
Computer Methods in Applied Mechanics and Engineering 420 (2024) 116712

A
0
(

Contents lists available at ScienceDirect

Comput. Methods Appl. Mech. Engrg.

journal homepage: www.elsevier.com/locate/cma

Accurate error estimation for model reduction of nonlinear
dynamical systems via data-enhanced error closure
Sridhar Chellappa ∗, Lihong Feng, Peter Benner
Max Planck Institute for Dynamics of Complex Technical Systems, 39106 Magdeburg, Germany

A R T I C L E I N F O

Dataset link: https://doi.org/10.5281/zenodo.8
169489

Keywords:
A posteriori error estimation
Model order reduction
Reduced basis method
ODE solvers

A B S T R A C T

Accurate error estimation is crucial in model order reduction, to obtain small reduced-order
models as well as to certify their accuracy when deployed in downstream applications such as
digital twins. In existing a posteriori error estimation approaches, knowledge about the time
integration scheme is mandatory, e.g., the residual-based error estimators proposed for the
reduced basis method. This poses a challenge when automatic ordinary differential equation
solver libraries are used to perform the time integration. To address this, we present a data-
enhanced approach for a posteriori error estimation. Our new formulation enables residual-based
error estimators to be independent of any time integration method. To achieve this, we
introduce a corrected reduced-order model which takes into account a data-driven closure
term for improved accuracy. The closure term, subject to mild assumptions, is related to
the local truncation error of the corresponding time integration scheme. We propose efficient
computational schemes for approximating the closure term, at the cost of a modest amount of
training data. Furthermore, the new error estimator is incorporated within a greedy process
to obtain parametric reduced-order models. Numerical results on three different systems show
the accuracy of the proposed error estimation approach and its ability to produce ROMs that
generalize well.

1. Introduction

Model order reduction (MOR) has become an important enabling technology that facilitates the rapid and reliable simulation of
large-scale systems in a number of scientific disciplines. The central goal of MOR is to replace an expensive-to-compute full-order model
(FOM) with a surrogate, called the reduced-order model (ROM). The ROM has fewer degrees of freedom which often enables real-
time simulation — an important requirement in recent developments such as digital twins [1,2]. We refer to the recent books [3–5]
for a detailed background and the state-of-the-art in MOR literature.

In this work, we are interested in obtaining ROMs for parametric, nonlinear dynamical systems that arise from the numerical
discretization of partial differential equations (PDEs). For such systems, the Reduced Basis Method (RBM) [6–8] is a commonly used
MOR approach. The RBM relies on an a posteriori error estimator to perform an iterative, greedy sampling of the parameter space
to compute solution snapshots, in order to build a linear subspace that serves as an approximation for the solution space. The FOM
equations are then projected onto this subspace to obtain the final ROM. A posteriori, residual-based error bounds/estimators are an
indispensable part of the RBM; such estimators have been proposed for a variety of system classes such as coercive and non-coercive
elliptic systems [9,10], linear parabolic systems [11], non-linear or non-affine systems [12–14]. While initial development in the

∗ Corresponding author.
E-mail addresses: chellappa@mpi-magdeburg.mpg.de (S. Chellappa), feng@mpi-magdeburg.mpg.de (L. Feng), benner@mpi-magdeburg.mpg.de (P. Benner).
vailable online 28 December 2023
045-7825/© 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC license
http://creativecommons.org/licenses/by-nc/4.0/).

https://doi.org/10.1016/j.cma.2023.116712
Received 7 October 2023; Received in revised form 17 December 2023; Accepted 19 December 2023

https://www.elsevier.com/locate/cma
https://www.elsevier.com/locate/cma
https://doi.org/10.5281/zenodo.8169489
https://doi.org/10.5281/zenodo.8169489
https://doi.org/10.5281/zenodo.8169489
https://doi.org/10.5281/zenodo.8169489
https://doi.org/10.5281/zenodo.8169489
https://doi.org/10.5281/zenodo.8169489
https://doi.org/10.5281/zenodo.8169489
https://doi.org/10.5281/zenodo.8169489
https://doi.org/10.5281/zenodo.8169489
https://doi.org/10.5281/zenodo.8169489
https://doi.org/10.5281/zenodo.8169489
https://doi.org/10.5281/zenodo.8169489
https://doi.org/10.5281/zenodo.8169489
https://doi.org/10.5281/zenodo.8169489
https://doi.org/10.5281/zenodo.8169489
https://doi.org/10.5281/zenodo.8169489
https://doi.org/10.5281/zenodo.8169489
https://doi.org/10.5281/zenodo.8169489
https://doi.org/10.5281/zenodo.8169489
https://doi.org/10.5281/zenodo.8169489
https://doi.org/10.5281/zenodo.8169489
https://doi.org/10.5281/zenodo.8169489
https://doi.org/10.5281/zenodo.8169489
https://doi.org/10.5281/zenodo.8169489
https://doi.org/10.5281/zenodo.8169489
https://doi.org/10.5281/zenodo.8169489
https://doi.org/10.5281/zenodo.8169489
https://doi.org/10.5281/zenodo.8169489
https://doi.org/10.5281/zenodo.8169489
https://doi.org/10.5281/zenodo.8169489
https://doi.org/10.5281/zenodo.8169489
https://doi.org/10.5281/zenodo.8169489
https://doi.org/10.5281/zenodo.8169489
https://doi.org/10.5281/zenodo.8169489
https://doi.org/10.5281/zenodo.8169489
https://doi.org/10.5281/zenodo.8169489
https://doi.org/10.5281/zenodo.8169489
https://doi.org/10.5281/zenodo.8169489
mailto:chellappa@mpi-magdeburg.mpg.de
mailto:feng@mpi-magdeburg.mpg.de
mailto:benner@mpi-magdeburg.mpg.de
https://doi.org/10.1016/j.cma.2023.116712
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cma.2023.116712&domain=pdf
https://doi.org/10.1016/j.cma.2023.116712
http://creativecommons.org/licenses/by-nc/4.0/


Computer Methods in Applied Mechanics and Engineering 420 (2024) 116712S. Chellappa et al.
RBM community focused on deriving a posteriori error estimators in the variational setting, more recent work has also focused on
deriving such estimators for PDEs that are discretized using the finite volume method or the finite difference method; see [15–19].

1.1. Motivation

For dynamical systems, all of the above works on a posteriori error estimation assume prior knowledge of the time integration
scheme. The details of the time integration method are needed to compute the residual vector, which is obtained by substituting
an approximate solution in the residual expression. For instance, if a Runge–Kutta method were used, the Butcher tableau of
the corresponding scheme needs to be known. However, there are scenarios where no (or only incomplete) knowledge of the
time integration scheme is available. One such example is when automatic ordinary differential equation (ODE) solver libraries,
e.g., SUNDIALS [20,21], ODEPACK [22], ARKODE [23] are used to perform the time integration. Such ODE solvers are often
available readily in computational software such as matlab® (ode45, ode15s, etc.) or Python (scipy.integrate.odeint).
Another popular ODE solver library is the TS library [24] available in PETSc [25]. Typically, automatic ODE solver packages are
computationally efficient as they employ adaptive order selection (e.g., ode15s can switch between order 1 to order 5 methods)
and/or adaptive choice of the time step, which is beneficial in case the system being considered exhibits stiffness. Moreover, much
time is saved by re-using efficient and robust software which is already available and well-maintained. Whenever automatic ODE
solvers are used, the standard RBM can no longer be used in a straightforward manner to obtain a ROM. This is owing to the fact
that the exact expression of the time integration method used within such ODE solvers is unknown and deriving the corresponding
error estimator is an open question. This serves as the fundamental motivation for our work.

1.2. Main contributions

Our work introduces a new data-enhanced paradigm for a posteriori, residual-based error estimation for the RBM, in the absence
of any knowledge about the time integration scheme used. In addition to the discretized system matrices, our approach only requires
access to solution snapshots at different time instances obtained from any black-box ODE solver in a library, at a small set of system
parameter samples. By black-box we mean that the details of the integration scheme used within the ODE solver, viz., its expression,
step size, etc. are not known. In our approach, we fit a (simpler) time integration scheme of our choice to the available snapshots
data. Since the time integration method we impose on the data does not coincide with the actual scheme used to generate the data
in first place, there is a mismatch or defect at each time step. Subject to a mild assumption, this defect corresponds to the local
truncation error (LTE) of the imposed time integration scheme. We then learn this defect term as a function of time and the system
parameters. Learning the defect using data allows us to formulate a new corrected ROM that takes into account the LTE at each time
step. Taking into account the LTE as a closure term means that the corrected ROM can recover the solution obtained from a ROM
solved by a solver from an ODE library. We use the corrected ROM to compute a good approximation to the true residual vector at
each time step, leading to accurate estimation of the true error. The computation of the defect term is a key element of our proposed
methodology. To do this efficiently, we rely on two observations. First, we demonstrate with numerical evidence that the defect
term possesses a certain low-rank structure in space that allows us to efficiently project it on a low-dimensional subspace. Second,
if the solution to the FOM is fairly smooth over the parameter space, then this smoothness carries over to the defect term and it
can be efficiently approximated with respect to parameter variations using a suitable surrogate model.

1.3. Prior work

A number of recent works have sought to extend the RBM to a non-intrusive framework, mainly for steady systems; see [26–28].
In [27,28], the non-intrusive reduced basis (NIRB) method makes use of FEM solutions computed on two different meshes – one fine
and one coarse – to estimate the state error due to the ROM. A different approach is proposed in [26] that involves the empirical
interpolation method (EIM) to precompute an affine decomposition consisting of parameter-dependent and parameter-independent
quantities. More recently, the method in [29] has sought to extend the NIRB approach to time-dependent systems. All of these
methods assume no knowledge of the FOM system matrices and rely purely on snapshots of the state variable. But, they need
knowledge of the time integration scheme used to numerically integrate the spatially discretized system. In our new approach, we
assume knowledge of the system matrices. Therefore, our approach is an intrusive method in terms of access to the model or the
system matrices. However, our approach is non-intrusive in terms of the time integration scheme (ODE solver) used. Nevertheless,
we do envisage an extension of our method to the case when there is no access to the system matrices; this will be a subject for
future investigation.

To eliminate the dependence on the time integration scheme, our approach aims to increase the accuracy of a user-imposed time
integration method by addition of a data-driven closure term. The problem of improving time integration accuracy is an emerging
topic and has received attention in the machine learning community [30–32]. The deep Euler method (DEM) is introduced in [30]
where the authors’ motivation is to improve the first-order accuracy of the explicit Euler time integration scheme by a factor of 𝜂,
i.e., to (𝜂𝛿𝑡) (𝜂 ≪ 1). They achieve this by approximating the LTE using a feed-forward neural network (FNN). Extension of the
approach to other time integration schemes beyond the explicit Euler method are also illustrated. In the same spirit of the DEM
approach, the work [31] introduces hypersolvers, which are targeted at Neural ODEs [33]. While both DEM and hypersolvers
seek to improve the accuracy of the time integration scheme by approximating the LTE, they differ in the assumptions made about
2

the model. DEM assumes the model of the PDE is known and is exact, while for hypersolvers, the model is unknown and is



Computer Methods in Applied Mechanics and Engineering 420 (2024) 116712S. Chellappa et al.
Table 1
List of FOM variables.
Quantity Variable Vector space

State vector 𝐱 R𝑁

Input vector 𝐮 R𝑁𝐼

Output vector 𝐲 R𝑁𝑂

Initial condition 𝐱0 R𝑁

Nonlinear vector 𝐟 R𝑁

Approximate state vector 𝐱̃ ∶= 𝐕𝐱̂ R𝑁

System matrix 𝐀 R𝑁×𝑁

Input matrix 𝐁 R𝑁×𝑁𝐼

Output matrix 𝐂 R𝑁𝑂×𝑁

Table 2
List of ROM variables.
Quantity Variable Vector space

Left projection matrix 𝐖 R𝑁×𝑛

Right projection matrix 𝐕 R𝑁×𝑛

State vector 𝐱̂ R𝑛

Output vector 𝐲̂ R𝑁𝑂

Initial condition 𝐱̂0 ∶= 𝐖𝖳𝐱0 R𝑛

Nonlinear vector 𝐟̂ ∶= 𝐖𝖳𝐟(𝐱̃) R𝑛

System matrix 𝐀̂ ∶= 𝐖𝖳𝐀𝐕 R𝑛×𝑛

Input matrix 𝐁̂ ∶= 𝐖𝖳𝐁 R𝑛×𝑁𝐼

Output matrix 𝐂̂ ∶= 𝐂𝐕 R𝑁𝑂×𝑛

approximated by a separate neural network. Our work here differs from DEM and hypersolvers in several ways. Firstly, our aim is
to obtain a corrected ROM for better error estimation whereas, in the aforementioned two methods the aim is simply to improve
the FOM accuracy during simulation. Secondly, our targets are parametric nonlinear systems. Therefore, we want to learn the LTE
for different time instances for a range of system parameters. Both DEM and hypersolvers are limited to non-parametric systems.
While either method can potentially be extended to the parametric case, this is expected to be computationally very expensive.
Furthermore, both these methods learn a closure term which is a function of the past states. Our approach treats the closure term as
a function of time and any additional system parameters. This allows us to take advantage of the special structure and smoothness
properties of the closure term.

The rest of this paper is organized as follows. In Section 2, we present the mathematical preliminaries of MOR and provide
a short recap of the RBM along with a posteriori error estimation. We also illustrate the pitfalls of the current error estimation
approach used in RBM, through the example of the heat equation. Section 3 contains the main contributions of this manuscript. We
introduce a user-imposed time integration scheme which incorporates the data-driven closure term and derive the a posteriori output
error estimator suited for situations where ODE solver libraries are used within the RBM. The algorithmic aspects of the proposed
approach are discussed in Section 4 while numerical results are presented in Section 5 to support our new method. We conclude
with a summary and topics for future research in Section 6.

2. Mathematical background

Consider the following parametric system of ODEs:
𝑑
𝑑𝑡

𝐱(𝝁) = 𝐀(𝝁)𝐱(𝝁) + 𝐟 (𝐱,𝝁) + 𝐁𝐮(𝑡), 𝐱(0) = 𝐱0, (1a)

𝐲(𝝁) = 𝐂(𝝁)𝐱(𝝁). (1b)

Such systems often arise upon discretizing a PDE using numerical discretization schemes. Table 1 lists each variable and its
corresponding dimension. In subsequent discussions, we refer to (1) as the FOM. The state vector 𝐱(𝝁) can be obtained for any
time instance for a given parameter 𝝁 ∈  ⊂ R𝑝 by time integration of the FOM using any desired method like Runge–Kutta
methods or linear multi-step methods. The set  denotes the parameter space and 𝑝 is its dimension. The number of equations 𝑁
in (1) is often very large to ensure a high-fidelity solution of the underlying physical process. This poses a major challenge for its
numerical solution, especially for many instances of the parameter 𝝁 in applications such as control and uncertainty quantification.

2.1. Model order reduction

Projection-based MOR techniques offer a systematic approach to obtain a ROM for (1) in the following form:
𝑑 𝐱̂(𝝁) = 𝐀̂(𝝁)𝐱̂(𝝁) + 𝐟̂ (𝐱̃,𝝁) + 𝐁̂𝐮(𝑡), 𝐱̂(0) = 𝐖𝖳𝐱 , (2a)
3

𝑑𝑡 0



Computer Methods in Applied Mechanics and Engineering 420 (2024) 116712S. Chellappa et al.

T
r
T
r
m
a

R
𝑁
s
e

R
o
w
i
p
i
i
G
I
(
g

2

t
e

p
p
t

o
S

s
h

T

𝐲̂(𝝁) = 𝐂̂(𝝁)𝐱̂(𝝁). (2b)

he above ROM is derived based on the ansatz 𝐱 ≈ 𝐱̃ ∶= 𝐕𝐱̂ applied to (1). The resulting over-determined system of equations is
educed by a Petrov–Galerkin projection, leading to (2). Table 2 lists the reduced variables and their corresponding dimensions.
he number of equations 𝑛 in (2a) is often much smaller than 𝑁 in (1a), i.e., 𝑛 ≪ 𝑁 . Therefore, the ROM can be readily used for
epeated simulations given any new values of the parameter 𝝁. Different MOR techniques differ in how they compute the projection
atrices 𝐕,𝐖. When 𝐕 = 𝐖, it is referred to as Galerkin projection. In the sequel, we will limit ourselves to ROMs obtained through
Galerkin projection.

emark 1. Although (2a) is a ROM of dimension 𝑛 ≪ 𝑁 , evaluating 𝐟̂ (𝐱̃,𝝁) involves operations that scale with the FOM dimension
(since 𝐱̃ = 𝐕𝐱̂ needs to be evaluated for each time step). Thus, a direct evaluation of (2a) may not offer any computational

peedup over evaluating the FOM. Hyperreduction techniques [34–36] can be used to address this issue. We employ the discrete
mpirical interpolation method (DEIM) for the hyperreduction in our numerical results in Section 5.

emark 2. While we limit our focus to ROMs obtained using Galerkin projection, we emphasize that this is not a restriction of
ur proposed error estimation framework. It will be straightforward to use the new error estimator in a Petrov–Galerkin setting as
ell, given a right projection matrix 𝐖 is available. The motivation for limiting ourselves to Galerkin projection is mainly due to

ts simplicity as only one matrix 𝐕 needs to be constructed. Also, for the numerical examples we consider in Section 5, Galerkin
rojection is sufficient to provide stable ROMs. A Petrov–Galerkin formulation of the RBM for steady systems has been considered
n several works [8,10,37,38]. In [39], a Petrov–Galerkin projection has been used in a space–time framework. We further note that
n existing literature about the RBM applied to parametric dynamical systems, Galerkin projection is typically adopted. The Petrov–
alerkin approach has been preferred in some problems of fluid dynamics owing to its better stability for such applications [36,40].

n this approach, the ROM solution is obtained based on a residual minimization formulation, e.g., the Least-squares Petrov–Galerkin
LSPG) method [36]. To the best of our knowledge, we are not aware of the LSPG applied to parametric dynamical systems in a
reedy setting. However, we note that the LSPG in a greedy framework has been done already for steady problems [41].

