EUR

and EAS ancestries (Figure 3A and Table S11). At a Bonferroni-corrected threshold (p < 0.05/22, adjusting

for 11 networks and two ancestries), the week 4 network in both EUR and EAS ancestries, as well as the all

combined, week 2, week 7, and HCN1 networks in EAS showed significant enrichment. In the cross-ancestry

meta-analysis, the all combined, week 2, week 4, week 7, and HCN1 networks were all significant at the

same Bonferroni-corrected threshold. In parallel, we further validated these findings using a genetic risk

score (GRS) enrichment analysis method that estimates the genetic risk on holdout samples not included

in GWAS and therefore is less sensitive to outliers (STAR Methods). Most results were replicated, including

the enrichment signals for the all combined, week 4, and HCN1 networks in both ancestries and their meta-

analysis (Figure S8B and Table S11).

To further explore whether the genetic risk enrichment we observed in the PPI networks is specific to

schizophrenia, we repeated the same analyses using GWAS data of other psychiatric disorders, including

attention deficit hyperactivity disorder33 (ADHD), ASD,34 bipolar disorder35 (BIP), andmajor depressive dis-

order36 (MDD), as well as height37,38 as a control trait (Figures 3A, 3B, S8A, and S8B, and Table S11). Across

these phenotypes, we only observed robust enrichment for ASD in the CUL3 network and the week 7

network which contains IP data of CUL3 and SYNGAP1, both of which have been previously linked to

ASD.39,40 The networks that showed the most robust enrichment for schizophrenia (i.e., the all combined,

week 4, and HCN1 networks) did not demonstrate enrichment for the other phenotypes.

Besides analyzing data from common variants, we also tested whether the PPI networks are enriched for

rare variant risks of schizophrenia,9 ASD,40 and DD,41 as well as for high gnomAD pLI scores (Figure S8C

and Table S11). At a Bonferroni-corrected threshold (p < 0.05/11, adjusting for 11 networks), we found

the CUL3 network to be enriched for DD genes, which agrees with the previously implicated role of

CUL3 in developmental delay.39,42 In addition, the week 4 and RIMS1 networks are significantly enriched

for genes with high pLI scores, indicating that some members of these networks are likely intolerant to

loss-of-function mutations and may be involved in essential cell functions.
6 iScience 26, 106701, May 19, 2023
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Figure 3. Enrichment of common variant risks and transcriptional perturbations in the index protein interactomes

Networks tested are the combined network of all IPs [All combined], the combined networks at each time point [Week 2 to Week 7], the combined networks

for CACNA1C, HCN1, RIMS1, and SYNGAP1, and the individual IP networks for CUL3 and TCF4; the number of genes in each network is shown in

parentheses on the y-axes.

(A) Common variant enrichment of schizophrenia [SCZ] or height in Europeans [EUR], East Asians [EAS], or their meta-analysis. Enrichment coefficients,

standard errors [SE], and p-values were calculated using MAGMA. p < 0.05 or p < 0.05/22 [adjusting for 11 networks and two ancestries] results are

highlighted in orange or red, respectively.

(B) Common variant enrichment of SCZ, attention deficit hyperactivity disorder [ADHD], autism spectrum disorders [ASD], bipolar disorder [BIP], or major

depressive disorder [MDD] calculated using MAGMA. Cross-ancestry meta-analysis results are shown for SCZ; EUR ancestry results are shown for other

disorders. Enrichment coefficients reaching p < 0.05 or p < 0.05/22 significance are shown in the heatmap followed by single or double asterisks,

respectively.

(C) Enrichment of cell-type-specific differentially expressed genes [DEGs] in the prefrontal cortex of schizophrenia patients compared to controls; the

number of DEGs in each cell type is shown in parentheses on the x-axis. p-values were calculated using one-tailed hypergeometric tests. Gene counts in

overlaps reaching p < 0.05 or p < 0.05/220 [adjusting for 11 networks and 20 cell types] significance are shown in the heatmap followed by single or double

asterisks, respectively. See also Figures S8 and S9, Tables S11 and S12.
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Overall, these genetic analysis results indicate that most of the PPI network genes are specifically concen-

trating common variant risk of schizophrenia, whereas several sub-networks are also enriched for common

or rare variant risks of ASD/DD, highlighting the shared biology between these disorders.

The PPI networks implicate layer 5/6 cortical excitatory neurons in schizophrenia

Next, we explored whether the PPI networks are enriched for brain-layer-specific transcriptional perturba-

tions observed in patients with schizophrenia. We analyzed data from a recent single-cell RNA sequencing

study,17which identified differentially expressed genes (DEGs) in individuals with schizophrenia versus con-

trols in 20 annotated cell types in the prefrontal cortex. Many of our networks had nominally significant (p <

0.05) overlaps with the cell-type-specific DEGs in neuronal cell types, which include both upper and deep

layer excitatory neurons and inhibitory interneurons (Figure 3C and Table S12). A population of layer 5/6

cortico-cortical projection neurons (‘Ex-L5-6CCb’) showed the most robust enrichment, reaching Bonfer-

roni significance (p < 0.05/220, adjusting for 11 networks and 20 cell types) for the all combined, week 4,

and week 7 networks. Subsequently, we separately analyzed the up- and down-regulated DEGs in this cell-

type, showing that the enrichment signals are strongly driven by the down-regulated DEGs (Figure S9 and

Table S12). As DEGs in ‘Ex-L5-6CCb’ were also found to be enriched for genes implicated by schizophrenia

GWAS,10 there is an intriguing convergence between our results and findings in patients that converge on

deep layer cortical excitatory neurons as a key cell type for studying cellular networks involved in

schizophrenia.

The PPI data complement orthogonal approaches to prioritize risk genes from GWAS loci

Functionally interpreting GWAS data to identify causal genes based on genome-wide significant SNPs is a

major challenge in the field of genetics. Because our analyses indicate that the combined PPI network of all

IPs is genetically and transcriptionally relevant in schizophrenia, we used the network to prioritize addi-

tional schizophrenia risk genes in GWAS loci. We created a ‘social Manhattan plot’ by integrating our

PPI data with themost recent PGC schizophrenia GWAS10 (phase 3), highlighting observed interactions be-

tween the index proteins and other proteins (locus proteins, hereafter) encoded by genes in the 287

genome-wide significant loci (Figure 4A and Table S13). In total, we identified 123 locus proteins in 74

loci that are linked to R1 index protein in the social Manhattan plot. We further intersected these locus

proteins with those prioritized by fine-mapping (FINEMAP) or eQTL co-localization (summary-based Men-

delian randomization, SMR) analysis, pinpointing nine proteins that were also prioritized by FINEMAP

(ACTR1B, EPN2, GABBR2, KIAA1549, MSI2, NEGR1, NLGN4X, PDE4B, PTPRD) and three proteins that

were also prioritized by SMR (PCDHA2, PCDHA8, SF3B1). In addition, our network was able to nominate

candidate genes in 44 distinct loci that lack prioritization results from FINEMAP or SMR analysis.

To further compare our network prioritization approach to FINEMAP or SMR, we looked at the pLI score

distributions and BrainSpan expression profiles of several gene sets, including all genes in the GWAS

loci (PGC3), genes prioritized by our network (Network), FINEMAP, or SMR, and genes prioritized by

both our network and either FINEMAP or SMR (Overlap). The Network and FINEMAP genes both have

significantly higher pLI scores compared to all PGC3 genes (one-tailed KS test p = 7.9e-6 and 2.0e-4,

respectively) and genes in the same loci as the prioritized genes (one-tailed KS test p = 1.4e-6 and

1.1e-4, respectively; Figure 4B and Table S2). In contrast, the SMR genes did not show such enrichment.

