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Abstract

Switching is a difficult cognitive process characterised by costs in task performance;

specifically, slowed responses and reduced accuracy. It is associated with the recruit-

ment of a large coalition of task-positive regions including those referred to as the

multiple demand cortex (MDC). The neural correlates of switching not only include

the MDC, but occasionally the default mode network (DMN), a characteristically

task-negative network. To unpick the role of the DMN during switching we collected

fMRI data from 24 participants playing a switching paradigm that perturbed predict-

ability (i.e., cognitive load) across three switch dimensions—sequential, perceptual,

and spatial predictability. We computed the activity maps unique to switch vs. stay

trials and all switch dimensions, then evaluated functional connectivity under these

switch conditions by computing the pairwise mutual information functional connec-

tivity (miFC) between regional timeseries. Switch trials exhibited an expected cost in

reaction time while sequential predictability produced a significant benefit to task

accuracy. Our results showed that switch trials recruited a broader activity map than

stay trials, including regions of the DMN, the MDC, and task-positive networks such

as visual, somatomotor, dorsal, salience/ventral attention networks. More sequen-

tially predictable trials recruited increased activity in the somatomotor and salience/

ventral attention networks. Notably, changes in sequential and perceptual predict-

ability, but not spatial predictability, had significant effects on miFC. Increases in per-

ceptual predictability related to decreased miFC between control, visual,

somatomotor, and DMN regions, whereas increases in sequential predictability

increased miFC between regions in the same networks, as well as regions within ven-

tral attention/ salience, dorsal attention, limbic, and temporal parietal networks.

These results provide novel clues as to how DMN may contribute to executive task

performance. Specifically, the improved task performance, unique activity, and

increased miFC associated with increased sequential predictability suggest that the

DMN may coordinate more strongly with the MDC to generate a temporal schema

of upcoming task events, which may attenuate switching costs.
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1 | INTRODUCTION

Switching is an umbrella term that captures the various ways the per-

formance of an ongoing task can be changed. For example, switches

may be driven exogenously or organised endogenously, or a person

may switch between stimulus and response rules, current goals within

the same overarching task, or between different tasks altogether (Kim

et al., 2011). The effects of switching on task performance are among

the most established cognitive phenomena, being characterised by

post-switch costs in both reaction time (RT) and accuracy

(Monsell, 2003). While the effects of switching on performance are

well-established, the exact set of brain regions influenced by switches

may differ depending on the type of switch (Hampshire et al., 2016).

However, it is almost invariably the case that meeting the demands of

a switch is cognitively costly, and that coincident with the perfor-

mance of a switch there is increased magnitude of BOLD response

across large-scale distributed networks of brain regions (Kimberg

et al., 2000; Rushworth et al., 2002) and altered network functional

connectivity (O'Connell & Basak, 2018; Qiao et al., 2020) as compared

to sequences of trials where rules and requirements “stay” and are

more uniform. These neural correlates of switching are often localised

in the multiple demand cortex (MDC) (Camilleri et al., 2018; Stiers

et al., 2010; Wang et al., 2021), which consists of the anterior insula,

pre-supplementary motor area (pre-SMA), dorsolateral prefrontal cor-

tex (dlPFC), inferior parietal sulcus (iPS), and dorsal anterior cingulate

cortex, all of which are in salience, control, and frontoparietal net-

works. The MDC plays a broad role under conditions of heightened

cognitive demand, such as planning what steps are needed to achieve

task-related goals (Duncan, 2010), rapidly reconfiguring to meet shift-

ing task demands (Woolgar et al., 2011), and fine-tuning its connectiv-

ity in response to increased cognitive load (Soreq et al., 2019). Thus, it

is unsurprising that MDC is associated with switching performance.

Compared to MDC, the role of the default mode network (DMN)

is less well understood. The DMN has historically been associated

with processes that primarily occur during resting state, such as auto-

biographical recall and episodic memory (Fox et al., 2005; Spreng &

Andrews-Hanna, 2015). The DMN and MDC typically exhibit an antic-

orrelated relationship, where the DMN becomes more deactivated as

the general cognitive difficulty of the task that a participant is

engaged in increases (Mayer et al., 2010; McKiernan et al., 2003).

Despite this deactivation during active task performance, disruptions

in the MDC–DMN balance are nonetheless associated with cognitive

deficits. For example, abnormal DMN coupling with MDC regions in

neurological and psychiatric populations is associated with poorer

cognitive task performance (Miskowiak & Petersen, 2019; Sambataro

et al., 2010).

Consequently, it is notable that the DMN has also been reported

to show increased activation under some conditions when switches

are performed, for example, between different tasks (Crittenden

et al., 2015; Lemire-Rodger et al., 2019; Smith et al., 2018). The cases

where regions in the DMN coactivate and show increased FC with

task-positive networks that they characteristically anticorrelate with

(Buckner & DiNicola, 2019; Fox et al., 2005; Fransson, 2005) are

often associated with modulations in task difficulty, offering a poten-

tial clue as to how these networks coordinate to support performance

of complex tasks. For example, a study by O'Connell and Basak (2018)

showed that connectivity between regions in the DMN and MDC

increased with the difficulty of cognitive control paradigms that

manipulated switching, maintenance, and updating. Conjoint MDC

and DMN activation have also been observed during instruction-

based learning (IBL), when attention is initially oriented towards a new

instruction (Hampshire et al., 2019) and the rule must be effortfully

mapped into working memory.

While evidence has accumulated that the MDC and DMN may

coordinate cognitive resources to meet the demands of tasks, it

remains unclear what aspects of switching the DMN and MDC

regions are most sensitive to. Here we developed a novel switching

paradigm to further investigate how DMN–MDC network dynamics

vary under conditions where three dimensions of switching predict-

ability may be leveraged within the task schema in order to potentially

mitigate the performance switch costs. The dimensions of switching

predictability perturbed in this task include (1) sequential predictabil-

ity, when within the sequence of event the switches occur, (2) spatial

predictability, where the focus of attention will switch to next, and

(3) perceptual predictability, what visual category the focus of atten-

tion will switch to next. We modulated the predictability of each

dimension in a fully factorial design to evaluate whether predictability

level influenced behavioural performance, network activity, and con-

nectivity. By varying predictability, we manipulated cognitive load by

enabling or disabling the construction of a mental schema of the task

structure (Hunter 2020; Hunter 2021; Özbozda�glı et al., 2018). More

sequentially, spatially, and perceptually predictable trials allow partici-

pants to construct a representation of when upcoming task switches

will occur, where the new task will be located, and the visual charac-

teristics of the next trial, respectively. This would enable participants

to anticipate aspects of a task switch, prepare cognitive resources

accordingly, and reduce switch costs (Hakun & Ravizza, 2012;

Meiran, 1996; Meiran, 2000).

