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When an immiscible oil drop is immersed in a stably stratified ethanol–water mixture,
the Marangoni flow on the surface of the drop can experience an oscillatory instability,
so that the drop undergoes a transition from levitating to bouncing. The onset of the
instability and its mechanisms have been studied previously (Li et al., Phys. Rev. Lett.,
vol. 126, 2021, 124502; Li et al., J. Fluid Mech., vol. 932, 2022, A11), yet the bouncing
motion of the drop itself, which is a completely different problem, has not yet been
investigated. Here we study how the bouncing characteristics (jumping height, rising and
sinking time) depend on the control parameters (drop radius, stratification strength, drop
viscosity). We first record experimentally the bouncing trajectories of drops of different
viscosities in different stratifications. Then a simplified dynamical analysis is performed
to get the scaling relations of the jumping height and the rising and sinking times. The
rising and sinking time scales are found to depend on the drag coefficient CS

D of the
drop in the stratified liquid, which is determined empirically for the current parameter
space (Zhang et al., J. Fluid Mech., vol. 875, 2019, 622–656). For low-viscosity (5 cSt)
oil drops, the results on the drag coefficient match those from the literature (Yick et al.,
J. Fluid Mech., vol. 632, 2009, pp. 49–68; Candelier et al., J. Fluid Mech., vol. 749, 2014,
pp. 184–200). For high-viscosity (100 cSt) oil drops, the parameter space had not been
explored and the drag coefficients are not readily available. Numerical simulations are
therefore performed to provide external verification for the drag coefficients, which well
match with the experimental results.
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1. Introduction

When a drop is placed in a stably stratified liquid with a concentration gradient, a
Marangoni flow is generated on the surface of the drop. The interplay between this
Marangoni flow and gravity will make the drop levitate or bounce continuously (Li
et al. 2019, 2021). The transition from levitating to bouncing is caused by an oscillatory
Marangoni instability (Li et al. 2021), which has two different mechanisms depending on
the drop viscosity (Li, Meijer & Lohse 2022). However, once the drop starts to bounce,
the motion of the drop acts back on the velocity field, and the flow field around the
drop becomes completely different, namely unstationary rather than stationary. Thus to
calculate the motion of the drop itself becomes a completely new problem, as compared
to calculating the onset of this instability. Though the bouncing cycle has been described
briefly and qualitatively before (Li et al. 2019), many questions regarding the properties of
the bouncing trajectory remain unanswered.

The problem is actually that of a drop moving inside a density stratification with the
presence of Marangoni flow. This problem is very complicated since the Marangoni
advection is coupled with the drop motion and diffusion.

Before diving further into this topic, it is beneficial to first review briefly the relatively
simpler and more basic problem of a solid particle moving through a stratified medium,
which is common in natural environments and of great interest in various scientific
fields. One example is marine snow, which plays a central role in the marine carbon
cycle, and understanding its delayed vertical motion due to stratification is essential for
bio-geochemical processes (Prairie et al. 2013, 2015). Another example is the motion of
aerosols in the stratified atmosphere, which is of significant importance to the Earth’s
climate system, since they scatter and absorb a considerable amount of radiation (Jacobson
1999; Huneeus, Chevallier & Boucher 2012). A third example is the formation and sinking
of ice crystals in the stably stratified layering of the saturated salt water in the Dead Sea
in winter (Burns & Meiburg 2012, 2015; Sutherland, Barrett & Gingras 2015), which
is further complicated by the growth of the crystals during the sinking process. The
complicated physics involved when a spherical particle moves through a (sharply) stratified
medium drew the attention of fluid dynamicists, and the problem has since then been
studied analytically (Zvirin & Chadwick 1975; Candelier, Mehaddi & Vauquelin 2014;
Mehaddi, Candelier & Mehlig 2018), numerically (Torres et al. 2000; Doostmohammadi,
Dabiri & Ardekani 2014; Lee, Fouxon & Lee 2019; Zhang, Mercier & Magnaudet 2019),
experimentally (Srdić-Mitrović, Mohamed & Fernando 1999; Abaid et al. 2004; Hanazaki,
Kashimoto & Okamura 2009; Camassa et al. 2022) or by a combination of the above (Yick
et al. 2009; Camassa et al. 2010).

Coming back to the problem of a drop moving inside stratified liquids with the presence
of Marangoni flow: apart from the motion of the particle, now a Marangoni flow is coupled
as well. There has been some research on this topic. For example, Blanchette & Shapiro
(2012) studied the motion of a denser drop inside a sharply stratified liquid, where the
length scale of the stratification is smaller than the drop size. It was found that the settling
drop could bounce up due to Marangoni flow. Mandel et al. (2020) studied the rising of
lighter drops in a two-layer density stratification. Here, the length scale of the stratification
is much larger than the drop size, but the potential Marangoni force is analysed only as a
side effect, because in that case it is weak (at most comparable to the drop’s buoyancy)
and only assists the rising of the lighter drop, which will rise anyway due to buoyancy.
Other research either ignored the density gradient of the surrounding medium (Young,
Goldstein & Block 1959; Leven & Newman 1976; Chen & Stebe 1996) or did not consider
the Marangoni effect (Bayareh et al. 2013; Shaik & Ardekani 2020). It is also worth
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Bouncing dynamics of oil drops in stratified media

mentioning that the effects of surfactants on drop motion have also been studied (Levich
1962; Leven & Newman 1976; Chen & Stebe 1996; Martin & Blanchette 2017). For a more
extensive summary regarding the motion in stratified liquids, the reader is referred to the
reviews by Magnaudet & Mercier (2020) and More & Ardekani (2022). For a review on
further physicochemical hydrodynamical phenomena of drops, we refer to Lohse & Zhang
(2020).