The Overlap genes have even higher pLI scores that are comparable to the SCHEMA genes with FDR <

0.05 (two-tailed KS test p = 0.36), although the differences between the Overlap genes and other genes

in the Network, FINEMAP, or SMR supersets are not statistically significant. When looking at gene expres-

sion throughout frontal cortical development, the Network, FINEMAP, SMR, and Overlap genes all have

elevated expression compared to all PGC3 genes. In particular, the Network and Overlap genes have

higher expression than the FINEMAP and SMR genes; their postnatal expression profiles are close to

that of the high-confidence SCHEMA genes (Figure 4C and Table S3).

We also compared the Network genes to other PGC3 genes encoding iN-expressed proteins (i.e., non-in-

teractors in Table S9) and observed that these two gene sets have comparable pLI scores and BrainSpan

expression (Tables S2 and S3). These results indicate that the proteome of cultured neurons may contribute

to the pLI score and expression enrichment we observed for the Network genes. However, by first showing

that our PPI network is significantly enriched for schizophrenia genetic risk and transcriptional perturba-

tions compared to the non-interactors, and then showing that the network genes in GWAS loci have higher

pLI scores and frontal cortical expression throughout development compared to other genes in the loci, we
8 iScience 26, 106701, May 19, 2023
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Figure 4. Prioritizing genes in schizophrenia GWAS loci using brain cell-type-specific interactome data

(A) Social Manhattan plot of genes encoding the index proteins [red] and their interactors [purple] in genome-wide significant loci in PGC schizophrenia

GWAS [phase 3]. Size of the interactor nodes and their labels scale with the number of index genes linked to each interactor; those that were also prioritized

by FINEMAP or SMR analysis are highlighted in magenta. Gray lines indicate observed protein-protein interactions in our data; interactions that have been

replicated by IP-WB are highlighted in blue.

(B) Cumulative density of gnomAD pLI scores for different gene sets. ‘Genome’ indicates genes in the pLI dataset [excluding PGC3 genes]; ‘PGC3’ indicates

genes in PGC GWAS [phase 3] loci; ‘FINEMAP’, ‘SMR’, and ‘Network’ indicate PGC3 genes prioritized by FINEMAP, SMR, or our interactome data,

respectively; ‘Overlap’ indicates genes overlapping between Network and FINEMAP or SMR; ‘SCHEMA 5% FDR’ and ‘SCHEMA EWS’ indicate genes with

FDR < 0.05 or 3.7e-3 [exome-wide significance] in SCHEMA, respectively.

(C) Frontal cortex RNA expression of gene sets across ten developmental stages. Median expression and standard error [SE] of each gene set were derived from the

BrainSpan exon microarray dataset. ‘Random’ indicates genes randomly sampled from the BrainSpan dataset; ‘PGC3’, ‘FINEMAP’, ‘SMR’, ‘Network’, and ‘Overlap’

indicate gene sets as described in (B); ‘SCHEMA’ indicates exome-wide significant genes from SCHEMA. Shaded regions indicate median expression of genes with

FDR < 3.7e-3 [exome-wide significance], 0.05, 0.25, or 0.5 in SCHEMA with darker gray indicating greater significance.

(D) Western blot analysis on independent IPs of index proteins [named on the top] to detect the presence of selected locus proteins [named on the side of

each gel]. Green and red circles at the bottom represented whether the tested interaction was significant or non-significant by IP-MS, respectively. Each lane

represents 10% of the IP material analyzed by IP-MS. L = ladder. Molecular weights are in KDa. See also Figure S10 and Table S13.
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demonstrate how our interactome data can complement orthogonal methods such as fine-mapping and

eQTL co-localization analyses to nominate schizophrenia risk genes from GWAS data.

Finally, to illustrate that many of the locus proteins we prioritized could be reproducible interactors of the

index proteins, we repeated the index protein IPs and performed western blotting to detect selected in-

teractors; or vice versa, we executed reverse IPs for the interactors followed by western blotting to detect

the index proteins. In total, we replicated 25 interactions for 18 unique locus proteins using forward or

reverse IPs, including eight proteins that were also prioritized by FINEMAP or SMR, as well as an interaction

between two of the index proteins, HCN1 and SYNGAP1 (Figures 4A, S3, and S5, and Table S7). We also

performed western blots for several locus proteins on all six index protein IPs in parallel, showing that their

detection patterns agree with their significant interactions with distinct index proteins in IP-MS (Figures 4D

and S10). These results support the reproducibility of the PPI data and the observed convergence between

the index protein interactomes. Follow-up investigation on the prioritized locus proteins can be informative

for determining whether their corresponding genes are true schizophrenia risk genes responsible for the

genetic signals observed in GWAS.
DISCUSSION

We brought together advances in genetics, neuronal cell modeling, interaction proteomics, and integra-

tive analytical approaches to study cell-type-specific pathway relationships of schizophrenia risk genes in

human excitatory neurons. Although previous studies have used PPI data to interpret genetic signals in

complex disorders,18,19 few leveraged neuronal cell models to generate PPI networks in a human cellular

context that are important for neuropsychiatric disorders. We showed that the iN-derived PPI networks

consist of many newly reported, reproducible (�90% replication rate by western blot) interactions that cap-

ture gene relationships found in the human brain, illustrating the potential for biological pathway discovery

based on neuron-specific PPI data.

We performed genetic enrichment analyses to validate the relevance of our PPI networks to schizophrenia

and related disorders. Strikingly, the all combined network and several sub-networks are enriched for com-

mon variant risk of schizophrenia across different populations (Europeans and East Asians) and analytical

methods (MAGMA and the GRS method), indicating that the PPI data will be a rich substrate for follow-up

investigation of universal molecular mechanisms of schizophrenia. In contrast, we did not observe enrich-

ment for rare variant schizophrenia risk in the networks. Repeating the analysis using larger rare variant

datasets in the future may allow us to determine whether this is due to biological differences between com-

mon versus rare variants of schizophrenia or because of power limitations in the current data.9 When we

tested for genetic risk enrichment of several other disorders, we found a few networks to be enriched

for common or rare variant risks of ASD/DD. This is expected given our choice to prioritize schizophrenia

index genes using orthogonal evidence for ASD/DD and agrees with the neurodevelopmental model of

schizophrenia.11 However, the all combined PPI network did not show enrichment for ASD/DD or other dis-

orders that have strong genetic correlations with schizophrenia (e.g., BIP). The lack of enrichment may be

because of sample size and power differences between the genetic datasets. Alternatively, it may be

because the schizophrenia index genes are not all relevant to the other disorders (e.g., among the index

genes, only CACNA1C is in genome-wide significant loci of the BIP GWAS).

We also demonstrated how our PPI data can prioritize candidate genes from schizophrenia GWAS data,

which is a main bottleneck in post-GWAS analysis.43 Although statistical fine-mapping can pinpoint the

likely causal variants within GWAS loci, it is difficult to generate actionable biological hypotheses based

on fine-mapped SNPs.44 Hence, functional genomics and data types such as eQTLs have been used to

complement fine-mapping by providing biological context and identifying SNP-associated genes. A

lesson that emerged from these gene prioritization approaches is the importance of using tissue- and

cell-type-specific data to dissect genetic signals in a disease-relevant context.45 However, there is still

an underrepresentation of data derived from highly specialized cell types that are difficult to culture in

the lab. Furthermore, recent analysis revealed a limited overlap between GWAS signals and eQTLs, indi-

cating a need for orthogonal approaches that do not rely on transcriptomic data.46 Our study provides a

brain cell-type-specific, protein-centric dataset that could address some of these limitations. We used a

‘guilt-by-association’ approach to prioritize GWAS genes that interact with the high-confidence schizo-

phrenia index genes at the protein level, thereby linking them to interactions, mechanisms, and pathways

that can be investigated in a neuronal context. It is exciting that, with a PPI network anchored by just six
10 iScience 26, 106701, May 19, 2023
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index genes, we already obtained promising gene prioritization results that are both complementary to

and distinct from fine-mapping and eQTL co-localization, which were performed using genome-scale data-

sets. This suggests that cell-type-specific PPI data may become increasingly useful and powerful for gene

prioritization with increase in scale (e.g., data from additional index genes) and scope (e.g., data from

different disease-relevant cell types).

