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Abstract: Accurate error estimation is crucial in model order reduction, both to obtain
small reduced-order models and to certify their accuracy when deployed in downstream
applications such as digital twins. In existing a posteriori error estimation approaches,
knowledge about the time integration scheme is mandatory, e.g., the residual-based error
estimators proposed for the reduced basis method. This poses a challenge when automatic
ordinary differential equation solver libraries are used to perform the time integration. To
address this, we present a data-enhanced approach for a posteriori error estimation. Our
new formulation enables residual-based error estimators to be independent of any time
integration method. To achieve this, we introduce a corrected reduced-order model which
takes into account a data-driven closure term for improved accuracy. The closure term,
subject to mild assumptions, is related to the local truncation error of the corresponding
time integration scheme. We propose efficient computational schemes for approximating
the closure term, at the cost of a modest amount of training data. Furthermore, the new
error estimator is incorporated within a greedy process to obtain parametric reduced-order
models. Numerical results on three different systems show the accuracy of the proposed
error estimation approach and its ability to produce ROMs that generalize well.

Keywords: A posteriori error estimation, Model order reduction, Reduced basis method,
ODE solvers

Novelty statement:

• We present a new a posteriori error estimation framework for nonlinear dynamical
systems, which is independent of the ordinary differential equation solver used.

• Our approach imposes a simpler, user-defined time integration scheme on the high-
fidelity snapshots data and learns a parametrized closure term to recover the true
residual needed for error estimation.

• We numerically demonstrate the approximability of the data-driven closure term
and propose efficient algorithms for its computation.

• The proposed methodology eliminates one of the main intrusive elements present
in the reduced basis method, viz., the knowledge of the time integration scheme; it
further paves way for the reduced basis method to become better integrated within
existing computational software packages such as matlab® or Python.
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1. Introduction

Model order reduction (MOR) has become an important enabling technology that facilitates the rapid
and reliable simulations of large-scale systems in a number of scientific disciplines. The central goal
of MOR is to replace an expensive-to-compute full-order model (FOM) with a surrogate, called the
reduced-order model (ROM). The ROM has fewer degrees of freedom which enables real-time simula-
tion – an important requirement in recent developments such as digital twins [34,40]. We refer to the
recent books [5–7] for a detailed background and the state-of-the-art in MOR literature.

In this work, we are interested in obtaining ROMs for parametric, nonlinear dynamical systems
that arise from the numerical discretization of partial differential equations (PDEs). For such systems,
the Reduced Basis Method (RBM) [35, 46, 49] is a commonly used MOR approach. The RBM relies
on an a posteriori error estimator to perform an iterative, greedy sampling of the parameter space
to compute solution snapshots, in order to build a linear subspace that serves as an approximation
for the solution space. The FOM equations are then projected onto this subspace to obtain the final
ROM. A posteriori, residual-based error bounds/estimators are an indispensable part of the RBM;
such estimators have been proposed for a variety of system classes such as coercive and non-coercive
elliptic systems [43,48], linear parabolic systems [29], non-linear or non-affine systems [12,30,52]. While
initial development in the RBM community focused on deriving a posteriori error estimators in the
variational setting, more recent work has also focused on deriving such estimators for PDEs that are
discretized using finite volume method or the finite difference method; see [18,25,33,55,57].

1.1. Motivation

For dynamical systems, all of the above works on a posteriori error estimation assume prior knowledge
of the time integration scheme. The expression of the time integration method is needed to compute
the residual vector, which is obtained by plugging an approximate solution in the residual expression.
For instance, if a Runge-Kutta method were used, the Butcher tableau of the corresponding scheme
needs to be known. However, there are scenarios where no (or only incomplete) knowledge of the time
integration scheme is available. One such example is when automatic ordinary differential equation
(ODE) solver libraries, e.g., SUNDIALS [26, 37], ODEPACK [36], ARKODE [47] are used to perform
the time integration. Such ODE solvers are often available readily in computational software such
as matlab® (ode45, ode15s, etc.) or Python (scipy.integrate.odeint). Another popular ODE
solver library is the TS library [1] available in PETSc [3]. Typically, automatic ODE solver packages
are computationally efficient as they employ adaptive order selection (e.g., ode15s can switch between
order 1 to order 5 methods) and/or adaptive choice of the time step, which is beneficial in case the
system being considered exhibits stiffness. Moreover, much time is saved by re-using efficient and
robust software which is already available and well-maintained. Whenever automatic ODE solvers are
used, the standard RBM can no longer be used in a straightforward manner to obtain a ROM. This
is owing to the fact that the exact expression of the time integration method used within such ODE
solvers is unknown and deriving the corresponding error estimator is an open question. This serves as
the fundamental motivation for our work.

1.2. Main contributions

Our work introduces a new data-enhanced paradigm for a posteriori, residual-based error estimation
for the RBM, in the absence of any knowledge about the time integration scheme used. In addition to
the discretized system matrices, our approach only requires access to solution snapshots at different
time instances obtained from any black-box ODE solver in a library, at a small set of system parameter
samples. In our approach, we fit a (simpler) time integration scheme of our choice to the available
snapshots data. Since the time integration method we impose on the data does not coincide with
the actual scheme used to generate the data in first place, there is a mismatch or defect at each time
step. Subject to a mild assumption, this defect corresponds to the local truncation error (LTE) of the
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imposed time integration scheme. We then learn this defect term as a function of time and the system
parameters. Learning the defect using data allows us to formulate a new corrected ROM that takes
into account the LTE at each time step. Taking into account the LTE as a closure term means that
the corrected ROM can recover the solution obtained from a ROM solved by a solver from an ODE
library. We use the corrected ROM to compute a good approximation to the true residual vector at
each time step, leading to accurate estimation of the true error. The computation of the defect term is
a key element of our proposed methodology. To do this efficiently, we rely on two observations. First,
we demonstrate with numerical evidence that the defect term possesses a certain low-rank structure
in space that allows us to efficiently project it on a low-dimensional subspace. Second, if the solution
to the FOM is fairly smooth over the parameter space, then this smoothness carries over to the defect
term and it can be efficiently approximated with respect to parameter variations using a suitable
surrogate model.

1.3. Prior work

A number of recent works have sought to extend the RBM to a non-intrusive framework, mainly for
steady systems; see [14–16]. In [15] and [16] the non-intrusive reduced basis (NIRB) method makes
use of FEM solutions computed on two different meshes – one fine and one coarse – to estimate
the state error due to the ROM. A different approach is proposed in [14] that involves the empirical
interpolation method (EIM) to precompute an affine decomposition consisting of parameter-dependent
and parameter-independent quantities. More recently, the method in [31] has sought to extend the
NIRB approach to time-dependent systems. All of these methods assume no knowledge of the FOM
system matrices and rely purely on snapshots of the state variable. But, they need knowledge of
the time integration scheme used to numerically integrate the spatially discretized system. In our
new approach, we assume knowledge of the system matrices. Therefore, our approach is an intrusive
method in terms of access to the model or the system matrices. However, our approach is non-intrusive
in terms of the time integration scheme (ODE solver) used. Nevertheless, we do envisage an extension
of our method to the case when there is no access to the system matrices; this would be a subject for
future investigation.

To eliminate the dependence on the time integration scheme, our approach aims to increase the
accuracy of a user-imposed time integration method by addition of a data-driven closure term. The
problem of improving time integration accuracy is an emerging topic and has received attention in the
machine learning community [39, 45, 51]. The deep Euler method (DEM) is introduced in [51] where
the authors’ motivation is to improve the first-order accuracy of the explicit Euler time integration
scheme by a factor of η, i.e., to O(ηδt) (η � 1). They achieve this by approximating the LTE using
a feed-forward neural network (FNN). Extension of the approach to other time integration schemes
beyond the explicit Euler method are also illustrated. In the same spirit of the DEM approach, the
work [45] introduces hypersolvers, which are targeted at Neural ODEs [21]. While both DEM and
hypersolvers seek to improve the accuracy of the time integration scheme by approximating the LTE,
they differ in the assumptions made about the model. DEM assumes the model of the PDE is known
and is exact, while for hypersolvers, the model is unknown and is approximated by a separate neural
network. Our work here differs from DEM and hypersolvers in several ways. Firstly, our aim is to
obtain a corrected ROM for better error estimation whereas, in the aforementioned two methods the
aim is simply to improve the FOM accuracy during simulation. Secondly, our targets are parametric
nonlinear systems. Therefore, we want to learn the LTE for different time instances for a range of
system parameters. Both DEM and hypersolvers are limited to non-parametric systems. While either
method can potentially be extended to the parametric case, it is computationally very expensive.
Furthermore, both these methods learn a closure term which is a function of the past states. Our
approach treats the closure term as a function of time and any additional system parameters. This
allows us to take advantage of the special structure and smoothness properties of the closure term.

The rest of this paper is organized as follows. In Section 2, we present the mathematical preliminaries
of MOR and provide a short recap of the RBM along with a posteriori error estimation. We also
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Table 1.: List of FOM variables

Quantity Variable Dimension

State vector x RN

Input vector u RNI

Output vector y RNO

Initial condition x0 RN

Nonlinear vector f RN

Approximate state vector x̃ := Vx̂ RN

System matrix A RN×N

Input matrix B RN×NI

Output matrix C RNO×N

Table 2.: List of ROM variables

Quantity Variable Dimension

Left projection matrix V RN×n

Right projection matrix W RN×n

State vector x̂ Rn

Output vector ŷ RNO

Initial condition x̂0 := WTx Rn

Nonlinear vector f̂ := WTf(x̃) Rn

System matrix Â := WTAV Rn×n

Input matrix B̂ := WTB Rn×NI

Output matrix Ĉ := CV RNO×n

illustrate the pitfalls of the current error estimation approach used in RBM, through the example of
the heat equation. Section 3 contains the main contributions of this manuscript. We introduce a
user-imposed time integration scheme which incorporate the data-driven closure term and derive the a
posteriori output error estimator suited for situations where ODE solver libraries are used within the
RBM. The algorithmic aspects of the proposed approach are discussed in Section 4 while numerical
results are presented in Section 5 to support our new method. We conclude with a summary and topics
for future research in Section 6.

2. Mathematical background

Consider the following parametric system of ODEs:

d

dt
x(µ) = A(µ)x(µ) + f(x,µ) + Bu(t), x(0) = x0, (1a)

y(µ) = C(µ)x(µ). (1b)

Such systems often arise upon discretizing a PDE using numerical discretization schemes. Table 1 lists
each variable and its corresponding dimension. In subsequent discussions, we refer to (1) as the FOM.
The state vector x(µ) can be obtained for any time instance for a given parameter µ ∈ P ⊂ Rp by

Preprint. 2023-07-24



S. Chellappa, L. Feng, P. Benner: Data-enhanced error closure for MOR 5

time integration of the FOM using any desired method like Runge-Kutta methods or linear multi-step
methods. The set P denotes the parameter space and p is its dimension. The number of equations
N in (1) is often very large to ensure a high-fidelity solution of the underlying physical process. This
poses a major challenge for its numerical solution, especially for many instances of the parameter µ in
applications such as control and uncertainty quantification.