With this paradigm, we first confirm whether both DMN and

MDC are more active during exogenously evoked switching. Then, we

determine whether DMN–MDC networks dynamics are differentially

sensitive to any specific aspect of switching predictability. Given the

recency of work showing the DMN's engagement during switching

we first sought to replicate this relationship, and if present, explore

which/whether any of the switch dimensions influence the changes in

the DMN–MDC relationship.

2 KURTIN ET AL.
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2 | METHODS

2.1 | Participants

We recruited 24 healthy volunteers (16 females, mean age 26.08

± 4.0 years, standard deviation, two left-handed). Participants

reported no history of neurological or psychiatric conditions and

had normal or corrected vision. The Hammersmith and Queen

Charlotte's Research Ethics committee approved the studies,

which conform with the Declaration of Helsinki. All participants

gave their written consent after being informed about the nature

of the study.

2.2 | Switching paradigm

The switching task was programmed in MATLAB using Psychophys-

ics Toolbox extension (Brainard, 1997), based on a previously

reported simple IBL paradigm (Hampshire et al., 2016; Hampshire

et al., 2019). The goal of the task was for participants to perform a

binary-discrimination exercise where they matched a target image to

one of the previously presented flanker stimuli (rules). The task

started with a rest period (16 s) indicated by the presence of a black

fixation cross centred in the middle of a white screen. Next, two red

rectangles were displayed on either side of the screen with a central

red fixation cross for 500 ms, which indicated the participants to the

location of the coming relevant stimuli. After this, four pairs of

flanker images were presented for 4 s. The stimuli that composed

the flanker images were created by Hampshire et al. (2008) and con-

sisted of four categories of images: male faces, abstract lines,

abstract figures, and rooms. The four pairs of flanker images con-

tained one pair from each category. During presentation of the

flanker images, the red fixation cross remained presented in the

screen to direct the participants to the relevant set of flankers. After

4 s, the flankers of interest (i.e., the two images and the fixation

cross) were replaced by a target image centred on the fixation cross.

The target image was of 1� of similarity to one of the flanker stimuli

(either the left or right in the row participants were instructed to

attend to). The varying degrees of similarity between the flanker and

target images were created by morphing within a category. The par-

ticipants were asked to select the flanker that was most similar to

the target as quickly and accurately as possible. Participants were

given 1500 ms to respond with a left or right button press for the

corresponding flanker.

The task included two types of trials: switch trials and non-

switch/stay trials. During switch trials, the flankers to which the par-

ticipants were discriminating the targets from changed, that is, there

was a switch in the task rules. These events were indicated by the

presentation of the warning red rectangles and fixation cross in a new

location, followed by a new set of flankers. During non-switch trials,

the task rules, that is, the relevant flankers, remained unchanged and

only a red fixation cross (500 ms) preceded the appearance of a new

target image.

2.3 | Task parameters and experiment space

The parameters of the cognitive paradigm were modified within the

predictability along three dimensions: sequential, spatial, and percep-

tual predictability of switch events. These dimensions were limited to

a number (three) that allowed the experiment space to be sampled in

a single session, and the three dimensions were selected based on

previous work showing modulations in sequential (Ruge et al., 2013),

spatial (Vallesi et al., 2015), and perceptual (Crittenden et al., 2015;

Smith et al., 2018) dimensions of switching recruited distinct patterns

of brain activity. The sequential aspect referred to the frequency at

which switch events occurred; the spatial component was linked to

the location of the new relevant stimuli; and the perceptual aspect

alluded to the nature of the incoming relevant stimuli, that is, the cate-

gory of the rules (faces, abstract lines, abstract lines, or rooms).

A 2 � 2 � 2 experiment space was constructed by assigning to

each sub-dimension two levels of complexity; in other words, the

2 � 2 � 2 space can be represented as sequentially predictable and

unpredictable � perceptually predictable and unpredictable � spatially

predictable and unpredictable conditions. The switch events in the first

level were characterised by having a highly predictable sequence:

sequentially there was a change in rules every four trials, with every

switch the location of the stimuli shifted one position downwards, and

perceptually the stimuli changed from faces to abstract lines to rooms

to abstract figures. The switches in the second, more difficult, less pre-

dictable level followed a pseudo-random sequence: sequentially a

switch could occur at any trial within a grouping of four trials (keeping

the total number of switches constant), spatially the relevant stimuli

could switch one position upwards or downwards (maintaining the fre-

quency of direction a maximum of two switches) and perceptually the

category of the stimuli was randomly chosen (ensuring it did not follow

the predictable sequence and it was distinct from the preceding rule).

The size of the experiment space allowed for a full-factorial

experiment to be conducted, where every possible combination of

dimensions was sampled (Figure 1aiii). For example, in a block, the

task could have sequential complexity of level 1, spatial complexity of

level 2 and perceptual complexity of level 1.

2.4 | Experimental procedure

The participants performed three back-to-back fMRI runs. Within

each run, the participants performed eight blocks of 30 trials of the

switching task, with 16 s of rest in between. Each block corresponded

to one of the previously defined combinations of sequential, percep-

tual, and spatial predictability, thus, over the entire session the fully

factorial design ensured each participant performed 90 trials of every

combination of the three switch dimensions. The order of block pre-

sentation was randomised across runs and participants. Participants

were trained in the task by performing one practice block outside the

scanner. In the scanner, the task was projected onto a screen that the

participants could see through mirrors placed on the head coil and the

responses were recorded using a pair of MRI compatible response

KURTIN ET AL. 3
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grips (ResponseGrip, NordicNeuroLab AS, Bergen, Norway). Partici-

pants used the index finger on their right or left hand to select

whether the target image was more similar to the right or left flanker

of interest, respectively.