For the problem considered here, the Marangoni force plays a major role in determining
the speed and direction of the drop, and the length scale of the stratification is much larger
than the size of the drop. In order to understand how in this case the drop’s trajectory
changes with the physical properties, such as the drop viscosity, the drop size and the
concentration gradient, experiments are performed on low (5 cSt) and high (100 cSt)
viscosity silicone oil drops in various stratified ethanol–water mixtures. A simplified
dynamical model is developed to help to understand the bouncing trajectories. The drag
coefficient of the drop CS

D in the stratified fluid is found to be the key parameter to
determine the rising and sinking time scales. We take its dependence on the parameters
from literature. For the low-viscosity drops, the drag coefficient has been suggested by
Yick et al. (2009) and Candelier et al. (2014). For the high-viscosity oil drops, there
is no existing research, so numerical simulations are performed to provide independent
verifications for the drag coefficient. The drag coefficients thus obtained are found to agree
well with the experimental results.

The paper is organized as follows. In § 2, the experimental procedure and the numerical
method are described. In § 3, the general characteristics of the bouncing trajectory
are described. After that, in § 4, a simplified dynamical analysis is provided to derive
predictions for the minimum and maximum bouncing positions, as well as the dominant
time scale for the rising and sinking motion of the drop, in which the drag coefficient CS

D
is found to be the key parameter. In § 5, we compare the theoretical predictions regarding
the minimum and maximum bouncing positions to our experimental observations, finding
good agreement. In § 6, we summarize briefly the main results discussed in the literature
regarding the drag coefficient on spherical objects in stratified media. The results of the
rising and sinking time scales of low and high viscosities are discussed in §§ 7 and 8,
respectively. The paper ends with conclusions and an outlook in § 9.

2. Experimental procedure and numerical methods

2.1. Experimental procedure
A sketch of the experimental set-up is shown in figure 1(a). A cubic glass container
(Hellma, 704.001-OG, Germany) with inner horizontal extension L = 30 mm contains the
linearly stratified ethanol–water mixture. The mixture is prepared using a ‘double-syringe’
method (Li et al. 2022), which is a slightly modified version of the double-bucket
method (Oster 1965). To avoid bubble formation during mixing, both ethanol (Boom
B.V., 100 %(v/v), technical grade, the Netherlands) and Milli-Q water are degassed in
a desiccator at ∼2000 Pa for 20 min before making the mixture. Two layers of uniform
ethanol concentration are located at the bottom (weight fraction wb) and at the top
(weight fraction wt), between which the ethanol weight fraction we increases linearly;
see figure 1(b). Immediately after the mixture is prepared, we( y) is measured by laser
deflection (Lin et al. 2013; Li et al. 2019). The two uniform layers wb and wt are used
to increase the accuracy of this method. The density of the mixture ρ( y) is calculated
from we( y) using an empirical equation (Khattab et al. 2012), and the height at which
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Figure 1. (a) Sketch of the experimental set-up. Using a modified version of the double-bucket method, a
stable and linearly stratified ethanol–water mixture is generated in the middle of the container. Two liquid
layers of uniform concentration are injected at the top (wt) and at the bottom (wb). The cubic glass container
has an inner horizontal extension L = 30 mm. Silicone oil drops of varying radii R and viscosities ν ′ are
released from the top. (b) Ethanol weight fraction of the mixture we as a function of height. (c) Density of
the mixture ρ as a function of height. The density of the mixture matches that of the drop ρ ′ at y = 0. This is
called the density-matched position, where ρ(w′

e) = ρ′. The height of the drop h is measured with respect to
this density-matched position.

Liquid Viscosity ν′ (cSt) Density ρ′ (kg m−3)

Ethanol weight fraction w′
e

at the density-matched
position

5 cSt silicone oil 5 913 49.3 wt%
100 cSt silicone oil 100 966 21.0 wt%

Table 1. Properties of the silicone oils used in the experiments.

the density of the mixture ρ(w′
e) matches the density of the oil ρ′ is set as y = 0; see

figure 1(c). The values of wb and wt, as well as the height of the stratified layer, are varied
to change the stratification strength dwe/dy.

Drops are released from the top layer using a 1 μl syringe (Hamilton, KH7001) through
an attached needle, whose outer diameter is 0.515 mm. They are released one at a time to
ensure that only a single drop is present in the container. The properties of the different
silicone oils (Sigma-Aldrich, Germany) are reported in table 1. Due to their robustness to
surface contaminations (Young et al. 1959), which alternatively would alter the interfacial
surface properties and hence the motion of the drop, silicone oil droplets form the
ideal candidate for our study. The interfacial tensions σ between both silicone oils and
several ethanol–water mixtures are measured on a goniometer (OCA 15Pro, DataPhysics,
Germany) by using the pendant-drop method; see Appendix A. The drop is illuminated
by a collimated LED (Thorlabs, MWWHL4), and its motion is captured by a side-view
camera (Nikon D850) connected to a long-working-distance lens (Thorlabs, MVL12X12Z
plus 0.25X lens attachment). All images are recorded at 30 frames per second. After the
drop has completed its third bouncing cycle, it is carefully taken out of the mixture using a
second thin needle. In all the cases, the third bouncing cycle is used to study its dynamics.
After this, another slightly smaller drop is released, whose motion is now captured. We
repeat this process several times but for no longer than 40 min, as by that time diffusion
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will affect the linear stratification of the mixture. The stability of the background density
gradient as a function of time has been discussed by Li et al. (2019), where it remained
stable for more than an hour. If still more data are desired, a new mixture is generated and
the entire process is repeated.

As the drop moves though the liquid, its motion will cause perturbations in the flow field
that extend over a typical length scale. Since this length scale depends on the stratification
strength of the mixture (Phillips 1970; Wunsch 1970), it can happen that for weak density
gradients it is comparable to or even larger than the actual size of the container. The finite
size of the container might therefore affect the motion of the drop as the stratifications
become weaker (Li et al. 2021). To exclude such container-size effects, experiments with
weaker density stratification, i.e. dwe/dy < 60 m−1, are performed in a larger container
(Hellma, 704.003-OG, Germany) with an inner horizontal extension L = 50 mm.