In our analyses, the HCN1 network emerged as a promising lead for follow-up investigation. This network is

enriched for schizophrenia common variant risk in both Europeans and East Asians, suggesting that per-

turbed signaling through the hyperpolarization-activated cyclic nucleotide-gated potassium channel,47 a

heterotetrameric complex consisting of HCN1-4, could play a role in schizophrenia. Two HCN1 interactor

genes, HCN4 and AKAP11, are also enriched for schizophrenia-associated protein-truncating variants

(PTVs) in SCHEMA (FDR = 4.2e-3 and 1.3e-2, respectively). In a meta-analysis of schizophrenia and bipolar

disorder cases,48AKAP11 further emerged as an exome-wide significant (p = 2.8e-9) gene enriched for

ultra-rare PTVs. The roles of PTVs in disease are commonly linked to decreased gene function and expres-

sion. Indeed, the HCN1 network is suggestively enriched for down-regulated DEGs in layer 5/6 cortico-

cortical projection neurons (‘Ex-L5-6CCb’) of individuals with schizophrenia (Figure S9), supporting the

hypothesis that members of the network may be involved in schizophrenia through loss-of-function or

decreased expression. Together, these findings implicate a network involved in neuronal potassium

signaling in schizophrenia, which also contains drug targets that can be explored in follow-up studies (Fig-

ure S11 and Table S14).

Another intriguing finding from our results is the recurrent interaction between CACNA1C and C4A

(observed in four out of five CACNA1C IP-MS experiments; Table S6), suggesting that the L-type calcium

channel may be a functional binding site of the complement cascade in synaptic pruning of the developing

prefrontal cortex. This interaction is consistent with the emerging evidence that complement-mediated

modulation of synapse stability or function contributes to risk for schizophrenia.49,50 We were unable to

identify suitable immunoreagents to perform follow-up IP of C4A (Table S4), likely because of its complex

post-translational modifications. However, we also identified C3, another component of the complement

cascade, as an interactor of CACNA1C in one of the CACNA1C IPs (Table S6). This interaction could be a

perhaps better vantage point into the functional characterization of the interplay between synaptic biology

and complement cascade, because it is more stable and therefore amenable to biochemical studies.
Limitations of the study

We acknowledge several limitations that should be considered when interpreting the results of our study.

First, all IPs were performed in a salt/detergent environment optimized to identify both stable interactions

(e.g., between members of core protein complexes) and more transient interactions. Although both may

be biologically relevant to schizophrenia, we are unable to discriminate between them with our current

IP-MS approach. Second, MS analyses of the IPs were associated with known technical biases, including

incomplete coverage and underrepresentation of lowly expressed or highly hydrophobic proteins.51,52

Therefore, the IP-MS datasets generated in this study do not represent a saturated interactome for each

index protein in iNs. Third, although independent IPs and reverse IPs followed by western blotting esti-

mated a �90% replication rate in our PPI data, these assays shared some of the biases of IP-MS. Technol-

ogies such as multichannel microscopy,53 super-resolution microscopy,54 and cryo-EM55 could provide

orthogonal validation of the identified interactions.

Finally, our PPI networks were generated from IPs of six index proteins in excitatory neurons, thus they do

not represent a complete interactome of all schizophrenia risk genes across different brain cell types. As

large-scale rare variant association studies of schizophrenia (e.g., SCHEMA) were not yet available at the

conception of our study, we chose to prioritize the common variant schizophrenia index genes using

orthogonal rare variant evidence of ASD/DD. Consequently, our findings may be biased toward shared

biology between schizophrenia and neurodevelopmental conditions, instead of biology involved more

exclusively in schizophrenia. Furthermore, although our neuronal cell model mimics cortical excitatory neu-

rons in the human brain, it may not capture molecular interactions that are influenced by interplay with

other cell types (e.g., astrocytes) or only present in later developmental stages (e.g., adolescence). Despite

these caveats, our genetic enrichment analyses indicate that the generated PPI networks are indeed

capturing schizophrenia-relevant biology. In the future, applying our approach to a wider set of index

genes and cell types implicated across the spectrum of schizophrenia and related neurodevelopmental
iScience 26, 106701, May 19, 2023 11
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conditions may allow us to further dissect the convergent versus divergent pathways underlying these con-

ditions in the human brain.

Conclusions

In this study, we leveraged human iPSC-derived excitatory neurons to build PPI networks for six schizo-

phrenia risk genes and integrated the networks with orthogonal data types. Going forward, with larger ge-

netic datasets to identify disease risk genes, wider availability of IP-competent immunoreagents, and the

ability to create stem cell models of other brain cell types at the scale required for systematic proteomic

experiments, we expect that the approach described here can be applied to uncover additional insights

into the biology of schizophrenia and provide rich orthogonal information that is not captured by other ap-

proaches such as GWAS, exome sequencing, single-cell RNA sequencing, and whole-proteome analyses.

More generally, our study presents an organizing framework to study complex brain disorders and contrib-

utes to laying the foundation for a new functional genomic approach in psychiatry. In fact, we have applied

the same framework to study ASD-associated genes prioritized by exome sequencing,56 showing that it can

empower interpretation of data from both common and rare variant genetics across two different groups of

disorders of the human brain.
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STAR+METHODS

KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

ACTB Abcam Cat# ab8227;

RRID: AB_2305186

AKAP11 Invitrogen Cat# PA5-103369;

RRID: AB_2852713

APLP2 Proteintech Group Cat# 15041-1-AP;

RRID: AB_2289597

ARID3B Fortis Life Sciences Cat# A302-565A;

RRID: AB_2034823

C3 Abcam Cat# ab97462;

RRID: AB_10679468

CACNA1C Alomone Labs Cat# ACC-003;

RRID: AB_2039771

CACNB2 Abnova Cat# H00000783-A01;

RRID: AB_463642

CACNB3 Alomone Labs Cat# ACC-008:

RRID: AB_2039787

CAMK2D Abcam Cat# ab181052;

RRID: AB_2891241

CHD4 Abcam Cat# ab70469;

RRID: AB_2229454

CKB Santa Cruz Biotechnology Cat# sc-374072;

RRID: AB_10947239

CNTNAP1 Abcam Cat# ab34151;

RRID: AB_869934

COPS2 Proteintech Group Cat# 10969-2-AP;

RRID: AB_2276346

COPS5 Cell Signaling Technology Cat# 6895;

RRID: AB_10839271

CSMD1 Abcam Cat# ab166908

CTNND1 Santa Cruz Biotechnology Cat# sc-23873;

RRID: AB_2086394

CUL3 Fortis Life Sciences Cat# A301-109A;

RRID: AB_873023

ELAVL2 Proteintech Group Cat# 14008-1-AP;

RRID: AB_2096356

ELAVL3 ABclonal Cat# A6091;

RRID: AB_2766743

EPN2 Fortis Life Sciences Cat# A305-510A;