2.5 | fMRI acquisition

MRI data were acquired in a 3 T Siemens Verio (Siemens, Erlangen,

Germany) at the Imperial College London Central Imaging Facility

using a 32-channel head coil. Standard T1-weighted structural images

were acquired using an MP-RAGE sequence, isotropic voxel of

1 mm3, repetition time (TR) of 2300 ms, echo time (TE) of 2.98 ms,

inversion time of 900 ms, flip angle (FA) of 90�, field of view of

256 � 256 mm, 256 � 256 mm matrix, 160 slices and GRAPPA accel-

eration factor of 2. For the fMRI images, a T2*-weighted echo-planar

imaging (EPI) sequence was acquired using an isotropic voxel of

3 mm3, TR of 2 s, a TE of 30 ms, FA of 80�, field of view of 192 �
192 � 105 mm, 64 � 64 matrix, 35 slices, and GRAPPA acceleration

factor of 2.

F IGURE 1 (ai) Participants performed three runs in the MRI scanner. Each run consisted of 8 blocks of the task with 30 trials per block, of which
7 were switch trials. (ii). On the first trial and every switch trial, the participant was first presented with a slide indicating where their attention should
be directed (red squares and red fixation cross, 0.5 s). They were then presented with flanker images (four pairs of left and right stimuli, same stimuli
category per row) and a red fixation cross presented at the level where their attention should be directed (Flankers, 4 s). This was followed by a target
slide, where a probe image replaced the red fixation cross, and participants performed a simple binary-discrimination task, by matching the probe to
one of the flanker stimuli according to which of the flankers was most similar to the target (1.5 s). Stay trials followed the same pattern with the
difference that after the target slide, the nonrelevant flankers appeared on the screen alongside a red fixation cross warning the participant of the
subsequent appearance of a new target slide. (iii) The combinations of dimensional levels used to define the parameters of each task block with the
corresponding colour schemes represented to the right. Trial predictability was modulated along the following three dimensions: the frequency of
occurrence of switch events (sequential predictability), the category of the incoming stimuli (perceptual predictability), and the location of the new
relevant flanker images (spatial predictability). The order of the blocks was randomised for every run and participant.

4 KURTIN ET AL.
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2.6 | fMRI preprocessing

The fMRI Expert Analysis Tool (FEAT, Version 6.00) from the FMRIB's

Software Library (FSL) (Jenkinson et al., 2012; Smith, 2004) was

employed for the preprocessing and analysis of the fMRI data.

FMRIB's Linear Image Registration Tool (Jenkinson et al., 2002;

Jenkinson et al., 2012) was used to register the extracted brain tissue

(Smith et al., 2012) to the Montreal Neurological Institute (MNI) stan-

dard atlas. Head motion was estimated using FSL motion outliers

through DVARS (the spatial root mean square of the data after tem-

poral differencing) (Power et al., 2012). No participants met criterion

for exclusion due to excessive motion (DVARS >50 in more than 20%

of the volumes).

Motion-correction of the images was performed with MCFLIRT

(Jenkinson et al., 2002), and spatially smoothed with a 5 mm Gaussian

kernel filter. A temporal high-pass filter with a cut-off of 100 s

(Gaussian-weighted least-squares straight line fitting) was applied to

remove low frequency artefacts. The EPI sequences were registered

to the MNI space using the T1-weighted images as intermediate by

first carrying boundary-based registration (Greve & Fischl, 2009) to

the main structural image followed by affine registration to the stan-

dard brain space (Jenkinson et al., 2012; Jenkinson & Smith, 2001).

2.7 | fMRI task analysis

2.7.1 | Task modelling

FEAT was used to analyse the preprocessed fMRI data. General linear

models (GLMs) were constructed with regressors corresponding to

task blocks (all trials included in a block) and switch trials (only trials

where new rules were presented) for each of the conditions tested

(the eight combinations of dimensions). Thus, 16 regressors of interest

were fitted into each subject-level GLM. The task regressors were

modelled by convolving a double-gamma haemodynamic response

function (HRF) with a boxcar kernel.

Movement-related noise was accounted for by adding 24 motion

regressors (translation and rotation in three directions, the square of

the six motion parameters and their temporal derivatives) to the

design matrix. Additional regressors of no interest were added to

the GLM as nuisance regressors and used for censoring of motion

outliers (as estimated through the fsl_motion_outliers tool using

DVARS with a threshold of 50%).

The following contrasts of interest were generated: all task blocks

(“Task > Rest”) and all switch events (“Switch > Rest”). A second-level

analysis using a fixed effects model was performed to estimate each

subject's mean response across the three runs. This was done by forc-

ing the random effects variance to zero in FMRIB's Local Analysis of

Mixed Effects (FLAME) (Beckmann et al., 2003; Woolrich et al., 2004)

for each subject-level contrast. The resulting contrast values and vari-

ances were fed into a third-level analysis to combine data from all par-

ticipants for the relevant contrasts using FLAME 1 (Beckmann

et al., 2003; Woolrich et al., 2004). A Gaussian random-field based

cluster inference (threshold of z > 3.1 and cluster-correction signifi-

cance threshold of p < .05) was applied to threshold the final Z statis-

tical images.

2.7.2 | Switch dimension modelling

GLMs were constructed with regressors corresponding to either switch

or stay trials for each of the conditions tested. Eight regressors of interest

were fitted into each subject-level GLM. The task regressors were mod-

elled by convolving a double-gamma HRF with a boxcar kernel.

Movement-related noise was accounted for by adding 24 motion regres-

sors to the design matrix. Contrasts of interest for each dimension

were generated. The contrasts were “Sequentially predictable >

Unpredictable,” “Perceptually predictable > Unpredictable,” and “Spatially
predictable > Unpredictable” and their converses.

A second-level analysis using a fixed effects model was per-

formed to estimate each subject's mean response across the three

runs. This was done by forcing the random effects variance to zero in

FLAME (Beckmann et al., 2003; Woolrich et al., 2004) for each

subject-level contrast. The resulting contrast values and variances

were fed into a third-level analysis to combine data from all partici-

pants for the relevant contrasts using FLAME. The resulting Z statisti-

cal images were thresholded using Gaussian random-field cluster

inference (initial voxel-level threshold of z > 3.1 and cluster-correction

at p < .05).