.2. Reduced basis method

The RBM is a greedy approach that builds a global projection matrix 𝐕 to obtain a parametric ROM for (1). Since its introduction,
he RBM has been a highly successful approach to obtain ROMs for parametric systems in a variety of applications such as process
ngineering [19,42], geosciences [43], data assimilation [44,45], uncertainty quantification [46] to name just a few.

When RBM is applied to dynamical systems, the POD-Greedy method [47] is adopted. It consists of a greedy sampling in the
arameter space and a compression of the time trajectory through singular value decomposition (SVD). Algorithm 1 sketches the
seudo-code for the standard RBM using the POD-Greedy algorithm. In Step 1, solver denotes the time integration scheme used
o solve Eqs. (1) and (2). This is determined a priori by the user based on the ODE library used, e.g. scipy.ode.integrate.

Consider a fine discretization of the parameter space  in the form of a training set 𝛯 ∶= {𝝁1,𝝁2,… ,𝝁𝑁𝑝
} consisting of samples

f the parameter 𝝁. The POD-Greedy method starts by solving the FOM at a randomly chosen parameter 𝝁∗ ∈ 𝛯. Performing the
VD of the solution snapshot matrix

𝐗(𝝁∗) ∶=
[

𝐱(𝑡0), 𝐱(𝑡1),… , 𝐱(𝑡𝐾 )
]

∈ R𝑁×𝑁𝑡 (3)

with 𝑁𝑡 = 𝐾 + 1 yields the projection basis 𝐕. More precisely, we first obtain

𝐗(𝝁∗) = 𝐕𝝁∗𝜮𝝁∗ (𝐖𝝁∗ )𝖳

with 𝐕𝝁∗ ∈ R𝑁×𝑁 ,𝜮𝝁∗ ∈ R𝑁×𝑁𝑡 and 𝐖𝝁∗ ∈ R𝑁𝑡×𝑁𝑡 . The matrix 𝜮𝝁∗ is a rectangular diagonal matrix and contains the singular
values 𝜎𝑖 in the locations 𝜮𝝁∗ (𝑖, 𝑖), 𝑖 ∈ {1, 2,… ,min(𝑁,𝑁𝑡)}.

We then update 𝐕 by enriching it with the first 𝑟𝑐 left singular vectors of 𝐗(𝝁∗), i.e., 𝐕𝝁∗ (∶ , 1 ∶ 𝑟𝑐 ). In subsequent iterations,
napshots of the FOM are similarly collected at different values of 𝝁∗ and the matrix 𝐕 is updated with new information. Note,
owever, that for all iterations after the first, we perform an SVD of the matrix 𝐗 obtained after removing from 𝐗(𝝁∗) the information

already represented in 𝐕, i.e., we set

𝐗 ∶= 𝐗(𝝁∗) − 𝐕(𝐕𝖳𝐗(𝝁∗)).

o ensure good conditioning, it is recommended to perform a Gram–Schmidt orthonormalization after each update of 𝐕. The choice
of 𝝁∗ at each iteration is determined via an error estimator 𝛥(𝝁) as follows:

𝝁∗ = argmin
𝝁∈𝛯

𝛥(𝝁).

The error estimator serves as an upper bound for the true state error ‖𝐱(𝑡,𝝁) − 𝐱̃(𝑡,𝝁)‖ (or true output error ‖𝐲(𝑡,𝝁) − 𝐲̂(𝑡,𝝁)‖). That
is,

‖𝐱(𝑡,𝝁) − 𝐱̃(𝑡,𝝁)‖ ≤ 𝛥(𝝁), or
‖𝐲(𝑡,𝝁) − 𝐲̂(𝑡,𝝁)‖ ≤ 𝛥(𝝁).

All that is needed to evaluate 𝛥(𝝁) is to solve the ROM (2a) which can be formulated at each greedy iteration using 𝐕.
4



Computer Methods in Applied Mechanics and Engineering 420 (2024) 116712S. Chellappa et al.

1

𝛥
C

w

w
d
d

w
c

I
s
e

T
a

F

T

w

Algorithm 1 POD-Greedy algorithm
Input: Training set 𝛯, tolerance (tol), discretized model (𝐄,𝐀,𝐁,𝐂, 𝐟 , 𝐱0)
Output: 𝐕

1: Initialize 𝐕 = [ ], 𝜖 = 1 + tol, choose solver, greedy parameter 𝝁∗

2: while 𝜖 > tol do

3: Obtain FOM snapshots 𝐗(𝝁∗) at 𝝁∗ with solver

4: Determine 𝐕𝝁∗ through an SVD of 𝐗 ∶= 𝐗(𝝁∗) − 𝐕(𝐕𝖳𝐗(𝝁∗))

5: Update 𝐕 as 𝐕 ∶= orth
(

𝐕,𝐕𝝁∗ (∶ , 1 ∶ 𝑟𝑐 )
)

with orth
(

⋅
)

denoting an orthogonalization process which can be implemented using the modified Gram–Schmidt process, or QR
factorization

6: Get (𝐄̂, 𝐀̂, 𝐁̂, 𝐂̂, 𝐟̂ , 𝐱̂0) in (2) by Galerkin projection (+ hyperreduction)

7: Solve ROM with solver for all 𝝁 ∈ 𝛯

8: 𝝁∗ ∶= argmax
𝝁∈𝛯

𝛥(𝝁)

9: Set 𝜖 = 𝛥(𝝁∗)

0: end while

2.3. A posteriori error estimation for the RBM

The standard error estimation approach in the RBM literature is residual-based [7,8]. In order to derive the error estimator
(𝝁), knowledge of the time discretization scheme used to integrate the FOM and the ROM is assumed, e.g., using implicit Euler,
rank–Nicolson method, or an implicit–explicit (IMEX) method. Computing 𝛥(𝝁) for a given parameter involves determining the

residual vector r ∈ R𝑁 (or its norm) at each time instance; some approaches to error estimation also require the residual of a dual
or adjoint system. Let us illustrate this by means of an example.

Suppose (1) is discretized in time using a first-order IMEX scheme [48]. The linear part (involving 𝐀(𝝁)) is discretized implicitly,
hile the nonlinear vector 𝐟 (𝐱) is evaluated explicitly. The resulting discretized system reads

𝐄im𝐱𝑘im = 𝐀im𝐱𝑘−1im + 𝛿𝑡
(

𝐟 (𝐱𝑘−1im ) + 𝐁𝐮𝑘
)

, (4a)

𝐲𝑘+1im = 𝐂𝐱𝑘im (4b)

ith 𝐄im ∶= 𝐈𝑁 − 𝛿𝑡𝐀, 𝐀im ∶= 𝐈𝑁 , where 𝐈𝑁 ∈ R𝑁×𝑁 is the identity matrix. For better clarity, we have not shown the parameter
ependence of the system matrices and vectors. Also note that in (4) and hereafter, the subscript ‘im’ shall denote the IMEX time
iscretization. The ROM (2) can be discretized in the same way and reads

𝐄̂im𝐱̂𝑘im = 𝐀̂im𝐱̂𝑘−1im + 𝛿𝑡
(

𝐟̂ (𝐱̃𝑘−1im ) + 𝐁̂𝐮𝑘
)

, (5a)

𝐲̂𝑘+1im = 𝐂̂𝐱̂𝑘im (5b)

ith 𝐄̂im ∶= 𝐈𝑛 − 𝛿𝑡𝐀̂, 𝐀̂im ∶= 𝐈𝑛 with 𝐈𝑛 ∈ R𝑛×𝑛 being the identity matrix. The residual arising due to the ROM approximation can be
omputed by substituting the approximate state vector 𝐱̃𝑘im into (4a). The resulting residual at the 𝑘th time step, r𝑘, reads

r𝑘 ∶= 𝐀im𝐱̃𝑘−1im + 𝛿𝑡
(

𝐟 (𝐱̃𝑘−1im ) + 𝐁𝐮𝑘
)

− 𝐄im𝐱̃𝑘im. (6)

t is clear that in order to obtain the residual r𝑘, the time discretization scheme for the ROM should be the same as that for the FOM
o that 𝐱̃𝑘im in (6) and 𝐱𝑘im in (4) correspond to the same time instance 𝑡𝑘. An a posteriori error bound 𝛥(𝝁) for the approximation
rror 𝐞𝑘(𝝁) ∶= 𝐱𝑘im(𝝁) − 𝐱̃𝑘im(𝝁) for a given parameter 𝝁 can be computed based on the residual as below.

heorem 2.1 (Residual-based Error Bound). Suppose that the nonlinear quantity 𝐟 (𝐱,𝝁) is Lipschitz continuous in the first argument for
ll 𝝁 such that there exists a constant 𝐿𝐟 for which

‖𝐟 (𝐱,𝝁) − 𝐟 (𝐱̃im,𝝁)‖ ≤ 𝐿𝐟‖𝐱 − 𝐱̃im‖.

urther assume that for any parameter 𝝁 the projection error at the first time step is

‖𝐞0(𝝁)‖ = ‖𝐱0im(𝝁) − 𝐱̃0im(𝝁)‖ = ‖𝐱0im(𝝁) − 𝐕𝐕𝖳𝐱0(𝝁)‖.

he error in the state variable at the 𝑘th time step, ‖𝐞𝑘(𝝁)‖ = ‖𝐱𝑘im(𝝁) − 𝐱̃𝑘im(𝝁)‖ is given by the following expression:

‖𝐞𝑘(𝝁)‖ ≤ 𝛥𝑘(𝝁) ∶= 𝜉(𝝁)𝑘 ‖‖
‖

𝐞0(𝝁)‖‖
‖2

+
𝑘
∑

𝑖=1
𝜁 (𝝁) ⋅

(

𝜉(𝝁)
)𝑘−𝑖

⋅ ‖𝐫𝑖(𝝁)‖2 (7)

here 𝜁 (𝝁) ∶= ‖

(

𝐄(𝝁)
)−1

‖ and 𝜉(𝝁) ∶=
(

‖

(

𝐄(𝝁)
)−1𝐀(𝝁)‖ + 𝛿𝑡 𝐿 ‖

(

𝐄(𝝁)
)−1

‖

)

.

5

2 2 𝐟 2



Computer Methods in Applied Mechanics and Engineering 420 (2024) 116712S. Chellappa et al.

f
T

w
e
i

Proof. See Appendix A. □

Residual-based error bounds such as the one above are already available in the RBM literature [47,49] for both linear and
nonlinear systems.

In many applications, only a small set of variables which are obtained as a linear combination of the state variables are of
interest. These are typically called the output of the system or quantities of interest (QoI). Goal-oriented a posteriori error estimators
or the QoI have been discussed in several works [15,18,19,49]. They typically involve the residual of a dual or an adjoint system.
he general form of the goal-oriented error estimators in [15,49] is

‖𝐲𝑘(𝝁) − 𝐲̂𝑘(𝝁)‖ ≤ 𝛤 (𝝁) ⋅

( 𝑘
∑

𝑖=1
‖r𝑖‖2

)

1
2

⋅

(𝑘−1
∑

𝑗=0
‖r𝐾−𝑘+𝑗

du ‖

2 + 𝛿𝐾du

)

1
2

, (8)

where ‖r𝑖du‖ denotes the residual of an appropriately defined dual system at the 𝑖th time instance, 𝛿𝐾du is a scaled upper bound for
the dual ROM state error at the last time step and 𝛤 (𝝁) is some parameter-dependent constant. Improving upon this expression, a
different goal-oriented error estimator was proposed in [18,19] having the following form:

‖𝐲𝑘(𝝁) − 𝐲̂𝑘(𝝁)‖ ≤ 𝛤 (𝝁) ⋅ ‖r𝑘‖ ⋅ ‖r𝑘du‖ (9)

with 𝛤 (𝝁) being a parameter-dependent constant. This error estimator avoids the accumulation of the residuals over time, which is
a major drawback for the goal-oriented error estimator in (8) and also the state error estimator in (7). It is also to be noted that the
ROM resulting from the use of a goal-oriented error estimator often turns out to be of a smaller size.

Having reviewed the main ideas of RBM and the standard a posteriori error estimator, we next illustrate the disadvantage of this
standard approach when ODE solver libraries are used to solve the FOM/ROM within Algorithm 1.

2.4. RBM with ODE solver libraries

Automatic ODE solver packages are implemented and readily available in a number of open-source and proprietary computational
software packages. The matlab® ODE Suite [50], for instance, implements both linear multi-step (ode15s, ode23s, etc.) and
Runge–Kutta-type solvers (ode45, ode23, etc.). In Python, using the scipy module one can access the odeint and solve_ivp
submodules, both providing access to a variety of standard time integration schemes. In addition to these, there are several stand-
alone libraries to solve ODEs such as SUNDIALS [21], ODEPACK [22], ARKODE [23]. All of the mentioned libraries implement
adaptive order and adaptive time-stepping which makes them highly efficient for a variety of problems, e.g., problems exhibiting
stiffness.

When adaptive ODE solver packages are used within the RBM (i.e., in Steps 3 and 7 of Algorithm 1, solver is replaced by
the chosen method from the package), the standard error estimation approach (see Section 2.3) becomes less straightforward. One
can no longer write the corresponding expression of the residual resulting from the ROM (e.g., (6)). The reason for this is that the
exact expression of the time integration method used is unknown, as the solver adaptively varies the time step and/or the order
of the scheme. If a residual expression obtained from a user-imposed time discretization scheme, e.g., (6) is used, the resulting error
estimator (7) no longer gives an efficient bound for the true error, i.e., the error between 𝐕𝐱̂𝑘(𝝁) and 𝐱𝑘(𝝁) obtained from simulating
the ROM (2) and the FOM (1), respectively, using an ODE solver from a library. We illustrate this next by obtaining a ROM for the
simple non-parametrized linear heat diffusion model and estimating its error.

2.5. Example: ROM for the linear heat equation

We consider the linear heat equation in 1-D over the domain 𝛺 = [0, 1] and time 𝑡 ∈ [0, 1]

𝜕
𝜕𝑡
𝑣(𝑧, 𝑡;𝜇) − 𝜇 𝜕2

𝜕𝑧2
𝑣(𝑧, 𝑡;𝜇) = 0 (10)

where 𝑣(𝑧, 𝑡;𝜇) is the state, 𝑧 ∈ 𝛺 is the spatial variable and the thermal diffusivity is 𝜇 = 0.06. We further impose Dirichlet boundary
conditions 𝑣(0, 𝑡;𝜇) = 𝑣(1, 𝑡;𝜇) = 0, ∀𝑡 ∈ [0, 1]. We also fix the output variable of interest as the value of the state at the node next to
the right boundary. Employing the finite difference method, we discretize the domain 𝛺 in an equidistant fashion, with a grid size
of 2−8. With this, the resulting discretized ODE can be written in a form similar to (1) as

𝑑
𝑑𝑡

𝐱 = 𝐀𝐱, 𝐱(0) = 𝐱0, (11)

where 𝐱 ∈ R255 is the discretized state vector and 𝐀 ∈ R255×255. We let the initial condition 𝐱0 be a normal distribution, i.e.,

𝐱0 ∶=
1

𝜎
√

2𝜋
𝑒
−
1
2
⋅

(

𝑧 − m
𝜎

)2

ith a mean m = 0.5 and a standard deviation of 𝜎 = 0.15. Our aim is to obtain a ROM for (11) and use the state and output error
stimators in Eqs. (7) and (8), respectively, to quantify the error of the ROM. For the output error estimator, we use the one proposed
6

n [19]. To this end, we consider the standard POD-based ROM. This involves obtaining snapshots of the state vector in (11) for



Computer Methods in Applied Mechanics and Engineering 420 (2024) 116712S. Chellappa et al.
Fig. 1. Heat equation. Left: solution to the parametrized heat equation (11) at 𝜇 = 0.06; Right: normalized singular values 𝜎𝑖∕𝜎1 , 𝑖 ∈ {1, 2,… , 100}.

different time instances. The SVD of the resulting snapshot matrix is used to obtain the projection matrix 𝐕. Fig. 1 illustrates the
solution to (11) at 𝜇 = 0.06. We also see the exponential decay of the singular values of the snapshot matrix.