2.1. Model order reduction

Projection-based MOR techniques offer a systematic approach to obtain a ROM for (1) in the following
form:

d

dt
x̂(µ) = Â(µ)x̂(µ) + f̂(x̃,µ) + B̂u(t), x̂(0) = WTx0, (2a)

ŷ(µ) = Ĉ(µ)x̂(µ). (2b)

The above ROM is derived based on the ansatz x ≈ x̃ := Vx̂ applied to (1). The resulting over-
determined system of equations is reduced by a Petrov-Galerkin projection, leading to (2). Table 2
lists the reduced variables and their corresponding dimensions. The number of equations n in (2a) is
often much smaller than N in (1a), i.e., n� N . Therefore, the ROM can be readily used for repeated
simulations given any new values of the parameter µ. Different MOR techniques differ in how they
compute the projection matrices V,W. When V = W, it is referred to as Galerkin projection. In the
sequel, we will limit ourselves to ROMs obtained through a Galerkin projection.

Remark 1. Although (2a) is a ROM of dimension n � N , evaluating f̂(x̃,µ) involves operations
that scale with the FOM dimension N (since x̃ = Vx̂ needs to be evaluated for each time step).
Thus, a direct evaluation of (2a) may not offer any computational speedup over evaluating the FOM.
Hyperreduction techniques [4,13,17] can be used to address this issue. We employ the discrete empirical
interpolation method (DEIM) for the hyperreduction in our numerical results in Section 5.

2.2. Reduced basis method

The RBM is a greedy approach that builds a global projection matrix V to obtain a parametric ROM
for (1). Since its introduction, the RBM has been a highly successful approach to obtain ROMs for
parametric systems in a variety of applications such as process engineering [18, 56], geosciences [23],
data assimilation [24,41], uncertainty quantification [20] to name just a few.

When RBM is applied to dynamical systems, the POD-Greedy method [32] is adopted. It con-
sists of a greedy sampling in the parameter space and a compression of the time trajectory through
singular value decomposition (SVD). Algorithm 1 sketches the pseudo-code for the standard RBM
using the POD-Greedy algorithm. In Step 1, solver denotes the time integration scheme used to
solve (1) and (2). This is determined a priori by the user based on the ODE library used, e.g.
scipy.ode.integrate.

Consider a fine discretization of the parameter space P in the form of a training set Ξ := {µ1,µ2, . . . ,µNp
}

consisting of samples of the parameter µ. The POD-Greedy method starts by solving the FOM at a
randomly chosen parameter µ∗ ∈ Ξ. Performing the SVD of the solution snapshot matrix

X(µ∗) :=
[
x(t0),x(t1), . . . ,x(tK)

]
∈ RN×Nt (3)

with Nt = K + 1 yields the projection basis V. More precisely, we first obtain

X(µ∗) = Vµ∗Σµ∗(Wµ∗)T

with Vµ∗ ∈ RN×N ,Σµ∗ ∈ RN×Nt and Wµ∗ ∈ RNt×Nt . The matrix Σµ∗ is a rectangular diagonal
matrix and contains the singular values σi in the locations Σµ∗(i, i), i ∈ {1, 2, . . . ,min(N,Nt)} .
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Algorithm 1. POD-Greedy algorithm

Input: Training set Ξ, tolerance (tol), Discretized model (E,A,B,C, f ,x0)
Output: V

1: Initialize V = [ ], ε = 1 + tol, choose solver, greedy parameter µ∗

2: while ε > tol do

3: Obtain FOM snapshots X(µ∗) at µ∗ with solver

4: Determine Vµ∗ through an SVD of X := X(µ∗)−V(VTX(µ∗))

5: Update V as V := orth
(
V,Vµ∗(: , 1 : rc)

)
with orth

(
·
)

denoting an orthogonalization process which can be implemented using the modified
Gram-Schmidt process, or QR algorithm

6: Get (Ê, Â, B̂, Ĉ, f̂ , x̂0) in (2) by Galerkin proj. (+ hyperreduction)

7: Solve ROM with solver

8: µ∗ := arg max
µ∈Ξ

∆(µ)

9: Set ε = ∆(µ∗)

10: end while

We then update V by enriching it with the first rc left singular vectors of X(µ∗), i.e., Vµ∗(: , 1 : rc).
In subsequent iterations, snapshots of the FOM are similarly collected at different values of µ∗ and
the matrix V is updated with new information. Note, however, that for all iterations after the first,
we perform a SVD of the matrix X obtained after removing from X(µ∗) the information already
represented in V, i.e., we set

X := X(µ∗)−V(VTX(µ∗)).

To ensure good conditioning, it is recommended to perform a Gram-Schmidt orthonormalization after
each update of V. The choice of µ∗ at each iteration is determined through an error estimator ∆(µ)
as follows:

µ∗ = argmin
µ∈Ξ

∆(µ).

The error estimator serves as an upper bound for the true state error ‖x(t,µ)−x̃(t,µ)‖ (or true output
error ‖y(t,µ)− ŷ(t,µ)‖). That is,

‖x(t,µ)− x̃(t,µ)‖ ≤ ∆(µ), or

‖y(t,µ)− ŷ(t,µ)‖ ≤ ∆(µ).

All that is needed to evaluate ∆(µ) is to solve the ROM (2a) which can be formulated at each greedy
iteration using V.

2.3. A posteriori error estimation for the RBM

The standard error estimation approach in the RBM literature is residual-based [35, 46]. In order to
derive the error estimator ∆(µ), knowledge of the time discretization scheme used to integrate the
FOM and the ROM is assumed, e.g., using implicit Euler, Crank-Nicolson method, or an implicit-
explicit (IMEX) method. Computing ∆(µ) for a given parameter involves determining the residual
vector r ∈ RN (or its norm) at each time instance; some approaches to error estimation also require
the residual of a dual or adjoint system. Let us illustrate this by means of an example.

Suppose (1) is discretized in time using a first-order IMEX scheme [2]. The linear part (involving
A(µ)) is discretized implicitly, while the nonlinear vector f(x) is evaluated explicitly. The resulting
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discretized system reads

Eimxk
im = Aimxk−1

im + δt
(
f(xk−1

im ) + Buk
)
, (4a)

yk+1
im = Cxk

im (4b)

with Eim := (IN − δtA), Aim := IN where IN ∈ RN×N is the identity matrix. For better clarity, we
have not shown the parameter dependence of the system matrices and vectors. The ROM (2) can be
discretized in the same way and reads

Êimx̂k
im = Âimx̂k−1

im + δt
(
f̂(x̃k−1

im ) + B̂uk
)
, (5a)

ŷk+1
im = Ĉx̂k

im (5b)

with Êim := (In − δtÂ), Âim := In with In ∈ Rn×n being the identity matrix. The residual arising
due to the ROM approximation can be computed by substituting the approximate state vector x̃k

im

into (4a). The resulting residual at the k-th time step, rk, reads

rk := Aimx̃k−1
im + δt

(
f(x̃k−1

im ) + Buk
)
−Eimx̃k

im. (6)

It is clear that in order to obtain the residual rk, the time discretization scheme for the ROM should be
the same as that for the FOM so that x̃k

im in (6) and xk
im in (4) correspond to the same time instance

tk. An a posteriori error bound ∆(µ) for the approximation error ek(µ) := xk
im(µ) − x̃k

im(µ) for a
given parameter µ can be computed based on the residual as below.

Theorem 2.1 (Residual-based error bound). Suppose that the nonlinear quantity f(x,µ) is Lipschitz
continuous in the first argument for all µ such that there exists a constant Lf for which

‖f(x,µ)− f(x̃im,µ)‖ ≤ Lf‖x− x̃im‖.

Further assume that for any parameter µ the projection error at the first time step is ‖e0(µ)‖ =
‖x0

im(µ)− x̃0
im(µ)‖ = ‖x0

im(µ)−VVTx0(µ)‖.
The error in the state variable at the k-th time step, ‖ek(µ)‖ = ‖xk

im(µ) − x̃k
im(µ)‖ is given by the

following expression:

‖ek(µ)‖ ≤ ∆k(µ) := ξ(µ)k
∥∥e0(µ)

∥∥
2

+

k∑

i=1

ζ(µ) ·
(
ξ(µ)

)k−i · ‖ri(µ)‖2 (7)

where ζ(µ) := ‖
(
E(µ)

)−1‖2 and ξ(µ) :=
(
‖
(
E(µ)

)−1
A(µ)‖2 + δt Lf‖

(
E(µ)

)−1‖2
)

.

Proof. See Appendix A.

Residual-based error bounds such as the one above are already available in the RBM literature [28,32]
for both linear and nonlinear systems.

In many applications, only a small set of variables which are obtained as a linear combination
of the state variables are of interest. These are typically called the output quantities of interest.
Goal-oriented a posteriori error estimators for the output of interest have been discussed in several
works [18, 28, 33, 57]. They typically involve the residual of a dual or an adjoint system. The general
form of the goal-oriented error estimators in [28,33] is

‖yk(µ)− ŷk(µ)‖ ≤ Γ(µ) ·
k∑

i=1

‖ri‖ ·
K∑

j=k

‖rjdu‖ (8)
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where ‖rjdu‖ denotes the residual of an appropriately defined dual system at the j-th time instance and
Γ(µ) is some parameter-dependent constant. Improving upon this expression, a different goal-oriented
error estimator was proposed in [18,57] having the following form:

‖yk(µ)− ŷk(µ)‖ ≤ Γ̆(µ) · ‖rk‖ · ‖rkdu‖ (9)

with Γ̆(µ) being a parameter-dependent constant. This error estimator avoids the accumulation of
the residuals over time, which is a major drawback for the goal-oriented error estimator in (8) and
also the state error estimator in (7). It is also to be noted that the ROM resulting from the use of a
goal-oriented error estimator often turns out to be of a smaller dimension.

Having reviewed the main ideas of RBM and the standard a posteriori error estimator, we next
illustrate the disadvantage of this standard approach when ODE solver libraries are used to solve the
FOM/ROM within Algorithm 1.