2.7.3 | Parcellation of activity maps

For each contrast from task and switch dimension modelling, voxels

showing significant activity were parcellated into regions of interest

(ROIs) using a three-dimensional watershed algorithm from the Func-

tion and Structural Integration of Neuroimages (Fusion-WS) toolbox

(Daws et al., 2022). The algorithm works by inverting and ranking the

input activation map, which creates a topographical representation

with peak voxels at the bottom of a “valley.” These valleys are then

“flooded,” starting with a radius of five voxels. Valleys are continu-

ously flooded at a steady rate, with “water” filling the basins from the

bottom, that is, the lowest-ranked voxel. Each voxel can have one of

the following outcomes as flooding progresses: first, if a voxel is

within the radius of the voxel at the lowest point in the basin, they

are assigned the same label. Second, if a voxel has no neighbours, it is

assigned a unique label. Third, if a voxel has multiple neighbours, a

“winner takes all” approach is used to label to a voxel. Finally, if neigh-

bouring labels are below a merge threshold of 100 voxels, they are

merged. All labelled basins can then be considered parcellated regions

from the continuous activity map.

The watershed algorithm's “label to table” function then assigns

structural and functional labels to the regions. For example, if a region

is predominantly in the left insula as defined by the anatomical auto-

matic labelling atlas (Yeo et al., 2011), it will be assigned that label, as

well as the label of ventral attention network, since the left insula is

KURTIN ET AL. 5
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within the Yeo et al-defined ventral attention network. Thus, the con-

tinuous activity map is parcellated, with regions ascribed an atlas-

defined functional and anatomical labels.

2.7.4 | Computing mutual information functional
connectivity

We used mutual information as a non-parametric assessment of

dependence between two signals, which serves as a measure of func-

tional connectivity (Afshin-Pour et al., 2011; Lizier et al., 2011;

Vergara et al., 2017; Wang et al., 2015). Mutual information functional

connectivity (MiFC) has an advantage over parametric measures of

pairwise connectivity, such as Pearson correlations, as it captures non-

linear, causal relationships between two regions (Wang et al., 2015).

For each participant, for each run, the 100-parcel, 17-network Schae-

fer atlas (Schaefer et al., 2018; Yeo et al., 2011) was registered to par-

ticipant space, and BOLD timeseries were extracted from each region.

The timeseries were z-scored to centre mean 0 and ±1 SD. To

account for the lag between task conditions and haemodynamic

response, we shifted the timeseries forward 10 s (five volumes). We

also computed results for the timeseries shifted forward 8 and 12 s

(four and six frames, respectively) to ensure results were not con-

founded by the method of accounting for the HRF. We observed that

when the timeseries is shifted forward 8 or 12 s the results were in

line with those described in this work (Supplementary Material Fig-

ures 2 and 3). The pairwise mutual information for all ROIs was com-

puted using algorithms from Peng et al. (2005), which enables the

computation of mutual information between continuous signals.

Mutual information captures how well the state of one variable

informs the state of another, that is, how observing one

variable reduces the entropy of another. Entropy represents the

“uncertainty” or “information” contained in an event, where the more

probable/predictable an event is, the lower its entropy. A typical

example can be found in a coin toss—given the random (i.e., highly

uncertain) nature of a coin toss, the entropy of the outcome of a coin

toss is maximal. Another example can be found in fMRI data, in the

entropy of observing an increase in the magnitude of the BOLD signal

in a brain region—for example, the posterior cingulate cortex (PCC).

One way to reduce the entropy of such an event would be to collect

fMRI data during a resting state study. Therefore, the predictability of

PCC activity would be contingent on whether data were collected

during a particular condition. This is considered the conditional

entropy, that is, the entropy that an event will occur given a particular

condition. Additional variables and the information they provide can

be included; for example, knowing the presence and amount of

motion artefacts also reduces in uncertainty about whether the activ-

ity in the PCC has increased. The joint entropy of observing activity in

the PCC can thus be the product of considering the conditional

entropy of both the condition in which data were collected, and the

motion of participants during data collection. Mutual information is

computed from both the joint and conditional entropy and conveys

whether observing the condition of one variable reduces the uncer-

tainty (entropy) in another variable (Figure 2). In the context of this

work, we compute the mutual information of two regional timeseries

to capture how well observing the state of one region predicts the

state of another region.

Mutual information for continuous variables x and y (as applied

here, x and y are timeseries of BOLD intensity from two different

regions) is canonically defined as

I x;yð Þ¼
ð ð

p x,yð Þ log p x,yð Þ
p xð Þp yð Þdxdy, ð1Þ

where p(x), p(y), and p(x,y) are probabilistic density functions (Afshin-

Pour et al., 2011; Peng et al., 2005; Wang et al., 2015). Because x and

y have a limited number of samples, Peng et al. used a kernel density

estimation in line with previous work (Kwak & Choi, 2002) to approxi-

mate I(x;y) as bp xð Þ in the following manner:

bp xð Þ¼ 1
N

XN
i¼1

δ x�x ið Þ,h
� �

: ð2Þ

In Equation (2), δ :ð Þ is a Gaussian kernel density window function,

xi is the ith sample, and h is the window width, which scales with x. It

is necessary that h scales with x, as one of the conditions for generat-

ing a density estimation is that the probability of the occurrence of

x out of the total population equals 1—thus, as the size of x increases,

so too must h (Sneller, 2017).

A Gaussian kernel density means that bp xð Þ can be computed using

δ z,hð Þ¼ exp �zT
P�1z

2h2

 !
= 2πð Þd2hd

X��� ���1=2g,�
ð3Þ

where z = x-x(i),
P

is the covariance of z, and d=2 (for the bivariate

variables x and y). When d=2, as is our case, δ :ð Þ Equation (2) returns

F IGURE 2 Depiction of the mutual information of the two
variables X and Y. H(X) or H(Y) is the (marginal) entropy of each
variable, whereas H(XjY) or H(YjX) is the conditional entropy (the
entropy that X will occur given Y). The area where the conditional

entropies overlap, in green, is the joint entropy (i.e., likelihood of co-
occurrence) of each variable. The mutual information of X and Y is
computed as the joint entropy of X and Y minus the conditional
entropies of X and Y given Y and X, respectively.
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the density estimation bp xð Þ, of the bivariate variable (x,y), p(x,y), which

is also the joint density of x and y. After computing the joint probabil-

ity distribution using Equation (2), we then computed the mutual

information between variables x and y in Equation (1). Computing the

pairwise mutual information among all timeseries generated a 100-by-

100 miFC matrix, where each cell was valued between 0 (indicating

the timeseries were not related) and 1 (indicating an entirely depen-

dent relationship between timeseries).