2.2. Numerical simulation
Numerical simulations of the whole bouncing cycle are also performed to provide
independent verification for the drag coefficients. The simulations utilize the numerical
framework that has been developed to simulate the evaporation of multi-component drops
(Diddens 2017). Below, we briefly discuss its details.

In order for the model to be compared to the experimental data, it has to account for
all the relevant physical mechanisms during the bouncing process. In particular, these are
the flow driven by Marangoni and buoyancy effects, and the advection and diffusion of
the ethanol–water mixture outside the drop. Mass transfer across the drop’s interface is
not taken into account because the solubility of ethanol in silicone oil is negligible, or
vice versa. The interface of the drop needs to be well-resolved to capture the Marangoni
flow. A sharp-interface finite element method has been developed, where the mesh is
always conforming with the moving interface. In addition, the mesh is treated as a
pseudo-elastic body (Cairncross et al. 2000), so that the bulk nodes follow the motion
of the interfacial nodes. With moving mesh nodes, the numerical approach belongs to the
class of arbitrary Eulerian–Lagrangian methods, which furthermore require us to consider
the nodal movement Ṙ at the interface. The problem is solved in axisymmetric cylindrical
coordinates.

The governing incompressible Navier–Stokes equations are

ρ0(∂tu + u · ∇u) = −∇pφ − ρφ(we)g j + ∇ · [μφ(we)(∇u + (∇u)T)], (2.1)

∇ · u = 0, (2.2)

where φ = d, b denotes the phase (i.e. the drop and the bulk liquid), respectively. Using the
Boussinesq approximation, the composition-dependent mass density ρb(we) is considered
only for the gravitational term in (2.1). For the inertial term, a constant density ρ0 is
assumed. The mass fraction wb

w for water is determined using the advection–diffusion
equation

∂twb
w + u · ∇wb

w = ∇ · (Db(we)∇wb
w), (2.3)

with Db(we) the composition-dependent diffusivity in the bulk. The ethanol content
is determined from the remainder of the water content. To account for the high Pe
numbers due to the low diffusivity, the equations are stabilized by a streamline upwind
Petrov–Galerkin method (Brooks & Hughes 1982). At the interface, the boundary
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conditions are

(u − Ṙ) · n = 0, (2.4)

τ d · n − τ b · n = σ(we) κn + ∇Sσ(we). (2.5)

Here, n is the unit interface normal pointing from the drop to the bulk liquid, τφ are
the stress tensors in both phases, σ(we) is the composition dependent surface tension,
κ is the curvature, and ∇S is the surface gradient. All composition-dependent physical
properties of the bulk liquid are implemented by a best fit of their corresponding values on
the ethanol weight fraction; see Appendix A. The above equations are implemented in the
finite element framework OOMP-LIB (Heil & Hazel 2006) on triangular mixed first-order
Lagrange elements for the composition, and conventional Taylor–Hood elements for the
velocity and pressure. To prevent the mesh from deforming significantly, it is reconstructed
whenever the mesh quality falls below a specific threshold. Identical simulations are
repeated with different mesh and domain sizes to ensure that the obtained results are not
affected significantly.

Results of the numerical simulations and their comparison to the experimental
observations are discussed in more detail in § 8. The sections that follow first focus on
the experiments.

3. General characteristics of the bouncing cycle

When an immiscible drop is placed in a stably stratified ethanol–water mixture, the ethanol
concentration gradient leads to a surface tension gradient on the surface of the drop, which
points downwards, and a downward Marangoni flow is generated as a consequence. When
the Marangoni flow is stable, the drop levitates at a fixed height; otherwise, for larger
drops, the Marangoni flow is oscillatory due to an oscillatory instability (Li et al. 2022),
and the drop bounces continuously. Whereas our previous studies looked into the onset of
the bouncing instability, what mechanism triggers it and how it depends on the viscosity
of the oil (Li et al. 2019, 2021, 2022), here the dynamics of the bouncing cycle itself
is studied. Figure 2(a) shows the trajectories of two 5 cSt drops of different radii in a
stable stratification with dwe/dy = 55 m−1. As can be seen, the drops bounce periodically.
Before the background gradient is changed due to diffusion and the bouncing of the drop,
each period of the bouncing trajectory is identical. Figure 2(d) zooms in on one period of
the trajectory of the R = 188 μm drop. The drop first sinks towards its density-matched
position (before 110 s) due to gravity. During this period, an entrained liquid layer with
almost uniform concentration is dragged down with the drop, and the Marangoni flow
on the drop is very weak (Li et al. 2019). Also, because of the enhanced drag caused by
the stable stratification, the sinking velocity decreases exponentially (Zvirin & Chadwick
1975; Li et al. 2019). Later, this entrained layer breaks due to diffusion, and the Marangoni
flow velocity increases exponentially (Li et al. 2019), leading to the sudden upward jump
of the drop (after ∼110 s). Because of this exponential behaviour, the Marangoni flow
velocity reaches its maximum value in a short time period. Later, as the drop moves up,
the buoyancy force on it increases, so it decelerates, until a time when the drop’s upward
velocity is almost zero. At this time, the drop is not moving and the strong Marangoni
flow mixes the liquid around the drop, thus greatly weakening the Marangoni flow itself,
which will finally make the drop sink. During sinking, the drop first accelerates for a short
period, then decelerates towards its density-matched position again. The drop repeats this
bouncing cycle thereafter. For most of the time, the drop is decelerating, so that the rising
trajectory curves upwards and the sinking trajectory curves downwards. This is part of
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ḣ 
(m

m
 s

–
1
)

ḣ 
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Figure 2. (a,b) Experimentally obtained trajectories of 5 cSt silicone oil drops of different radii in two different
linearly stratified ethanol–water mixtures, with dwe/dy ≈ 55 m−1 and dwe/dy ≈ 105 m−1, respectively. At
t = 0 s, the tracking procedure is initialized. The density-matched position, i.e. the position at which ρ = ρ ′,
is at h = 0 mm. (c) Trajectories of two 100 cSt silicone oil drops of different radii inside a linearly stratified
ethanol–water mixture, with dwe/dy ≈ 60 m−1. (d–f ) Velocity ḣ and height h as functions of time for a single
bouncing cycle for the smaller drop inside the corresponding linearly stratified mixture. The definitions of some
characteristics of the bouncing cycle are indicated in (d), namely the two extrema, htop and hbot, as well as the
definition of the rising and sinking time intervals, τrise and τsink. (g–i) Experimentally measured profiles of the
mass density ρ( y) and the interfacial surface tension σ( y) using the laser deflection technique.

the reason why the trajectory is asymmetric. The other reason is that the average rising
velocity of the drop is larger than the sinking velocity. For drops of higher viscosity, the
rising velocity is smaller, thus their trajectories are less asymmetric; see figures 2(a–c).