2.4. RBM with ODE solver libraries

Automatic ODE solver packages are implemented and readily available in a number of open-source
and proprietary computational software. The matlab® ODE Suite [50], for instance, implements
both linear multi-step (ode15s, ode23s, etc.) and Runge-Kutta-type solvers (ode45, ode23, etc.).
In Python, using the scipy module once can access the odeint and solve ivp submodules, both
providing access to a variety of standard time integration schemes. In addition to these, there are
several stand-alone libraries to solve ODEs such as SUNDIALS [37], ODEPACK [36], ARKODE [47].
All of the mentioned libraries implement adaptive order and adaptive time-stepping which makes them
highly efficient for a variety of problems, e.g., problems exhibiting stiffness.

When adaptive ODE solver packages are used within the RBM (i.e., in Steps 3 and 7 of Algorithm 1,
solver is replaced by the chosen method from the package), the standard error estimation approach
(see Section 2.3) becomes less straightforward. One can no longer write the corresponding expression
of the residual resulting from the ROM (e.g., (6)). The reason for this is that the exact expression of
the time integration method used is unknown, as the solver adaptively varies the time step and/or
the order of the scheme. If a residual expression obtained from a user-imposed time discretization
scheme, e.g., (6) is used, the resulting error estimator (7) no longer gives an efficient bound for the
true error, i.e., the error between Vx̂k(µ) and xk(µ) obtained from simulating the ROM (2) and the
FOM (1), respectively, using an ODE solver from a library. We illustrate this next by obtaining a
ROM for the simple non-parametrized linear heat diffusion model and estimating its error.

2.5. Example: ROM for the linear heat equation

We consider the linear heat equation in 1-D over the domain Ω = [0, 1] and time t ∈ [0, 1]

∂

∂t
v(z, t;µ)− µ ∂

2

∂z2
v(z, t;µ) = 0 (10)

where v(z, t;µ) is the state, z ∈ Ω is the spatial variable and the viscosity µ = 0.06. We further impose
Dirichlet boundary conditions v(0, t;µ) = v(1, t;µ) = 0, ∀t ∈ [0, 1]. We also fix the output variable
of interest as the value of the state at the node next to the right boundary. Employing the finite
difference method, we discretize the domain Ω in an equidistant fashion, with a grid size of 2−8. With
this, the resulting discretized ODE can be written in a form similar to (1) as

d

dt
x = Ax, x(0) = x0 (11)

where x ∈ R255 is the discretized state vector and A ∈ R255×255. We let the initial condition x0 to be
a normal distribution, i.e.,

x0 :=
1

σ
√

2π
e
−

1

2
·

(
z −m

σ

)2
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Figure 1.: Heat equation. Left: solution to the parametrized heat equation (11) at µ = 0.06; Right:
normalized singular values σi/σ1, i ∈ {1, 2, . . . , 100}.

with a mean m = 0.5 and a standard deviation of σ = 0.15. Our aim is to obtain a ROM for (11)
and use the state and output error estimators in (7) and (8), respectively, to quantify the error of the
ROM. For the output error estimator, we use the one proposed in [18]. To this end, we consider the
standard POD-based ROM. This involves obtaining snapshots of the state vector in (11) for different
time instances. The SVD of the resulting snapshot matrix is used to obtain the projection matrix V.
Figure 1 illustrates the solution to (11) at µ = 0.06. We also see the exponential decay of the singular
values of the snapshot matrix.

For this example, we compute V consisting of the first 12 columns of the left singular vector matrix.
For integrating (11), we use the odeint function available in the scipy package for Python. We
note that odeint is a wrapper around the LSODA solver available in the Fortran library odepack.
LSODA implements adaptive time-stepping. Moreover, it switches between methods for non-stiff and
stiff problems automatically. We use the same solver to integrate the ROM. Once the reduced matrices
are obtained through a Galerkin projection using V, the first step involved in estimating the error is
to integrate the ROM using odeint to evaluate and plug-in the approximate solution x̃ at each time
instance, into the odeint time discretization scheme to get the residual. The residual operator at the
k-th time instance has the general expression:

Rk
[
x̃k, x̃k−1, . . . , x̃k−s] (12)

where the arguments for Rk
[
·
]

could be the solutions at the current and past s time steps (in case
the scheme used is a linear multi-step method) or at s different stage solutions (in case an s-stage
Runge-Kutta scheme is used). The exact form of this expression, naturally, is dependent on the time
integration method that was used to obtain the snapshots. As we are using a solver from the odepack

library, knowing the residual operator expression is complicated and often impossible. To circumvent
this, one may choose to use a different, but known time integration method in order to compute the
residual, e.g., via (6). However, this will lead to erroneous results, as we will demonstrate next. We
denote by rk the output of the residual operator Rk

[
·
]

at a given set of arguments.
Suppose, we use a different time integration scheme, say a first-order backward Euler method as an

“approximation” to the true method used within odeint. In this case, the approximation to the true
residual reads

r̃k = x̃k−1 −
(

IN − δtA
)

x̃k (13)

with the approximate residual operator R̃k
[
∗, ?] = IN ∗ −

(
IN − δtA

)
? and ∗, ? being placeholders

for the arguments of R̃. In general, Rk
[
·
]

and R̃k
[
·
]

are quite different, leading to rather inaccurate
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Figure 2.: Estimated and true errors for the heat equation (11) for µ = 0.06 obtained by imposing a
backward Euler method on the ROM snapshots obtained from odeint. Top: the estimated
state error and the corresponding true error (see (7)); Bottom: the estimated output error
and the corresponding true error (see (8)).

estimation of the error when the latter is used in (7). This is illustrated in Figure 2. The top figure
shows the estimated state error obtained using (7) for every time step and the corresponding true
error, both measured in the 2-norm. The bottom figure illustrates the estimated error for the output
variable and its true error.

The estimated error measured using the wrong expression of the residual overestimates by 2 orders
of magnitude in the best case. In this work, we propose a scheme to suitably modify R̃k

[
·
]

using a

closure term, such that the resulting expression for the residual is close to the one evaluated by Rk
[
·
]
.

We limit our focus to the case of output error estimation though the proposed closure technique for
correcting the residual can be straight-forwardly applied to any residual-based error estimator.

3. Improving output error estimation via a data-enhanced closure
approach

In this section, we introduce a data-enhanced closure strategy to ensure that the residual resulting
from the user-imposed time integration scheme, viz. R̃k

[
x̃k, x̃k−1, . . . , x̃k−s] is close to the true residual

Rk
[
x̃k, x̃k−1, . . . , x̃k−s] such that the estimated output error is accurate.

3.1. Defect-corrected FOM and ROM

In our proposed approach, we first add a closure term to the FOM resulting from the user-imposed
time integration scheme. This closure term is derived based on the snapshots of the true solution
obtained using the ODE solver library. More precisely, suppose we have the snapshots of the solution
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Figure 3.: Solution to the heat equation (11); Left: solution obtained using the ODE solver; Middle:
solution using C-FOM (16); Right: pointwise errors between the solutions from the solver
and C-FOM.

(3) at any given parameter µ obtained from an ODE solver or some legacy codes:

X =

[
x0 x1 · · · xK

]
∈ RN×Nt . (14)

For purpose of illustration, we explain the details of the new method by considering a first-order IMEX
scheme as the user-imposed time integration scheme. The FOM resulting from this is exactly (4).

Since the user-imposed time integration scheme differs from the one used to generate the snapshots
in X, we have a defect or a mismatch when we insert xk in (14) into the first-order IMEX scheme.
This reads

dk := Eimxk −
(
Aimxk−1 + δt

(
f(xk−1) + Buk

))
. (15)

Remark 2. We note that this is precisely the local truncation error (LTE) [11] of the first-order IMEX
method if xk is assumed to be the true solution to (1). This assumption is not strong as the tolerances
(absolute, relative) of the ODE solver can be set judiciously to achieve this.

We seek to modify the time-discrete FOM (4) such that its solution recovers the solution of (1)
computed by an ODE solver from a library. To this end, consider the following corrected FOM (C-
FOM for short) obtained by adding the defect vector dk as a closure term:

Eimxk
im,c = Aimxk−1

im,c + δt
(
f(xk−1

im,c) + Buk
)

+ dk, (16a)

yk
im,c = Cxk

im,c. (16b)

In (16), xk
im,c is the solution obtained after introducing the closure term and, as such, it differs from

the solution xk
im to (4). In fact, without adding dk as a closure term the local truncation error of

the first-order IMEX method is O((δt)2). However, the local truncation error of the solution from the
corrected IMEX method (16) is of the same order as that resulting from the ODE solver. It can be
seen from Figure 3 that the solution to the heat equation obtained using (16) is identical to the one
obtained using an ODE solver.

We emphasize that the defect vector dk represents one choice for the closure term. In general, any
other form of the closure term may be used. Since we use the defect vector as our choice for the closure
term to recover the true residual, we use the two terms interchangeably.

Remark 3. For any general time integration scheme the defect vector dk can be shown to have the
following equivalence:

dk = −Rk
[
xk,xk−1, . . . ,xk−s]. (17)
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A corrected ROM (C-ROM) corresponding to the C-FOM can be defined by projecting the defect

vector dk to the reduced space. The reduced defect vector is defined as d̂k := VTdk and the C-ROM
is:

Êimx̂k
im,c = Âimx̂k−1

im,c + δt
(
f̂(x̃k−1

im,c) + B̂uk
)

+ d̂k, (18a)

ŷk
im,c = Ĉx̂k

im,c. (18b)

3.2. An error estimator using the C-ROM

Next, we make use of the C-ROM to derive a new error estimator ∆
k
(µ) that accurately estimates

the true error ‖yk(µ)− ŷk(µ)‖, where yk(µ) and ŷk(µ) are the output of the FOM (1) and the ROM
(2) at time tk, respectively. The FOM and and the ROM can be solved using any ODE solver. As
mentioned, to derive the residual correctly, the same ODE solver must be applied to both the FOM and
ROM simulations. Our proposed error estimator makes use of a dual system. We begin by deriving
the dual system for (16).

3.2.1. Dual system

We derive the dual system corresponding to the C-FOM (16) using the method of Lagrange multipliers.
The Lagrangian can be formulated as

L := Cxk
im,c +

(
Λk
)T
(

Eimxk
im,c −Aimxk−1

im,c − δtf(xk−1
im,c)− δtBuk − dk

)
, (19)

with Λ ∈ RN being the vector of Lagrange coefficients. The dual system can be obtained by setting
∂L

∂xk
im,c

≡ 0. This yields the system

Eduxdu = Cdu (20)

with Edu := ET
im and Cdu := −CT. Note that the Lagrange multipliers Λ are the dual state variables;

for better clarity we denote them by xdu. Note that the defect vector dk is treated as a function of
time and parameter µ. Therefore, it does not depend on the solution xk

im,c of the C-ROM.
We further define the dual ROM as

Êdux̂du = Ĉdu. (21)

obtained by making the ansatz xdu ≈ x̃du = Vdux̂du. Here, Vdu is the projection matrix corresponding
to the dual system and Êdu := VT

duEduVdu, Ĉdu := VT
duCdu.