2.7.5 | Within- and cross-participant reliability
in miFC

We used the intraclass correlation coefficient (ICC) to evaluate the

reliability in miFC per region within and across participants. In line

with Koo and Li (2016), we computed the ICC for a two-way model,

with absolute agreement and mean ratings. ICCs were computed for

each region across runs to assess within-subject reliability, and ICCs

for each region across all participants and runs were computed to

assess across-subject reliability in miFC. The ICC score for the miFC

for all ROIs across the three runs showed good reliability within sub-

jects (mean = 0.83, std = ±0.11) (Supplementary Material Figure 1ai);

however, one participant exhibited noticeably less reliability in miFC

for all regions across runs (mean = 0.52, std = ±0.09), and was

excluded from further miFC analyses. After removal, the mean within-

subject reliability improved (mean = 0.85, std = ±0.09) across all sub-

jects (n = 22). The reliability of all regions across participants per run

was moderate (mean = 0.60, std = ±0.07) (Supplementary Material

Figure 1bi). The lower interindividual reliability as compared to within

individual reliability is expected (McGonigle, 2012; Savoy, 2006).

2.7.6 | Assessing the effect of switch dimensions
on miFC

We evaluated the effect of switch dimensions on miFC by first com-

puting the average miFC among all ROIs in the 100-parcel,

17-network Schaefer atlas (Schaefer et al., 2018) across runs for each

block, for each participant (as in Lizier et al., 2011). We employed the

Schaefer atlas because Schaefer-defined regions are associated with

one out of the 7 or 17 Yeo et al. resting state networks. This offers a

common functional network to relate results between the activity-

based, watershed-defined ROIs and the atlas-defined ROIs. Put

another way, if a region from one network was significantly influenced

by a switch dimension as determined by the activity-based analyses,

and there is a substantial influence of the same switch dimension in

the same network's connectivity as defined by miFC analyses, then

we could more confidently conclude there is a relationship between

that network and switch dimension.

We used a full factorial 2 � 2 � 2 repeated measures ANOVA

with the three predictability dimensions as factors (sequential, percep-

tual, and spatial) to assess whether there was an effect of switch

dimensions on miFC. Results were FDR-corrected for the number of

comparisons in miFC. Directions of effects were computed using Wil-

coxon sign-rank tests of miFC between the two difficulty levels per

dimension.

We then investigated how the significant changes in pairwise

miFC were distributed across functional networks. We grouped

regions according to the functional network in which they reside and

defined each network as a node. Nodes were connected by edges if

the miFC between the nodes had a significant change in miFC due to

sequential or perceptual predictability. For example, the precuneus

and inferior parietal lobule are both a part of the DMN network/node,

and a significant change in miFC between the inferior parietal lobule

and the precuneus or motor cortex would count as a within- or

between-network change in connectivity, or edge. Edges were not

counted twice, for example, a significant change in miFC between the

inferior parietal lobule and precuneus would only be counted once.

We also computed the total number of edges that emanated from

each node, referred to as the node's degree. Edges were weighted by

the number of regions within each network showing increases in

miFC. For example, if two regions from the control network have sig-

nificantly increased miFC to two regions within the DMN, the edge

weight between the control network and DMN would be 2.

2.8 | Statistical analyses

Statistical analyses were performed using MATLAB 2021a. Raw accu-

racy, defined as the number of correct responses versus misses and

incorrect responses, and correct raw RTs from correct switch and stay

trials were computed, normalized through rank inverse transform as in

Jolly et al. (2020), and analysed using linear mixed effects models

(LMEM). The influence of block and trial as fixed effects on correct,

normalised RT were assessed using LMEM with a normal distribution

and subjects as random effects. The influence of each switch dimen-

sion and the interactive effect of switch dimension and trial type

(switch or stay) on RT was assessed with an LMEM where each

dimension was a fixed effect, using a normal distribution, and subjects

as random effects. We computed the accuracy for switch and stay tri-

als and assessed the influence of block and trial type using an LMEM

with a binomial distribution, with block and trial type as fixed effects

and subject as random effects. The influence of each switch dimen-

sion on accuracy, as well as the interactive effect of switch dimension

and trial type, was assessed with an LMEM with a binomial distribu-

tion, where each dimension was a fixed effect, and subjects were

included as random effects. Significance for all models was set at

p < .05 (Figure 3).

3 | RESULTS

3.1 | Behavioural performance

There was a significant, main effect of trial type on RT (F(1,5855)

= 151, p = 3.4e-22) where switch trials showed longer RT than stay

KURTIN ET AL. 7
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trials (Figure 4aii). There was not a significant main effect of block (F

(7,5855) = 0.85, p = .55) or an interactive effect of block and trial (F

(7,5867) = 0.41, p = .90) on RT. There was no significant effect of

sequential (F(1,5867) = 1.3, p = .25), perceptual (F(1,5867) = 0.15,

p = .69), or spatial (F(1,5867) = 0.32, p = .57) predictability on RT,

nor were there any interactive effects of sequential (F(1,5867) = 0.52,

p = .47), spatial (F(1,5867) = 0.35, p = .55), or perceptual predictabil-

ity (F(1,5867) = 0.18, p = .67), and trial type on RT.

Participants performed the task well, and accuracy was signifi-

cantly above chance (t(35998) = 32, p = 5.7e-223, D = 0.34). There

was not a significant main effect of block (F(7,17,984) = 1.8, p = .07)

or trial type (F(1,17,984) = 0.89, p = .34) or an interactive effect

between block and trial type (F(7,17,984) = 0.78, p = .61) on accuracy

(Figure 4b). There was a significant main effect of sequential predict-

ability (F(1,17,996) = 4.6, p = .03) on accuracy, with higher accuracy

during more sequentially predictable trials. There were no significant

effects of spatial (F(1,17,996) = 0.49, p = .48) or perceptual predict-

ability (F(1,17,996) = 0.49, p = .48), and no interactive effects of

sequential (F(1,17,996) = 1.8, p = .18), spatial (F(1,7996) = 2.2,

p = .14), or perceptual predictability (F(1,17,996) = 0.10, p = .78) and

trial type on accuracy.