The bouncing cycles are different for drops of different radii, as can be seen from
figure 2(a). They also depend on the degree of stratification and on the drop viscosities;
see figures 2(b,e) and 2(c,f ), respectively. We denote the highest position of the trajectory
as htop, and the lowest position as hbot, the rising time as τrise, and the sinking time as
τsink; see figure 2(d). The bouncing cycles can be characterized by these four quantities. In
addition, figures 2(g–i) show the experimentally determined profiles of the mass density
ρ( y) and the interfacial surface tension σ( y). Approaching the uniform top layer gives
rise to the pronounced nonlinearity in the profile of the mass density; see figure 2(h). Only
small drops in very strong stratified liquids will reach this region; see the more detailed
analysis in § 5. As mentioned above, the trajectories of the drops are highly asymmetric,
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where a fast rise is followed by a slow descent. Although both oil viscosities show the
same feature, this asymmetry is more dramatic for 5 cSt than for 100 cSt oil drops. In
the following sections, we analyse theoretically how the four characteristic quantities of
the bouncing cycle (htop, hbot, τrise, τsink) vary with the drop radius R, the strength of
the stratification dwe/dy, and the drop viscosity μ′. The resulting scaling theory is then
compared with the experimental results of the 5 cSt drops in §§ 5 and 7, and with the
experimental and numerical results of the 100 cSt drops in § 8.

4. Dynamical analysis of the drop motion

The acceleration of the drop is caused by the forces acting on the drop: gravity and
buoyancy FB, drag force FD, and a propulsion FM caused by the Marangoni flow. Thus

m′ḧ = FB + FD + FM, (4.1)

where m′ is the mass of the drop, and ḧ = d2h/dt2 is the acceleration of the drop. The
added mass force and the Basset history force are not taken into account because they are
found to be negligible in the parameter space studied here (Yick et al. 2009); see also § 7.
They would at most modify prefactors. The Reynolds number is

Re = |ḣ| R
ν

, (4.2)

where |ḣ| is the absolute value of the drop velocity, ν = μ/ρ is the kinematic viscosity of
the mixture at the height of the drop, with μ and ρ respectively the viscosity and density
of the mixture at the height of the drop.

In our case, the Reynolds number is small (see figure 5), thus the drag force can
be written as FD = −πCS

D Re μRḣ/2, where CS
D is the drag coefficient of the drop in

the stratified liquid, which will be discussed extensively in the following sections. The
buoyancy force is FB = −V ′g(ρ′ − ρ), where V ′ is the volume of the drop. The propulsion
is actually the viscous force caused by the Marangoni flow, FM = kμVMR, where μ is the
viscosity of the mixture at the position of the drop, VM is the Marangoni flow velocity,
and k is a prefactor to be determined.

Because the Marangoni flow is oscillatory for the bouncing drops (Li et al. 2021, 2022),
VM is not constant. When VM is strong, the drop can reach its highest position htop, at
which height the density of the ethanol–water mixture is ρtop; when VM is weak, the drop
will reach its lowest position hbot, at which height the density of the ethanol–water mixture
is ρbot. By balancing the Marangoni force with the buoyancy force – i.e. when FM = −FB
– we can obtain the density differences when the drop is at its highest and lowest positions:

ρ′ − ρtop/bot = kμVMR
V ′g

. (4.3)

From Young et al. (1959), we know that for the case of infinitely large diffusivity, zero
density gradient and constant viscosity μ, the Marangoni flow velocity at the equator of
the drop is

VM|equator = −1
2

dσ

dwe

dwe

dy
R

μ + μ′ , (4.4)

where σ is the interfacial tension between the drop and the mixture, and μ′ is the viscosity
of the drop. But in our case, the diffusivity is not zero. Marangoni advection tends to
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Bouncing dynamics of oil drops in stratified media

smooth the concentration gradient close to the drop (Li et al. 2021), thus weakening the
Marangoni flow itself. The Marangoni flow at the highest position VM,top and the lowest
position VM,bot can then be written as

VM,top|equator = −p · 1
2

dσ

dwe

dwe

dy
R

μ + μ′ , VM,bot|equator = −q · 1
2

dσ

dwe

dwe

dy
R

μ + μ′ ,

(4.5a,b)

where 0 < q < p < 1 are two prefactors to be determined. Since p and q represent the
influence of Marangoni advection on the concentration field, we do not expect that they
can be calculated beforehand. But we do expect them to vary with the viscosity of the drop.
A higher drop viscosity normally leads to a weaker advection, thus the concentration field
is less distorted by advection, so that the prefactor is larger. This trend has been confirmed
by the levitating drops (Li et al. 2022). According to Young et al. (1959), substituting
(4.5a,b) and the volume of the drop into (4.3), we obtain

ρ′ − ρtop = −α · 3
2

μ

μ + μ′
dσ

dy
1

gR
, ρ′ − ρbot = −β · 3

2
μ

μ + μ′
dσ

dy
1

gR
, (4.6a,b)

where α = kp and β = kq. Thus 0 < β < α < k are two prefactors to be determined.
Before we compare (4.6a,b) with the experimental values in § 5, we first analyse the
governing time scale of the bouncing intervals τrise and τsink.