The residuals corresponding to the ROM (18) and the dual ROM (21) are, respectively,

rkim,c := Aimx̃k−1
im,c + δt

(
f(x̃k−1

im,c) + Buk
)

+ dk −Eimx̃k
im,c (22)

and

rdu := Cdu −Edux̃du. (23)

Following the approach in [18,57] we define an auxiliary residual r̆im,c as

r̆kim,c : = Aimxk−1
im,c + δt

(
f(xk−1

im,c) + Buk
)

+ dk −Eimx̃k
im,c. (24)

The auxiliary residual defined above will be required in the derivation of the data-enhanced output
error estimator.
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3.2.2. Modified output term

In anticipation of the new error estimator we propose next, we introduce a modified output variable
yk

im,c defined as

yk
im,c := ŷk

im,c − x̃T
durkim,c. (25)

Adding a correction term to the output in the form of a dual-weighted residual is an established
practice [18,28,48] and serves to derive a tighter estimate of the true error.

3.2.3. Data-enhanced error estimation

Denoting the ODE solver applied to solve the FOM (1) and the ROM (2) as solver, the norm of the
true error we desire viz., ‖yk − ŷk‖ can be written as:

‖yk − ŷk‖ = ‖yk − yk
im,c + yk

im,c − ŷk‖ (26)

≤ ‖yk − yk
im,c‖+ ‖yk

im,c − ŷk‖. (27)

The following theorem bounds the first summand in (27):
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Theorem 3.1 (A posteriori error bound for the corrected ROM). Given the FOM in (1), the C-FOM
in (16) and the C-ROM (18), assuming that Eim is non-singular for all µ ∈ P, we have the following
error bound for the modified output vector in (25):

‖yk − yk
im,c‖ ≤ ‖E−1

im ‖ ‖rdu‖ ‖r̆kim,c‖+ ‖x̃du‖ ‖rkim,c − r̆kim,c‖. (28)

Proof. See Appendix B.

Although the bound above is rigorous, it is not computable owing to the quantity r̆k. Recall from
(24) that its computation requires that the FOM solution xk

im,c is available for any parameter µ, which
is not the case. To derive a computable error estimator, we make use of the arguments used in [18] to
get the following error indicator:

‖yk − yim,c‖ /
(
ρ ‖E−1

im ‖ ‖rdu‖+ |1− ρ| ‖x̃du‖
)
‖rkim,c‖. (29)

The quantity ρ is a measure for how close the residual rkim,c is to the auxiliary residual r̆kim,c and is
defined as

ρ =
1

K

K∑

k=1

ρk, ρk =
‖r̆kim,c(µ∗)‖
‖rkim,c(µ∗)‖ . (30)

It is evaluated only at the greedy parameter µ∗ for which snapshots of the true solution xk are available.
For additional details, we refer to [18]. Substituting (29) into (27) results in

‖yk − ŷk‖ /
(
ρ ‖E−1

im ‖ ‖rdu‖+ |1− ρ| ‖x̃du‖
)
‖rkim,c‖+ ‖yk

im,c − ŷk‖ =: ∆
k

a(µ). (31)

The second quantity in the above inequality is the norm of the error between the output resulting from
the user-imposed C-ROM and that obtained by solving the ROM (2) with solver. It can be obtained
cheaply as only two ROMs with small sizes need to be solved. Typically, our numerical experiments
show that this quantity is very small and lesser than the magnitude of the first quantity. Therefore,
we can safely neglect it so that only the first quantity can act as an alternative form of the proposed
data-enhanced error estimator, i.e.,

‖yk(µ)− ŷk(µ)‖ / ‖yk(µ)− yk
im,c(µ)‖ (32)

/

(
ρ ‖E−1

im ‖ ‖rdu(µ)‖+ |1− ρ| ‖x̃du(µ)‖
)
‖rkim,c(µ)‖ =: ∆

k

b (µ). (33)

3.2.4. Error estimation in presence of hyperreduction

For nonlinear systems, the efficient computation of the ROM is impeded by the presence of the nonlinear
function f(x̃k

im,c) whose evaluation scales as the dimension N of the FOM. To tackle this, the DEIM
approach [17] is used in this work. Using DEIM, the residual expression in (22) gets modified as below:

rkim,c = Aimx̃k−1
im,c + δt

(
f(x̃k−1

im,c) + I [f(x̃k−1
im,c)]−I [f(x̃k−1

im,c)] + Buk
)

+ dk −Eimx̃k
im,c,

=

(
Aimx̃k−1

im,c + δt
(
I [f(x̃k−1

im,c)] + Buk
)

+ dk −Eimx̃k
im,c

)

︸ ︷︷ ︸
rkim,c,I

+ δt

(
f(x̃k−1

im,c)−I [f(x̃k−1
im,c)]

)

︸ ︷︷ ︸
ek
H

. (34)

In the equation above, I [·] denotes the hyperreduction operator. Further, ek
H refers to the error

introduced by hyperreduction at the k-th time step. For a detailed discussion on the computational
aspects, we refer to the work [18], where the simultaneous adaptive construction of the RBM and the
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DEIM bases vectors is also discussed. This adaptive bases construction approach is also implemented
in our numerical experiments.

We make use of the new data-enhanced error estimators (∆
k

a(µ) or ∆
k

b (µ)) to choose the next
parameter within the greedy algorithm. For each parameter µ, we determine the average estimated
error over time as:

∆z(µ) =
1

Nt

Nt∑

k=0

∆
k

z(µ), (35)

where z stands for a or b. In the numerical results, we use ∆
k

b (µ) in (35) in Line 11 of Algorithm 2 so
that during the greedy iterations, the ROM (2) does not have to be repeatedly solved with solver in
order to evaluate the second quantity in (31).

Remark 4. While we have illustrated the data-enhanced error estimator using a first-order IMEX
time integration scheme, any consistent time integration scheme can be used, including higher order
ones. We will also demonstrate the use of a second-order IMEX scheme in the numerical examples.
Of course, one should be cautious of the fact that a higher order time integration scheme comes with a
larger computational cost.

Remark 5. When the defect vector dk present in the residual (see (22)) is known exactly, i.e., the
C-ROM uses the same time integration method used for the FOM, we recover the a posteriori output
error estimator proposed in [18]. This shows that our newly proposed error estimator is consistent with
the case where the time integration method used is known.

Remark 6. Note that the C-ROM is not the finally derived ROM, but is only used within the greedy

algorithm to derive the error estimator ∆
k

z(µ) (see Steps 9-10 in Algorithm 2) which estimates the
error between the solution of the FOM (1) and that of the ROM (2), both being computed using any
solver. The error estimator can also be used in the online stage where the user may wish to use any
preferred solver to compute the ROM solutions. Moreover, given a good approximation of the defect
vector, the solution of the C-ROM and the solution x̂k from the ODE solver are nearly the same.

Therefore, ∆
k

b (µ) is almost as accurate as ∆
k

a(µ).

4. Computational aspects

While we have derived an accurate data-enhanced a posteriori output error estimator, there remain
a few computational challenges. In this section we highlight these challenges and propose efficient
solutions to address them.

In (33) the residual term rkim,c involves the defect vector dk (see (22)). However, determining this
term involves knowing the true solution to (1) obtained from the ODE solver at any parameter µ (see
(15)). Without a cheap method to approximate dk for every parameter µ, the error estimator is not
efficient. To alleviate this, we make several observations about the function d(t,µ), which will lead to
its efficient approximation. These observations relate to

1. a certain low-rank structure (over space) that d(t,µ) possesses and

2. a smoothness over parameter variations that it inherits from the underlying parametric PDE.

4.1. Low-rank structure of the defect

For a large class of problems, there exist a low-dimensional subspace onto which the solution snapshots
can be projected, without incurring a large error. Indeed, this forms the underlying motivation for
performing model order reduction using POD and other methods. Leveraging this fact, we assume
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Figure 4.: Defect/local truncation error of the heat equation. Left: space time variation of the defect
at µ = 0.06; Right: singular values of the matrix D := {dk}Kk=0. The singular values exhibit
an exponential decay illustrating the existence of a low-dimensional subspace.

that the defect trajectory at a given parameter µ, dk(µ),∀k ∈ {0, 1, . . . ,K} can also be efficiently
approximated by a suitable low-dimensional subspace.

Figure 4 plots the values of the defect vector dk in (15) for the heat equation. It is evident that
the defect trajectory has a certain regularity over the spatial domain (see left figure); evidence for the
low-rank structure is also seen through the SVD performed (see right figure) on the snapshot matrix
D ∈ RN×Nt whose columns consist of snapshots of dk at different values of the time tk,∀k ∈ {0, . . . ,K}.
We see an exponential decay of the relative quantity σi/σ1, where σi is the i-th singular value. A similar
exercise will be repeated in Section 5 for the three numerical examples we consider. In each of the
cases, it will be seen that the defect trajectory is reducible spatially. We will use this fact to compute
dk(µ) efficiently.

The concept of Kolmogorov n-width is used in the RBM literature [9, 44, 46] to quantify the ap-
proximability of the solution manifold M corresponding to a parametrized system of equations, with
a linear subspace of dimension n denoted as Vn. Consider the solution manifold M for the FOM in
(1) defined as

M = {x(t,µ) : (t,µ) ∈ T × P} ⊂ RN . (36)

The Kolmogorov n-width of M using Vn can be defined as

dn(M) := inf
dim(Vn) =n

sup
x∈M

inf
x̃∈Vn

‖x− x̃‖. (37)

For the parametrized defect function d(t,µ), we define the following manifold:

Md = {d(t,µ) : (t,µ) ∈ T × P} ⊂ RN . (38)

From our numerical examples we have observed thatMd can be well-approximated by low-dimensional
subspaces when the original parametric problem has fast Kolmogorov n-width decay. This implicates
that the Kolmogorov n-width of Md may inherit the behaviour of dn(M). At present we can not
strictly prove this, but from the definition of the defect vector in (15), the defect vector d(t,µ) can be
seen as being in the image of the operator D : Rn×P 7→ Rn and D[x(t,µ)] = Eimx(t,µ)−

(
Aimx(t−

δt,µ) + δt(f(x(t − δt,µ)) + Bu(t))
)
. With this observation, the inherit property of the Kolmogorov

n-width of Md might be proved based on Theorem 4.1 in [22]. We leave this as our future work.

4.2. Strategies to approximate the defect

As discussed in the previous section, the defect vector is assumed to possess a certain low-rank structure
in space and it inherits the smoothness of the solution x(t,µ) over parameter variations, from the
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underlying parametric PDE. We use these two observations to make the approximation of dk(µ)
computationally efficient, such that the output error estimator defined in (33) can be used in the
POD-Greedy algorithm. To this end, we adopt a two-stage approximation strategy.