For this example, we compute 𝐕 consisting of the first 12 columns of the left singular vector matrix. For integrating (11), we
use the odeint function available in the scipy package for Python. We note that odeint is a wrapper around the LSODA solver
available in the Fortran library odepack. LSODA implements adaptive time-stepping. Moreover, it switches between methods for
non-stiff and stiff problems automatically. We use the same solver to integrate the ROM. Once the reduced matrices are obtained
through a Galerkin projection using 𝐕, the first step involved in estimating the error is to integrate the ROM using odeint to
evaluate and substitute the approximate solution 𝐱̃ at each time instance, into the odeint time discretization scheme to get the
residual. The residual operator at the 𝑘th time instance has the general expression:

𝑘[𝐱̃𝑘, 𝐱̃𝑘−1,… , 𝐱̃𝑘−𝑠
]

(12)

where the arguments for 𝑘[⋅
]

could be the solutions at the current and past 𝑠 time steps (in case the scheme used is a linear multi-
step method) or at 𝑠 different stage solutions (in case an 𝑠-stage Runge–Kutta scheme is used). The exact form of this expression,
naturally, is dependent on the time integration method that was used to obtain the snapshots. As we are using a solver from the
odepack library, knowing the residual operator expression is complicated and often impossible. To circumvent this, one may
choose to use a different, but known time integration method in order to compute the residual, e.g., via (6). However, this will
lead to erroneous results, as we will demonstrate next. We denote by r𝑘 the output of the residual operator 𝑘[⋅

]

at a given set of
arguments.

Suppose, we use a different time integration scheme, say a first-order backward Euler method as an ‘‘approximation’’ to the true
method used within odeint. In this case, the approximation to the true residual reads

r̃𝑘 = 𝐱̃𝑘−1 −
(

𝐈𝑁 − 𝛿𝑡𝐀
)

𝐱̃𝑘 (13)

with the approximate residual operator ̃𝑘[∗, ⋆
]

= 𝐈𝑁 ∗ −
(

𝐈𝑁 − 𝛿𝑡𝐀
)

⋆ and ∗, ⋆ being placeholders for the arguments of ̃. In

general, 𝑘[⋅
]

and ̃𝑘[⋅
]

are quite different, leading to rather inaccurate estimation of the error when the latter is used in (7). This
is illustrated in Fig. 2. The top figure shows the estimated state error obtained using (7) for every time step and the corresponding
true error, both measured in the 2-norm. The bottom figure illustrates the estimated error for the output variable and its true error.

The estimated error measured using the wrong expression of the residual overestimates by 2 orders of magnitude in the best
case. In this work, we propose a scheme to suitably modify ̃𝑘[⋅

]

using a closure term, such that the resulting expression for the
residual is close to the one evaluated by 𝑘[⋅

]

. We limit our focus to the case of output error estimation though the proposed closure
technique for correcting the residual can be straight-forwardly applied to any residual-based error estimator.

3. Improving output error estimation via a data-enhanced closure approach

In this section, we introduce a data-enhanced closure strategy to ensure that the residual resulting from the user-imposed time
integration scheme, viz. ̃𝑘[𝐱̃𝑘, 𝐱̃𝑘−1,… , 𝐱̃𝑘−𝑠

]

is close to the true residual 𝑘[𝐱̃𝑘, 𝐱̃𝑘−1,… , 𝐱̃𝑘−𝑠
]

such that the estimated output error
is accurate.

3.1. Defect-corrected FOM and ROM

In our proposed approach, we first add a closure term to the FOM resulting from the user-imposed time integration scheme. This
7

closure term is derived based on the snapshots of the true solution obtained using the ODE solver library. More precisely, suppose



Computer Methods in Applied Mechanics and Engineering 420 (2024) 116712S. Chellappa et al.

o
(

w

F
t

m

R
s

a
t

I
w
d
t
i

t
t

R

Fig. 2. Estimated and true errors for the heat equation (11) for 𝜇 = 0.06 obtained by imposing a backward Euler method on the ROM snapshots obtained from
deint. Top: the estimated state error and the corresponding true error (see (7)); Bottom: the estimated output error and the corresponding true error (see
8)).

e have the snapshots of the solution (3) at any given parameter 𝝁 obtained from an ODE solver or some legacy code:

𝐗 =
[

𝐱0 𝐱1 … 𝐱𝐾
]

∈ R𝑁×𝑁𝑡 . (14)

or purpose of illustration, we explain the details of the new method by considering a first-order IMEX scheme as the user-imposed
ime integration scheme. The FOM resulting from this is exactly (4).

Since the user-imposed time integration scheme differs from the one used to generate the snapshots in 𝐗, we have a defect or a
ismatch when we insert 𝐱𝑘 in (14) into the first-order IMEX scheme. This reads

𝐝𝑘 ∶= 𝐄im𝐱𝑘 −
(

𝐀im𝐱𝑘−1 + 𝛿𝑡
(

𝐟 (𝐱𝑘−1) + 𝐁𝐮𝑘
)

)

. (15)

emark 3. We note that the quantity 𝐝𝑘 converges to the local truncation error (LTE) [51] of the first-order IMEX method as the
olution 𝐱𝑘 converges to the true solution to (1) for a small enough step size.

We seek to modify the time-discrete FOM (4) such that its solution recovers the solution of (1) computed by an ODE solver from
library. To this end, consider the following corrected FOM (C-FOM for short) obtained by adding the defect vector 𝐝𝑘 as a closure

erm:

𝐄im𝐱𝑘im,c = 𝐀im𝐱𝑘−1im,c + 𝛿𝑡
(

𝐟 (𝐱𝑘−1im,c) + 𝐁𝐮𝑘
)

+ 𝐝𝑘, (16a)

𝐲𝑘im,c = 𝐂𝐱𝑘im,c. (16b)

n (16), 𝐱𝑘im,c is the solution obtained after introducing the closure term and, as such, it differs from the solution 𝐱𝑘im to (4). In fact,
ithout adding 𝐝𝑘 as a closure term the local truncation error of the first-order IMEX method is ((𝛿𝑡)2). However, based on the
iscussion in [30, Theorem 1] the local truncation error of the solution from the corrected IMEX method (16) is of the same order as
hat resulting from the ODE solver. It can be seen from Fig. 3 that the solution to the heat equation obtained using (16) is visually
dentical to the one obtained using an ODE solver.

We emphasize that the defect vector 𝐝𝑘 represents one choice for the closure term. In general, any other form of the closure
erm may be used. Since we use the defect vector as our choice for the closure term to recover the true residual, we use the two
erms interchangeably.

emark 4. For any general time integration scheme, the defect vector 𝐝𝑘 can be shown to have the following equivalence:

𝐝𝑘 = −𝑘[𝐱𝑘, 𝐱𝑘−1,… , 𝐱𝑘−𝑠
]

. (17)
8



Computer Methods in Applied Mechanics and Engineering 420 (2024) 116712S. Chellappa et al.
Fig. 3. Solution to the heat equation (11); Left: solution obtained using the ODE solver; Middle: solution using C-FOM (16); Right: pointwise errors between
the solutions from the solver and C-FOM.

A corrected ROM (C-ROM) corresponding to the C-FOM can be defined by projecting the defect vector 𝐝𝑘 to the reduced space.
The reduced defect vector is defined as 𝐝𝑘 ∶= 𝐕𝖳𝐝𝑘 and the C-ROM is:

𝐄̂im𝐱̂𝑘im,c = 𝐀̂im𝐱̂𝑘−1im,c + 𝛿𝑡
(

𝐟̂ (𝐱̃𝑘−1im,c) + 𝐁̂𝐮𝑘
)

+ 𝐝𝑘, (18a)

𝐲̂𝑘im,c = 𝐂̂𝐱̂𝑘im,c. (18b)

3.2. An error estimator using the C-ROM

Next, we make use of the C-ROM to derive a new error estimator 𝛥
𝑘
(𝝁) that accurately estimates the true error ‖𝐲𝑘(𝝁) − 𝐲̂𝑘(𝝁)‖,

where 𝐲𝑘(𝝁) and 𝐲̂𝑘(𝝁) are the output of the FOM (1) and the ROM (2) at time 𝑡𝑘, respectively. The FOM and the ROM can be solved
using any ODE solver. As mentioned, to derive the residual correctly, the same ODE solver must be applied to both the FOM and
ROM simulations. Our proposed error estimator makes use of a dual system. We begin by deriving the dual system for (16).

3.2.1. Dual system
We derive the dual system corresponding to the C-FOM (16) using the method of Lagrange multipliers. The Lagrangian can be

formulated as

 ∶= 𝐂𝐱𝑘im,c +
(

𝛬𝑘)𝖳
(

𝐄im𝐱𝑘im,c − 𝐀im𝐱𝑘−1im,c − 𝛿𝑡𝐟 (𝐱𝑘−1im,c) − 𝛿𝑡𝐁𝐮𝑘 − 𝐝𝑘
)

, (19)

with 𝛬 ∈ R𝑁 being the vector of Lagrange coefficients. The dual system can be obtained by setting 𝜕
𝜕𝐱𝑘im,c

≡ 𝟎. This yields the system

𝐄du𝐱du = 𝐂du (20)

with 𝐄du ∶= 𝐄𝖳
im and 𝐂du ∶= −𝐂𝖳. Note that the Lagrange multipliers 𝛬 are the dual state variables; for better clarity we denote

them by 𝐱du. Note that the defect vector 𝐝𝑘 is treated as a function of time and parameter 𝝁. Therefore, it does not depend on the
solution 𝐱𝑘im,c of the C-ROM.

We further define the dual ROM as

𝐄̂du𝐱̂du = 𝐂̂du (21)

obtained by making the ansatz 𝐱du ≈ 𝐱̃du = 𝐕du𝐱̂du. Here, 𝐕du is the projection matrix corresponding to the dual system and
𝐄̂du ∶= 𝐕𝖳

du𝐄du𝐕du, 𝐂̂du ∶= 𝐕𝖳
du𝐂du.

The residuals corresponding to the ROM (18) and the dual ROM (21) are, respectively,

r𝑘im,c ∶= 𝐀im𝐱̃𝑘−1im,c + 𝛿𝑡
(

𝐟 (𝐱̃𝑘−1im,c) + 𝐁𝐮𝑘
)

+ 𝐝𝑘 − 𝐄im𝐱̃𝑘im,c (22)

and

rdu ∶= 𝐂du − 𝐄du𝐱̃du. (23)

Following the approach in [18,19], we define an auxiliary residual r̆im,c as

r̆𝑘im,c ∶= 𝐀im𝐱𝑘−1im,c + 𝛿𝑡
(

𝐟 (𝐱𝑘−1im,c) + 𝐁𝐮𝑘
)

+ 𝐝𝑘 − 𝐄im𝐱̃𝑘im,c. (24)

The auxiliary residual defined above will be required in the derivation of the data-enhanced output error estimator.
9



Computer Methods in Applied Mechanics and Engineering 420 (2024) 116712S. Chellappa et al.

A
d

3

‖

P

r
w

I
r

T
a
s
T
e

3

e
r

I
a
a
i

3.2.2. Modified output term
In anticipation of the new error estimator we propose next, we introduce a modified output variable 𝐲𝑘im,c defined as

𝐲𝑘im,c ∶= 𝐲̂𝑘im,c − 𝐱̃𝖳dur
𝑘
im,c. (25)

dding a correction term to the output in the form of a dual-weighted residual is an established practice [10,19,49] and serves to
erive a tighter estimate of the true error.

.2.3. Data-enhanced error estimation
Denoting the ODE solver applied to solve the FOM (1) and the ROM (2) as solver, the norm of the true error we desire viz.,

𝐲𝑘 − 𝐲̂𝑘‖ can be written as:

‖𝐲𝑘 − 𝐲̂𝑘‖ = ‖𝐲𝑘 − 𝐲𝑘im,c + 𝐲𝑘im,c − 𝐲̂𝑘‖ (26)

≤ ‖𝐲𝑘 − 𝐲𝑘im,c‖ + ‖𝐲𝑘im,c − 𝐲̂𝑘‖. (27)

The following theorem bounds the first summand in (27):

Theorem 3.1 (A Posteriori Error Bound for the Corrected ROM). Given the FOM in (1), the C-FOM in (16) and the C-ROM (18), assuming
that 𝐄im is non-singular for all 𝝁 ∈  , we have the following error bound for the modified output vector in (25):

‖𝐲𝑘 − 𝐲𝑘im,c‖ ≤ ‖𝐄−1
im ‖ ‖𝐫du‖ ‖𝐫̆𝑘im,c‖ + ‖𝐱̃du‖ ‖𝐫𝑘im,c − 𝐫̆𝑘im,c‖. (28)

roof. See Appendix B. □

Although the bound above is rigorous, it is not computable owing to the quantity r̆𝑘. Recall from (24) that its computation
equires that the FOM solution 𝐱𝑘im,c is available for any parameter 𝝁, which is not the case. To derive a computable error estimator,
e make use of the arguments used in [19] to get the following error indicator:

‖𝐲𝑘 − 𝐲im,c‖ ⪅
(

𝜌 ‖𝐄−1
im ‖ ‖𝐫du‖ + |1 − 𝜌| ‖𝐱̃du‖

)

‖r𝑘im,c‖. (29)

The quantity 𝜌 is a measure for how close the residual r𝑘im,c is to the auxiliary residual r̆𝑘im,c and is defined as

𝜌 = 1
𝐾

𝐾
∑

𝑘=1
𝜌𝑘, 𝜌𝑘 =

‖r̆𝑘im,c(𝝁
∗)‖

‖r𝑘im,c(𝝁
∗)‖

. (30)

t is evaluated only at the greedy parameter 𝝁∗ for which snapshots of the true solution 𝐱𝑘 are available. For additional details, we
efer to [19]. Substituting (29) into (27) results in

‖𝐲𝑘 − 𝐲̂𝑘‖ ⪅
(

𝜌 ‖𝐄−1
im ‖ ‖𝐫du‖ + |1 − 𝜌| ‖𝐱̃du‖

)

‖r𝑘im,c‖ + ‖𝐲𝑘im,c − 𝐲̂𝑘‖ =∶ 𝛥
𝑘
𝑎(𝝁). (31)

he second quantity in the above inequality is the norm of the error between the output resulting from the user-imposed C-ROM
nd that obtained by solving the ROM (2) with solver. It can be obtained cheaply as only two ROMs with small sizes need to be
olved. Typically, our numerical experiments show that this quantity is very small and less than the magnitude of the first quantity.
herefore, we can safely neglect it so that only the first quantity can act as an alternative form of the proposed data-enhanced error
stimator, i.e.,

‖𝐲𝑘(𝝁) − 𝐲̂𝑘(𝝁)‖ ⪅ ‖𝐲𝑘(𝝁) − 𝐲𝑘im,c(𝝁)‖ (32)

⪅
(

𝜌 ‖𝐄−1
im ‖ ‖𝐫du(𝝁)‖ + |1 − 𝜌| ‖𝐱̃du(𝝁)‖

)

‖r𝑘im,c(𝝁)‖ =∶ 𝛥
𝑘
𝑏 (𝝁). (33)

.2.4. Error estimation in presence of hyperreduction
For nonlinear systems, the efficient computation of the ROM is impeded by the presence of the nonlinear function 𝐟 (𝐱̃𝑘im,c) whose

valuation scales with the dimension 𝑁 of the FOM. To tackle this, the DEIM approach [35] is used in this work. Using DEIM, the
esidual expression in (22) gets modified as below:

r𝑘im,c = 𝐀im𝐱̃𝑘−1im,c + 𝛿𝑡
(

𝐟 (𝐱̃𝑘−1im,c) + I [𝐟 (𝐱̃𝑘−1im,c)] − I [𝐟 (𝐱̃𝑘−1im,c)] + 𝐁𝐮𝑘
)

+ 𝐝𝑘 − 𝐄im𝐱̃𝑘im,c,

=
(

𝐀im𝐱̃𝑘−1im,c + 𝛿𝑡
(

I [𝐟 (𝐱̃𝑘−1im,c)] + 𝐁𝐮𝑘
)

+ 𝐝𝑘 − 𝐄im𝐱̃𝑘im,c

)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
r𝑘im,c,I

+ 𝛿𝑡
(

𝐟 (𝐱̃𝑘−1im,c) − I [𝐟 (𝐱̃𝑘−1im,c)]
)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝐞𝑘𝐻

. (34)

n the equation above, I [⋅] denotes the hyperreduction operator. Further, 𝐞𝑘𝐻 refers to the error introduced by hyperreduction
t the 𝑘th time step. For a detailed discussion on the computational aspects, we refer to the work [19], where the simultaneous
daptive construction of the RBM and the DEIM bases vectors are also discussed. This adaptive basis construction approach is also
10

mplemented in our numerical experiments.



Computer Methods in Applied Mechanics and Engineering 420 (2024) 116712S. Chellappa et al.
Fig. 4. Defect/local truncation error of the heat equation. Left: space time variation of the defect at 𝜇 = 0.06; Right: singular values of the matrix 𝐃 ∶= {𝐝𝑘}𝐾𝑘=0.
The singular values exhibit an exponential decay illustrating the existence of a low-dimensional subspace.

We make use of the new data-enhanced error estimators (𝛥
𝑘
𝑎(𝝁) or 𝛥

𝑘
𝑏 (𝝁)) to choose the next parameter within the greedy

algorithm. For each parameter 𝝁, we determine the average estimated error over time as:

𝛥𝑧(𝝁) =
1
𝑁𝑡

𝑁𝑡
∑

𝑘=0
𝛥
𝑘
𝑧(𝝁), (35)

where 𝑧 stands for 𝑎 or 𝑏. In the numerical results, we use 𝛥
𝑘
𝑏 (𝝁) in (35) in Line 11 of Algorithm 2 so that during the greedy iterations,

the ROM (2) does not have to be repeatedly solved with solver in order to evaluate the second quantity in (31).