RRID: AB_2891436

FMR1 (FMRP) Abcam Cat# ab17722;

RRID: AB_2278530

FXR1 Proteintech Group Cat# 13194-1-AP;

RRID: AB_2110702

GABBR2 (GABAB2) Abcam Cat# ab75838;

RRID: AB_1310245

(Continued on next page)
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Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

GNAO1 Abcam Cat# ab154001

GRIN2A Abcam Cat# ab133265;

RRID: AB_11158532

HCN1 Proteintech Group Cat# 55222-1-AP;

RRID: AB_11182929

HCN4 Abcam Cat# ab32675;

RRID: AB_732770

HNRNPA2B1 Abcam Cat# ab6102;

RRID: AB_305293

IGF2BP1 Proteintech Group Cat# 22803-1-AP;

RRID: AB_2879173

IGF2BP2 Abcam Cat# ab124930;

RRID: AB_11131218

IGF2BP3 Fortis Life Sciences Cat# A303-426A;

RRID: AB_10951696

INA Fortis Life Sciences Cat# A305-441A;

RRID: AB_2631832

ISL1 Abcam Cat# ab109517;

RRID: AB_10866454

KIAA1549 Fortis Life Sciences Cat# A305-877A;

RRID: AB_2891771

LDB1 Novus Biologicals Cat# NBP1-77832;

RRID: AB_11038158

MARK3 LSBio Cat# LS-B5226;

RRID: AB_10851098

MEF2C Atlas Antibodies Cat# AMAb90727;

RRID: AB_2665645

MSI2 Abcam Cat# ab76148;

RRID: AB_1523981

NEGR1 Proteintech Group Cat# 13674-1-AP;

RRID: AB_2877969

NSG1 Millipore Sigma Cat# SAB4501190;

RRID: AB_10745270

PARP1 Proteintech Group Cat# 13371-1-AP;

RRID: AB_2160459

PCDHA2 Proteintech Group Cat# 10127-2-AP;

RRID: AB_2158964

PCDHB5 Proteintech Group Cat# 19609-1-AP;

RRID: AB_10792248

PCM1 Fortis Life Sciences Cat# A301-150A;

RRID: AB_873100

PDE4B Cell Signaling Technology Cat# 72096S;

RRID: AB_2799812

PYGB Proteintech Group Cat# 12075-1-AP;

RRID: AB_2174885

RALY Abcam Cat# ab170105

RIMS1 Proteintech Group Cat# 24576-1-AP;

RRID: AB_2879618

(Continued on next page)
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Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

RIMS1 Santa Cruz Biotechnology Cat# sc-368540

RUNX1T1 Abcam Cat# ab124269;

RRID: AB_10976059

SEMA4C Santa Cruz Biotechnology Cat# sc-136445;

RRID: AB_10837020

SF3B1 Cell Signaling Technology Cat# 14434S;

RRID: AB_2798479

SRPK2 Fortis Life Sciences Cat# A302-467A;

RRID: AB_1944286

SYNGAP1 Cell Signaling Technology Cat# 5539;

RRID: AB_10694401

TCF4 GeneTex Cat# GTX17912;

RRID: AB_2887569

XRCC5 Abcam Cat# ab80592;

RRID: AB_1603758

XRCC6 Abcam Cat# ab92450;

RRID: AB_10562280

V5 tag MBL Cat# M167-11

Mouse IgG1 monoclonal

isotype control

Cell Signaling Technology Cat# 5415;

RRID: AB_10829607

Mouse IgG2a monoclonal

isotype control

Cell Signaling Technology Cat# 61656;

RRID: AB_2799613

Rabbit IgG monoclonal

isotype control

Cell Signaling Technology Cat# 3900;

RRID: AB_1550038

Rabbit IgG polyclonal

isotype control

Sigma-Aldrich Cat# I5006;

RRID: AB_1163659

Chemicals, peptides, and recombinant proteins

Accutase Gibco Cat# A11105

Agilent RNA 6000 Pico kit Agilent Technologies Cat# 5067-1513

Ambion DNA-free DNase

Treatment kit

Life Technologies Cat# AM1906

B-27 supplement Thermo Scientific Cat# 17504044

BDNF R&D Systems Cat# 248-BD/CF

2100 Bioanalyzer Instrument Agilent Technologies Cat# G2939BA

Blotting-Grade Blocker Bio-Rad Laboratories Cat# 1706404

CNTF R&D Systems Cat# 257-NT

CryoStor CS10 Stem Cell Technologies Cat# 07930

DMEM/F - 12 Life Technologies Cat# 11320033

Doxycycline hyclate Sigma-Aldrich Cat# 24390-14-5

Fetal Bovine Serum R&D Systems Cat# S11195

GDNF R&D Systems Cat# 212-GD

Geltrex Life Technologies Cat# A1413301

Geneticin Gibco Cat# 10131027

D-(+)-Glucose Sigma-Aldrich Cat# 50-99-7

Glutamax Life Technologies Cat# 35050079

Gridded Plate 150 x 25 mm VWR International Cat# 25383-103

(Continued on next page)
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REAGENT or RESOURCE SOURCE IDENTIFIER

Halt� Protease and Phosphatase

Inhibitor

Thermo Scientific Cat# 78442

Laminin, Mouse VWR International Cat# 47743-734

LDN-193189 Stem Cell Technologies Cat# 1435934-00-1

MEM NEAA Life Technologies Cat# 11140076

Methanol R99.8% Fisher Scientific Cat# 67-56-1

N-2 Supplement Life Technologies Cat# 17502048

Neurobasal Life Technologies Cat# 21103049

Normocin Invitrogen Cat# ant-nr-2

NuPAGE� 12%, Bis-Tris Gel Invitrogen Cat# NP0341PK2

NuPAGE Transfer Buffer (20X) Life Technologies Cat# NP00061

PBS Life Technologies Cat# 10010049

PVDF/Filter Paper Sandwich Life Technologies Cat# LC2002

ROCK Inhibitor (Y-27632) Stemgent Cat# 04-0012

SB 431542 Tocris Cat# 1614

StemFlex� Medium Life Technologies Cat# A3349401

Microcentrifuge Tubes VWR International Cat# 0011-702

Sterile Sleeves VWR International Cat# 414004-510

Trizol Life Technologies Cat# 15596026

TruSeq Stranded Total RNA

Library Prep Kit

Illumina Cat# 20020596

TrypLE Life Technologies Cat# 12604039

Trypsin Promega Cat# V5111

XAV939 Stemgent Cat# 04-00046

Critical commercial assays

Pierce� Protein A/G Magnetic Beads Thermo Scientific Cat# 88803

SuperSignal� West Femto Maximum

Sensitivity Substrate

Thermo Scientific Cat# 34094

Pierce� IP Lysis Buffer Thermo Scientific Cat# 87788

EnGen Spy Cas9 NLS New England Biolabs Cat# M0646T

Deposited data

IP-MS data This study MassIVE: MSV000087514

Experimental Models: Cell lines

iPS line from human fibroblasts

with integrated NGN2

Novartis Institutes for

BioMedical Research

iPS hDFn 83/22 iNgn2#9;

iPS3 in Nehme et al.21

Human embryonic stem cells WA01 WiCell WA01 H1; NIH registration

no. 0043

Software and algorithms

Ricopili Lam et al.57 https://data.broadinstitute.org/mpg/ricopili/

Spectrum Mill (v7.0) Broad Proteomics Platform https://proteomics.broadinstitute.org

Genoppi (v1.0) Pintacuda et al.24 https://github.com/lagelab/Genoppi

propr (v4.2.6) Quinn et al.58 https://github.com/tpq/propr

MAGMA (v1.09b) deLeeuw et al.32 https://ctg.cncr.nl/software/magma

PLINK (v1.9) Chang et al.59 https://www.cog-genomics.org/plink/

Custom code This study https://github.com/lagelab/SCZ_PPI;

https://doi.org/10.5281/zenodo.7814403
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RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources and reagents should be directed to and will be fulfilled by

the lead contact, Kasper Lage (lage.kasper@mgh.harvard.edu).