Starting from the observation about the low-rank structure of the defect, we can approximate the
defect vector at a given time and parameter using the basis expansion

d(t,µ) ≈ d̃(t,µ) =

nd∑

i=1

vd,i d̂i(t,µ) (39)

where vd,i ∈ RN are the expansion bases and d̂(t,µ) := [d̂1(t,µ), . . . , d̂nd
(t,µ)] ∈ Rnd is the vector of

expansion coefficients. We denote with Vd :=
[
vd,1,vd,2, . . . ,vd,nd

]
∈ RN×nd the basis matrix. If the

observation regarding the rapid decay of the singular values holds, then nd will be small. Given such
a basis expansion for the defect vector, we can approximate it for any given parameter µ and a time
instance t if d̂(t,µ) can be evaluated cheaply. Our two-stage approach involves:

• identifying a suitable basis matrix Vd using a POD/SVD-based approach and

• learning the map (t,µ) 7→ d̂(t,µ) for which we propose two different approaches: one based on
radial basis function interpolation and the other using a feed-forward neural network.

4.2.1. SVD-based spatial reduction

In the first stage of approximation, we collect snapshots of the defect vector d(t,µ),∀t ∈ Td :=
{t1, t2, . . . , tNt} and µ ∈ Ξdefect where Ξdefect is a set containing ds parameter samples, with ds typically
small. Doing so involves solving (1) with solver to obtain the FOM solution snapshots. Following
this, the solution snapshots can be used to obtain the defect vector from e.g., (15)1. We denote by
D ∈ RN×Nt×ds the third-order tensor arranged such that each of its frontal slices corresponds to
the matrix D(µ) :=

[
d(t1,µ),d(t2,µ), . . . ,d(tNt ,µ)

]
∈ RN×Nt and µ ∈ Ξdefect. We refer to the

i-th frontal slice as D(i). Next, we apply a two-step SVD reduction [53] to D which will result in

D̂ ∈ Rnd×Nt×ds as follows:

• In step 1, we perform SVDs for each frontal slice separately, i.e., we perform a SVD for each D(i)

with i ∈ {1, 2, . . . , ds}. For every such SVD, we make use of a fixed tolerance tolSVD,t to truncate
the singular values and collect the first `i left singular vectors in the matrix Ud,i ∈ RN×`i .

• In step 2, we form a matrix R defined as

R :=

[
Ud,1

∣∣Ud,2

∣∣ · · ·
∣∣Ud,ds

]
∈ RN×(`1+···+`ds )

whose columns consist of the truncated left singular vectors for each parameter obtained in step
1. We then perform the SVD of R, using a tolerance tolSVD,µ to obtain the projection matrix
Vd ∈ RN×nd as the first nd columns of the left singular vectors of R.

Finally, the reduced tensor D̂ can be obtained via a mode-1 tensor-matrix product as

D̂ = D×1 VT
d .

We note that each mode-1 fiber in D̂ corresponds to the reduced defect vector d̂(tk,µ) ∈ Rnd .
Thus far, we have reduced the dimension of the first mode of the tensor D from N to nd, with

nd � N . Next, we detail the two approaches used to approximate d̂(t,µ).

Remark 7. The motivation for using the two-step SVD approach is to reduce the overall computational
costs. While we have not pursued it in this work, another valid approach to reduce the computational
cost would be a randomized-SVD.

1Note that the defect is obtained here for a particular user-imposed time integration scheme.
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4.2.2. Interpolation using radial basis functions

Radial basis functions (RBFs) are a popular class of kernel methods which are used in scattered-data

approximation [10,54]. We use RBFs to learn an approximation d̂RBF(µ) to each entry of the reduced

defect vector at each time instance, such that for any given (j, k) pair, d̂RBF(µ) interpolates d̂j(t
k,µ),

the j-th entry of the reduced defect d̂(tk,µ) at parameters µ ∈ Ξdefect.
The RBF approximation reads

d̂kRBF,j(µ) =

ds∑

i=1

wiΦ(‖µ− µi‖) (40)

with {wi}ds
i=1 denoting the weights and Φ(·) being the radial basis functions. The weights are obtained

by imposing the interpolation condition d̂kRBF,j(µi) = d̂j(t
k,µi), i = 1, 2, . . . , ds, µi ∈ Ξdefect. This

leads to the following system of linear equations




Φ(‖µ1 − µ1‖) Φ(‖µ1 − µ2‖) · · · Φ(‖µ1 − µds
‖)

Φ(‖µ2 − µ1‖) Φ(‖µ2 − µ2‖) · · · Φ(‖µ2 − µds
‖)

...
...

. . .
...

Φ(‖µds
− µ1‖) Φ(‖µds

− µ2‖) · · · Φ(‖µds
− µds

‖)







w1

w2

...
wds


 =




d̂j(t
k,µ1)

d̂j(t
k,µ2)
...

d̂j(t
k,µds)



. (41)

Based on the RBF interpolation, the defect vector d(tk,µ) in (39) can be approximated as

d(tk,µ) ≈ d̃RBF(tk,µ) :=

nd∑

j=1

vd,j d̂
k
RBF,j(µ) (42)

We obtain an RBF interpolant for each time instance k ∈ {0, 1, 2, . . . ,K} and each coordinate j ∈
{1, 2, . . . , nd}, resulting in a total of (nd · Nt) RBF interpolants. Figure 5 graphically illustrates the

approach. Theoretically, d̃RBF(tk,µ) in (42) is valid for any µ ∈ P. Therefore, Np in Figure 5 can
be arbitrarily large. We denote it by Np as we are only interested in obtaining the reduced defect
coefficients corresponding to the Np parameter samples present in the training set Ξ.

In our numerical results in Section 5, we denote this method of approximating the defect vector
using a SVD spatial reduction followed by an RBF interpolation as SVD+RBF.

Remark 8. In this work, we have considered separate RBF interpolants for each time step and each
generalized spatial coordinate, leading to potentially many interpolants. While the number of inter-
polants scales as O(ndNt), this can be efficiently implemented in one step by solving a linear system
with the small ds × ds coefficient matrix in (41), and with multiple right-hand sides (totalling ndNt).
The runtime of solving such a linear system is usually much faster than separately solving ndNt linear
systems with the same coefficient matrix.

4.2.3. Approximation using artificial neural networks

The second approach we consider to approximate the expansion coefficients d̂(t,µ) for different time
and parameter values is based on artificial neural networks (ANNs). A widely used architecture to
implement ANNs are the feed-forward neural networks (FNNs). FNNs have been shown to be efficient
for both regression and classification tasks in a variety of applications. The basic architecture of a
FNN consists of three components: an input layer, hidden layer(s) and an output layer. The core
element of any NN in general and FNNs in particular are artificial neurons. The hidden layer(s) in a
FNN consists of neurons stacked together. Each neuron can receive inputs from a previous layer. The
output corresponds to a nonlinear function of the weighted sum of its input signals. For a detailed
overview of ANNs and FNNs, we refer to [8].
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mode-3 fibers of D̂ ∈ Rnd×Nt×ds

ds Np

RBF Interpolation

mode-3 fibers of D̂RBF ∈ Rnd×Nt×Np

Figure 5.: Approximation of the defect as a function of the parameter µ. The RBF interpolant learns
an approximation of the defect vector over Np samples, with interpolation occurring at ds
samples. We construct an individual RBF interpolant for each time and generalized spatial
coordinate.

mode-1 fibers of D̂ ∈ Rnd×Nt×ds

t

µ

Feedforward neural network

Training

t

µ

inference of mode-1 fibers of D̂NN ∈ Rnd×Nt×Np

Inference

Figure 6.: Approximation of the defect coefficients as a function of the inputs (t,µ). The neural
network is trained based on data available at ds parameter samples. In the inference stage,
the neural network learns the approximation of the defect for all Np parameter samples.

In this work, we consider the FNN to learn an approximation to the map between the inputs (t,µ)

and the output d̂(t,µ) ∈ Rnd . That is,

d̂NN : (t,µ) 7→ d̂NN(t,µ) ≈ d̂(t,µ).

To train the FNN, our training data consists of the dataset τtrain := (ΛNN, DNN) where ΛNN :=

{(ti,µj)}Nt,ds

i=j=1 is the input set, containing time and parameter samples and DNN := {d̂(ti,µj)}Nt,ds

i=j=1

is the output data set which consists of the reduced defect d̂(ti,µj) ∈ Rnd at each time and parameter
sample of the input. The neural network is implemented in PyTorch; more details regarding the
number of layers used and other hyperparameters will be provided in the numerical section. The loss
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function is the mean square loss, viz.,

Lmse :=
1

2

ds∑

i=1

Nt∑

k=1

∣∣∣∣
∣∣∣∣d̂(tk,µi)− d̂NN(tk,µi)

∣∣∣∣
∣∣∣∣
2

2

.

Once the neural network is trained, it can infer the values of the defect vector d̂NN(t,µ) at any chosen
(t,µ). The original defect vector at a given parameter µ and at any time instance d(t,µ) can be
approximated using the FNN-based approach as

d(t,µ) ≈ d̃NN(t,µ) := Vd d̂NN(t,µ). (43)

In our numerical results in Section 5, we denote this method of approximating the defect vector first
with a SVD spatial reduction followed by an approximation of the coefficients d̂ with a feedforward
neural network as SVD+FNN.

4.3. POD-Greedy with black-box ODE solvers

We present the POD-Greedy algorithm that supports black-box ODE solvers and incorporates the new
data-enhanced a posteriori error estimator as Algorithm 2. It requires some additional inputs compared
to Algorithm 1. These include a separate training set Ξdefect ⊂ Ξ for the defect approximation and two
separate tolerances for the SVD, tolSVD,t, tolSVD,µ which are required for the two-step SVD method
to compute Vd. Before starting of the greedy algorithm in Step 4, Steps 2-3 in Algorithm 2 are targeted
towards learning the defect vector, which is added as a closure term to get the C-ROM. In Step 2,
FOM solutions of (1) are obtained for the ds parameter samples in the training set Ξdefect. Using
this data, the defect vectors (see (15)) induced by a user-imposed time integration scheme (denoted
solverimp) are collected in the tensor D. Then, in Step 3, the data in D are first compressed into

a low-dimensional space and the reduced defect vectors d̂(t,µ) for all µ ∈ Ξ are learned via RBF

or FNN. Afterwards, the defect vector d(t,µ) is approximated via the decoded vectors d̃RBF(t,µ) or

d̃NN(t,µ). The approximation d̃RBF(t,µ) or d̃NN(t,µ) can be updated (replaced) by the true defect
vector once new FOM data is available at µ∗ (Step 6, Step 11). Updating the approximate defect
vector with the available true defect vector at µ∗ at each iteration leads to considerable improvements
in the performance of Algorithm 2, as we shall demonstrate in Section 5. Furthermore, it reduces the
amount of initial training samples needed in Ξdefect. Typically, the user may not know, a priori, the
number of FOM samples needed to get a good approximation of the closure term. Therefore, Ξdefect

can be coarsely sampled to keep the computational cost low. Once the greedy algorithm is begun, the
FOM solution snapshots at µ∗ chosen at each greedy iteration are readily available. Those snapshots
can be further used to compute the true defect vector d(tk,µ∗) via (15). Since the snapshots are
anyway available, the only computational costs incurred are those corresponding to the evaluation of
d(tk,µ),∀k ∈ {0, 1, . . . ,K}.