Remark 5. While we have illustrated the data-enhanced error estimator using a first-order IMEX time integration scheme, any
consistent time integration scheme can be used, including higher order ones. We will also demonstrate the use of a second-order
IMEX scheme in the numerical examples. Of course, one should be cautious of the fact that a higher order time integration scheme
comes with a larger computational cost.

Remark 6. When the defect vector 𝐝𝑘 present in the residual (see (22)) is known exactly, i.e., the C-ROM uses the same time
integration method used for the FOM, we recover the a posteriori output error estimator proposed in [19]. This shows that our
newly proposed error estimator is consistent with the case where the time integration method used is known.

Remark 7. Note that the C-ROM is not the finally derived ROM, but is only used within the greedy algorithm to derive the error
estimator 𝛥

𝑘
𝑧(𝝁) (see Steps 9–10 in Algorithm 2) which estimates the error between the solution of the FOM (1) and that of the ROM

(2), both being computed using any solver. The error estimator can also be used in the online stage where the user may wish to
use any preferred solver to compute the ROM solutions. Moreover, given a good approximation of the defect vector, the solution
of the C-ROM and the solution 𝐱̂𝑘 from the ODE solver are nearly the same. Therefore, 𝛥

𝑘
𝑏 (𝝁) is almost as accurate as 𝛥

𝑘
𝑎(𝝁).

4. Computational aspects

While we have derived an accurate data-enhanced a posteriori output error estimator, there remain a few computational
challenges. In this section we highlight these challenges and propose efficient solutions to address them.

In (33), the residual term r𝑘im,c involves the defect vector 𝐝𝑘 (see (22)). However, determining this term involves knowing the
true solution to (1) obtained from the ODE solver at any parameter 𝝁 (see (15)). Without a cheap method to approximate 𝐝𝑘 for
every parameter 𝝁, the error estimator is not efficient. To alleviate this, we make several observations about the function 𝐝(𝑡,𝝁),
which will lead to its efficient approximation. These observations relate to

1. a certain low-rank structure (over space) that 𝐝(𝑡,𝝁) possesses and
2. a smoothness over parameter variations that it inherits from the underlying parametric PDE.

4.1. Low-rank structure of the defect

For a large class of problems, there exist a low-dimensional subspace onto which the solution snapshots can be projected, without
incurring a large error. Indeed, this forms the underlying motivation for performing model order reduction using POD and other
methods. Leveraging this fact, we assume that the defect trajectory at a given parameter 𝝁, 𝐝𝑘(𝝁),∀𝑘 ∈ {0, 1,… , 𝐾} can also be
efficiently approximated in a suitable low-dimensional subspace.
11



Computer Methods in Applied Mechanics and Engineering 420 (2024) 116712S. Chellappa et al.

t

T

F

F
p
b
𝐝
𝛿
4

4

t
t
t

a

w

i

t
e
c

4

Fig. 4 plots the values of the defect vector 𝐝𝑘 in (15) for the heat equation. It is evident that the defect trajectory has a certain
regularity over the spatial domain (see left figure); evidence for the low-rank structure is also seen through the SVD performed
(see right figure) on the snapshot matrix 𝐃 ∈ R𝑁×𝑁𝑡 whose columns consist of snapshots of 𝐝𝑘 at different values of the time
𝑡𝑘,∀𝑘 ∈ {0,… , 𝐾}. We see an exponential decay of the relative quantity 𝜎𝑖∕𝜎1, where 𝜎𝑖 is the 𝑖th singular value. A similar exercise
will be repeated in Section 5 for the three numerical examples we consider. In each of the cases, it will be seen that the defect
trajectory is reducible spatially. We will use this fact to compute 𝐝𝑘(𝝁) efficiently.

The concept of Kolmogorov 𝑛-width is used in the RBM literature [7,52,53] to quantify the approximability of the solution
manifold  corresponding to a parametrized system of equations, with a linear subspace of dimension 𝑛 denoted as 𝑛. Consider
he solution manifold  for the FOM in (1) defined as

 = {𝐱(𝑡,𝝁) ∶ (𝑡,𝝁) ∈  × } ⊂ R𝑁 . (36)

he Kolmogorov 𝑛-width of  using 𝑛 can be defined as

𝑑𝑛() ∶= inf
dim(𝑛) = 𝑛

sup
𝐱∈

inf
𝐱̃∈𝑛

‖𝐱 − 𝐱̃‖. (37)

or the parametrized defect function 𝐝(𝑡,𝝁), we define the following manifold:

𝑑 = {𝐝(𝑡,𝝁) ∶ (𝑡,𝝁) ∈  × } ⊂ R𝑁 . (38)

rom our numerical examples we have observed that 𝑑 can be well-approximated by low-dimensional subspaces when the original
arametric problem has fast Kolmogorov 𝑛-width decay. This implicates that the Kolmogorov 𝑛-width of 𝑑 may inherit the
ehaviour of 𝑑𝑛(). At present we cannot strictly prove this, but from the definition of the defect vector in (15), the defect vector
(𝑡,𝝁) can be seen as being in the image of the operator  ∶ R𝑛 ×  ↦ R𝑛, where [𝐱(𝑡,𝝁)] = 𝐄im𝐱(𝑡,𝝁) −

(

𝐀im𝐱(𝑡− 𝛿𝑡,𝝁) + 𝛿𝑡(𝐟 (𝐱(𝑡−
𝑡,𝝁))+𝐁𝐮(𝑡))

)

. With this observation, the inheritance property of the Kolmogorov 𝑛-width of 𝑑 might be proved based on Theorem
.1 in [54]. We leave this as our future work.

.2. Strategies to approximate the defect

As discussed in the previous section, the defect vector is assumed to possess a certain low-rank structure in space and it inherits
he smoothness of the solution 𝐱(𝑡,𝝁) over parameter variations, from the underlying parametric PDE. We use these two observations
o make the approximation of 𝐝𝑘(𝝁) computationally efficient, such that the output error estimator defined in (33) can be used in
he POD-Greedy algorithm. To this end, we adopt a two-stage approximation strategy.

Starting from the observation about the low-rank structure of the defect, we can approximate the defect vector at a given time
nd parameter using the basis expansion

𝐝(𝑡,𝝁) ≈ 𝐝(𝑡,𝝁) =
𝑛𝑑
∑

𝑖=1
𝐯𝑑,𝑖 𝑑𝑖(𝑡,𝝁) (39)

here 𝐯𝑑,𝑖 ∈ R𝑁 are the expansion basis vectors and

𝐝(𝑡,𝝁) ∶= [𝑑1(𝑡,𝝁),… , 𝑑𝑛𝑑 (𝑡,𝝁)]
𝖳 ∈ R𝑛𝑑

s the vector of expansion coefficients. We denote with

𝐕𝑑 ∶=
[

𝐯𝑑,1, 𝐯𝑑,2,… , 𝐯𝑑,𝑛𝑑
]

∈ R𝑁×𝑛𝑑

he basis matrix. If the observation regarding the rapid decay of the singular values holds, then 𝑛𝑑 will be small. Given such a basis
xpansion for the defect vector, we can approximate it for any given parameter 𝝁 and a time instance 𝑡 if 𝐝(𝑡,𝝁) can be evaluated
heaply. Our two-stage approach involves:

• identifying a suitable basis matrix 𝐕𝑑 using a POD/SVD-based approach and
• learning the map (𝑡,𝝁) ↦ 𝐝(𝑡,𝝁) for which we propose two different approaches: one based on radial basis function interpolation

and the other using a feed-forward neural network.

.2.1. SVD-based spatial reduction
In the first stage of approximation, we collect snapshots of the defect vector 𝐝(𝑡,𝝁),∀𝑡 ∈ 𝑑 ∶= {𝑡1, 𝑡2,… , 𝑡𝑁𝑡} and 𝝁 ∈ 𝛯defect

where 𝛯defect is a set containing 𝑑𝑠 parameter samples, with 𝑑𝑠 typically small. Doing so involves solving (1) with solver to
obtain the FOM solution snapshots. Following this, the solution snapshots can be used to obtain the defect vector from e.g., (15).1
We denote by D ∈ R𝑁×𝑁𝑡×𝑑𝑠 the third-order tensor arranged such that each of its frontal slices corresponds to the matrix
𝐃(𝝁) ∶=

[

𝐝(𝑡1,𝝁),𝐝(𝑡2,𝝁),… ,𝐝(𝑡𝑁𝑡 ,𝝁)
]

∈ R𝑁×𝑁𝑡 and 𝝁 ∈ 𝛯defect . We refer to the 𝑖th frontal slice as D(𝑖). Next, we apply a two-step
SVD reduction [55] to D which will result in D̂ ∈ R𝑛𝑑×𝑁𝑡×𝑑𝑠 as follows:

1 Note that the defect is obtained here for a particular user-imposed time integration scheme.
12



Computer Methods in Applied Mechanics and Engineering 420 (2024) 116712S. Chellappa et al.

F

W

• In step 1, we perform SVDs for each frontal slice separately, i.e., we perform a SVD for each D(𝑖) with 𝑖 ∈ {1, 2,… , 𝑑𝑠}. For
every such SVD, we make use of a fixed tolerance 𝚝𝚘𝚕SVD,𝑡 to truncate the singular values and collect the first 𝓁𝑖 left singular
vectors in the matrix 𝐔𝑑,𝑖 ∈ R𝑁×𝓁𝑖 .

• In step 2, we form a matrix 𝐑 defined as

𝐑 ∶=
[

𝐔𝑑,1
|

|

|

𝐔𝑑,2
|

|

|

… |

|

|

𝐔𝑑,𝑑𝑠

]

∈ R𝑁×(𝓁1+⋯+𝓁𝑑𝑠 )

whose columns consist of the truncated left singular vectors for each parameter obtained in step 1. We then perform the SVD
of 𝐑, using a tolerance 𝚝𝚘𝚕SVD,𝝁 to obtain the projection matrix 𝐕𝑑 ∈ R𝑁×𝑛𝑑 as the first 𝑛𝑑 columns of the left singular vectors
of 𝐑.

inally, the reduced tensor D̂ can be obtained via a mode-1 tensor–matrix product as

D̂ = D ×1 𝐕𝖳
𝑑 .

e note that each mode-1 fiber in D̂ corresponds to the reduced defect vector 𝐝(𝑡𝑘,𝝁) ∈ R𝑛𝑑 .
Thus far, we have reduced the dimension of the first mode of the tensor D from 𝑁 to 𝑛𝑑 , with 𝑛𝑑 ≪ 𝑁 . Next, we detail the two

approaches used to approximate 𝐝(𝑡,𝝁).

Remark 8. The motivation for using the two-step SVD approach is to reduce the overall computational costs. While we have not
pursued it in this work, another valid approach to reduce the computational cost would be a randomized-SVD.

4.2.2. Interpolation using radial basis functions
Radial basis functions (RBFs) are a popular class of kernel methods which are used in scattered-data approximation [56,57]. We

use RBFs to learn an approximation 𝑑RBF(𝝁) to each entry of the reduced defect vector at each time instance, such that for any given
(𝑗, 𝑘) pair, 𝑑RBF(𝝁) interpolates 𝑑𝑗 (𝑡𝑘,𝝁), the 𝑗th entry of the reduced defect 𝐝(𝑡𝑘,𝝁) at parameters 𝝁 ∈ 𝛯defect .

The RBF approximation reads

𝑑𝑘RBF,𝑗 (𝝁) =
𝑑𝑠
∑

𝑖=1
𝑤𝑖𝛷(‖𝝁 − 𝝁𝑖‖) (40)

with {𝑤𝑖}
𝑑𝑠
𝑖=1 denoting the weights and 𝛷(⋅) being the radial basis functions. The weights are obtained by imposing the interpolation

condition 𝑑𝑘RBF,𝑗 (𝝁𝑖) = 𝑑𝑗 (𝑡𝑘,𝝁𝑖), 𝑖 = 1, 2,… , 𝑑𝑠, 𝝁𝑖 ∈ 𝛯defect . This leads to the following system of linear equations

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝛷(‖
‖

𝝁1 − 𝝁1
‖

‖

) 𝛷(‖
‖

𝝁1 − 𝝁2
‖

‖

) ⋯ 𝛷(‖‖
‖

𝝁1 − 𝝁𝑑𝑠
‖

‖

‖

)

𝛷(‖
‖

𝝁2 − 𝝁1
‖

‖

) 𝛷(‖
‖

𝝁2 − 𝝁2
‖

‖

) ⋯ 𝛷(‖‖
‖

𝝁2 − 𝝁𝑑𝑠
‖

‖

‖

)

⋮ ⋮ ⋱ ⋮

𝛷(‖‖
‖

𝝁𝑑𝑠 − 𝝁1
‖

‖

‖

) 𝛷(‖‖
‖

𝝁𝑑𝑠 − 𝝁2
‖

‖

‖

) ⋯ 𝛷(‖‖
‖

𝝁𝑑𝑠 − 𝝁𝑑𝑠
‖

‖

‖

)

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎢

⎣

𝑤1
𝑤2
⋮

𝑤𝑑𝑠

⎤

⎥

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎢

⎣

𝑑𝑗 (𝑡𝑘,𝝁1)

𝑑𝑗 (𝑡𝑘,𝝁2)

⋮

𝑑𝑗 (𝑡𝑘,𝝁𝑑𝑠 )

⎤

⎥

⎥

⎥

⎥

⎥

⎦

. (41)

Based on the RBF interpolation, the defect vector 𝐝(𝑡𝑘,𝝁) in (39) can be approximated as

𝐝(𝑡𝑘,𝝁) ≈ 𝐝RBF(𝑡𝑘,𝝁) ∶=
𝑛𝑑
∑

𝑗=1
𝐯𝑑,𝑗 𝑑𝑘RBF,𝑗 (𝝁). (42)

We obtain an RBF interpolant for each time instance 𝑘 ∈ {0, 1, 2,… , 𝐾} and each coordinate 𝑗 ∈ {1, 2,… , 𝑛𝑑}, resulting in a total
of (𝑛𝑑 ⋅ 𝑁𝑡) RBF interpolants. Fig. 5 graphically illustrates the approach. Theoretically, 𝐝RBF(𝑡𝑘,𝝁) in (42) is valid for any 𝝁 ∈  .
Therefore, 𝑁𝑝 in Fig. 5 can be arbitrarily large. We denote it by 𝑁𝑝 as we are only interested in obtaining the reduced defect
coefficients corresponding to the 𝑁𝑝 parameter samples present in the training set 𝛯.

In our numerical results in Section 5, we denote this method of approximating the defect vector using a SVD spatial reduction
followed by an RBF interpolation as SVD+RBF.

Remark 9. In this work, we have considered separate RBF interpolants for each time step and each generalized spatial coordinate,
leading to potentially many interpolants. While the number of interpolants scales as (𝑛𝑑𝑁𝑡), this can be efficiently implemented
in one step by solving a linear system with the small 𝑑𝑠 × 𝑑𝑠 coefficient matrix in (41), and with multiple right-hand sides (totalling
𝑛𝑑𝑁𝑡). The runtime of solving such a linear system is usually much faster than separately solving 𝑛𝑑𝑁𝑡 linear systems with the same
coefficient matrix.

4.2.3. Approximation using artificial neural networks
The second approach we consider to approximate the expansion coefficients 𝐝(𝑡,𝝁) for different time and parameter values is

based on artificial neural networks (ANNs). A widely used architecture to implement ANNs are the feed-forward neural networks
(FNNs). FNNs have been shown to be efficient for both regression and classification tasks in a variety of applications. The basic
architecture of an FNN consists of three components: an input layer, hidden layer(s) and an output layer. The core element of any
13



Computer Methods in Applied Mechanics and Engineering 420 (2024) 116712S. Chellappa et al.
Fig. 5. Approximation of the defect as a function of the parameter 𝝁. The RBF interpolant learns an approximation of the defect vector over 𝑁𝑝 samples, with
interpolation occurring at 𝑑𝑠 samples. We construct an individual RBF interpolant for each time and generalized spatial coordinate.

Fig. 6. Approximation of the defect coefficients as a function of the inputs (𝑡,𝝁). The neural network is trained based on data available at 𝑑𝑠 parameter samples.
In the inference stage, the neural network learns the approximation of the defect for all 𝑁𝑝 parameter samples.

NN in general and FNNs in particular are artificial neurons. The hidden layer(s) in an FNN consists of neurons stacked together.
Each neuron can receive inputs from a previous layer. The output corresponds to a nonlinear function of the weighted sum of its
input signals. For a detailed overview of ANNs and FNNs, we refer to [58].

In this work, we consider the FNN to learn an approximation to the map between the inputs (𝑡,𝝁) and the output 𝐝(𝑡,𝝁) ∈ R𝑛𝑑 .
That is,

𝐝NN ∶ (𝑡,𝝁) ↦ 𝐝NN(𝑡,𝝁) ≈ 𝐝(𝑡,𝝁).

Fig. 6 graphically illustrates the approach. To train the FNN, our training data consists of the dataset 𝜏train ∶= (𝜦NN, 𝐷NN) where
𝜦NN ∶= {(𝑡𝑖,𝝁𝑗 )}

𝑁𝑡 ,𝑑𝑠
𝑖, 𝑗=1 is the input set, containing time and parameter samples and 𝐷NN ∶= {𝐝(𝑡𝑖,𝝁𝑗 )}

𝑁𝑡 ,𝑑𝑠
𝑖, 𝑗=1 is the output data set which

consists of the reduced defect 𝐝(𝑡𝑖,𝝁𝑗 ) ∈ R𝑛𝑑 at each time and parameter sample of the input. The neural network is implemented
in PyTorch; more details regarding the number of layers used and other hyperparameters will be provided in the numerical section.
The loss function is the mean square loss, viz.,

𝐿mse ∶=
1
2

𝑑𝑠
∑

𝑖=1

𝑁𝑡
∑

𝑘=1

‖

‖

‖

‖

𝐝(𝑡𝑘,𝝁𝑖) − 𝐝NN(𝑡𝑘,𝝁𝑖)
‖

‖

‖

‖

2

2
.