Materials availability

This study did not generate new unique reagents.

Data and code availability

d The original mass spectra and sequence database used for searches have been deposited at MassIVE

(MSV000087514) and are publicly available as of the date of publication.

d All original code has been deposited at GitHub (https://github.com/lagelab/SCZ_PPI) and Zenodo

(https://doi.org/10.5281/zenodo.7814403) and is publicly available as of the date of publication.

d Any additional information required to reanalyze the data reported in this paper is available from the

lead contact upon request.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Cell lines

iNs

iNs collected at time points under one week of differentiation were dissociated from plates with Accutase

(Innovative Cell Technologies AT104-500) at 37�C for 5-10 min. iNs collected at time points beyond two

weeks of differentiation were collected by removing media, adding 1x PBS, and swirling the plates until

the neurons detached. Dissociated or detached cells were collected in 15 mL or 50 mL Falcon tubes de-

pending on the number of cells and washed 3 times. Each wash consisted of centrifugation at 300 RCF

for 3-5 min, discarding of the supernatant, and resuspension of the cell pellet in 1x PBS. After the final

wash, the sample was centrifuged at 300 RCF for 3-5 min, supernatant was discarded, and cells were either

lysed or flash frozen in liquid nitrogen and stored at -80�C. Lysis was performed according to manufac-

turer’s protocol using Pierce IP lysis buffer (Thermo Scientific #87788) with 1x Halt Protease and Phospha-

tase cocktail inhibitor (Thermo Scientific #7844). Protein concentration of the lysate was quantified using

BCA Protein assay (Thermo Scientific #23227). When not used for IP-MS experiments, the lysate was ali-

quoted in low-bind microfuge tubes (Axygen Scientific #MCT-175-L-C), flash frozen and stored at -80�C.

Cancer and HEK cells

We used the following cell lines as controls in western blots: HEK-293 (ATCC CRL-1573), a human embry-

onic kidney cell line; TF-1 (ATCC CRL-2003), a human erythroleukemia cell line; K-562 (ATCC CCL-243), a

human myelogenous leukemia cell line; and U-937 (ATCC CRL-1593.2), a histiocytic lymphoma cell line.

All cell lines were grown on uncoated plates (Corning) according to vendor recommendations. Media

was changed every 3 days and cells were passaged when reaching 70% confluency. All cell lines were incu-

bated at 37 �C, 5% CO2. TrypLE (Thermo Scientific) was used to detach cells from plates.

Mouse cortex sample

Mouse cortices were isolated from p0 pups of C57BL/6 background, cut into small pieces, and flash frozen.

Lysis was performed by adding Pierce IP lysis buffer to frozen pieces and immediately applying a handheld

homogenizer (VWR pellet mixer #47747-370). All subsequent steps were the same as those for iNs.

METHOD DETAILS

iN differentiation

Glutamatergic patterned induced neurons (iNs) were differentiated from male stem cells by conditional

expression of the neuralizing transcription factor NGN2 as previously described,21 with the exception

that N2 media was used instead of KSR media during days 0 to 3. iNs were re-passaged at day 3 of differ-

entiation (i.e., 40,000 cells/cm2) on Geltrex (Thermo Scientific #A1413202) coated plates. To remove re-

maining proliferating cells, fluoro-deoxyuridine (Bioworld 40690016-2) was added to cell cultures at

10 mM on day 6 of differentiation. iNs used in a subset of the CACNA1C, HCN1, and TCF4 IP-MS experi-

ments (Table S5) were differentiated from human embryonic stem cells WA01 (H1, NIH registration no.
iScience 26, 106701, May 19, 2023 21
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0043) transduced with lentiviruses carrying TetO::Ngn2-Puro and reverse tetracycline-controlled transacti-

vator (rtTA), custom-packaged by Alstem. All other IP-MS experiments used iNs generated from a clonally

selected induced PSC line (iPS hDFn 83/22 iNgn2#9 [iPS3]) with TetO::Ngn2 and rtTA delivered via

PiggyBAC.21

Western blotting

For western blots, frozen lysates were thawed on ice, diluted to desired concentration in 1x PBS, and

brought to 1x LDS using 4x LDS stock. Samples were denatured at various conditions based on what we

identified to work best for each protein of interest. Prepared samples were run on NuPAGE 1.5mm 3-7%

Tris-Acetate or 1mm 4-12% Bis-Tris gels (Thermo Scientific). Transfer was onto a nitrocellulose membrane

using XCell wet transfer (Invitrogen), iBlot2 (Thermo Scientific), or Trans-Blot Turbo (BioRad). Membranes

were blocked with 5% BSA or 5%milk diluted in TBST, incubated with primary antibody diluted in matching

blocking buffer for at least 12 hat 4�C, and washed 3 x 10 min in TBST. Membranes were incubated with

HRP-conjugated secondary antibody diluted in 5% milk for 1h at RT, washed 3 x 10 min in TBST, developed

with enhanced chemiluminescent substrate (Thermo Scientific #34095), and imaged on ChemiDoc MP

(BioRad). In ‘forward’ IP western validation, the immunoprecipitate of the index protein was loaded into

the gel and incubated with the primary antibody of an interactor protein to determine if the interactor could

be found in the immunoprecipitate; in ‘reverse’ IP western validation, the immunoprecipitate of an inter-

actor was loaded into the gel and incubated with the primary antibody of the index protein to determine

if the index protein could be found in the immunoprecipitate. Western blot antibodies used for each pro-

tein of interest are listed in Table S4.

Immunoprecipitations

For immunoprecipitations (IPs) followed by western blots or Coomassie stain analysis, either fresh or pre-

viously frozen lysates were used. For IPs followed by mass spectrometry (MS) only fresh lysates were used.

On day 1, the needed amounts of lysate and IP antibody were added to a 1.7 mL Axygen MaxyClear tube

(MCT-175-L-C), then brought to a final volume of 1.3 mL with Pierce IP lysis buffer. Tubes were then rotated

at 4�C overnight for 14-18 h. On day 2, the needed amount of beads per IP were apportioned to separate

tubes, washed twice in cold lysis buffer, resuspended in 200 mL lysis buffer per tube, added to correspond-

ing tubes, and rotated at 4�C for 2-4 h. After incubation, tubes were placed on ice, and beads were first

washed once in 1mL cold lysis buffer and then twice in 1x cold PBS. To remove supernatants in between

the steps, magnetic beads were placed on a magnetic rack on ice and agarose beads were spun at

2,000 x g for 3 min. Supernatants after overnight rotation and each wash step were collected for western

blot analysis of IP quality. After the third wash, supernatant was removed, and beads were resuspended

in 50 mL of PBS if the IP was to be processed byMS and 40 mL of PBS if the IP was to be processed by western

blot or Coomassie stain. Samples were flash frozen in liquid nitrogen and stored at -80�C until further use.

All IP experiments sent for MS consisted of 4 IP samples performed on cells from the same differentiation

batch: 2 replicate experimental IPs using an antibody against the protein of interest (i.e., an index protein)

and 2 replicate control IPs using a control IgG antibody. IP antibodies used for each protein of interest are

listed in Table S4.