Because the Reynolds number in our experiments is very small (see figure 5), the
relevant time scale is effectively the time scale of the inertia-free system. That is, the
acceleration occurs much faster than the force balance and is thus negligible. The time
scale is then given by FB + FD + FM = 0. For a linear gradient, ρ = ρ′ + h dρ/dy, we
thus have FB = V ′gh dρ/dy. This yields

ḣ = b
a

h + c
a
, (4.7)

where

a = π

2
μRCS

D Re, b = V ′g
dρ

dy
, c = kμVM. (4.8a–c)

Not only the drag coefficient CS
D but also the Reynolds number Re depends on the

position of the drop. However, according to Zvirin & Chadwick (1975), (4.7) can have an
accuracy to first order when evaluating the drag coefficient CS

D and the Reynolds number
Re at the instant the drop reaches its peak velocity ḣp. Equation (4.7) implies an exponential
behaviour (Zvirin & Chadwick 1975; Li et al. 2019) with a governing time scale for the
drop to reach its equilibrium position through either rising or sinking, which is

τrise/sink ∼ τ1 ≈ −a
b

∼
νpCS

D,p Rep

N2
pR2 , (4.9)

where

Np =
√

− g
ρ

dρ

dy
(4.10)

is the Brunt–Väisälä frequency. Note that (4.9) is consistent with the results of Zvirin
& Chadwick (1975). To evaluate the quantities in (4.9), ethanol weight fractions at the
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Figure 3. (a) Maximum and (b) minimum bouncing height of 5 cSt silicone oil drops of different radii in
linearly stratified ethanol–water mixtures with indicated stratification strengths in m−1. The deviations from the
linear trend at larger weight fraction gradients can be explained by the occurrence of ceiling effects, i.e. the drop
approaching the upper region of constant density. The measured prefactors are α5cSt = 0.33 and β5cSt = 0.08.

positions where the drops reach their peak velocities (during rising and sinking) are
used to obtain the corresponding density ρp, viscosity μp, and interfacial tension σp (see
Appendix A for the concentration dependence of these properties). It has become apparent
that the drag coefficient CS

D is of great importance for the overall dynamics. Therefore, we
provide more details regarding the drag on spherical objects in stratified liquids in § 6,
followed by a discussion on the experimental and numerical results in §§ 7 and 8.

5. The density differences at the maximum and minimum bouncing positions

In this section, we compare the theoretically predicted density differences at the maximum
and minimum bouncing positions with the experimentally measured ones. The quantities
on the right-hand sides of (4.6a,b) for 5 cSt drops are calculated (excluding the prefactors
α and β) and plotted against the experimentally measured density differences ρ′ − ρtop
and ρ′ − ρbot in figures 3(a,b), respectively. The position-dependent material properties μ

and σ are evaluated at either the highest or lowest position, correspondingly. The results
for 100 cSt are shown in figure 4.

In both cases, the density differences follow a linear trend initially, as predicted by
(4.6a,b), but are accompanied by a considerable amount of scatter. The scatter originates
from the nonlinear profiles of both the viscosity μ and surface tension σ as functions of
the ethanol weight fraction we; see Appendix A.

From this procedure, the prefactors α and β can be determined and are found to be
α5cSt = 0.33, β5cSt = 0.08, α100cSt = 0.39 and β100cSt = 0.20, respectively. As drops move
higher, the density differences – or equivalently, the bouncing heights – saturate, because
the drops are reaching the top uniform layer (see figure 1), which forms the ‘ceiling’ of
the bouncing trajectory. Not surprisingly, only small drops in large concentration gradients
can reach the ceiling.

Comparing the obtained prefactors, it appears that they depend on the viscosity of the
oil. To rationalize this observation, we recall the origin of the prefactor 3/2 (Young et al.
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Figure 4. (a) Maximum and (b) minimum bouncing position of 100 cSt silicone oil drops of different radii in
linearly stratified ethanol–water mixtures with indicated stratification strengths in m−1. The deviations from
the linear trend at larger weight fraction gradients can be explained by the occurrence of ceiling effects i.e.
the drop approaching the upper region of the constant density. The measured prefactors are α100cSt = 0.39 and
β100cSt = 0.20.

1959) on the right-hand sides of (4.6a,b), where an infinitely large diffusivity was assumed.
Given the fact that the Marangoni advection is important in our case, this assumption no
longer holds, causing a reduction of this prefactor, hence 0 < β < α < 1. And since the
Marangoni flow is inversely proportional to the viscosity of the oil μ′ (see (4.4)), α and
β will increase with μ′. Finding the exact functional form of α and β on μ′ is beyond the
scope of the present paper.

6. Drag on spherical objects in stratified media

As discussed in § 4, the governing time scale of the motion of the drop (4.9) depends
on the drag coefficient of the drops in the stratified liquid CS

D. As mentioned in the
Introduction, there are only a few studies on the topic of a drop moving inside stratified
liquids with the presence of Marangoni flow. In particular, there are no available data on
the drag coefficient of a drop moving inside such stratifications. However, we think the
drag coefficient of a solid sphere in such stratifications could be used here, since we are
interested only in the scaling of the rising and sinking times, and the drag coefficient of
drops and solid spheres normally only differ by a prefactor (Hadamard 1911; Rybczynski
1911). This is confirmed later, in § 7. In this section, we will therefore provide a brief
overview on the current understanding of drag on solid spheres in stratified liquids.

Analytically, the settling of a spherical body in a stratified liquid has been studied in the
past by several authors. The relevant parameters for this problem are the Froude number,
defined as

Fr = |ḣ|
NR

, (6.1)

the Péclet number, defined as

Pe = |ḣ| R
D

, (6.2)
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and the Richardson number, defined as

Ri = Re

Fr2 = N2R3

ν |ḣ| , (6.3)

where D is the solute diffusivity. For example, Zvirin & Chadwick (1975) derived that in
the limit of Re � 1 and Fr � 1, and under the assumption that advection dominates, i.e.
Pe → ∞, the drag coefficient scales as

CS
D ∼ Ri1/3/Re. (6.4)

In the opposite limit, when diffusion dominates advection, i.e. when Pe � 1, Candelier
et al. (2014) derived that

CS
D ∼ (Pe Ri)1/4/Re. (6.5)

It has been shown recently by Mehaddi et al. (2018) that both of these scaling relations
can be obtained from the very same derivation, where the expressions above are simply
limiting cases.