4.3.1. Computational cost

We now analyse the additional computational cost incurred by the proposed algorithm Algorithm 2
when compared to the standard POD-Greedy method in Algorithm 1.

To simplify things, we define the cost of solving the nonlinear FOM (1) to be CFOM := NnewtonNLNt;
the cost of the linear solve at each Newton iteration, viz. NL, could range between N2−N3 depending
on the particular method being implemented in the solver. The cost of obtaining the defect vector at
each time step (see (15)) is denoted by Cd. It depends on the user-defined time-stepping scheme. The
main contributions within Cd are matrix-vector products and evaluations of the nonlinearity. Thus,
it evaluates to Cd := (O(N2) +O(N)) in the worst-case . However, the matrix vector multiplications
typically involve sparse matrices and can be done cheaply.

We denote by CSVD := O(min(p2q, pq2)) the cost of a SVD for a matrix of dimension Rp×q. We let
CRBF := O(d3

s) be the cost of obtaining one RBF interpolant. The cost of training a neural network
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Algorithm 2. POD-Greedy algorithm for ODE solver libraries

Input: Training set Ξ, tolerance (tol), Discretized model (E,A,B,C, f ,x0)

Input for defect approximation: Training set for defect approximation Ξdefect ⊂ Ξ, SVD tolerances
(tolSVD,t, tolSVD,µ), user-imposed time integration method solverimp

Output: V.

1: Initialize V = [ ], ε = 1 + tol, choose solver from a library, greedy parameter µ∗

2: Compute FOM snapshots for all µ ∈ Ξdefect; determine the defect data tensor D (see Section 4.2.1)

3: Perform SVD on D to get Vd; obtain an approximation d̃RBF(t,µ) (42) or d̃NN(t,µ) (43) for d(t,µ)
4: while ε > tol do

5: Obtain FOM snapshots Xµ∗ at µ∗ with solver

6: Compute true defect {d(tk,µ)}Nt
k=1 at µ∗ based on X∗

7: Determine V∗ through an SVD of X := X∗ −V(VTX∗)

8: Update V as V := orth
(
V,V∗(: , 1 : rc)

)
with orth

(
·
)

denoting an orthogonalization process which can be implemented using the modified
Gram-Schmidt process, or QR algorithm

9: Obtain the C-ROM (e.g., (18)) corresponding to solverimp by Galerkin proj. (+ hyperreduction)

10: Solve the C-ROM to obtain the residual and compute the error estimator ∆a(µ) (31)
or ∆b(µ) (33)

11: µ∗ := arg max
µ∈Ξ

∆z(µ), z = a or z = b

12: Set ε = ∆z(µ∗), z = a or z = b

13: end while

is difficult to estimate owing to its architecture and the use of specialized hardware. Therefore, for
simplicity, we define it as CNN := σ · (CFP + CBP) with CFP denoting the cost of one forward pass, CBP

denoting the cost of one backward pass and σ being a constant that depends on the number of layers,
epochs, the batch size and other hyperparameters.

The overall factors contributing to the proposed algorithm are listed below:

• Step 2 in Algorithm 2 requires the FOM solution at ds parameters. This has cost that scales as
ds · CFOM.

• In Step 2, evaluating the defect vector at each time step and for all ds parameter samples incurs
cost that scales as (dsNt) · Cd.

• The cost of the two-stage SVD in Step 3 to obtain Vd is (ds + 1) · CSVD.

• Based on the method used for approximating the map (t,µ) 7→ d̂(t,µ), the costs differ:

- For the RBF-based approach, the RBF coefficient matrix can be factorized once and reused
for subsequent solves. The cost is thus CRBF + (ndNt − 1) · O(d2

s)

- For the NN-based approach, the cost is CNN

• In the inference stage where the defect vector is approximated for all µ ∈ Ξ,

- the RBF-based approach has a cost (NpNt) · ds
- the NN-based approach incurs a cost scaling as (NpNt) · CFP

The cost of the matrix tensor product to obtain D̃ is dsNt · ndN for both RBF and NN-based
approaches
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• To update the approximate defect vector in Step 6, the cost of evaluating the true defect vector
at the current greedy parameter scales as Nt · Cd

The major cost in approximating the defect will be the cost of solving the FOM at ds parameter
samples. From our experience, the RBF-based approach performs better than the NN-based approach.
Comparisons of corresponding run times are detailed in Section 5.

5. Numerical results

To demonstrate the validity of the proposed data-enhanced output error estimation approach, we test
it on three numerical examples. These are:

1. the viscous Burgers’ equation with one parameter

2. the FitzHugh-Nagumo equations with two parameters and

3. the batch chromatography equations with one parameter.

All reported numerical results were performed on a desktop computer running Ubuntu 20.04, installed
with a 12-th generation intel®core™i5 processor, 32GB of RAM and a NVIDIA RTX A4000 GPU
with 16GB of memory. The simulations were carried out in the Spyder IDE with Python 3.9.12
(miniconda). Where required, matlab® v2019b was used to run some simulations. The radial basis
interpolation was performed using the RBF package [38].

For the two greedy algorithms (Algorithms 1 and 2), we plot the maximum estimated errors com-
puted using ∆b(µ) over the training set at every iteration. We define this as:

εmax := max
µ∈Ξ

∆b(µ)

where ∆b(µ) is defined in (33). Additionally, to illustrate the performances of the ROM over the test
set Ξtest, we plot the mean estimated error ∆b(µ) for every parameter µ ∈ Ξtest.

5.1. Code availability

The companion Python code to reproduce the numerical results is available at
https://doi.org/10.5281/zenodo.8169490.

5.2. Burgers’ equation

Model description The viscous Burgers’ equation defined in the 1-D domain Ω := [0, 1] is given by

∂v

∂t
+ v

∂v

∂z
= µ

∂2v

∂2z
, (44)

v(z, 0) = sin(2πz),

v(0, t) = v(1, t) = 0

with v := v(z, t) ∈ R denoting the state variable and z ∈ Ω is the spatial variable and the time variable
t ∈ [0, 2]. We spatially discretize (44) with the finite difference method. The mesh size is ∆z = 0.001,
which results in a discretized FOM of dimension N = 1000. As the variable parameter, we consider
the viscosity µ ∈ P := [0.005, 1]. We sample 100 logarithmically-spaced samples from P and divide the
samples randomly into a training set Ξ and a testing set Ξtest in the ratio 80 : 20. To solve the ODE,
the solver in Algorithm 2 is the scipy library odeint. To have a uniform comparison, we compute
solutions of the FOM on a uniformly spaced time step of δt = 0.01. The output variable of interest is
the value of the state at the node just before the right boundary.
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Figure 7.: Burgers’ equation, Algorithm 1: (a) error (estimator) decay when using a first-order IMEX
method without any closure term; (b) error (estimator) decay when the true residual is
known.

POD-Greedy with Algorithm 1 We first apply Algorithm 1 to the Burgers’ equation with a tolerance
tol = 10−4. The solver used is the odeint library in scipy. Since the exact expression of the residual
is unknown, we use a first-order IMEX method (IMEX1) to approximate the residual and estimate the
output error. As the true residual is incorrectly approximated by the user-imposed time integration
scheme, the resulting estimated error is severely overestimated. This results in the stagnation of the
greedy algorithm as seen in Figure 7a. For comparison, we also plot in Figure 7b the convergence of
the greedy algorithm when the exact residual is known. To remedy this, we next apply the proposed
Algorithm 2.

POD-Greedy with Algorithm 2 and SVD+RBF closure approximation First, we collect ds = 16
uniformly-spaced parameter samples from the training set to construct Ξdefect and obtain the corre-
sponding defect vector in Step 2. The SVD tolerances tolSVD,t, tolSVD,µ are both set to 10−4 so
that nd = 47. The user-defined solver solverimp is IMEX1. The resulting convergence of the greedy
algorithm using the RBF-based approximation of the defect vector is shown in Figure 8a. As shown,
the maximum estimated error converges exponentially to the desired tolerance. The dimension of the
ROM obtained is n = 7. To demonstrate the performance of the ROM, we show in Figure 8b the
mean estimated errors for the parameters in the test set Ξtest. The obtained errors are smaller than
the desired tolerance 10−4, showing the reliability of our error estimation approach. Furthermore,
Figure 9a shows the singular value decays of the defect vector trajectories at the 16 parameter samples
in Ξdefect. Figure 9b shows the singular value decay obtained from the SVD of R (Section 4.2.1). The
singular value decay in Figure 9b indicates the fast Kolmogorov n-width decay of the defect manifold
and hence good performance of Algorithm 2. In terms of runtime, this approach requires 17 seconds
for generating the training data for learning the defect vector and obtaining the RBF interpolants.

POD-Greedy with Algorithm 2 and SVD+FNN closure approximation Next, we repeat Algorithm 2
but now with the neural network-based approximation of the defect. The feed-forward neural network
has 3 hidden layers with 16, 64, 64 neurons, respectively. The activation function are the SiLU function
for the first three layers and Tanh for the last layer. We have normalized the input data to be between
[0, 1] and the output data is between [−1, 1]. The neural network is implemented in PyTorch. It is
trained using the Adam optimizer for 2000 epochs, with the learning rate being set as 0.005. Initially,
we do not implement Step 6 and do not update d̃NN(t,µ∗) with d(t,µ∗) at µ∗ (selected from the
previous iteration) when computing the error estimator ∆b(µ) in Step 11 at the current iteration.
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Figure 8.: Burgers’ equation, Algorithm 2: (a) error (estimator) decay when using the SVD+RBF
method to approximate the closure term and Step 6 is not included; (b) performance of the
ROM over a test set.
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Figure 9.: Burgers’ equation: (a) normalized singular values of the defect matrix D(µ) for µ ∈ Ξdefect;
(b) normalized singular values of R.
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Using the same Ξdefect with |Ξdefect| = 16 (as done for the SVD+RBF approach), we did not obtain
convergence of the greedy algorithm. Therefore, we use a Ξdefect with 24 samples. The SVD tolerances
for this case are both 0.1 resulting in nd = 6. Using enriched training data results in the successful
convergence of Algorithm 2 as seen in Figure 10a. However, it requires up to 14 iterations for this
convergence. Evidently, the NN-based approach does not yield a satisfactory performance even with
more training data. Then, we implement Step 6 and update the defect vector approximation at Step
11, which results in a significant improvement in performance. This is shown in Figure 10b.