Once the neural network is trained, it can infer the values of the defect vector 𝐝NN(𝑡,𝝁) at any chosen (𝑡,𝝁). The original defect
vector at a given parameter 𝝁 and at any time instance 𝐝(𝑡,𝝁) can be approximated using the FNN-based approach as

𝐝(𝑡,𝝁) ≈ 𝐝 (𝑡,𝝁) ∶= 𝐕 𝐝 (𝑡,𝝁). (43)
14

NN 𝑑 NN



Computer Methods in Applied Mechanics and Engineering 420 (2024) 116712S. Chellappa et al.

1

1

Algorithm 2 POD-Greedy algorithm for ODE solver libraries
Input: Training set 𝛯, tolerance (tol), discretized model (𝐄,𝐀,𝐁,𝐂, 𝐟 , 𝐱0)

Input for defect approximation: Training set for defect approximation 𝛯defect ⊂ 𝛯, SVD tolerances (tolSVD,𝑡,tolSVD,𝝁), user-imposed time
integration method solverimp

Output: 𝐕.

1: Initialize 𝐕 = [ ], 𝜖 = 1 + tol, choose solver from a library, greedy parameter 𝝁∗

2: Compute FOM snapshots for all 𝝁 ∈ 𝛯defect ; determine the defect data tensor D (see Section 4.2.1)
3: Perform SVD on D to get 𝐕𝑑 ; obtain an approximation 𝐝RBF(𝑡,𝝁) (42) or 𝐝NN(𝑡,𝝁) (43) for 𝐝(𝑡,𝝁)
4: while 𝜖 > tol do

5: Obtain FOM snapshots 𝐗𝝁∗ at 𝝁∗ with solver

6: Compute true defect {𝐝(𝑡𝑘,𝝁)}𝑁𝑡
𝑘=1 at 𝝁∗ based on 𝐗∗

7: Determine 𝐕∗ through an SVD of 𝐗 ∶= 𝐗∗ − 𝐕(𝐕𝖳𝐗∗)

8: Update 𝐕 as 𝐕 ∶= orth
(

𝐕,𝐕∗(∶ , 1 ∶ 𝑟𝑐 )
)

with orth
(

⋅
)

denoting an orthogonalization process which can be implemented using the modified Gram–Schmidt process, or QR
factorization

9: Obtain the C-ROM (e.g., (18)) corresponding to solverimp by Galerkin projection (+ hyperreduction)

0: Solve the C-ROM for all 𝝁 ∈ 𝛯 to obtain the residual and compute the error estimator 𝛥𝑎(𝝁) (31)
or 𝛥𝑏(𝝁) (33)

1: 𝝁∗ ∶= argmax
𝝁∈𝛯

𝛥𝑧(𝝁), 𝑧 = 𝑎 or 𝑧 = 𝑏

12: Set 𝜖 = 𝛥𝑧(𝝁∗), 𝑧 = 𝑎 or 𝑧 = 𝑏

13: end while

In our numerical results in Section 5, we denote this method of approximating the defect vector first with a SVD spatial reduction
followed by an approximation of the coefficients 𝐝 with a feedforward neural network as SVD+FNN.

4.3. POD-Greedy with black-box ODE solvers

We present the POD-Greedy algorithm that supports black-box ODE solvers and incorporates the new data-enhanced a posteriori
error estimator as Algorithm 2. It requires some additional inputs compared to Algorithm 1. These include a separate training set
𝛯defect ⊂ 𝛯 for the defect approximation and two separate tolerances for the SVD, 𝚝𝚘𝚕SVD,𝑡, 𝚝𝚘𝚕SVD,𝝁 which are required for the
two-step SVD method to compute 𝐕𝑑 . Before starting the greedy algorithm in Step 4, Steps 2–3 in Algorithm 2 are targeted towards
learning the defect vector, which is added as a closure term to get the C-ROM. In Step 2, FOM solutions of (1) are obtained for
the 𝑑𝑠 parameter samples in the training set 𝛯defect . Using this data, the defect vectors (see (15)) induced by a user-imposed time
integration scheme (denoted 𝚜𝚘𝚕𝚟𝚎𝚛imp) are collected in the tensor D. Then, in Step 3, the data in D are first compressed into a
low-dimensional space and the reduced defect vectors 𝐝(𝑡,𝝁) for all 𝝁 ∈ 𝛯 are learned via RBF or FNN. Afterwards, the defect vector
𝐝(𝑡,𝝁) is approximated via the decoded vectors 𝐝RBF(𝑡,𝝁) or 𝐝NN(𝑡,𝝁). The approximation 𝐝RBF(𝑡,𝝁) or 𝐝NN(𝑡,𝝁) can be updated
(replaced) by the true defect vector once new FOM data is available at 𝝁∗ (Step 6, Step 11). Updating the approximate defect vector
with the available true defect vector at 𝝁∗ at each iteration leads to considerable improvements in the performance of Algorithm
2, as we shall demonstrate in Section 5. Furthermore, it reduces the amount of initial training samples needed in 𝛯defect . Typically,
the user may not know, a priori, the number of FOM samples needed to get a good approximation of the closure term. Therefore,
𝛯defect can be coarsely sampled to keep the computational cost low. Once the greedy algorithm starts, the FOM solution snapshots
at 𝝁∗ chosen at each greedy iteration are readily available. Those snapshots can be further used to compute the true defect vector
𝐝(𝑡𝑘,𝝁∗) via (15). Since the snapshots are anyway available, the only computational costs incurred are those corresponding to the
evaluation of 𝐝(𝑡𝑘,𝝁),∀𝑘 ∈ {0, 1,… , 𝐾}.

4.3.1. Computational cost
We now analyse the additional computational cost incurred by the proposed Algorithm 2 when compared to the standard

POD-Greedy method in Algorithm 1.
To simplify things, we define the cost of solving the nonlinear FOM (1) to be FOM ∶= 𝑁newton𝑁𝐿𝑁𝑡; the cost of the linear solve at

each Newton iteration, viz. 𝑁𝐿, will be at least 𝑂(𝑁) depending on the particular method being implemented in the solver. The cost
of obtaining the defect vector at each time step (see (15)) is denoted by 𝐝. It depends on the user-defined time-stepping scheme. The
main contributions to 𝐝 are matrix–vector products and evaluations of the nonlinearity. Thus, it evaluates to 𝐝 ∶= ((𝑁2)+(𝑁))
in the worst-case . However, the matrix–vector multiplications typically involve sparse matrices and can be done cheaply.

We denote by SVD ∶= (min(𝑝2𝑞, 𝑝𝑞2)) the cost of an SVD for a matrix of dimension R𝑝×𝑞 . We let RBF ∶= (𝑑3𝑠 ) be the cost of
15

obtaining one RBF interpolant. The cost of training a neural network is difficult to estimate owing to its architecture and the use



Computer Methods in Applied Mechanics and Engineering 420 (2024) 116712S. Chellappa et al.

w

5

5

M

w

of specialized hardware. Therefore, for simplicity, we define it as NN ∶= 𝜎 ⋅ (FP + BP) with FP denoting the cost of one forward
pass, BP denoting the cost of one backward pass and 𝜎 being a constant that depends on the number of layers, epochs, the batch
size and other hyperparameters.

The overall factors contributing to the proposed algorithm are listed below:

• Step 2 in Algorithm 2 requires the FOM solution at 𝑑𝑠 parameters. This has cost that scales as 𝑑𝑠 ⋅ FOM.
• In Step 2, evaluating the defect vector at each time step and for all 𝑑𝑠 parameter samples incurs cost that scales as (𝑑𝑠𝑁𝑡) ⋅ 𝐝.
• The cost of the two-stage SVD in Step 3 to obtain 𝐕𝑑 is (𝑑𝑠 + 1) ⋅ SVD.
• Based on the method used for approximating the map (𝑡,𝝁) ↦ 𝐝(𝑡,𝝁), the costs differ:

– For the RBF-based approach, the RBF coefficient matrix can be factorized once and reused for subsequent solves. The
cost is thus RBF + (𝑛𝑑𝑁𝑡 − 1) ⋅ (𝑑2𝑠 )

– For the NN-based approach, the cost is NN

• In the inference stage where the defect vector is approximated for all 𝝁 ∈ 𝛯,

– the RBF-based approach has a cost (𝑁𝑝𝑁𝑡) ⋅ 𝑑𝑠
– the NN-based approach incurs a cost scaling as (𝑁𝑝𝑁𝑡) ⋅ FP

The cost of the matrix tensor product to obtain D̃ is 𝑑𝑠𝑁𝑡 ⋅ 𝑛𝑑𝑁 for both RBF and NN-based approaches
• To update the approximate defect vector in Step 6, the cost of evaluating the true defect vector at the current greedy parameter

scales as 𝑁𝑡 ⋅ 𝐝

The major cost in approximating the defect will be the cost of solving the FOM at 𝑑𝑠 parameter samples. From our experience, the
RBF-based approach performs better than the NN-based approach. Comparisons of corresponding run times are detailed in Section 5.

5. Numerical results

To demonstrate the validity of the proposed data-enhanced output error estimation approach, we test it on three numerical
examples. These are:

1. the viscous Burgers’ equation with one parameter
2. the FitzHugh–Nagumo equations with two parameters and
3. the batch chromatography equations with one parameter.

All reported numerical results were performed on a desktop computer running Ubuntu 20.04, installed with a 12th generation intel®
core™i5 processor, 32 GB of RAM and a NVIDIA RTX A4000 GPU with 16 GB of memory. The simulations were carried out in the
Spyder IDE with Python 3.9.12 (miniconda). Where required, matlab® v2019b was used to run some simulations. The radial basis
interpolation was performed using the RBF package [59].

For the two greedy algorithms (Algorithms 1 and 2), we plot the maximum estimated errors computed using 𝛥𝑏(𝝁) over the
training set at every iteration. We define this as:

𝜀max ∶= max
𝝁∈𝛯

𝛥𝑏(𝝁)

here 𝛥𝑏(𝝁) is defined in (33). Additionally, to illustrate the performances of the ROM over the test set 𝛯test , we plot the mean
estimated error 𝛥𝑏(𝝁) for every parameter 𝝁 ∈ 𝛯test .

.1. Code availability

The companion Python code to reproduce the numerical results is available at https://doi.org/10.5281/zenodo.8169490.

.2. Burgers’ equation

odel description. The viscous Burgers’ equation defined in the 1-D domain 𝛺 ∶= [0, 1] is given by
𝜕𝑣
𝜕𝑡

+ 𝑣 𝜕𝑣
𝜕𝑧

= 𝜇 𝜕2𝑣
𝜕2𝑧

, (44)

𝑣(𝑧, 0) = sin(2𝜋𝑧),
𝑣(0, 𝑡) = 𝑣(1, 𝑡) = 0

ith 𝑣 ∶= 𝑣(𝑧, 𝑡) ∈ R denoting the state variable, where 𝑧 ∈ 𝛺 is the spatial variable and the time variable 𝑡 ∈ [0, 2]. We spatially
discretize (44) with the finite difference method. The mesh size is 𝛥𝑧 = 0.001, which results in a discretized FOM of dimension
𝑁 = 1000. As the variable parameter, we consider the viscosity 𝜇 ∈  ∶= [0.005, 1]. We sample 100 logarithmically-spaced samples
from  and divide the samples randomly into a training set 𝛯 and a testing set 𝛯test in the ratio 80 ∶ 20. To solve the ODE, the
solver in Algorithm 2 is the scipy library odeint. To have a uniform comparison, we compute solutions of the FOM on a
uniformly spaced time step of 𝛿𝑡 = 0.01. The output variable of interest is the value of the state at the node just before the right
16

boundary.

https://doi.org/10.5281/zenodo.8169490


Computer Methods in Applied Mechanics and Engineering 420 (2024) 116712S. Chellappa et al.
Fig. 7. Burgers’ equation, Algorithm 1: (a) error (estimator) decay when using a first-order IMEX method without any closure term; (b) error (estimator) decay
when the true residual is known.

Fig. 8. Burgers’ equation, Algorithm 2: (a) error (estimator) decay when using the SVD+RBF method to approximate the closure term and Step 6 is not included;
(b) performance of the ROM over a test set.

POD-Greedy with Algorithm 1. We first apply Algorithm 1 to the Burgers’ equation with a tolerance 𝚝𝚘𝚕 = 10−4. The 𝚜𝚘𝚕𝚟𝚎𝚛 used is
the 𝚘𝚍𝚎𝚒𝚗𝚝 library in scipy. Since the exact expression of the residual is unknown, we use a first-order IMEX method (IMEX1) to
approximate the residual and estimate the output error. As the true residual is incorrectly approximated by the user-imposed time
integration scheme, the resulting estimated error is severely overestimated. This results in the stagnation of the greedy algorithm
as seen in Fig. 7(a). For comparison, we also plot in Fig. 7(b) the convergence of the greedy algorithm when the exact residual is
known. To remedy this, we next apply the proposed Algorithm 2.

POD-Greedy with Algorithm 2 and SVD+RBF closure approximation. First, we collect 𝑑𝑠 = 16 uniformly-spaced parameter samples
from the training set to construct 𝛯defect and obtain the corresponding defect vector in Step 2. The SVD tolerances 𝚝𝚘𝚕SVD,𝑡, 𝚝𝚘𝚕SVD,𝝁
are both set to 10−4 so that 𝑛𝑑 = 47. The user-defined solver 𝚜𝚘𝚕𝚟𝚎𝚛imp is IMEX1. The resulting convergence of the greedy algorithm
using the RBF-based approximation of the defect vector is shown in Fig. 8(a). As shown, the maximum estimated error converges
exponentially to the desired tolerance. The dimension of the ROM obtained is 𝑛 = 7. To demonstrate the performance of the ROM,
we show in Fig. 8(b) the mean estimated errors for the parameters in the test set 𝛯test . The obtained errors are smaller than the
desired tolerance 10−4, showing the reliability of our error estimation approach. Furthermore, Fig. 9(a) shows the singular value
decays of the defect vector trajectories at the 16 parameter samples in 𝛯defect . Fig. 9(b) shows the singular value decay obtained
from the SVD of 𝐑 (Section 4.2.1). The singular value decay in Fig. 9(b) indicates the fast Kolmogorov 𝑛-width decay of the defect
manifold and hence good performance of Algorithm 2. In terms of runtime, this approach requires 17 seconds for generating the
training data for learning the defect vector and obtaining the RBF interpolants.

POD-Greedy with Algorithm 2 and SVD+FNN closure approximation. Next, we repeat Algorithm 2 but now with the neural network-
based approximation of the defect. The feed-forward neural network has 3 hidden layers with 16, 64, 64 neurons, respectively. The
activation function are the SiLU function for the first three layers and Tanh for the last layer. We have normalized the input data to
be between [0, 1] and the output data is between [−1, 1]. The neural network is implemented in PyTorch. It is trained using the Adam
optimizer for 2000 epochs, with learning rate 0.005. Initially, we do not implement Step 6 and do not update 𝐝NN(𝑡,𝝁∗) with 𝐝(𝑡,𝝁∗)
at 𝝁∗ (selected from the previous iteration) when computing the error estimator 𝛥 (𝝁) in Step 11 at the current iteration. Using
17

𝑏



Computer Methods in Applied Mechanics and Engineering 420 (2024) 116712S. Chellappa et al.

t

Fig. 9. Burgers’ equation: (a) normalized singular values of the defect matrix 𝐃(𝝁) for 𝝁 ∈ 𝛯defect ; (b) normalized singular values of 𝐑.

Fig. 10. Burgers’ equation, Algorithm 2: (a) error (estimator) decay when using the SVD+FNN method without closure updates; (b) error (estimator) decay
when using the SVD+FNN method with closure updates.

he same 𝛯defect with |𝛯defect | = 16 (as done for the SVD+RBF approach), we did not obtain convergence of the greedy algorithm.
Therefore, we use a 𝛯defect with 24 samples. The SVD tolerances for this case are both 0.1 resulting in 𝑛𝑑 = 6. Using enriched
training data results in the successful convergence of Algorithm 2 as seen in Fig. 10(a). However, it requires up to 14 iterations
for this convergence. Evidently, the NN-based approach does not yield a satisfactory performance even with more training data.
Then, we implement Step 6 and update the defect vector approximation at Step 11, which results in a significant improvement in
performance. This is shown in Fig. 10(b).

To explain the poorer performance of the SVD+FNN approach, we plot in Fig. 11 the approximation of the defect vector at
𝜇 = 0.123 and 4 different time instances, viz., 𝑡 ∈ {0.01, 0.2, 0.5, 1.5} s. We notice that the approximation from the FNN, while
qualitatively capturing the true defect, fails to produce a very close match to the true value. This is especially the case for latter
time instances, as the magnitude of the defect vector gets smaller. However, the RBF-based approach results in a significantly
better approximation. This might be because of the fact that each entry of the reduced defect vector is separately learned by an
individually-trained RBF interpolation, while the whole reduced defect vector is learned by a single and uniformly-trained FNN.
However, if we use 𝑛𝑑 FNNs to learn the 𝑛𝑑 entries of the defect vector separately, the training will become much more expensive
when 𝑛𝑑 is not very small.