The drag coefficient of a particle settling in a density stratification has also been
investigated experimentally and numerically (Srdić-Mitrović et al. 1999; Torres et al. 2000;
Yick et al. 2009; Zhang et al. 2019), and different forms of the drag coefficient have been
suggested in different parameter ranges. Some of the studied parameter ranges in terms
of Froude number versus Reynolds number are summarized in figure 5. The figure also
shows the parameter range of the present study: see the two red boxes for 5 and 100 cSt
drops, respectively. It can be seen that the parameter range of the 5 cSt drops overlaps
almost entirely with that of Yick et al. (2009), where the drag coefficient was determined
empirically as

CS
D ∼ Ri0.51±0.11

Re
. (6.6)

An argument for the discrepancy between this result and the analytical solutions was
provided by Zhang et al. (2019). In their work, they defined three different stratification
regimes depending on the relative magnitudes of three length scales: the viscosity length
scale lν , the diffusivity length scale lD, and the stratification length scale ls. If ls � lD � lν
(Regime 1), then the drag coefficient scales as predicted by Candelier et al. (2014).
Otherwise, if lD � ls � lν (Regime 2), then Zvirin & Chadwick (1975) gave the correct
prediction. If lD � lν � ls (Regime 3), then CS

D ∼ (Fr Re)−1 (Zhang et al. 2019). They
argue that since the experimental and numerical results by Yick et al. (2009) mix two of
these asymptotic regimes, the obtained scaling relation is an ad hoc approximation.

Since we do not know the appropriate scaling relation of the drag coefficient a priori,
especially for the 100 cSt oil drops that fall in a parameter regime not yet studied in the
available literature (see figure 5), we assume a general expression as

CS
D ∼ Riq/Re, (6.7)

where q is an exponent to be determined. The scaling relation of the dominant time scale,
(4.9), can then be rewritten as

τrise/sink ∼ R
|ḣ|p,rise/sink

Ri(q−1)
p . (6.8)

In the next section, (6.8) will be evaluated using the experimentally determined time
intervals and drop velocities for 5 and 100 cSt oil drops, respectively. The obtained values
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Zhang et al. 
(2019)
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et al. 
(2020)

Torres et al.
(2000)

Doostmohammadi et al. (2014)

Yick et al. 
(2009)Fr

Re
Figure 5. Black boxes are parameter spaces studied previously on the settling of spherical objects in linearly
stratified liquids (Torres et al. 2000; Yick et al. 2009; Doostmohammadi et al. 2014; Zhang et al. 2019; Mandel
et al. 2020). Both numerical and experimental results are included. The red boxes are parameter spaces of the
present study in terms of Rep and Frp, for 5 and 100 cSt silicone oil drops, respectively. The limit of Re � 1
and Fr � 1 was studied analytically by Zvirin & Chadwick (1975) for Pe → ∞, and by Candelier et al. (2014)
for the opposite limit, Pe � 1.

of q are then compared to the above-mentioned scaling relations (§ 7) and to our numerical
simulations (§ 8).

In the following sections, we discuss first the experimental results for the low-viscosity
drops, then the experimental and numerical results for the high-viscosity drops.

7. Results for the low-viscosity drops: 5 cSt

The result after evaluating (6.8) with the experimentally determined time intervals and
drop velocities for 5 cSt oil drops during rising and sinking are shown in figure 6(a,b),
respectively. The solid lines show the best fits through the experimental data. It follows
that since q − 1 = −0.53 for rising and q − 1 = −0.75 for sinking, a scaling relation of
the drag coefficient during rising and sinking is obtained as

CS
D,rise,5cSt ∼ Ri0.47

p

Rep
, CS

D,sink,5cSt ∼ Ri0.25
p

Rep
. (7.1a,b)

The scaling relations are clearly different. For the rising drop, the determined scaling
relation is in good agreement with the empirical result of Yick et al. (2009), which we
write as CS

D ∼ Ri0.51±0.11/Re; see (6.6). Although the latter was established for a solid
particle, here it is shown that the same relation also applies to drops. The Marangoni
velocity VM does not influence the governing time scale for rising or sinking (see (4.7))
and will influence the drag coefficient CS

D only by changing the parameter range (Fr, Re).
Thus as long as the parameter range fits, the results of the drag coefficient CS

D on particles
can be applied directly to drops, which is in line with the observation that the studies
overlap almost entirely in the parameter space shown in figure 5.

For the sinking drop, these scaling relations do not match. The obtained result seems
to be in agreement with the scaling relation as predicted by Candelier et al. (2014),
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Figure 6. Non-dimensionalized (a) rising and (b) sinking times of 5 cSt silicone oil drops of different radii in
linearly stratified ethanol–water mixtures with indicated stratification strengths as functions of Rip on a double
logarithmic scale. The solid line shows the best fit through the experimental data.

CS
D ∼ (Pe Ri)1/4/Re, which is the asymptotic limit of the viscous-diffusive regime where

diffusion dominates over advection. This is because, as discussed in § 3, during sinking,
the drop is surrounded by an entrained shell where diffusion is dominant (Li et al. 2019).
The fact that CS

D,rise > CS
D,sink is the second reason mentioned earlier why the bouncing

trajectory is asymmetric.