To explain the poorer performance of the SVD+FNN approach, we plot in Figure 11 the approxi-
mation of the defect vector at µ = 0.123 and 4 different time instances, viz., t ∈ {0.01, 0.2, 0.5, 1.5} s.
We notice that the approximation from the FNN, while qualitatively capturing the true defect, fails
to produce a very close match to the true value. This is especially the case for latter time instances,
as the magnitude of the defect vector gets smaller. However, the RBF-based approach results in a
significantly better approximation. This might be because of the fact that each entry of the reduced
defect vector is separately learned by an individually-trained RBF interpolation, while the whole re-
duced defect vector is learned by a single and uniformly-trained FNN. However, if we use nd FNNs
to learn the nd entries of the defect vector separately, the training will become much more expensive
when nd is not very small.

5.3. FitzHugh-Nagumo equations

Model description The FitzHugh-Nagumo system models the response of an excitable neuron or cell
under an external stimulus. It finds applications in a variety of fields such as cardiac electrophysiology
and brain modeling. The nonlinear coupled system of two partial differential equations defined in the
domain Ω := [0, L] is given below:

ε
∂v1(z, t)

∂t
= ε2

∂2v1(z, t)

∂z2
+ f(v1(z, t))− v2(z, t) + c, (45a)

∂v2(z, t)

∂t
= b v1(z, t)− γv2(z, t) + c, (45b)

with boundary conditions

∂

∂z
v1(0, t) = −Iext(t),

∂

∂z
v1(L, t) = 0, (46)
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Figure 10.: Burgers’ equation, Algorithm 2: (a) error (estimator) decay when using the SVD+FNN
method without closure updates; (b) error (estimator) decay when using the SVD+FNN
method with closure updates.
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Figure 11.: Burgers’ equation: approximation of the true defect by the RBF-based and NN-based
approaches at t ∈ {0.01, 0.2.0.5, 1.5} s for µ = 0.123.

and initial conditions

v1(z, 0) = 0.001, v2(z, 0) = 0.001. (47)

In the above equations, v1(z, t) and v2(z, t) represent the electric potential and the recovery rate
of the potential, respectively. The spatial variable is denoted by z ∈ Ω and the time t ∈ [0, 5].
The nonlinear term is represented by f(v1(z, t)) := v1(v1 − 0.1)(1 − v1). The external stimulus is
Iext(t) = 50000t3e−15t. The system has four free parameters ε, c, b, γ. We fix b = 0.5 and γ = 2 while
the two free parameters are µ = [ε, c] ∈ P := [0.01, 0.04] × [0.025, 0.075]. A finite difference scheme
is employed to spatially discretize (45a) and (45b) with 512 nodes used for each variable leading to a
FOM of dimension N = 1024. We sample 100 parameters uniformly from the domain P and randomly
divide them into the training set Ξ and the test set Ξtest in the ratio 70 : 30. To solve the ODE, we
use ode15s from matlab®. The time discretization is done on a uniform grid with δt = 0.01. The
output variables of interest are the values of the two state variables at the node next to the leftmost
boundary.

We apply Algorithms 1 and 2 to the FitzHugh-Nagumo system. This is a particularly challenging
example for both algorithms as the system exhibits a slow singular value decay. Of particular interest
is the approximation of the limit cycle behaviour of the system for certain combinations of the two
free parameters, (ε, c). The RBM tolerance is set as tol = 10−3.

POD-Greedy with Algorithm 1 Applying Algorithm 1 to this example and using a second-order
IMEX scheme (IMEX2) to compute the residual does not result in the convergence of the greedy
algorithm, as see in Figure 13. This stems from the fact that the actual numerical scheme solver used
in Algorithm 1 is the ode15s solver from matlab®, therefore, the residual we compute using IMEX2
scheme is incorrect.

POD-Greedy with Algorithm 2 and SVD+RBF closure approximation We apply Algorithm 2 to
this example using d̃RBF(t,µ) in Step 3 and with an RBM tolerance tol = 10−3. The user-imposed
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Figure 12.: FitzHugh-Nagumo equations: (a) Stage 1 - normalized singular values of the defect matrix
D(µ) for µ ∈ Ξdefect; (b) Stage 2 - normalized singular values of R.
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Figure 13.: FitzHugh-Nagumo equations, Algorithm 1: error (estimator) decay when using a second-
order IMEX method without any closure term.

time integration scheme solverimp is IMEX2. Due to the challenging nature of the problem, ds = 21
uniformly-spaced samples are chosen from the training set to obtain Ξdefect. The tolerance tolSVD,t =
tolSVD,µ = 10−6, resulting in nd = 311. Figure 12a plots the singular value decays of D(µ) at
all µ ∈ Ξdefect while Figure 12b shows the decay of the singular values of R (see Section 4.2.1).
Similar to the case of the Burgers’ equation, an exponential decay of the singular values is observed in
Figure 12a. However, the second SVD shown in Figure 12b has a relatively slower decay of the singular
values. This shows that the solution manifold of the FitzHugh-Nagumo system with respect to the
parameter variations is more difficult to be approximated by a low-dimensional linear subspace. We
incur 25 seconds to compute the training data for the defect trajectories and to obtain the SVD+RBF
approximation of the defect vectors. The greedy algorithm takes 11 iterations to reach the desired
tolerance; Figure 14a shows the error convergence of Algorithm 2. The dimension of the ROM obtained
is n = 33. Note that we have implemented Step 6 in Algorithm 2 to update the RBF approximation
d̃RBF(t,µ∗) with d(t,µ∗) when we compute the error estimator ∆b(µ) for all µ ∈ Ξ in Step 11.
Without doing so, the greedy algorithm converges nevertheless, but takes 16 iterations (Figure 14b)
and the ROM has a larger size n = 48.
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Figure 14.: FitzHugh-Nagumo equations, Algorithm 2: (a) error (estimator) decay when using the
SVD+RBF method with Step 6 included; (b) error (estimator) decay when using the
SVD+RBF method without Step 6.
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Figure 15.: FitzHugh-Nagumo equations, Algorithm 2: error (estimator) decay when using the
SVD+FNN method with Step 6 included.

POD-Greedy with Algorithm 2 and SVD+FNN closure approximation Next, we use d̃NN(t,µ) in
Step 3 of Algorithm 2. The FNN is a 3-layer network having, respectively, 64, 64, 32 neurons in its
hidden layers. The SiLU function is used for activation in all but the last layer. In the last layer,
Tanh is the activation function. The training is carried out for 2000 epochs using the Adam optimizer.
The learning rate is 0.002. No special tuning was done to calibrate the hyperparameters of the FNN.
A detailed investigation on this is left for future work. We set tolSVD,t = tolSVD,µ = 10−3, such
that nd = 57. The total time for computing the training data at all the samples in Ξdefect and for
training the FNN is 106 seconds, where training the FNN dominates the total runtime. Figure 15 plots
the convergence of the greedy algorithm. It takes 10 iterations to converge. The resulting ROM has
dimension n = 30.

The finally derived ROM is then simulated at two parameter samples µ = (0.0267, 0.0367) and
µ = (0.04, 0.0472) taken from the test set. Figure 16 shows the results of the ROM for the parameter
µ = (0.0267, 0.0367) obtained from Algorithm 2 using the SVD+RBF approximation of the closure
term. We see that the ROM is able to successfully capture both the state and the output dynamics
of the FOM at the test parameter. At this parameter, the limit cycle behaviour is not very strong.
At a different test parameter (µ = (0.04, 0.0472)) shown in Figure 17, the ROM is able to successfully
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Figure 16.: FitzHugh-Nagumo equations, Algorithm 2 with SVD+RBF: performance at the test pa-
rameter µ = (0.0267, 0.0367) (a) Limit cycle behaviour; (b) output quantities.
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Figure 17.: FitzHugh-Nagumo equations, Algorithm 2 with SVD+FNN: performance at the test pa-
rameter µ = (0.04, 0.0472) (a) Limit cycle behaviour; (b) output quantities.

recover the stronger limit cycle behaviour as well. For this case, we show results using the SVD+FNN
approach. But, we note that similar accuracy is also achieved with the SVD+RBF approach. The
corresponding results are not shown to avoid repetition.

5.4. Batch chromatography

The last example we consider is the model of the batch chromatography purification process. Being a
coupled, nonlinear system of four PDEs, this example poses a considerable challenge for our proposed
approach.

Model description Batch chromatography is an important purification process for separation of chem-
icals in food and pharmaceutical industries. We consider the governing equations for the batch chro-
matographic process for binary separation, i.e., the separation of two chemical components from a
mixture. A schematic of the complete process is shown in Figure 18.

The governing PDEs for the batch chromatography system are:

∂v1,z

∂t
+

1− ε
ε

∂v2,z

∂t
= −∂v1,z

∂z
+

1

Pe

∂2v1,z

∂z2
, (48)

∂v2,z

∂t
=

L

Q/εAc
κz
(
vEq

2,z − v2,z

)
(49)

where the state variables v1,z, v2,z refer to the concentrations of the chemical component z in the liquid
and solid phase, respectively. Since we are interested in binary separation, z ∈ {a, b}. The boundary
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Figure 18.: Schematic of the batch chromatography process.

conditions are:

∂v1,z(0, t)

∂z
= Pe

(
v1,z(0, t)− u(t)

)
,

∂v1,z(1, t)

∂z
= 0 (50)

and the initial conditions are:

v1,z(z, 0) = 0, v2,z(z, 0) = 0. (51)

The quantity vEq
2,z in (48) is the source of nonlinearity and it denotes the adsorption equilibrium:

vEq
2,z = fz(v1,a, v2,b) :=

Hz1v1,z

1 +Ka1vf
1,av1,a +Kb1vf

2,bv2,b
+

Hz2v1,z

1 +Ka2vf
1,av1,a +Kb2vf

2,bv2,b
.