5.3. FitzHugh–Nagumo equations

Model description. The FitzHugh–Nagumo system models the response of an excitable neuron or cell under an external stimulus. It
finds applications in a variety of fields such as cardiac electrophysiology and brain modelling. The nonlinear coupled system of two
partial differential equations defined in the domain 𝛺 ∶= [0, 𝐿] is given below:

𝜖
𝜕𝑣1(𝑧, 𝑡) = 𝜖2

𝜕2𝑣1(𝑧, 𝑡) + 𝑓 (𝑣 (𝑧, 𝑡)) − 𝑣 (𝑧, 𝑡) + 𝑐, (45a)
18

𝜕𝑡 𝜕𝑧2 1 2



Computer Methods in Applied Mechanics and Engineering 420 (2024) 116712S. Chellappa et al.

t
E
u

Fig. 11. Burgers’ equation: approximation of the true defect by the RBF-based and NN-based approaches at 𝑡 ∈ {0.01, 0.2.0.5, 1.5} s for 𝜇 = 0.123.

𝜕𝑣2(𝑧, 𝑡)
𝜕𝑡

= 𝑏 𝑣1(𝑧, 𝑡) − 𝛾𝑣2(𝑧, 𝑡) + 𝑐, (45b)

with boundary conditions
𝜕
𝜕𝑧

𝑣1(0, 𝑡) = −𝐼ext (𝑡),
𝜕
𝜕𝑧

𝑣1(𝐿, 𝑡) = 0, (46)

and initial conditions

𝑣1(𝑧, 0) = 0.001, 𝑣2(𝑧, 0) = 0.001. (47)

In the above equations, 𝑣1(𝑧, 𝑡) and 𝑣2(𝑧, 𝑡) represent the electric potential and the recovery rate of the potential, respectively. The
spatial variable is denoted by 𝑧 ∈ 𝛺 and the time 𝑡 ∈ [0, 5]. The nonlinear term is represented by 𝑓 (𝑣1(𝑧, 𝑡)) ∶= 𝑣1(𝑣1 − 0.1)(1 − 𝑣1).
The external stimulus is 𝐼ext (𝑡) = 50000𝑡3𝑒−15𝑡. The system has the four free parameters 𝜖, 𝑐, 𝑏, 𝛾. We fix 𝑏 = 0.5 and 𝛾 = 2 while the
wo free parameters are 𝝁 = [𝜖, 𝑐] ∈  ∶= [0.01, 0.04] × [0.025, 0.075]. A finite difference scheme is employed to spatially discretize
qs. (45a) and (45b) with 512 nodes used for each variable leading to a FOM of dimension 𝑁 = 1024. We sample 100 parameters
niformly from the domain  and randomly divide them into the training set 𝛯 and the test set 𝛯test in the ratio 70 ∶ 30. To solve

the ODE, we use ode15s from matlab®. The time discretization is done on a uniform grid with 𝛿𝑡 = 0.01. The QoIs are the values
of the two state variables at the node next to the leftmost boundary.

We apply Algorithms 1 and 2 to the FitzHugh–Nagumo system. This is a particularly challenging example for both algorithms
as the system exhibits a slow singular value decay. Of particular interest is the approximation of the limit cycle behaviour of the
system for certain combinations of the two free parameters, (𝜖, 𝑐). The RBM tolerance is set as 𝚝𝚘𝚕 = 10−3.

POD-Greedy with Algorithm 1. Applying Algorithm 1 to this example and using a second-order IMEX scheme (IMEX2) to compute
the residual does not result in the convergence of the greedy algorithm, as see in Fig. 13. This stems from the fact that the actual
numerical scheme solver used in Algorithm 1 is the ode15s solver from matlab®, therefore, the residual we compute using IMEX2
scheme is incorrect.

POD-Greedy with Algorithm 2 and SVD+RBF closure approximation. We apply Algorithm 2 to this example using 𝐝RBF(𝑡,𝝁) in Step 3
and with an RBM tolerance 𝚝𝚘𝚕 = 10−3. The user-imposed time integration scheme 𝚜𝚘𝚕𝚟𝚎𝚛imp is IMEX2. Due to the challenging
nature of the problem, 𝑑𝑠 = 21 uniformly-spaced samples are chosen from the training set to obtain 𝛯defect . The tolerance
𝚝𝚘𝚕SVD,𝑡 = 𝚝𝚘𝚕SVD,𝝁 = 10−6, resulting in 𝑛𝑑 = 311. Fig. 12(a) plots the singular value decays of 𝐃(𝝁) at all 𝝁 ∈ 𝛯defect while Fig. 12(b)
shows the decay of the singular values of 𝐑 (see Section 4.2.1). Similar to the case of the Burgers’ equation, an exponential decay
of the singular values is observed in Fig. 12(a). However, the second SVD shown in Fig. 12(b) has a relatively slower decay of the
singular values. This shows that the solution manifold of the FitzHugh–Nagumo system with respect to the parameter variations
is more difficult to be approximated by a low-dimensional linear subspace. We incur 25 seconds to compute the training data for
the defect trajectories and to obtain the SVD+RBF approximation of the defect vectors. The greedy algorithm takes 11 iterations to
reach the desired tolerance; Fig. 14(a) shows the error convergence of Algorithm 2. The dimension of the ROM obtained is 𝑛 = 33.
19



Computer Methods in Applied Mechanics and Engineering 420 (2024) 116712S. Chellappa et al.
Fig. 12. FitzHugh–Nagumo equations: (a) Stage 1 - normalized singular values of the defect matrix 𝐃(𝝁) for 𝝁 ∈ 𝛯defect ; (b) Stage 2 - normalized singular values
of 𝐑.

Fig. 13. FitzHugh–Nagumo equations, Algorithm 1: error (estimator) decay when using a second-order IMEX method without any closure term.

Fig. 14. FitzHugh–Nagumo equations, Algorithm 2: (a) error (estimator) decay when using the SVD+RBF method with Step 6 included; (b) error (estimator)
decay when using the SVD+RBF method without Step 6.

Note that we have implemented Step 6 in Algorithm 2 to update the RBF approximation 𝐝RBF(𝑡,𝝁∗) with 𝐝(𝑡,𝝁∗) when we compute
the error estimator 𝛥𝑏(𝝁) for all 𝝁 ∈ 𝛯 in Step 11. Without doing so, the greedy algorithm converges nevertheless, but takes 16
iterations (Fig. 14(b)) and the ROM has a larger size 𝑛 = 48.

POD-Greedy with Algorithm 2 and SVD+FNN closure approximation. Next, we use 𝐝NN(𝑡,𝝁) in Step 3 of Algorithm 2. The FNN is a
3-layer network having, respectively, 64, 64, 32 neurons in its hidden layers. The SiLU function is used for activation in all but the
last layer. In the last layer, Tanh is the activation function. The training is carried out for 2000 epochs using the Adam optimizer.
20



Computer Methods in Applied Mechanics and Engineering 420 (2024) 116712S. Chellappa et al.
Fig. 15. FitzHugh–Nagumo equations, Algorithm 2: error (estimator) decay when using the SVD+FNN method with Step 6 included.

Fig. 16. FitzHugh–Nagumo equations, Algorithm 2 with SVD+RBF: performance at the test parameter 𝝁 = (0.0267, 0.0367) (a) Limit cycle behaviour; (b) output
quantities.

Fig. 17. FitzHugh–Nagumo equations, Algorithm 2 with SVD+FNN: performance at the test parameter 𝝁 = (0.04, 0.0472) (a) Limit cycle behaviour; (b) output
quantities.

The learning rate is 0.002. No special tuning was done to calibrate the hyperparameters of the FNN. A detailed investigation on this
is left for future work. We set 𝚝𝚘𝚕SVD,𝑡 = 𝚝𝚘𝚕SVD,𝝁 = 10−3, such that 𝑛𝑑 = 57. The total time for computing the training data at all
the samples in 𝛯defect and for training the FNN is 106 seconds, where training the FNN dominates the total runtime. Fig. 15 plots
the convergence of the greedy algorithm. It takes 10 iterations to converge. The resulting ROM has dimension 𝑛 = 30.

The finally derived ROM is then simulated at two parameter samples 𝝁 = (0.0267, 0.0367) and 𝝁 = (0.04, 0.0472) taken from the
test set. Fig. 16 shows the results of the ROM for the parameter 𝝁 = (0.0267, 0.0367) obtained from Algorithm 2 using the SVD+RBF
approximation of the closure term. We see that the ROM is able to successfully capture both the state and the output dynamics
of the FOM at the test parameter. At this parameter, the limit cycle behaviour is not very strong. At a different test parameter
(𝝁 = (0.04, 0.0472)) shown in Fig. 17, the ROM is able to successfully recover the stronger limit cycle behaviour as well. For this
case, we show results using the SVD+FNN approach. But, we note that similar accuracy is also achieved with the SVD+RBF approach.
The corresponding results are not shown to avoid repetition.
21



Computer Methods in Applied Mechanics and Engineering 420 (2024) 116712S. Chellappa et al.
Fig. 18. Schematic of the batch chromatography process. The mobile phase Solvent and the Feed mixture consisting of the two chemicals (a, b) to be separated
are periodically injected into the Column at a volumetric feed flow rate of 𝑄 and with injection intervals 𝑡𝗂𝗇. The Column contains an adsorbent bed through
which the two chemicals a, b travel at different velocities, owing to their differing adsorption affinities. The different velocities ensure that the separated Products
a and b can be collected at the outlet at different time instances.

5.4. Batch chromatography

The last example we consider is the model of the batch chromatography purification process. Being a coupled, nonlinear system
of four PDEs, this example poses a considerable challenge for our proposed approach.

Model description. Batch chromatography is an important purification process for separation of chemicals in food and pharmaceutical
industries. We consider the governing equations for the batch chromatographic process for binary separation, i.e., the separation of
two chemical components from a mixture. A schematic of the complete process is shown in Fig. 18.

The governing PDEs for the batch chromatography system are:

𝜕𝑣1,𝑧
𝜕𝑡

+ 1 − 𝜖
𝜖

𝜕𝑣2,𝑧
𝜕𝑡

= −
𝜕𝑣1,𝑧
𝜕𝑧

+ 1
Pe

𝜕2𝑣1,𝑧
𝜕𝑧2

, (48)

𝜕𝑣2,𝑧
𝜕𝑡

= 𝐿
𝑄∕𝜖𝐴𝑐

𝜅𝑧
(

𝑣Eq2,𝑧 − 𝑣2,𝑧
)

, (49)

where the state variables 𝑣1,𝑧, 𝑣2,𝑧 refer to the concentrations of the chemical component 𝑧 in the liquid and solid phase, respectively.
Since we are interested in binary separation, 𝑧 ∈ {𝑎, 𝑏}. The boundary conditions are:

𝜕𝑣1,𝑧(0, 𝑡)
𝜕𝑧

= Pe
(

𝑣1,𝑧(0, 𝑡) − 𝑢(𝑡)
)

,
𝜕𝑣1,𝑧(1, 𝑡)

𝜕𝑧
= 0 (50)

and the initial conditions are:

𝑣1,𝑧(𝑧, 0) = 0, 𝑣2,𝑧(𝑧, 0) = 0. (51)

The quantity 𝑣Eq2,𝑧 in (48) is the source of nonlinearity and it denotes the adsorption equilibrium:

𝑣Eq2,𝑧 = 𝑓𝑧(𝑣1,𝑎, 𝑣2,𝑏) ∶=
𝐻𝑧1𝑣1,𝑧

1 +𝐾𝑎1𝑣f1,𝑎𝑣1,𝑎 +𝐾𝑏1𝑣f2,𝑏𝑣2,𝑏
+

𝐻𝑧2𝑣1,𝑧
1 +𝐾𝑎2𝑣f1,𝑎𝑣1,𝑎 +𝐾𝑏2𝑣f2,𝑏𝑣2,𝑏

.

The discretization of the above PDE is performed using a second-order finite volume method. Each of the four PDEs is spatially
discretized into 800 volume elements, resulting in a FOM of dimension 𝑁 = 3200. For full details regarding the batch chromatography
PDE discretization and the terms involved, we refer to [60]. The output variables are the concentrations of the liquid phases
(𝑣1,𝑎, 𝑣1,𝑏) at the rightmost node. The batch chromatography model has two free parameters, 𝑄 and 𝑡in, which denote, respectively,
the volumetric feed flow of the solvent injected into the column and the injection frequency of the solvent. We fix 𝑡in = 0.5 while
𝑄 ∈ [0.0667, 0.1667]. We collect 60 uniformly-spaced samples of 𝑄 and divide them into the training set 𝛯 and the test set 𝛯test in
the ratio 80 ∶ 20. The solver used for both algorithms is ode15s from matlab®while the user-imposed time integration method
𝚜𝚘𝚕𝚟𝚎𝚛imp in Algorithm 2 is IMEX2. The time discretization divides the time range 𝑡 ∈ [0, 10] into a uniform grid with 𝛿𝑡 = 0.005.

POD-Greedy with Algorithm 1. First, we show the results of applying Algorithm 1 to the batch chromatography equations. The RBM
tolerance is set to be 𝚝𝚘𝚕 = 10−3. Since the exact form of the residual expression of batch chromatography equations is unknown,
(i.e., [⋅] corresponding to ode15s is not available) we impose IMEX2 to get an approximate residual operator ̃[⋅]. However,
̃[⋅] corresponding to IMEX2 is different from [⋅] so that the estimated error is inaccurate, resulting in stagnation of the greedy
algorithm, see Fig. 19. To address this situation, we next apply the proposed approach which involves adding a closure term.
22



Computer Methods in Applied Mechanics and Engineering 420 (2024) 116712S. Chellappa et al.

F

P

t
d
𝑡
e
T
a
i

Fig. 19. Batch chromatography, Algorithm 1: error (estimator) decay when using a second-order IMEX method without any closure term.

Fig. 20. Batch chromatography, Algorithm 2: convergence when using the SVD+RBF method with Step 6 included to approximate the closure term.

POD-Greedy with Algorithm 2 and SVD+RBF closure approximation. As done for the last two examples, we first apply Algorithm 2
to the current example and employ the RBF-based approach to approximate the closure term. The greedy algorithm successfully
converges in 10 iterations to the desired tolerance of 𝚝𝚘𝚕 = 10−3. The dimension of the ROM is 𝑛 = 134. The convergence is shown
in Fig. 20. To learn the closure term, 𝑑𝑠 = 10 uniformly-spaced samples are chosen from the training set 𝛯. The SVD tolerances
are 𝚝𝚘𝚕SVD,𝑡 = 𝚝𝚘𝚕SVD,𝝁 = 10−5, leading to 𝑛𝑑 = 291. The singular value decay from the SVD of each defect snapshot matrix
𝐃(𝝁) for all 𝝁 ∈ 𝛯defect is presented in Fig. 21(a). It can be noticed that the singular values decay even slower than those of the
itzHugh–Nagumo model (see Fig. 12(a)). In Fig. 21(b), the singular values of 𝐑 also exhibit a much slower decay. This indicates

that for the batch chromatography example, both the dynamics at a given parameter and the solution manifold with respect to
the parameter variations are much more difficult to be captured by a low-dimensional linear space. As a result, this problem is
likely to have a slow Kolmogorov 𝑛-width decay. The batch chromatography equations are in fact a system of first-order hyperbolic
DEs [61]. It is known that for problems exhibiting hyperbolic characteristics or convection-dominance, the Kolmogorov 𝑛-width

decay is slow [62]. The runtime for obtaining the training data for the SVD+RBF approach and for obtaining the RBF interpolant
is 186 seconds. To demonstrate the quality of the ROM resulting from Algorithm 2, we compare the output obtained from the FOM
and ROM in Fig. 22. The results are shown for the parameter sample 𝑄 = 0.0803 taken from 𝛯test . We can see that the ROM is
able to successfully recover the dynamics of both output quantities. For this sample, we obtain the mean error 𝛥(𝑄) = 2.082 ⋅ 10−5,
which is below the desired tolerance. Additionally, to show the approximation of the state vector, we plot the space–time values
and corresponding approximation errors of the liquid phase concentration 𝑣1,𝑎, 𝑣1,𝑏. The results are shown in Figs. 23 and 24. It can
be inferred that the ROM delivers a sharp approximation of both these state quantities for the entire duration of the simulation at
an unseen parameter during training. Note that the state vector has error larger than the tolerance. The reason for this is that our
error estimator aims to estimate the output error rather than the whole state error.

The quality of the defect vector approximation using the SVD+FNN approach was not satisfactory for this example. This owes to
he particularly non-smooth nature of the defect snapshots for different time instances and parameters. Fig. 25 shows the true reduced
efect vector 𝐝(𝑡,𝝁) and its approximation using RBF interpolation 𝐝RBF(𝑡,𝝁) corresponding to 𝝁 = 0.0769 at the time instances
∈ {0.05, 0.25, 2.5, 5.0} s. While the RBF interpolants recover a good approximation, the FNN was not successful in capturing the
ntire complexity of the defect snapshots. The FNN-based approximation was very inaccurate and we do not show those results.
he neural network struggles to capture the fast changing nature of the reduced defect vector in the reduced coordinate space and
lso its wide range of magnitudes (±(10−3 − 10−8)). The fact that we used separate RBF interpolants for each coordinate and time
nstance led to a much better approximation than the FNN.
23



Computer Methods in Applied Mechanics and Engineering 420 (2024) 116712S. Chellappa et al.
Fig. 21. Batch chromatography: (a) Stage 1 - normalized singular values of the defect matrix 𝐃(𝝁) for 𝝁 ∈ 𝛯defect ; (b) Stage 2 - normalized singular values of 𝐑.