8. Results for the high-viscosity drops: 100 cSt

Before evaluating (6.8) with the experimentally measured values, it is important to realize
that the parameter space spanned by the high-viscosity oil is not covered by any available
literature; see figure 5. Although analytical results do exist for limiting cases, as discussed
in § 6, they – as well as other similar studies (Lee et al. 2019; Dandekar, Shaik & Ardekani
2020; Shaik & Ardekani 2020) – relied on the crucial assumption Ri � 1, i.e. weakly
stratified liquids, due to the applied mathematical method of asymptotic matching. Since
in our case for the 100 cSt drops 1.7 ≤ Rip ≤ 27.6, the liquid is strongly stratified, and
it is questionable whether the above scaling relations apply to our present study. A new
theoretical derivation of the drag coefficient of drops settling in a strongly stratified liquid
including Marangoni effects is beyond the scope of the present work. Thus numerical
simulations covering the same parameter range are performed to provide independent
verification. Details of the numerical simulations have been provided in § 2.2. Here, we
discuss the numerical results and compare them with the experiments.

8.1. Numerical results
The numerical simulations are initialized by placing a 100 cSt drop (250 μm ≤ R ≤
400 μm) above its density-matched position, i.e. h = 0, into a linearly stratified
ethanol–water mixture (20 m−1 ≤ dwe/dy ≤ 140 m−1), with corresponding uniform top
and bottom layers. As the drop descends towards this equilibrium position, at a certain
moment in time, Marangoni effects start to become dominant and the bouncing is initiated,
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Figure 7. Snapshot of the numerical simulation showing the mass density of the mixture (left) and the
velocity magnitude (right) around an (a) rising and (b) sinking 100 cSt oil drop as it reaches its peak velocity.
(c–e) Temporal evolution of the drop’s height h(t) with R = 250 μm for three different stratifications.

the same as in the experiments. Since the simulations demand a rather small time step
due to the high Péclet number, and thus considerable CPU time, only the first complete
bouncing cycle is considered when analysing the numerical results. This is in contrast with
the experiments, where the third bouncing cycle is used.

Typical snapshots of the numerical simulation as the drop reaches its peak velocity
during rising and sinking are shown in figures 7(a,b), respectively. We show the mass
density of the mixture and how mixing occurs in close proximity to the drop, as well as
the velocity magnitude inside and outside the drop. In the latter, clear vortical structures
arise that are induced by the baroclinic torque following the deflection of the isopycnals.
As the drop rises, a strong Marangoni flow is visible at the interface, causing strong
internal circulations in the drop; see figure 7(a). The isopycnals are compressed below
the drop as lighter fluid is advected downwards by the Marangoni flow. During sinking,
the high-velocity region has shifted towards the apex of the drop, and the strong internal
circulation in the drop has stopped; see figure 7(b). This leads to the conclusion that
during sinking, Marangoni effects are indeed rendered ineffective; see Appendix B. The
deflection of the isopycnals has become more significant as the drop is dragging liquid
down.

In addition, the trajectories of three bouncing drops with the same size but in different
stratifications are plotted in figures 7(c–e). Qualitatively, the numerically simulated
bouncing cycles show great resemblance to the experimental observations; see figure 2.
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Figure 8. Experimentally measured (black) and numerically determined (red) (a) trajectory h(t) and
(b) velocity ḣ(t) of a 100 cSt oil drop with R = 280 μm and dwe/dy = 35 m−1. (See supplementary movie 1,
available at https://doi.org/10.1017/jfm.2023.415, for more details.) (c) The background concentration profiles
and corresponding gradients.

A quick rise is followed by a slower descent, where the asymmetry in the bouncing cycle
is less dramatic, as for high-viscosity oils. Also, the bouncing period seems to shorten with
stronger stratifications, and the bouncing amplitude becomes smaller, the same as in the
experiments. The second rise in figure 7(c) for a small drop in a relatively weakly stratified
ethanol–water mixture has also been observed experimentally – see figure 2(d) – although
less pronounced.

8.2. Experimental and numerical comparison
Now we are in a position that allows us to compare the experimental and numerical results
one-on-one. For this specific case, a 100 cSt oil drop with R = 280 μm is placed inside
a stratified ethanol–water mixture where dwe/dy = 35 m−1. Figures 8(a,b) compare the
drop’s trajectories and velocity profiles, respectively. Qualitatively, again, the agreement
is good. Quantitatively, there are some differences. For example, the overall bouncing
period is shorter in the simulations (T = 52.3 s) compared to the experiments (T =
88.8 s), and the peak velocities reached in the numerics (ḣp,rise,num = 0.24 mm s−1 and
ḣp,sink,num = −0.13 mm s−1) exceed those of the experiment (ḣp,rise,exp = 0.08 mm s−1

and ḣp,sink,exp = −0.06 mm s−1). In addition, the top and bottom positions of the bouncing
curve from the simulation (htop,num = 2.3 mm and hbot,num = 1.3 mm) are shifted slightly
above the experimentally determined ones (htop,exp = 1.9 mm and hbot,exp = 1.1 mm).
Both discrepancies might be explained by the fact that the Marangoni force, caused by
Marangoni advection at the interface, is overestimated in the simulations. This would give
rise to a quicker ascent, causing the drop to reach greater heights and thus reaching larger
velocities during its descent, as the drop is further away from its density-matched position.
Comparing the background concentration profiles and the corresponding concentration
gradients in figure 8(c) shows that although the concentration profiles look very similar,
the local concentration gradient varies in the experiment, whereas it remains constant in
the numerical simulation. Consequently, the concentration gradient dwe/dy that the drop
‘feels’ at hbot is smaller in the experiments than in the numerics. Since VM ∼ dwe/dy (see
(4.4)), Marangoni advection will be slightly larger in the numerical simulation.

Finally, (6.8) is evaluated with the experimentally and numerically determined time
intervals and drop velocities for 100 cSt oil drops during rising and sinking. As in
§ 7, the aim is to determine the exponent q to obtain the scaling relation of the drag
coefficient CS

D ∼ Riq/Re. In figures 9(a,b), the results are shown for both rising and
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Figure 9. Non-dimensionalized (a) rising and (b) sinking times of 100 cSt silicone oil drops of different radii
in linearly stratified ethanol–water mixtures with indicated stratification strengths as functions of Rip on a
double logarithmic scale. The black (red) line shows the best fit through the experimental (numerical) data.

sinking, respectively. The empty symbols represent the experimental results, and filled
circles represent the numerical results.