Therefore, the task produced the expected effects on RTs whilst

maintaining a suitable level of accuracy. Sequential predictability was

the only switch dimension that showed a significant effect on task

performance.

3.2 | Switching recruited broad activity patterns
that included resting state networks

The contrast “Task > Rest” showed regions of activity in the visual A,

somatomotor B, dorsal attention A and B, salience/ventral

attention B, limbic B, control A and B networks (Figure 5ai). One

region was in the right thalamus and was not within any Schaefer net-

works. The contrast “Switch > Stay” rendered a broad activation pat-

tern (Figure 5aii), with activity observed in visual B, somatomotor A

and B, dorsal attention A and B, salience/ventral attention A, limbic B,

default A and C networks (Figure 5bii). Only the “Sequentially
Predictable > Sequentially Unpredictable” contrast showed significant

differences within a switch dimension (Figure 5aiii), with regions

active within somatomotor A and salience/ventral attention A net-

works (Figure 5biii).

F IGURE 3 Schematic of analyses pipeline for behavioural and neuroimaging data.

8 KURTIN ET AL.
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While the task showed expected activation within the MDC, the

“Switch > Stay” contrast revealed that the more cognitively demand-

ing switch condition recruited a broader activation pattern than the

“Task > Rest” contrast. The “Switch > Stay” map not only included

expected MDC activation, but also included posterior and medial

regions within the DMN. We also observed that the “Sequentially
Predictable > Sequentially Unpredictable” contrast showed significant

changes in activity in somatomotor and attentional networks, but no

other dimension-specific contrasts showed significant changes in the

magnitude of the BOLD signal.

F IGURE 4 (ai) Violin plots of normalized reaction time (RT) and (bi) percent accuracy per block. The top and bottom edges of the boxes
represent the 25th and 75th percentiles, with the median shown by the horizontal black line. Extension of the whiskers indicates 1.5 the
interquartile range, and outlier performance is indicated by individual data points. A kernel density estimate of the data provides the edges to the
violin plot. The grey dashed line shows chance performance. The tables below the x-axis indicate the level of each switch dimension per block; Se,
sequential predictability; P, perceptual predictability; Sp, spatial predictability. Distributions of (bii). Normalized RT and (bii) percent accuracy for
switch and stay trials, with lines indicating the mean of each distribution. * indicates significant difference where p < .05.
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3.3 | Sequential and perceptual predictability
influence miFC

In the previous section, we characterised brain activity in response to

task and observed differences in brain activity in response to switch

or sequentially predicable trials. This section explores whether there

are differences in functional connectivity in response to switch dimen-

sions. MiFC is employed as a metric of functional connectivity, since

mutual information captures the nonlinear dependence between two

regions by quantifying how much information is shared between

regions (Li, 2022; Shannon, 1948).

We observed significant changes in miFC due to sequential

(Figure 6a) and perceptual (Figure 6b) predictability, but not spatial

predictability. There were 182 pairs of regions with significant effects

of sequential predictability on miFC, of which 98% showed that

increases in sequential predictability were associated with increases in

miFC (Supplementary Material Table 1). In contrast, 7 out of

10 (i.e., 70%) of the significant effects of perceptual predictability

showed a negative relationship between perceptual predictability and

miFC (Supplementary Material Table 2).

We found that higher sequential predictability increased miFC

between the DMN and subnetworks within the MDC (somatomotor,

F IGURE 5 Whole-brain activation masks for the contrasts (ai) “Task > Rest” and “Rest > Task,” (ii) “Switch > Stay” and “Stay > Switch,” and
(iii). “Sequentially Predictable > Sequentially Unpredictable.” Activity maps from the “Task > Rest,” “Switch > Stay,” and “Sequentially
Predictable > Sequentially Unpredictable” contrasts are in warm colours, whereas “Rest > Task,” “Stay > Switch,” and “Sequentially
Unpredictable > Sequentially Predictable” are in cool colours. Results from the voxelwise analysis were cluster corrected (Z > 3.1, and p < .05) and
were overlaid on a smoothed MNI152 brain template using MRIcroGL. Activation maps for the contrasts (bi) “Task > Rest,” (ii) “Switch > Stay,”
and (iii). “Sequentially predictable trials > sequentially unpredictable trials” were parcellated by the Fusion-WS toolbox (Daws et al., 2022) and
regions of interest (ROIs) were coloured according to the Yeo 17 network in which they reside.
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F IGURE 6 Legend on next page.
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attention, and control, and visual networks) (Figure 6aii)

(Supplementary Material Table 3). The somatomotor networks, fol-

lowed closely by the dorsal attention networks, showed the greatest

increase in degree due to higher sequential predictability (degree of

91 and 81, respectively) (Supplementary Material Table 4). These

increases in degree largely connected the somatomotor and dorsal

attention networks to each other (Figure 6aii,iii). Other networks

showing notable increases in degree due to higher sequential predict-

ability included the DMN, control, visual, and salience/ventral atten-

tion networks (Supplementary Material Table 4). The DMN shows

changes in regions within DMN A, B, and C networks, showing

sequential predictability influences miFC in anterior, medial, and pos-

terior portions of the DMN.

In addition, there was a generalised increase in cross-network

degree (Figure 6aii,iii).

Shifting focus from a network-level perspective towards a

regional focus, we note that the majority (63%) of sequential

predictability-related changes in miFC in DMN regions are within the

parahippocampal cortex (PHC). The PHC showed increased miFC to

MDC regions including the anterior insula, iPS, and dlPFC. Another

DMN region, the ventral PFC, also showed increased miFC to a region

within the MDC, the pre-SMA. Thus, miFC between regions within

the MDC and DMN showed a positive relationship with sequential

predictability.

Between-network changes in miFC due to perceptual predictability

were less pronounced, but involved decreases in miFC between the

MDC and DMN when perceptual predictability increased (Figure 6bii)

(Supplementary Material Table 5). The largest decreases in degree were

seen in the DMN, visual, and somatomotor networks, which all

decreased their degree by 5 (Supplementary Material Table 6). These

decreases in degree largely separated the visual network from the

somatomotor, DMN, and control network (Figure 6aii,iii).