Immunoprecipitations using V5 epitope tagged TCF4

For immunoprecipitation of TCF4, an ORF of the TCF4 isoform A with a c-terminal V5-tag was acquired

from the Broad Institute Genetic Perturbation Platform, and lentiviruses were generated from the construct

by ALSTEM Inc. Lentiviruses were delivered to iN cultures at a multiplicity of infection (MOI) of 4 at day 3 of

differentiation during re-passaging, andmock-transduced cells were used as controls. Cells were collected

at day 6 of differentiation by washing 3 times with PBS, followed by lysis and scraping on the plate. Lysates

were then processed and quantified as usual. For IP, the needed amount of lysate was added to a micro-

fuge tube and brought to a final volume of 1.3 mL with Pierce IP lysis buffer, then incubated overnight with

anti-v5 antibody directly coupled to magnetic beads (MBL International, M167-11). The remaining protocol

is the same as used for the other IPs.

Mass spectrometry

Sample preparation

Proteins were digested on beads using 90 ml of digestion buffer (2 M urea/50 mM Tris buffer with 1 mMDTT

and 5 mg/mL Trypsin) for 1 hr, shaking at 1000 rpm. The suspension was then transferred to a new tube, and
22 iScience 26, 106701, May 19, 2023
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the beads were washed twice with 60 mL of wash buffer (2 M urea/50 mM Tris buffer). The wash buffer was

added to the suspension with digestion. The digestion and wash process were repeated a second time

pooling the suspensions with the suspensions from the first round. The pooled solution was reduced using

4 mM DTT for 30 minat 25�C shaking at 1000 rpm. The proteins were then alkylated using 10 mM iodoace-

tamide and incubating for 45 minat 25�C shaking at 1000 rpm and protected from light. Proteins were then

digested with 0.5 mg of trypsin overnight at 25�C shaking at 700 rpm. The next day proteins were quenched

using 40 mL of 10% formic acid and desalted using an Oasis Cartridge. Samples were vacuum dried

and labeled with iTRAQ4 (Sciex Inc.) or TMT10 (Thermo Scientific) kits. Each iTRAQ 4-plex consisted of 2

replicate experimental IPs using an antibody against the protein of interest (i.e., an index protein), and 2

replicate control IPs using a control IgG antibody. The specific iTRAQ labels for each replicate pair are indi-

cated in Table S5. For ‘RIMS1_wk4_2’, a TMT 10-plex experiment was conducted with antibodies from

Santa Cruz Biotechnology (SC; 128C, 129N), Proteintech Group (PT; 126, 127N), and Synaptic Systems

(SYSY; 129C, 130N). Two sets of replicate control IPs were included for PT (127C, 128N) and SC/SYSY

(130C, 131). Only the results from the SC antibody met our quality control metrics and were reported.

Liquid chromatography-tandem mass spectrometry (LC-MS/MS)

Reconstituted peptides were separated on an online nanoflow EASY-nLC 1000 UHPLC system (Thermo

Scientific) and analyzed on a benchtop Orbitrap Q Exactive Plus mass spectrometer (Thermo Scientific).

The peptide samples were injected onto a capillary column (Picofrit with 10 mm tip opening/75 mm diam-

eter, NewObjective, PF360-75-10-N-5) packed in-house with 20 cm C18 silica material (1.9 mmReproSil-Pur

C18-AQ medium, Dr. Maisch GmbH, r119.aq). The UHPLC setup was connected with a custom-fit microa-

dapting tee (360 mm, IDEX Health & Science, UH-753), and capillary columns were heated to 50 �C in col-

umn heater sleeves (Phoenix-ST) to reduce backpressure during UHPLC separation. Injected peptides were

separated at a flow rate of 200 nL/min with a linear 150 min gradient from 94% solvent A (3% acetonitrile,

0.1% formic acid) to 35% solvent B (90% acetonitrile, 0.1% formic acid), followed by a linear 8 min gradient

from 35% solvent B to 60% solvent B and a 3 min ramp to 90% B. The Q Exactive instrument was operated in

the data-dependent mode acquiring HCD MS/MS scans (R=17,500 for iTRAQ4, or R=35,000 for TMT10)

after each MS1 scan (R=70,000) on the 12 most abundant ions using an MS1 ion target of 3x106 ions and

an MS2 target of 5x104 ions. The maximum ion time utilized for the MS/MS scans was 120 ms; the HCD-

normalized collision energy was set to 28 for iTRAQ4 or 31 for TMT10; the dynamic exclusion time was

set to 20s, and the peptide match and isotope exclusion functions were enabled.
QUANTIFICATION AND STATISTICAL ANALYSIS

Refining geneticdata to identify index genes

Three-step procedure for selecting index genes

Starting with 125 independent autosomal SNPs that reached genome-wide significance in the combined

discovery-replication meta-analysis of the PGC schizophrenia GWAS3 (phase 2), Ricopili57 (https://data.

broadinstitute.org/mpg/ricopili/) was used to map the 124 non-MHC (major histocompatibility complex)

region SNPs to 445 genes (Set 1; Table S1) in linkage disequilibrium (LD) loci, whose boundaries were

defined by SNPs in LD (r2> 0.6) with the index SNPs,G50kb on either end. Next, we excluded SNPs in inter-

genic regions or in loci with multiple protein-coding genes, resulting in a list of 40 SNPs pointing to 37

unique protein-coding genes (Set 2) in single-gene loci. We further refined the 37 genes into a set of 10

genes (Set 3) based on strong orthogonal evidence supporting their involvement in psychiatric diseases

(see below). We also included SYNGAP1 in the MHC region (which was excluded from the SNP-to-gene

mapping process due to its LD complexity) in all 3 sets based on strong orthogonal evidence. In total,

we identified 11 high-confidence schizophrenia risk genes and considered their encoded proteins as index

proteins in the proteomic experiments.

Orthogonal evidence for the index genes

The index genes were selected based on several types of orthogonal genetic or functional evidence,

including: i] high-density genotyping experiments of individual genes (ZNF804A),60 ii] sequencing or

copy number variant studies linking genes to autism spectrum disorders or neurodevelopmental delay

(CACNA1C, CUL3, CSMD1, GRIN2A, SATB2 SYNGAP1, TCF4),39,61–68 iii] strong functional evidence sup-

porting that the gene in question is causal (HCN1),69 and iv] multiple subunits from the same protein com-

plex are encoded by genes in different single-gene loci linked to psychiatric diseases (CACNA1C,

CACNB2, RIMS1).3,70,71 In addition, we annotated the 10 genes prioritized from single-gene GWAS loci
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using Hi-C chromatin interaction data from the developing human brain,72which may point to long-range

regulation of genes outside of the loci in the context of schizophrenia; only three of these genes (CUL3,

RIMS1, SATB2) lie in loci that exclusively interacted with long-range genes outside of the loci (Table S1).

pLI score enrichment analysis

We extracted pLI scores from the gnomAD22 (v2.1.1) ‘pLoF Metrics by Gene TSV’ dataset. We performed

one-tailed Kolmogorov-Smirnov (KS) tests to assess whether various gene sets are enriched for high pLI

scores compared to other genes in the genome. The tested gene sets include: i] SCHEMA9 genes with

FDR <3.7e-3 (exome-wide significance) and 0.5, ii] Sets 1-3 defined by our index gene selection steps,

and iii] genes in PGC schizophrenia GWAS (phase 3) loci10 and subsets of these genes prioritized by

FINEMAP/SMR analysis and/or our interaction data (see social manhattan plot). In addition, we performed

one-tailed KS tests to compare the pLI scores of several gene sets that are subsets and supersets of each

other, and two-tailed KS tests to compare a few disjoint sets. Table S2 summarizes all the comparisons per-

formed. Finally, we also performed one-tailed KS tests to assess whether the stringent interactors in our

interaction networks (Table S9) have enriched pLI scores compared to the non-interactors linked to each

network.