Fig. 22. Batch chromatography, Algorithm 2: performance of the ROM at test parameter sample 𝑄 = 0.0803 for the two output quantities 𝑦1,𝑎 , 𝑦1,𝑏.

Fig. 23. Batch chromatography, Algorithm 2: performance of the ROM at test parameter sample 𝑄 = 0.0803 for the state 𝑣1,𝑎.

6. Conclusions

In this work, we have introduced a data-enhanced a posteriori output error estimator for model reduction of general parametric
nonlinear dynamical systems. The proposed error estimator does not require any knowledge of the underlying time integration
scheme used to integrate the given ODE. Applied to the reduced basis method, the new approach enables the direct use of ODE
solver libraries, a feature that was not considered so far, to the best of our knowledge. While it demands a modest amount of
24



Computer Methods in Applied Mechanics and Engineering 420 (2024) 116712S. Chellappa et al.
Fig. 24. Batch chromatography, Algorithm 2: performance of the ROM at test parameter sample 𝑄 = 0.0803 for the state 𝑣1,𝑏.

Fig. 25. Batch chromatography: approximation of the reduced defect vector by the RBF-based approach at 𝑡 ∈ {0.05, 0.25, 2.5, 5.0} s at 𝑄 = 0.0769.

extra training data, the proposed error estimator is efficient and can also be used in the online stage to certify the accuracy of the
ROMs. Numerical experiments performed on three challenging examples demonstrate the benefits offered by the new approach.
We observed that the RBF-based approach performed better, compared to a NN-based approach. An immediate extension of the
proposed approach is to consider an adaptive sampling of the training set 𝛯. New strategies to accurately approximate the closure
term need to be considered for this. Another fruitful line of future work could involve integrating the proposed methodology in the
Neural ODE framework [33] to make it fully non-intrusive.

CRediT authorship contribution statement

Sridhar Chellappa: Conceptualization, Formal analysis, Investigation, Methodology, Software, Visualization, Writing – original
draft, Writing – review & editing. Lihong Feng: Formal analysis, Supervision, Writing – review & editing, Methodology. Peter
Benner: Formal analysis, Funding acquisition, Supervision, Writing – review & editing.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared
to influence the work reported in this paper.
25



Computer Methods in Applied Mechanics and Engineering 420 (2024) 116712S. Chellappa et al.

5

A

M

A

P
y

F

W

T
F

Data availability

The code to reproduce the results in this manuscript have been made available for download in Zenodo - https://doi.org/10.
281/zenodo.8169489.

cknowledgements

Part of this work was performed while the first author was pursuing his doctoral study and was supported by the International
ax Planck Research School in Process Systems Engineering (IMPRS-ProEng), Germany.

ppendix A

roof of Theorem 2.1. Consider the FOM in (4) and its residual (6) based on the ROM (5). Subtracting (6) from (4) and rearranging
ields

𝐄im𝐞𝑘 = 𝐀im𝐞𝑘−1 + 𝛿𝑡
(

𝐟 (𝐱𝑘−1im ) − 𝐟 (𝐱̃𝑘−1im )
)

+ r𝑘,

𝐞𝑘 = 𝐄−1
im𝐀im𝐞𝑘−1 + 𝛿𝑡𝐄−1

im

(

𝐟 (𝐱𝑘−1im ) − 𝐟 (𝐱̃𝑘−1im )
)

+ 𝐄−1
im r

𝑘 (A.1)

where 𝐞𝑘 = ‖𝐱𝑘im − 𝐱̃𝑘im‖ is the error in the state vector at the 𝑘th time step.
Taking the norm on both sides and enforcing the Lipschitz condition results in

‖

‖

‖

𝐞𝑘‖‖
‖2

≤ ‖

‖

‖

𝐄−1
im𝐀im

‖

‖

‖2
‖

‖

‖

𝐞𝑘−1‖‖
‖2

+ 𝛿𝑡𝐿𝐟
‖

‖

‖

𝐄−1
im
‖

‖

‖2
‖

‖

‖

𝐞𝑘−1‖‖
‖2

+ ‖

‖

‖

𝐄−1
im
‖

‖

‖2
‖

‖

‖

r𝑘‖‖
‖2

≤
(

‖

‖

‖

𝐄−1
im𝐀im

‖

‖

‖2
+ 𝛿𝑡𝐿𝐟

‖

‖

‖

𝐄−1
im
‖

‖

‖2

)

‖

‖

‖

𝐞𝑘−1‖‖
‖2

+ ‖

‖

‖

𝐄−1
im
‖

‖

‖2
‖

‖

‖

r𝑘‖‖
‖2

. (A.2)

or notational convenience, we define 𝜁 ∶= ‖

‖

‖

𝐄−1
im
‖

‖

‖2
and 𝜉 ∶=

(

‖

‖

‖

𝐄−1
im𝐀im

‖

‖

‖2
+ 𝛿𝑡𝐿𝐟

‖

‖

‖

𝐄−1
im
‖

‖

‖2

)

and rewrite (A.2) as

‖

‖

‖

𝐞𝑘‖‖
‖2

≤ 𝜉 ‖‖
‖

𝐞𝑘−1‖‖
‖2

+ 𝜁 ‖‖
‖

r𝑘‖‖
‖2

. (A.3)

At 𝑘 = 0, the initial error is
‖

‖

‖

𝐞0‖‖
‖2

= ‖

‖

‖

𝐱0im − 𝐕𝐕𝖳𝐱0im
‖

‖

‖2
. (A.4)

Using (A.4), the recursion in (A.3) can be resolved for every 𝑘 to obtain the expression for the error bound in (7). □

Appendix B

Proof of Theorem 3.1. The output error for the modified output in (25) is

𝐲𝑘 − 𝐲𝑘im,c = 𝐂
(

𝐱𝑘 − 𝐱̃𝑘im,c
)

+ 𝐱̃𝖳dur
𝑘
im,c. (B.1)

Multiplying by
(

𝐱𝑘 − 𝐱̃𝑘im,c
)𝖳 on both sides of (20) yields

(

𝐱𝑘 − 𝐱̃𝑘im,c
)𝖳𝐄𝖳

im𝐱du = −
(

𝐱𝑘 − 𝐱̃𝑘im,c
)𝖳𝐂𝖳,

where we have made use of the fact that 𝐄du = 𝐄𝖳
im. Taking the transpose on both sides of the above equality leads to

𝐱𝖳du𝐄im
(

𝐱𝑘 − 𝐱̃𝑘im,c
)

= −𝐂
(

𝐱𝑘 − 𝐱̃𝑘im,c
)

. (B.2)

e recall the auxiliary residual introduced in (24) which can be written as

r̆𝑘im,c = 𝐀im𝐱𝑘−1im,c + 𝛿𝑡
(

𝐟 (𝐱𝑘−1im,c) + 𝐁𝐮𝑘
)

+ 𝐝𝑘 − 𝐄im𝐱̃𝑘im,c,

= 𝐄im
(

𝐱𝑘im,c − 𝐱̃𝑘im,c
)

,

= 𝐄im
(

𝐱𝑘 − 𝐱̃𝑘im,c
)

. (B.3)

he third equality above follows from our assumption that the corrected solution (𝐱𝑘im,c) obtained from (16) actually recovers the
OM solution 𝐱𝑘 given an accurate closure term 𝐝𝑘.

We further use the expression in (B.3) to write (B.2) as
𝖳 ̆𝑘

( 𝑘 ̃𝑘
)

26

𝐱durim,c = −𝐂 𝐱 − 𝐱im,c . (B.4)

https://doi.org/10.5281/zenodo.8169489
https://doi.org/10.5281/zenodo.8169489
https://doi.org/10.5281/zenodo.8169489


Computer Methods in Applied Mechanics and Engineering 420 (2024) 116712S. Chellappa et al.

R

Now, we substitute (B.4) into (B.1) followed by addition and subtraction of the term 𝐱̃𝖳dur̆
𝑘
im,c to get

𝐲𝑘 − 𝐲𝑘im,c = −𝐱𝖳dur̆
𝑘
im,c + 𝐱̃𝖳dur

𝑘
im,c,

= −𝐱𝖳dur̆
𝑘
im,c + 𝐱̃𝖳dur

𝑘
im,c + 𝐱̃𝖳dur̆

𝑘
im,c − 𝐱̃𝖳dur̆

𝑘
im,c,

= −
(

𝐱du − 𝐱̃du
)𝖳r̆𝑘im,c + 𝐱̃𝖳du

(

r𝑘im,c − r̆
𝑘
im,c

)

.

(B.5)

Subsequent to this, we use the expression for the dual system (20) and its residual (23) to obtain

rdu = 𝐄du𝐱du − 𝐄du𝐱̃du = 𝐄du
(

𝐱du − 𝐱̃du
)

,

⟹
(

𝐱du − 𝐱̃du
)

= 𝐄−1
du rdu = 𝐄−𝖳

im rdu.
(B.6)

Substituting (B.6) into (B.5) yields

𝐲𝑘 − 𝐲𝑘im,c = −r𝖳du𝐄
−1
im r̆

𝑘
im,c + 𝐱̃𝖳du

(

r𝑘im,c − r̆
𝑘
im,c

)

. (B.7)

Taking the norm on either sides and using the triangle and Cauchy–Schwarz inequalities, we obtain the error bound as
‖

‖

‖

𝐲𝑘 − 𝐲𝑘im,c
‖

‖

‖

≤ ‖ − r𝖳du𝐄
−1
im r̆

𝑘
im,c‖ + ‖𝐱̃𝖳du

(

r𝑘im,c − r̆
𝑘
im,c

)

‖, (B.8)

≤ ‖𝐄−1
im ‖‖rdu‖‖r̆

𝑘
im,c‖ + ‖𝐱̃du‖‖

(

r𝑘im,c − r̆
𝑘
im,c

)

‖. □ (B.9)

eferences

[1] D. Hartmann, M. Herz, U. Wever, Model order reduction a key technology for digital twins, in: W. Keiper, A. Milde, S. Volkwein (Eds.), Reduced-Order
Modeling (ROM) for Simulation and Optimization: Powerful Algorithms as Key Enablers for Scientific Computing, Springer-Verlag, Cham, 2018, pp.
167–179, http://dx.doi.org/10.1007/978-3-319-75319-5_8.

[2] M.G. Kapteyn, D.J. Knezevic, D.B.P. Huynh, M. Tran, K.E. Willcox, Data-driven physics-based digital twins via a library of component-based reduced-order
models, Internat. J. Numer. Methods Engrg. 123 (13) (2022) 2986–3003, http://dx.doi.org/10.1002/nme.6423.

[3] P. Benner, S. Grivet-Talocia, A. Quarteroni, G. Rozza, W. Schilders, L.M. Silveira (Eds.), Model Order Reduction. Volume 1: System- and Data-Driven
Methods and Algorithms, De Gruyter, 2021, http://dx.doi.org/10.1515/9783110499001.

[4] P. Benner, S. Grivet-Talocia, A. Quarteroni, G. Rozza, W. Schilders, L.M. Silveira (Eds.), Model Order Reduction. Volume 2: Snapshot-Based Methods and
Algorithms, De Gruyter, 2021, http://dx.doi.org/10.1515/9783110671490.

[5] P. Benner, S. Grivet-Talocia, A. Quarteroni, G. Rozza, W. Schilders, L.M. Silveira (Eds.), Model Order Reduction. Volume 3: Applications, De Gruyter,
2021, http://dx.doi.org/10.1515/9783110499001.

[6] G. Rozza, D.B.P. Huynh, A.T. Patera, Reduced basis approximation and a posteriori error estimation for affinely parametrized elliptic coercive partial
differential equations: application to transport and continuum mechanics, Arch. Comput. Methods Eng. 15 (3) (2008) 229–275, http://dx.doi.org/10.1007/
s11831-008-9019-9.

[7] A. Quarteroni, A. Manzoni, F. Negri, Reduced Basis Methods for Partial Differential Equations, in: La Matematica per il 3+2, vol. 92, Springer International
Publishing, 2016, http://dx.doi.org/10.1007/978-3-319-15431-2.

[8] J.S. Hesthaven, G. Rozza, B. Stamm, Certified Reduced Basis Methods for Parametrized Partial Differential Equations, in: SpringerBriefs in Mathematics,
Springer International Publishing, 2016, http://dx.doi.org/10.1007/978-3-319-22470-1.

[9] L. Machiels, Y. Maday, A.T. Patera, Output bounds for reduced-order approximations of elliptic partial differential equations, Comput. Methods Appl.
Mech. Engrg. 190 (26–27) (2001) 3413–3426, http://dx.doi.org/10.1016/S0045-7825(00)00275-9.

[10] D.V. Rovas, Reduced-Basis Output Bound Methods for Parametrized Partial Differential Equations (Ph.D. thesis), Massachussetts Institute of Technology
(MIT), Cambridge, USA, 2003, URL https://dspace.mit.edu/handle/1721.1/16956.

[11] M.A. Grepl, A.T. Patera, A posteriori error bounds for reduced-basis approximations of parametrized parabolic partial differential equations, ESAIM: Math.
Model. Numer. Anal. 39 (1) (2005) 157–181, http://dx.doi.org/10.1051/m2an:2005006.

[12] K. Veroy, C. Prud’Homme, D.V. Rovas, A.T. Patera, A posteriori error bounds for reduced-basis approximation of parametrized noncoercive and nonlinear
elliptic partial differential equations, in: 16th AIAA Computational Fluid Dynamics Conference, Orlando, United States, 2003, URL https://hal.archives-
ouvertes.fr/hal-01219051.

[13] C. Canuto, T. Tonn, K. Urban, A posteriori error analysis of the reduced basis method for nonaffine parametrized nonlinear PDEs, SIAM J. Numer. Anal.
47 (3) (2009) 2001–2022, http://dx.doi.org/10.1137/080724812.

[14] M.A. Grepl, Certified reduced basis methods for nonaffine linear time-varying and nonlinear parabolic partial differential equations, Math. Models Methods
Appl. Sci. 22 (3) (2012) 1150015, 40, http://dx.doi.org/10.1142/S0218202511500151.

[15] B. Haasdonk, M. Ohlberger, Efficient reduced models and a posteriori error estimation for parametrized dynamical systems by offline/online decomposition,
Math. Comput. Model. Dyn. Syst. 17 (2) (2011) 145–161, http://dx.doi.org/10.1080/13873954.2010.514703.

[16] M. Drohmann, B. Haasdonk, M. Ohlberger, Reduced basis approximation for nonlinear parametrized evolution equations based on empirical operator
interpolation, SIAM J. Sci. Comput. 34 (2) (2012) A937–A969, http://dx.doi.org/10.1137/10081157X.

[17] D. Wirtz, D.C. Sorensen, B. Haasdonk, A posteriori error estimation for DEIM reduced nonlinear dynamical systems, SIAM J. Sci. Comput. 36 (2) (2014)
A311–A338, http://dx.doi.org/10.1137/120899042.

[18] Y. Zhang, L. Feng, S. Li, P. Benner, An efficient output error estimation for model order reduction of parametrized evolution equations, SIAM J. Sci.
Comput. 37 (6) (2015) B910–B936, http://dx.doi.org/10.1137/140998603.

[19] S. Chellappa, L. Feng, P. Benner, Adaptive basis construction and improved error estimation for parametric nonlinear dynamical systems, Internat. J.
Numer. Methods Engrg. 121 (23) (2020) 5320–5349, http://dx.doi.org/10.1002/nme.6462.

[20] D.J. Gardner, D.R. Reynolds, C.S. Woodward, C.J. Balos, Enabling new flexibility in the SUNDIALS suite of nonlinear and differential/algebraic equation
solvers, ACM Trans. Math. Softw. (2022) http://dx.doi.org/10.1145/3539801.

[21] A.C. Hindmarsh, P.N. Brown, K.E. Grant, S.L. Lee, R. Serban, D.E. Shumaker, C.S. Woodward, SUNDIALS: Suite of nonlinear and differential/algebraic
equation solvers, ACM Trans. Math. Softw. 31 (3) (2005) 363–396, http://dx.doi.org/10.1145/1089014.1089020.

[22] A.C. Hindmarsh, ODEPACK, a systematized collection of ODE solvers, in: R.S. Stepleman (Ed.), Scientific Computing : Applications of Mathematics and
Computing to the Physical Sciences, Elsevier, 1983.