The discretization of the above PDE is performed using second-order finite volume method. Each
of the four PDEs is spatially discretized into 800 volume elements, resulting in a FOM of dimension
N = 3200. For full details regarding the batch chromatography PDE discretization and the terms
involved, we refer to [19]. The output variables are the concentrations of the liquid phases (v1,a, v1,b)
at the rightmost node. The batch chromatography model has two free parameters, Q and tin, which
denote, respectively, the volumetric feed flow of the solvent injected into the column and the injection
frequency of the solvent. We fix tin = 0.5 while Q ∈ [0.0667, 0.1667]. We collect 60 uniformly-spaced
samples of Q and divide them into the training set Ξ and the test set Ξtest in the ratio 80 : 20. The
solver used for both algorithms is ode15s from matlab®while the user-imposed time integration
method solverimp in Algorithm 2 is IMEX2. The time discretization divides the time range t ∈ [0, 10]
into a uniform grid with δt = 0.005.

POD-Greedy with Algorithm 1 First, we show the results of applying Algorithm 1 to the batch
chromatography equations. The RBM tolerance is set to be tol = 10−3. Since the exact form of
the residual expression of batch chromatography equations is unknown, (i.e., R[·] corresponding to

ode15s is not available) we impose IMEX2 to get an approximate residual operator R̃[·]. However,

R̃[·] corresponding to IMEX2 is different from R[·] so that the estimated error is inaccurate, resulting
in stagnation of the greedy algorithm, see Figure 19. To address this situation, we next apply the
proposed approach which involves adding a closure term.

POD-Greedy with Algorithm 2 and SVD+RBF closure approximation As done for the last two
examples, we first apply Algorithm 2 to the current example and employ the RBF-based approach
to approximate the closure term. The greedy algorithm successfully converges in 10 iterations to
the desired tolerance of tol = 10−3. The dimension of the ROM is n = 134. The convergence is
shown in Figure 20. To learn the closure term, ds = 10 uniformly-spaced samples are chosen from
the training set Ξ. The SVD tolerances are tolSVD,t = tolSVD,µ = 10−5, leading to nd = 291.
The singular value decay from the SVD of each defect snapshot matrix D(µ) for all µ ∈ Ξdefect is
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Figure 19.: Batch chromatography, Algorithm 1: error (estimator) decay when using a second-order
IMEX method without any closure term.
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Figure 20.: Batch chromatography, Algorithm 2: convergence when using the SVD+RBF method with
Step 6 included to approximate the closure term.

presented in Figure 21a. It can be noticed that the singular values decay even slower than those of
the FitzHugh-Nagumo model (see Figure 12a). In Figure 21b, the singular values of R also exhibit
a much slower decay. This indicates that for the batch chromatography example, both the dynamics
at a given parameter and the solution manifold with respect to the parameter variations are much
more difficult to be captured by a low-dimensional linear space. As a result, this problem is likely to
have a slow Kolmogorov n-width decay. The batch chromatography equations are in fact a system of
first-order hyperbolic PDEs [42]. It is known that for problems exhibiting hyperbolic characteristics
or convection-dominance, the Kolmogorov n-width decay is slow [27]. The runtime for obtaining the
training data for the SVD+RBF approach and for obtaining the RBF interpolant is 186 seconds. To
demonstrate the quality of the ROM resulting from Algorithm 2, we compare the output obtained
from the FOM and ROM in Figure 22. The results are shown for the parameter sample Q = 0.0803
taken from Ξtest. We can see that the ROM is able to successfully recover the dynamics of both output
quantities. For this sample, we obtained the mean error ∆(Q) = 2.082 · 10−5, which is below the
desired tolerance. Additionally, to show the approximation of the state vector, we plot the space-time
values and corresponding approximation errors of the liquid phase concentration v1,a, v1,b. The results
are shown in Figures 23 and 24. It can be inferred that the ROM delivers a sharp approximation of
both these state quantities for the entire duration of the simulation at an unseen parameter during
training. Note that the state vector has error larger than the tolerance. The reason for this is that
our error estimator aims to estimate the output error rather than the whole state error.
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Figure 21.: Batch chromatography: (a) Stage 1 - normalized singular values of the defect matrix D(µ)
for µ ∈ Ξdefect; (b) Stage 2 - normalized singular values of R.
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Figure 22.: Batch chromatography, Algorithm 2: performance of the ROM at test parameter sample
Q = 0.0803 for the two output quantities y1,a, y1,b.

The quality of the defect vector approximation using the SVD+FNN approach was not satisfactory
for this example. This owes to the particularly non-smooth nature of the defect snapshots for differ-
ent time instances and parameters. Figure 25 shows the true reduced defect vector d̂(t,µ) and its

approximation using RBF interpolation d̂RBF(t,µ) corresponding to µ = 0.0769 at the time instances
t ∈ {0.05, 0.25, 2.5, 5.0} s. While the RBF interpolants recover a good approximation, the FNN was not
successful in capturing the entire complexity of the defect snapshots. The FNN-based approximation
was very inaccurate and we do not show those results. The neural network struggles to capture the
fast changing nature of the reduced defect vector in the reduced coordinate space and also its wide
range of magnitudes (±(10−3 − 10−8)). The fact that we used separate RBF interpolants for each
coordinate and time instance led to a much better approximation than the FNN.
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Figure 23.: Batch chromatography, Algorithm 2: performance of the ROM at test parameter sample
Q = 0.0803 for the state v1,a.
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Figure 24.: Batch chromatography, Algorithm 2: performance of the ROM at test parameter sample
Q = 0.0803 for the state v1,b.

6. Conclusion

In this work, we introduced a data-enhanced a posteriori output error estimator for model reduction
of general parametric nonlinear dynamical systems. The proposed error estimator does not require
any knowledge of the underlying time integration scheme used to integrate the given ODE. Applied to
the reduced basis method, the new approach enables the direct use of ODE solver libraries, a feature
that was not considered so far, to the best of our knowledge. While it demands a modest amount
of extra training data, the proposed error estimator is efficient and can also be used in the online
stage to certify the accuracy of the ROMs. Numerical experiments performed on three challenging
examples demonstrate the benefits offered by the new approach. We observed that the RBF-based
approach performed better, compared to a NN-based approach. An immediate extension of the pro-
posed approach is to consider an adaptive sampling of the training set Ξ. New strategies to accurately
approximate the closure term need to be considered for this. Another fruitful line of future work could
involve integrating the proposed methodology in the Neural ODE framework [21] to make it fully
non-intrusive.
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Figure 25.: Batch chromatography: approximation of the reduced defect vector by the RBF-based
approach at t ∈ {0.05, 0.25, 2.5, 5.0} s at Q = 0.0769.
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A. Appendix A

Proof of Theorem 2.1

Proof. Consider the FOM in (4) and its residual (6) based on the ROM (5). Subtracting (6) from (4)
and rearranging yields

Eimek = Aimek−1 + δt

(
f(xk−1

im )− f(x̃k−1
im )

)
+ rk,

ek = E−1
im Aimek−1 + δtE−1

im

(
f(xk−1

im )− f(x̃k−1
im )

)
+ E−1

im rk (52)

where ek = ‖xk
im − x̃k

im‖ is the error in the state vector at the k-th time step.
Taking the norm on both sides and enforcing the Lipschitz condition results in

∥∥ek
∥∥

2
≤
∥∥E−1

im Aim

∥∥
2

∥∥ek−1
∥∥

2
+ δtLf

∥∥E−1
im

∥∥
2

∥∥ek−1
∥∥

2
+
∥∥E−1

im

∥∥
2

∥∥rk
∥∥

2

≤
(∥∥E−1

im Aim

∥∥
2

+ δtLf

∥∥E−1
im

∥∥
2

)∥∥ek−1
∥∥

2
+
∥∥E−1

im

∥∥
2

∥∥rk
∥∥

2
. (53)

For notational convenience, we define ζ :=
∥∥E−1

im

∥∥
2

and ξ :=
( ∥∥E−1

im Aim

∥∥
2

+δtLf

∥∥E−1
im

∥∥
2

)
and rewrite

(53) as
∥∥ek
∥∥

2
≤ ξ

∥∥ek−1
∥∥

2
+ ζ

∥∥rk
∥∥

2
. (54)
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At k = 0, the initial error is
∥∥e0
∥∥

2
=
∥∥x0

im −VVTx0
im

∥∥
2
. (55)

Using (55), the recursion in (54) can be resolved for every k to obtain the expression for the error
bound in (7).

B. Appendix B

Proof of Theorem 3.1

Proof. The output error for the modified output in (25) is

yk − yk
im,c = C

(
xk − x̃k

im,c

)
+ x̃T

durkim,c. (56)

Multiplying by
(
xk − x̃k

im,c

)T
on both sides of (20) yields

(
xk − x̃k

im,c

)T
ET

imxdu = −
(
xk − x̃k

im,c

)T
CT,

where we have made use of the fact that Edu = ET
im. Taking the transpose on both sides of the above

equality leads to

xT
duEim

(
xk − x̃k

im,c

)
= −C

(
xk − x̃k

im,c

)
. (57)

We recall the auxiliary residual introduced in (24) which can be written as

r̆kim,c = Aimxk−1
im,c + δt

(
f(xk−1

im,c) + Buk
)

+ dk −Eimx̃k
im,c,

= Eim

(
xk

im,c − x̃k
im,c

)
,

= Eim

(
xk − x̃k

im,c

)
. (58)

The third equality above follows from (15) and (16) that the corrected solution xk
im,c actually recovers

the FOM solution xk given an accurate closure term dk.
We further use the expression in (58) to write (57) as

xT
dur̆kim,c = −C

(
xk − x̃k

im,c

)
. (59)

Now, we substitute (59) into (56) followed by addition and subtraction of the term x̃T
dur̆kim,c to get

yk − yk
im,c = −xT

dur̆kim,c + x̃T
durkim,c,

= −xT
dur̆kim,c + x̃T

durkim,c + x̃T
dur̆kim,c − x̃T

dur̆kim,c,

= −
(
xdu − x̃du

)T
r̆kim,c + x̃T

du

(
rkim,c − r̆kim,c

)
.

(60)

Subsequent to this, we use the expression for the dual system (20) and its residual (23) we obtain

rdu = Eduxdu −Edux̃du = Edu

(
xdu − x̃du

)
,

=⇒
(
xdu − x̃du

)
= E−1

du rdu = E−Tim rdu.
(61)

Substituting (61) into (60) yields

yk − yk
im,c = −rTduE−1

im r̆kim,c + x̃T
du

(
rkim,c − r̆kim,c

)
. (62)

Taking the norm on either sides and using the triangle and Cauchy-Schwartz inequalities we obtain
the error bound as

∥∥yk − yk
im,c

∥∥ = ‖ − rTduE−1
im r̆kim,c‖+ ‖x̃T

du

(
rkim,c − r̆kim,c

)
‖, (63)

≤ ‖E−1
im ‖‖rdu‖‖r̆kim,c‖+ ‖x̃du‖‖rkim,c − r̆kim,c

)
‖. (64)
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