In summary, sequential and perceptual predictability differentially

influenced connectivity, where increases in sequential predictability

recruited connectivity between somatomotor, control, DMN, and

other networks, whereas increases in perceptual predictability

reduced connections among the same networks.

4 | DISCUSSION

Here, we report results of a novel fMRI switching task where imaging

results showed concurrent activation of the DMN and MDC during

switch trials as compared to stay trials. This concomitant activation

inverts the stereotypical association of task difficulty with MDC and

DMN network activity (Buckner & DiNicola, 2019; Fox et al., 2005;

Fransson, 2005). Early evidence from event-related fMRI studies

strongly supported a “task-negative” activation profile for the DMN,

with the popular interpretation being that this reflected a role in inter-

nally generated cognition and disengagement from external demands

(Raichle & Snyder, 2007). Numerous experiments reported deactiva-

tion of the DMN during task relative to rest, and the level of

deactivation has been observed to scale with the general cognitive

difficulty of the task (Mayer et al., 2010; McKiernan et al., 2003). Fur-

ther evidence has come from studies where higher DMN correlation

was observed during rest than task (Fox et al., 2005; Raichle &

Snyder, 2007).

The last few years have seen a diversification in perspectives on

the functional role of the DMN in cognition (Buckner &

DiNicola, 2019; Margulies & Smallwood, 2017). For example, it has

been reported that the DMN reconfigures its internal functional con-

nectivity state when a person is engaged in a task (Vatansever

et al., 2015; Vatansever et al., 2016), and modulates its activity

according to experimental demands (Koshino et al., 2011, 2014;

Spreng & Andrews-Hanna, 2015). Most relevantly, activation of

regions in the DMN have been reported to increase when switches

are performed between distinct tasks (Crittenden et al., 2015; Smith

et al., 2018). More recent evidence has suggested that the DMN and

the MDC serve complementary roles in paradigms where multi-step

decision making takes place, where the DMN tracks shifts between

tasks whereas the MDC primarily engages in the steps necessary to

complete each task (Wen et al., 2020). Our results accord with this

complementary contextualization of the DMN and MDC. We show

DMN activity during switch trials as compared to stay trials Moreover,

we show increases in miFC between the MDC and DMN during

sequentially predictable switches, indicating that the DMN may have

a role in anticipating when a task switch will occur. This is also sup-

ported by work showing that as a task becomes automated through

practice (e.g., when applying learned rules), there is a concomitant

increase in event related DMN activity (Hampshire et al., 2016;

Hampshire et al., 2019; Vatansever et al., 2017). Automation implies

the order of steps needed to complete a task are predictable, and the

increase in miFC between the DMN and MDC during sequentially

predictable switches supports the possibility that the brain may recon-

figure its connectivity to generate a schema of an upcoming task

switch. Indeed, research has showed co-activation of the DMN and

F IGURE 6 There were significant effects of (a) sequential (b) and perceptual predictability on mutual information functional connectivity
(miFC). Regions whose miFC was significantly influenced by (ai) sequential and (bi) perceptual predictability after FDR correction for multiple

comparisons were connected by edges. The edge's width was scaled to the effect size (η2). The first region out of the pair determines the colour
of the connection, and colour is assigned according to the network the first region is in. Regions with significant changes in miFC due to (aii)
sequential and (bii) perceptual predictability are grouped by network, where each node represents a network. The edges are scaled with their
weight, which captures the proportion of connections between two connected network and the total number of edges. To aid visualization of
networks with miFC influenced by (aiii) sequential (biii) perceptual predictability, we created graphs that grouped subnetworks together. For
example, control networks A, B, and C were consolidated into one control network. Networks with a degree of 0 or within-network increased in
miFC are not included in the network connectivity graphs.
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MDC regions during predictable task sequences (Bor et al., 2003;

Dreher et al., 2002). Work by Bor et al. (2003) investigated the neural

processes associated with predictable and unpredictable task

sequences and showed unique increases in the magnitude of the

BOLD signal in several DMN (PHC, prefrontal cortex) and task-active

(temporal, dlPFC, lateral prefrontal cortex, and inferior parietal lobule)

regions that also showed increased miFC due to increased sequential

predictability. Bor et al. (2003) suggested these regions subserve a

working memory strategy encouraged by the predictable task

sequences referred to as “chunking,” which is when task-relevant

material is cognitively reorganised. Though effortful, the organisation

of task-relevant material into accessible structures substantially

improves working memory capacity (Thalmann et al., 2019). Chunking

actively organises task-relevant material to facilitate task perfor-

mance; similarly, MDC and DMN regions may work in a coordinated

manner when predictable task structures can be leveraged to gener-

ate schema of the upcoming task switch and thus enhance cognitive

performance. This aligns with the notion of a many-to-many func-

tional mapping between cognitive processes and functional regions of

the brain (Lorenz et al., 2018; Soreq et al., 2019), and how the

increased cognitive load of switching requires the optimisation of neu-

ral processes. This switch-tracking optimisation may manifest as a net-

work that recruits regions from core DMN and MDC regions.

Though work by Bor et al. (2003) and others (Wen et al., 2020)

corroborates our suggestion that regions from the DMN and MDC

may coordinate to generate a schema of upcoming task switches,

what roles could the DMN and MDC regions play in a switch-tracking

network? We observed the most sensitive region within the DMN to

changes in sequential predictability was the PHC, which composed

over half of the significant changes in miFC in DMN regions due to

sequential predictability. The PHC is associated with contextual track-

ing and episodic memory (Aminoff et al., 2013), and in turn, temporal

tracking and maintaining temporal context (Davachi &

DuBrow, 2015). A review of studies by Wang and Diana (2017) char-

acterising the neural correlates of temporal context observed that the

PHC is especially recruited during shorter block durations similar to

those used in this work (Konishi et al., 2002; St. Jacques et al., 2008).

This corroborates the potential role of the PHC in tracking the tempo-

ral context during sequentially, but not spatially or perceptually pre-

dictable, switches.