BrainSpan expression profiles

We obtained gene expression data in four distinct parts of the frontal cortex (dorsolateral prefrontal cortex

[DFC], medial prefrontal cortex [MFC], ventrolateral prefrontal cortex [VFC], orbital frontal cortex [OFC])

across 10 developmental stages from the BrainSpan (https://www.brainspan.org) exon microarray data-

set.23 At each developmental stage, we calculated the median and standard error of the expression values

for various genes or gene sets including: i] SCHEMA genes with FDR <3.7e-3, 0.05, 0.25, and 0.5, ii] Sets 1-3

defined by our index gene selection steps, iii] index and interactor genes in our combined network of all IPs

(Table S9), iv] genes in PGC schizophrenia GWAS (phase 3) loci and subsets of these genes prioritized by

FINEMAP/SMR analysis and/or our interaction data (see social manhattan plot), and v] random genes

sampled from the BrainSpan dataset for comparison against the other gene sets. Table S3 provides

more detailed summary statistics for all gene sets.
IP-MS data analysis

Spectrum Mill analysis

All mass spectra were processed using Spectrum Mill (v7.0; https://proteomics.broadinstitute.org). For

peptide identification, MS/MS spectra were searched against a sequence database for the UniProt human

reference proteome, including isoforms, with a set of common laboratory contaminant proteins appended

(2017: 65,068 entries, or 2014: 59,079 entries) as indicated in Table S5. Search parameters included: ESI-

QEXACTIVE-HCD scoring parameters, trypsin enzyme specificity with amaximum of twomissed cleavages,

40% minimum matched peak intensity, G20 ppm precursor mass tolerance, G20 ppm product mass toler-

ance. Carbamidomethylation of cysteines and iTRAQ4 or TMT10 full labeling of lysines and peptide

n-termini were set as fixed modifications. Allowed variable modifications were oxidation of methionine

(M), acetyl (ProtN-term), and deamidated (N), with a precursor MH+ shift range of -18 to 64 Da. Identities

interpreted for individual spectra were automatically designated as valid by optimizing score and delta

rank1-rank2 score thresholds separately for each precursor charge state in each LC-MS/MS while allowing

a maximum target-decoy-based false discovery rate (FDR) of 1.0% at the spectrum level. Identified pep-

tides were organized into protein groups and subgroups (isoforms and family members) with Spectrum

Mill’s subgroup specific option enabled, so that peptides shared between subgroups are ignored for quan-

titation. TMT10 reporter ion intensities were corrected for isotopic impurities using SpectrumMill’s afRICA

correction method and correction factors obtained from the reagent manufacturer’s certificate of analysis.

For quantitation at the peptide spectrum match level, log2 fold change (FC) reporter ion intensity ratios

were calculated for each IP replicate. To obtain protein-level log2 FC values between index protein vs. con-

trol for each IP replicate, the median ratio was calculated from all peptide spectrum matches of subgroup

specific peptides assigned to each protein subgroup.

Genoppi analysis

For each IP-MS experiment, starting with the protein-level quantification report generated by Spectrum

Mill, we applied median normalization to protein log2 FC values between index protein vs. control IPs

for each replicate, and then performed downstream analyses using Genoppi24 (v1.0). Additional data
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processing was performed for two experiments pre-Genoppi: for ‘CACNA1C_wk7’ the log2 FC values for

one replicate was right-shifted by a small value (0.005) to facilitate direct comparisons with all other volcano

plots without changing the results; for ‘TCF4_wk1’ additional contaminant proteins found in the

CRAPome73 database were removed. The Genoppi analyses include: i] calculating Pearson’s correlation

of log2 FC values between IP replicates, ii] calculating average log2 FC, and corresponding P-value and

FDR, for each protein across IP replicates using a two-tailed one-samplemoderated t-test from the limma74

R package, iii] identifying statistically significant (log2 FC > 0 and FDR %0.1) index protein interactors (i.e.,

proteins with significantly higher abundance in the index protein IPs compared to the controls), iv] defining

other non-significant (log2 FC % 0 or FDR >0.1) proteins to be the ‘non-interactors’ (to serve as proxy for

background proteome in enrichment analyses), and v] assessing overlap enrichment between the identi-

fied interactors and known interactors from InWeb25 (compared to the non-interactors) using a one-tailed

hypergeometric test. We performed quality control of each IP-MS experiment using two criteria: i] the log2

FC correlation between replicates must be >0.5, and ii] the index protein itself must be significant (log2

FC > 0 and FDR %0.1). Experiments that failed to meet these criteria were excluded from further analysis;

those that passed QC are summarized in Table S5, with their analysis results provided in Table S6.
Co-expression analysis

We assessed pairwise co-expression between each index gene and all other protein-coding genes using data

from four independent studies, including: i] Stickels et al.29: spatial transcriptomics in mouse neocortex

(Puck_190921_19.digital_expression.txt.gz retrieved from: https://singlecell.broadinstitute.org/single_cell/

study/SCP815/highly-sensitive-spatial-transcriptomics-at-near-cellular-resolution-with-slide-seqv2#study-

download), ii] Maynard et al.28: spatial transcriptomics in human dorsolateral prefrontal cortex (count matrix

retrieved from spatialLIBD R package: https://github.com/LieberInstitute/HumanPilot), iii] Velmeshev

et al.30: single-cell RNA-seq in human cortex (rawMatrix.zip retrieved from: https://cells.ucsc.edu/?

ds=autism), and iv] BrainSpan: bulk RNA-seq across human brain regions and developmental stages (‘‘RNA-

Seq Gencode v10 summarized to genes’’ dataset retrieved from: https://www.brainspan.org/static/

download.html).Weused twodifferentmethods for estimatingco-expression toaccount fordifferent statistical

properties in thesedatasets. For the spatial transcriptomic datasets with very sparsegene expressionmatrices,

we reasoned that the binary presence/absence of genes across physical locations would be themost informa-

tive, and therefore performed one-tailed Fisher’s exact tests to calculate the significance of co-occurrence for

each gene pair across locations. For the single-cell RNA-seq and BrainSpan datasets, we calculated a propor-

tionality metric, ⍴, for each gene pair using the propr R package58 (v4.2.6); this metric is analogous to conven-

tional correlation measures but has been shown to be better at capturing functional associations between

genes in RNA-seq data.75 After calculating either the Fisher’s exact P-values or the proportionality ⍴ values

for all gene pairs involving each index gene, we then performed rank-based inverse normal transformation

to convert the values into co-expression Z-scores (where a positive score indicates that a gene has higher

than average co-expression with the index gene compared to the rest of the genome).