[23] D.R. Reynolds, D.J. Gardner, C.S. Woodward, R. Chinomona, ARKODE: A flexible IVP solver infrastructure for one-step methods, ACM Trans. Math.
Software 49 (2) (2023) http://dx.doi.org/10.1145/3594632.
27

http://dx.doi.org/10.1007/978-3-319-75319-5_8
http://dx.doi.org/10.1002/nme.6423
http://dx.doi.org/10.1515/9783110499001
http://dx.doi.org/10.1515/9783110671490
http://dx.doi.org/10.1515/9783110499001
http://dx.doi.org/10.1007/s11831-008-9019-9
http://dx.doi.org/10.1007/s11831-008-9019-9
http://dx.doi.org/10.1007/s11831-008-9019-9
http://dx.doi.org/10.1007/978-3-319-15431-2
http://dx.doi.org/10.1007/978-3-319-22470-1
http://dx.doi.org/10.1016/S0045-7825(00)00275-9
https://dspace.mit.edu/handle/1721.1/16956
http://dx.doi.org/10.1051/m2an:2005006
https://hal.archives-ouvertes.fr/hal-01219051
https://hal.archives-ouvertes.fr/hal-01219051
https://hal.archives-ouvertes.fr/hal-01219051
http://dx.doi.org/10.1137/080724812
http://dx.doi.org/10.1142/S0218202511500151
http://dx.doi.org/10.1080/13873954.2010.514703
http://dx.doi.org/10.1137/10081157X
http://dx.doi.org/10.1137/120899042
http://dx.doi.org/10.1137/140998603
http://dx.doi.org/10.1002/nme.6462
http://dx.doi.org/10.1145/3539801
http://dx.doi.org/10.1145/1089014.1089020
http://refhub.elsevier.com/S0045-7825(23)00835-6/sb22
http://refhub.elsevier.com/S0045-7825(23)00835-6/sb22
http://refhub.elsevier.com/S0045-7825(23)00835-6/sb22
http://dx.doi.org/10.1145/3594632


Computer Methods in Applied Mechanics and Engineering 420 (2024) 116712S. Chellappa et al.
[24] S. Abhyankar, J. Brown, E.M. Constantinescu, D. Ghosh, B.F. Smith, H. Zhang, PETSc/TS: A modern scalable ODE/DAE solver library, 2018, http:
//dx.doi.org/10.48550/arXiv.1806.01437, e-prints arXiv:1806.01437.

[25] S. Balay, S. Abhyankar, M.F. Adams, S. Benson, J. Brown, P. Brune, K. Buschelman, E.M. Constantinescu, L. Dalcin, A. Dener, V. Eijkhout, J. Faibussowitsch,
W.D. Gropp, V. Hapla, T. Isaac, P. Jolivet, D. Karpeev, D. Kaushik, M.G. Knepley, F. Kong, S. Kruger, D.A. May, L.C. McInnes, R.T. Mills, L. Mitchell, T.
Munson, J.E. Roman, K. Rupp, P. Sanan, J. Sarich, B.F. Smith, S. Zampini, H. Zhang, H. Zhang, J. Zhang, PETSc web page, 2023, URL https://petsc.org/.

[26] F. Casenave, A. Ern, T. Lelièvre, A nonintrusive reduced basis method applied to aeroacoustic simulations, Adv. Comput. Math. 41 (5) (2015) 961–986,
http://dx.doi.org/10.1007/s10444-014-9365-0.

[27] R. Chakir, J. Hammond, A non-intrusive reduced basis method for elastoplasticity problems in geotechnics, J. Comput. Appl. Math. 337 (2018) 1–17,
http://dx.doi.org/10.1016/j.cam.2017.12.044.

[28] R. Chakir, Y. Maday, A two-grid finite-element/reduced basis scheme for the approximation of the solution of parameter dependent PDE, in: 9e Colloque
National en Calcul des Structures, CSMA, Giens, France, 2009, URL https://hal.archives-ouvertes.fr/hal-01420726.

[29] E. Grosjean, Y. Maday, Error estimate of the Non-Intrusive Reduced Basis (NIRB) two-grid method with parabolic equations, 2022, http://dx.doi.org/10.
48550/arXiv.2211.08897, e-prints arXiv:2211.08897.

[30] X. Shen, X. Cheng, K. Liang, Deep Euler method: solving ODEs by approximating the local truncation error of the Euler method, 2020, http:
//dx.doi.org/10.48550/arXiv.2003.09573, e-prints arXiv:2003.09573.

[31] M. Poli, S. Massaroli, A. Yamashita, H. Asama, J. Park, Hypersolvers: Toward fast continuous-depth models, in: H. Larochelle, M. Ranzato, R.
Hadsell, M. Balcan, H. Lin (Eds.), Advances in Neural Information Processing Systems, Vol. 33, Curran Associates, Inc., 2020, pp. 21105–21117, URL
https://proceedings.neurips.cc/paper/2020/file/f1686b4badcf28d33ed632036c7ab0b8-Paper.pdf.

[32] Z. Huang, S. Liang, H. Zhang, H. Yang, L. Lin, Accelerating numerical solvers for large-scale simulation of dynamical system via neurvec, 2022,
http://dx.doi.org/10.48550/arXiv.2208.03680, e-prints arXiv:2208.03680.

[33] R.T.Q. Chen, Y. Rubanova, J. Bettencourt, D.K. Duvenaud, Neural ordinary differential equations, in: S. Bengio, H. Wallach, H. Larochelle, K. Grauman,
N. Cesa-Bianchi, R. Garnett (Eds.), Advances in Neural Information Processing Systems, Vol. 31, Curran Associates, Inc., 2018, URL https://proceedings.
neurips.cc/paper/2018/file/69386f6bb1dfed68692a24c8686939b9-Paper.pdf.

[34] M. Barrault, Y. Maday, N.C. Nguyen, A.T. Patera, An ‘empirical interpolation’ method: application to efficient reduced-basis discretization of partial
differential equations, C. R. Math. Acad. Sci. Paris 339 (9) (2004) 667–672, http://dx.doi.org/10.1016/j.crma.2004.08.006.

[35] S. Chaturantabut, D.C. Sorensen, Nonlinear model reduction via discrete empirical interpolation, SIAM J. Sci. Comput. 32 (5) (2010) 2737–2764,
http://dx.doi.org/10.1137/090766498.

[36] K. Carlberg, C. Bou-Mosleh, C. Farhat, Efficient non-linear model reduction via a least-squares Petrov-Galerkin projection and compressive tensor
approximations, Internat. J. Numer. Methods Engrg. 86 (2) (2011) 155–181, http://dx.doi.org/10.1002/nme.3050.

[37] A. Abdulle, O. Budáč, A Petrov–Galerkin reduced basis approximation of the Stokes equation in parameterized geometries, C.R. Math. 353 (7) (2015)
641–645, http://dx.doi.org/10.1016/j.crma.2015.03.019.

[38] W. Dahmen, C. Plesken, G. Welper, Double greedy algorithms: Reduced basis methods for transport dominated problems, ESAIM: Math. Model. Numer.
Anal. 48 (3) (2014) 623–663, http://dx.doi.org/10.1051/m2an/2013103.

[39] M. Yano, A space-time Petrov–Galerkin certified reduced basis method: Application to the Boussinesq equations, SIAM J. Sci. Comput. 36 (1) (2014)
A232–A266, http://dx.doi.org/10.1137/120903300.

[40] J. Barnett, C. Farhat, Quadratic approximation manifold for mitigating the Kolmogorov barrier in nonlinear projection-based model order reduction, J.
Comput. Phys. 464 (2022) http://dx.doi.org/10.1016/j.jcp.2022.111348, Paper No. 111348, 20.

[41] A. Ferrero, T. Taddei, L. Zhang, Registration-based model reduction of parameterized two-dimensional conservation laws, J. Comput. Phys. 457 (2022)
http://dx.doi.org/10.1016/j.jcp.2022.111068, Paper No. 111068, 22.

[42] Y. Zhang, L. Feng, S. Li, P. Benner, Accelerating PDE constrained optimization by the reduced basis method: application to batch chromatography, Internat.
J. Numer. Methods Engrg. 104 (11) (2015) 983–1007, http://dx.doi.org/10.1002/nme.4950.

[43] D. Degen, K. Veroy, F. Wellmann, Certified reduced basis method in geosciences: addressing the challenge of high-dimensional problems, Comput. Geosci.
24 (1) (2020) 241–259, http://dx.doi.org/10.1007/s10596-019-09916-6.

[44] M. Dihlmann, B. Haasdonk, A reduced basis Kalman filter for parametrized partial differential equations, ESAIM Control Optim. Calc. Var. 22 (3) (2016)
625–669, http://dx.doi.org/10.1051/cocv/2015019.

[45] M. Kärcher, S. Boyaval, M.A. Grepl, K. Veroy, Reduced basis approximation and a posteriori error bounds for 4D-Var data assimilation, Optim. Eng. 19
(3) (2018) 663–695, http://dx.doi.org/10.1007/s11081-018-9389-2.

[46] P. Chen, A. Quarteroni, G. Rozza, Reduced basis methods for uncertainty quantification, SIAM/ASA J. Uncertain. Quantif. 5 (1) (2017) 813–869,
http://dx.doi.org/10.1137/151004550.

[47] B. Haasdonk, M. Ohlberger, Reduced basis method for finite volume approximations of parametrized linear evolution equations, ESAIM: Math. Model.
Numer. Anal. 42 (2) (2008) 277–302, http://dx.doi.org/10.1051/m2an:2008001.

[48] U.M. Ascher, S.J. Ruuth, B.T.R. Wetton, Implicit-explicit methods for time-dependent partial differential equations, SIAM J. Numer. Anal. 32 (3) (1995)
797–823, http://dx.doi.org/10.1137/0732037.

[49] M.A. Grepl, Reduced-Basis Approximation a Posteriori Error Estimation for Parabolic Partial Differential Equations (Ph.D. thesis), Massachussetts Institute
of Technology (MIT), Cambridge, USA, 2005, URL http://dspace.mit.edu/handle/1721.1/7582.

[50] L.F. Shampine, M.W. Reichelt, The MATLAB ODE suite, SIAM J. Sci. Comput. 18 (1) (1997) 1–22, http://dx.doi.org/10.1137/S1064827594276424,
Dedicated to C. William Gear on the occasion of his 60th birthday.

[51] J.C. Butcher, Numerical Methods for Ordinary Differential Equations, John Wiley & Sons, Ltd., Chichester, 2008, p. xx+463, http://dx.doi.org/10.1002/
9780470753767.

[52] A. Buffa, Y. Maday, A.T. Patera, C. Prud’homme, G. Turinici, A priori convergence of the greedy algorithm for the parametrized reduced basis method,
ESAIM Math. Model. Numer. Anal. 46 (3) (2012) 595–603, http://dx.doi.org/10.1051/m2an/2011056.

[53] A. Pinkus, 𝑁-Widths in Approximation Theory, in: Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)],
vol. 7, Springer-Verlag, Berlin, 1985, p. x+291, http://dx.doi.org/10.1007/978-3-642-69894-1.

[54] A. Cohen, R. DeVore, Kolmogorov widths under holomorphic mappings, IMA J. Numer. Anal. 36 (1) (2015) 1–12, http://dx.doi.org/10.1093/imanum/
dru066.

[55] Q. Wang, J.S. Hesthaven, D. Ray, Non-intrusive reduced order modeling of unsteady flows using artificial neural networks with application to a combustion
problem, J. Comput. Phys. 384 (2019) 289–307, http://dx.doi.org/10.1016/j.jcp.2019.01.031.

[56] M.D. Buhmann, Radial Basis Functions: Theory and Implementations, in: Cambridge Monographs on Applied and Computational Mathematics, vol. 12,
Cambridge University Press, Cambridge, 2003.

[57] H. Wendland, Scattered Data Approximation, in: Cambridge Monographs on Applied and Computational Mathematics, vol. 17, Cambridge University Press,
Cambridge, 2005.

[58] C.M. Bishop, Pattern Recognition and Machine Learning, in: Information Science and Statistics, Springer, New York, 2006, p. xx+738, http://dx.doi.org/
10.1007/978-0-387-45528-0.

[59] T. Hines, Python package containing tools for radial basis function (RBF) applications, 2023, https://github.com/treverhines/RBF.
28

http://dx.doi.org/10.48550/arXiv.1806.01437
http://dx.doi.org/10.48550/arXiv.1806.01437
http://dx.doi.org/10.48550/arXiv.1806.01437
http://arxiv.org/abs/1806.01437
https://petsc.org/
http://dx.doi.org/10.1007/s10444-014-9365-0
http://dx.doi.org/10.1016/j.cam.2017.12.044
https://hal.archives-ouvertes.fr/hal-01420726
http://dx.doi.org/10.48550/arXiv.2211.08897
http://dx.doi.org/10.48550/arXiv.2211.08897
http://dx.doi.org/10.48550/arXiv.2211.08897
http://arxiv.org/abs/2211.08897
http://dx.doi.org/10.48550/arXiv.2003.09573
http://dx.doi.org/10.48550/arXiv.2003.09573
http://dx.doi.org/10.48550/arXiv.2003.09573
http://arxiv.org/abs/2003.09573
https://proceedings.neurips.cc/paper/2020/file/f1686b4badcf28d33ed632036c7ab0b8-Paper.pdf
http://dx.doi.org/10.48550/arXiv.2208.03680
http://arxiv.org/abs/2208.03680
https://proceedings.neurips.cc/paper/2018/file/69386f6bb1dfed68692a24c8686939b9-Paper.pdf
https://proceedings.neurips.cc/paper/2018/file/69386f6bb1dfed68692a24c8686939b9-Paper.pdf
https://proceedings.neurips.cc/paper/2018/file/69386f6bb1dfed68692a24c8686939b9-Paper.pdf
http://dx.doi.org/10.1016/j.crma.2004.08.006
http://dx.doi.org/10.1137/090766498
http://dx.doi.org/10.1002/nme.3050
http://dx.doi.org/10.1016/j.crma.2015.03.019
http://dx.doi.org/10.1051/m2an/2013103
http://dx.doi.org/10.1137/120903300
http://dx.doi.org/10.1016/j.jcp.2022.111348
http://dx.doi.org/10.1016/j.jcp.2022.111068
http://dx.doi.org/10.1002/nme.4950
http://dx.doi.org/10.1007/s10596-019-09916-6
http://dx.doi.org/10.1051/cocv/2015019
http://dx.doi.org/10.1007/s11081-018-9389-2
http://dx.doi.org/10.1137/151004550
http://dx.doi.org/10.1051/m2an:2008001
http://dx.doi.org/10.1137/0732037
http://dspace.mit.edu/handle/1721.1/7582
http://dx.doi.org/10.1137/S1064827594276424
http://dx.doi.org/10.1002/9780470753767
http://dx.doi.org/10.1002/9780470753767
http://dx.doi.org/10.1002/9780470753767
http://dx.doi.org/10.1051/m2an/2011056
http://dx.doi.org/10.1007/978-3-642-69894-1
http://dx.doi.org/10.1093/imanum/dru066
http://dx.doi.org/10.1093/imanum/dru066
http://dx.doi.org/10.1093/imanum/dru066
http://dx.doi.org/10.1016/j.jcp.2019.01.031
http://refhub.elsevier.com/S0045-7825(23)00835-6/sb56
http://refhub.elsevier.com/S0045-7825(23)00835-6/sb56
http://refhub.elsevier.com/S0045-7825(23)00835-6/sb56
http://refhub.elsevier.com/S0045-7825(23)00835-6/sb57
http://refhub.elsevier.com/S0045-7825(23)00835-6/sb57
http://refhub.elsevier.com/S0045-7825(23)00835-6/sb57
http://dx.doi.org/10.1007/978-0-387-45528-0
http://dx.doi.org/10.1007/978-0-387-45528-0
http://dx.doi.org/10.1007/978-0-387-45528-0
https://github.com/treverhines/RBF


Computer Methods in Applied Mechanics and Engineering 420 (2024) 116712S. Chellappa et al.
[60] S. Chellappa, A Posteriori Error Estimation and Adaptivity for Model Order Reduction of Large-Scale Systems (Ph.D. thesis), Otto-von-Guericke-Universität,
Magdeburg, Germany, 2023, http://dx.doi.org/10.25673/101396.

[61] J.W. Lee, A. Seidel-Morgenstern, Solving hyperbolic conservation laws with active counteraction against numerical errors: Isothermal fixed-bed adsorption,
Chem. Eng. Sci. 207 (2019) 1309–1330, http://dx.doi.org/10.1016/j.ces.2019.07.053.

[62] C. Greif, K. Urban, Decay of the Kolmogorov 𝑁-width for wave problems, Appl. Math. Lett. 96 (2019) 216–222, http://dx.doi.org/10.1016/j.aml.2019.
05.013.
29

http://dx.doi.org/10.25673/101396
http://dx.doi.org/10.1016/j.ces.2019.07.053
http://dx.doi.org/10.1016/j.aml.2019.05.013
http://dx.doi.org/10.1016/j.aml.2019.05.013
http://dx.doi.org/10.1016/j.aml.2019.05.013

	Accurate error estimation for model reduction of nonlinear dynamical systems via data-enhanced error closure
	Introduction
	Motivation
	Main contributions
	Prior work

	Mathematical background
	Model order reduction
	Reduced basis method
	A posteriori error estimation for the RBM
	RBM with ODE solver libraries
	Example: ROM for the linear heat equation

	Improving output error estimation via a data-enhanced closure approach
	Defect-corrected FOM and ROM
	An error estimator using the C-ROM
	Dual system
	Modified output term
	Data-enhanced error estimation
	Error estimation in presence of hyperreduction


	Computational aspects
	Low-rank structure of the defect
	Strategies to approximate the defect
	SVD-based spatial reduction
	Interpolation using radial basis functions
	Approximation using artificial neural networks

	POD-Greedy with black-box ODE solvers
	Computational cost


	Numerical results
	Code availability
	Burgers' equation
	FitzHugh–Nagumo equations
	Batch chromatography

	Conclusions
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Acknowledgements
	Appendix A
	Appendix B
	References