If the PHC is responsible for tracking when a switch will occur,

what could be the role of the MDC? The MDC coordinates planning

to achieve task-related goals (Duncan, 2010), and has been shown to

reconfigure to accommodate shifting task demands (Woolgar

et al., 2011). If DMN regions (particularly the PHC) anticipate an

upcoming switch, MDC regions may prepare cognitive resources away

from recalling the current set of flankers and prepare to encode fea-

tures of upcoming, new flankers. This suggestion is supported by the

inclusion of the iPS and pre-SMA in MDC regions with miFC affected

by sequential predictability, as previous work has shown these regions

are sensitive to encoding new rule presentations (Dumontheil

et al., 2011). Moreover, all MDC regions with miFC significantly influ-

enced by sequential predictability have been shown to encode task-

relevant stimuli as required by the task employed in this work (Haynes

et al., 2007; Li et al., 2007).

The involvement of both the iPS and pre-SMA is notable. Previ-

ous research implicated the iPS and pre-SMA in focusing attention

with respect to an anticipated, upcoming task, a process known as

temporal orienting (Coull et al., 2011; Coull & Nobre, 1998). The role

of the iPS and pre-SMA in temporal orienting is heightened when an

upcoming task is temporally predictable (Berchicci et al., 2020; Coull

et al., 2016). Moreover, work by Periáñez et al. (2022) showed switch

trials related to an increased magnitude of the BOLD signal in the iPS,

and when continuous theta burst transcranial magnetic stimulation

(cTMS) was delivered to the iPS switch RTs increased. Evidence sug-

gests that cTMS decreases local cortical excitability (Huang et al.,

2009; Huang et al., 2011), and therefore suggests that iPS activity is

causally linked to switching performance (Periáñez et al., 2022).

The pre-SMA and iPS are part of the somatomotor and control

networks, respectively, both of which are in the top three networks

exhibiting the greatest proportional change in miFC as a result of

increased sequential predictability (Supplementary Material Table 3),

with increased miFC from both networks to the DMN. Thus, our work

further reinforces the association of the iPS and SMA with temporal

orienting, and that the functional roles associated with MDC and

DMN regions are related to the neural processes of generating a task

schema. Results from this work suggest that these regions transiently

shift from their typical network configurations during sequentially pre-

dictable switches and coordinate a preparatory response to an

upcoming task switch.

This dimension-specific, many-to-many mapping of brain regions

not only supports the likelihood of a switch-tracking network, but also

accords with the differing relationships between control and visual

networks due to increased perceptual predictability. As perceptual

predictability increases, miFC between control and visual networks

decreases, in contrast to the increased miFC between the control and

visual networks due to higher sequential predictability. The dissocia-

tion between control and visual networks scaling with perceptual pre-

dictability is supported by work from Woolgar et al. (2011). They

showed that increases in perceptual difficulty led to increases/

decreases in MDC/visual activity, respectively. The authors reasoned

that when task conditions are easy visual stimuli are represented in

the visual cortex, whereas more perceptually difficult conditions shifts

the coding of visual stimuli to more cognitively oriented (i.e., MDC)

regions, resulting in increased MDC activity (Woolgar et al., 2011).

Applying this rationale to our results indicates that perceptually pre-

dictable switches do not need the additional cognitive resources

recruited from the cognitive networks during less predictable

switches, resulting in the decreased miFC between the visual and cog-

nitive networks.

A caveat when comparing our results to the work of Woolgar

et al. (2011) and other task-switching studies is that the tasks used

here did not use classic task-switching designs. Instead, they built on

more contemporary IBL paradigms (Cole et al., 2010, 2013; Cole

et al., 2016; Hampshire et al., 2016; Hampshire et al., 2019; Ruge &

Wolfensteller, 2015). These differ insofar as the switching of rules is

KURTIN ET AL. 13

 10970193, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/hbm

.26430 by M
PI 374 H

um
an C

ognitive and B
rain Sciences, W

iley O
nline L

ibrary on [24/07/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



driven by the presentation of an instruction slide with explicit pictorial

depiction of the rules as opposed to a cue initializing a switch

between alternative mappings that are coded within WM. However,

our IBL task is analogous to this design in several key ways. The task

program must be updated in response to the instruction cue, and the

reduction in RT on trials after new rules were presented relative to

when rules remained the same is a characteristic feature of switching.

Furthermore, we argue that generalisation of results across different

task conditions provides stronger information for understanding brain

functions.

A further caveat is the heterogeneity in the number of regions

contributing to each functional network (mean = 6, STD = 2,

min = 2, max = 10). Because some networks are composed of a

greater number of regions, it is possible that this may skew the likeli-

hood of the involvement of this network. However, we show that the

two networks with greatest changes in degree (the somatomotor and

dorsal attention networks), are not the two largest networks (the

DMN and salience/ventral attention network). This indicates that the

functional role of networks (and the regions that compose them),

rather than the number of times they are represented, drives their

involvement during sequentially predictable switches.

A final limitation of our study could be the simple experimental

design that makes inferences to real-world situations challenging.

However, the simple design allowed disentangling the effects of dif-

ferent task dimensions, and it is a necessary first step to better under-

stand the role of the networks during switching. A straightforward

next step is to test whether our results hold in a naturalistic switching

task (e.g., movie viewing or virtual reality) where real-world relevance

could be more directly inferred (Finn, 2021). It would also be informa-

tive to extend the current paradigm to one where there is a deeper

structure to the task schema that is learnt progressively, in order to

study the shifting role of MDC and DMN regions across the learning

curve. Such a task was employed by Daws et al. (2020), which created

a self-ordered-search task that allowed participants to manage how

they split their time between two cognitive tasks. The authors showed

that high performers exhibited more structured task engagement, as

well as increased DMN activity during easier, repetitive trials. The uti-

lisation of the DMN during predictable trials presumably freed up cog-

nitive resources for large executive shifts, which were marked by

increased frontoparietal engagement, and was potentially mediated

by observed increases in connectivity between frontoparietal and sub-

cortical regions (Daws et al., 2020). Additional exploration of the link

between adaptive network reconfiguration and behavioural perfor-

mance may inform how the ability to learn and predict the sequential

structure of events translates to one's ability to successfully navigate

complex daily life. Future work may examine whether disruption of

the network dynamics associated with sequential predictability is evi-

dent in clinical populations who are prone to executive deficits, such

as people with schizophrenia or bipolar disorder (Ancín et al., 2013).

In summary, our results further extend the known roles of the

MDC and DMN, and collectively indicate a more active role for

regions included in the DMN during task performance than was com-

monly believed.
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