We performed two-tailed Wilcoxon rank-sum tests to assess if the co-expression Z-scores between index

genes and their interactors are significantly different from the scores between the index genes and other

gene groups including: i] non-interactors detected in IP-MS, ii] known interactors from InWeb, and iii] all

protein-coding genes.
Consolidating IP-MS datasets into interaction networks

We consolidated IP-MS datasets for the same index proteins into index-protein-specific networks; datasets

derived from the same time points into time point-specific networks; and all datasets into an all combined

network. For each network, we defined ‘interactors’ as proteins that show up as significant interactors inR1

source IPs contributing to the network, and the matching ‘non-interactors’ as proteins that show up as non-

interactors in R1 source IPs but never as interactors in these IPs. In addition, we defined ‘stringent inter-

actors’ as interactors that never show up as non-interactors in the source IPs. Finally, we removed proteins

whose HGNC gene symbols could not be mapped to Ensembl76 (GRCh37.p13) genomic positions and the

index proteins for the source IPs from all 3 lists. The exclusion of index proteins ensured that enrichment

signals in downstream analyses could not be driven by the index proteins themselves. Table S9 lists the in-

teractors, non-interactors, and stringent interactors associated with each network.
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SynGO gene set analysis

SynGO analysis of interactor genes in the all combined network was performed using the SynGO web

browser31 (dataset version: 20210225; https://syngoportal.org). The SynGO ‘Biological Processes’ annota-

tions and the ‘brain expressed’ background set were used in the analysis.
Common variant enrichment analysis using MAGMA

To perform common variant risk enrichment analysis for each interaction network usingMAGMA32 (v1.09b),

PGC GWAS summary statistics (https://www.med.unc.edu/pgc/download-results/) were obtained for

schizophrenia (33,640 cases and 43,456 controls of EUR ancestry3; 22,778 cases and 35,362 controls of

EAS ancestry8), ADHD (19,099 cases and 34,194 controls of EUR ancestry33), ASD (18,382 cases and

27,969 controls of EUR ancestry34), BIP (41,917 cases and 371,549 controls of EUR ancestry35), and MDD

(170,756 cases and 329,443 controls of EUR ancestry36). GWAS summary statistics for height were obtained

from the Neale Lab UK Biobank GWAS (round 2; 361,194 individuals of EUR ancestry37; https://www.

nealelab.is/uk-biobank/) and Biobank Japan (159,095 individuals of EAS ancestry38; http://jenger.riken.

jp/en/result). For each GWAS dataset, we first annotated variants to genes using the Human reference

genome (GRCh37/hg19) with a flanking gene region of G250kb. Variants on sex chromosomes, with minor

allele frequency (MAF) % 0.05 in the study, or within the MHC region (chr6:22.5M-33.5M) were excluded

from analysis. Next, gene-based P-values were computed using the SNP-wise Mean model in MAGMA.

LD was estimated from the 1000 Genomes Project77 phase 3 EUR or EAS panel to match the ancestry of

each study. Competitive tests were used for gene-set comparison analysis between stringent interactors

and non-interactors in each interaction network. Specifically, a linear regression model was built by

MAGMA to test if genes within the interactor gene-set are more strongly associated with the phenotype

of interest compared to the non-interactor gene-set. Inverse-variance weighted fixed-effect meta-anal-

ysis78 was used to combine results across EUR and EAS ancestries for schizophrenia and height, and a

one-tailed P-value was calculated from the meta-analyzed Z-score.
Common variant enrichment analysis using the GRS method

To complement the MAGMA analysis, we used an alternative genetic risk score (GRS) method and individ-

ual-level genotypes from the schizophrenia GWAS study cohorts (24,764 cases and 30,655 controls of EUR

ancestry; 8,960 cases and 8,284 controls of EAS ancestry) to assess genetic risk enrichment in the interaction

networks. IRB approvals for accessing the individual-level data were obtained from the PGC and Stanley

Global Asia Initiatives (Data S1-S3). For each study cohort, we removed variants in the MHC region and var-

iants with MAF %0.05 or low imputation quality (INFO %0.8), and then mapped the remaining variants to

the stringent interactors or non-interactors associated with each network with a flanking gene region

of G250kb. Next, we used PLINK59 (v1.9) and the in-sample LD to clump variants within the interactor or

non-interactor gene-sets into independent association signals. The clumping was performed with a win-

dow of 250kb, R2> 0.2, and a P-value threshold of 1. The out-of-sample GRS for each individual and

each gene-set was then calculated as
P

log(OR) *G, in whichOR is the estimated odds ratio from the

leave-one-out GWAS meta-analysis for the clumped index variants within the gene-set and G is the geno-

type dosage. To test if the stringent interactors in a network contribute more genetic risk compared to the

non-interactors, we fit a linear regressionmodel:GRSij = Pi + Ij + Pi * Ij + Covi, where i and j denote individual

index and gene index, respectively, P is the case/control status, I is interactor/non-interactor status, P *I is

an interaction term, and Cov includes 10 genetic principal components. We tested whether the P *I inter-

action term is significantly larger than zero, which captures whether the difference of GRS between cases

and controls calculated in the interactor gene-set is significantly larger than the non-interactor gene-set.

Inverse-variance weighted fixed-effect meta-analysis was used to combine the test statistics for the inter-

action term across study cohorts and ancestries, and a one-tailed P-value was calculated from the meta-

analyzed Z-score. Finally, as a negative control, we performed an analogous GRS analysis for height; in

this case, the GRS was calculated as
P

log(beta) *G, where beta is the effect size estimate from the EUR

or EAS height GWAS for clumped index variants.
Rare variant enrichment analysis

Gene-based association statistics derived from exome sequencing data were obtained for schizophrenia

(P-values in ‘P meta’ column from Table S5 of Singh et al.9), ASD (Q-values in ‘qval_dnccPTV’ column

from Table S2 of Satterstrom et al.40), and DD (P-values in ‘denovoWEST_p_full’ column from Table S2

of Kaplanis et al.41). For each phenotype and each network, a one-tailed KS test was used to test whether
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the stringent interactors in the network have more significant association scores (i.e., smaller P-values or

Q-values) compared to the non-interactors.
Transcriptional perturbation enrichment analysis

Differentially expressed genes (DEGs) between schizophrenia patients vs. controls identified in 20 prefron-

tal cortex cell types were retrieved from Table S6 of Ruzicka et al.17 The up- and down-regulated DEGs were

analyzed as a joint set in the primary analysis, and then as separate sets in the secondary follow-up analyses.

One-tailed P-values were calculated using a hypergeometric distribution to assess the overlap enrichment

between interactors in our networks and the cell-type-specific DEGs. For each hypergeometric test, the

‘population’ was defined as all stringent interactor or non-interactor genes associated with a network

and ‘success in population’ was defined as the stringent interactors in the network. The ‘sample’ contained

DEGs in a celltype that were found in the population and ‘success in sample’ was the overlap between the

interactors and the DEGs.
Social Manhattan plot

Genes mapped to 287 genome-wide significant regions in the combined discovery-replication meta-anal-

ysis of the PGC schizophrenia GWAS (phase 3) were retrieved from Table S3 of the paper.10 We excluded

non-coding genes and genes in the MHC region, and obtained the genomic positions of the remaining

genes from Ensembl76 (GRCh37.p13). We additionally included SYNGAP1 by mapping it to the only

MHC region SNP (rs140365013) included in the GWAS meta-analysis. Next, we intersected these GWAS

genes with our PPI data to identify the subset of GWAS genes that are either an index gene or an interactor

of an index gene. We generated a Manhattan plot for these genes using the GWAS P-values of their asso-

ciated index SNPs and plotted links between the genes to indicate observed interactions in our 3. In addi-

tion, we retrieved the list of GWAS genes prioritized by FINEMAP or SMR analysis from Table S12 of the

PGC paper and highlighted their overlap with genes prioritized by our data in the plot. For ease of visual-

ization, GWAS P-values were capped at P = 1e-25 and genes in the PCDHA@ gene cluster were collapsed

into one gene in the plot.
HCN1 network drug target query

To identify existing drugs targeting genes in the combined HCN1 network, we performed a batch query

using the Open Targets Platform79 (https://platform.opentargets.org). For each resulting drug-target en-

try, the corresponding drug mechanism information was retrieved from ChEMBL80 (https://www.ebi.ac.uk/

chembl/g/#browse/mechanisms_of_action).
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