Based on the best fit through the data, indicated by the solid lines, for the experiments
it holds that

CS,exp
D,rise,100cSt ∼ Ri0.67

p

Rep
, CS,exp

D,sink,100cSt ∼ Ri0.68
p

Rep
, (8.1a,b)

and for the simulations that

CS,num
D,rise,100cSt ∼ Ri0.65

p

Rep
, CS,num

D,sink,100cSt ∼ Ri0.54
p

Rep
. (8.2a,b)

Considering these results, our study suggests that the drag coefficient of the high-viscosity
drops in strongly stratified liquids scales as

CS
D,rise,100cSt ∼ Ri0.66±0.01

Re
, CS

D,sink,100cSt ∼ Ri0.61±0.07

Re
. (8.3a,b)

It is found that the scaling relations differ from the analytical predictions by Zvirin &
Chadwick (1975) and Candelier et al. (2014), as well as from the empirical relation
obtained by Yick et al. (2009).

An argument for this discrepancy has already been addressed in § 6. There, three
different stratification regimes are introduced, depending on the relative magnitudes of
the viscosity length scale lν , the diffusivity length scale lκ , and the stratification length
scale ls (Zhang et al. 2019). As mentioned, the experimental and numerical results
by Yick et al. (2009) mix two of these asymptotic regimes, and the obtained scaling
relation is therefore an ad hoc approximation. Provided that Re � 1 and Pe 	 1, where
Pe = Re Pr with Pr = ν/D, the domain of existence for each regime, respectively, is
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(Zhang et al. 2019)

Fr � Re1/3 Pr−1/6, Pr−1/2 � Fr � Re−1, Fr 	 Re−1. (8.4a–c)

Evaluating these conditions, it becomes evident that in the present study of the 100 cSt
drops, the conditions of Regimes 1 and 2 are met simultaneously, and that a mix of these
regimes occurs, hence the deviation from the theoretical predictions by Zvirin & Chadwick
(1975).

9. Conclusion and outlook

To summarize, the bouncing dynamics of drops of different viscosities in stably stratified
liquids with the presence of Marangoni flow is studied theoretically, experimentally and
numerically. The main characteristics of the bouncing cycle have been discussed, and the
importance of the findings by Young et al. (1959) regarding the prediction of the maximum
and minimum bouncing positions has become evident. Based on our derivation of the
scaling relation of the governing time scale in which the drop reaches its equilibrium
position through either rising or sinking, it has become apparent that the scaling relation
of the drag coefficient in the stratified liquid CS

D is of great importance. To this end,
the experimentally determined quantities of the rising and sinking times, as well as the
peak velocities reached during rising and sinking, are used to obtain the appropriate
scaling relation of CS

D for drops in strongly stratified liquids. For low-viscosity oil drops, it
was found that the drag coefficient follows the scaling relations obtained from literature.
The significant difference between the relations obtained for rising and sinking explains
the high asymmetry of the bouncing cycle. For the high-viscosity oil drops, the scaling
relation of the drag coefficient is not available in the literature. Thus, to seek independent
verification, numerical simulations are performed, mimicking the experiments for 1.7 ≤
Rip ≤ 27.6. This also allowed for a one-to-one comparison between experiments and
numerics, where it has been found that qualitatively, the agreement between the bouncing
cycles is good. For both results, experimental and numerical, scaling relations are obtained
for the high-viscosity oil drops during rising and sinking in strongly stratified liquids.

It is also found that when in the same parameter range, the scaling of the drag coefficient
of a solid sphere could be applied to that of a drop, with or without Marangoni flow.
This is supported by the results for 5 cSt drops. Thus the extensive knowledge on drag
coefficients of solid spheres in stratified media can be of help to that of drops, which has
rarely been explored. We also found that in the parameter space of the 100 cSt drops, the
drag coefficient under stratified conditions has a scaling CS

D ∼ Ri0.66±0.01/Re.
As our work has shown, new insight has still to be discovered on the rising and sinking

drops and bubbles in strongly stratified liquids. In particular, the dominant mechanism
behind the drag enhancement, discovered only recently by Zhang et al. (2019), shows the
complexity and richness of such hydrodynamical systems. Whereas the drag coefficient of
spherical objects in homogeneous media has been investigated extensively for more than
half a century (Clift, Grace & Weber 2005), it might be worthwhile to extend this research
towards (strongly) stratified liquids.

Supplementary movies. A supplementary movie is available at https://doi.org/10.1017/jfm.2023.415.

Funding. We acknowledge support from the Netherlands Center for Multiscale Catalytic Energy Conversion
(MCEC), a NWO Gravitation programme funded by the Ministry of Education, Culture and Science of the
government of the Netherlands, an ERC-Advanced Grant under project no. 740479, the Balzan Foundation.
Y.L. acknowledges financial support from the Fundamental Research Funds for the Central Universities and the
Natural Science Foundation of China under grant no. 12272376. C.D. kindly acknowledges financial support by

966 A14-18

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

41
5 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.415
https://doi.org/10.1017/jfm.2023.415


Bouncing dynamics of oil drops in stratified media

the Industrial Partnership Programme (IPP) of the Netherlands Organization for Scientific Research (NWO).
This research programme is co-financed by Canon Production Printing Holding B.V., University of Twente and
Eindhoven University of Technology.

Declaration of interests. The authors report no conflict of interest.

Author ORCIDs.
Jochem G. Meijer https://orcid.org/0000-0001-8794-735X;
Yanshen Li https://orcid.org/0000-0002-1405-8604;
Christian Diddens https://orcid.org/0000-0003-2395-9911;
Detlef Lohse https://orcid.org/0000-0003-4138-2255.

Appendix A. Physical properties of the ethanol–water mixture

Physical properties of the ethanol–water mixtures for different ethanol weight fractions are
taken from Khattab et al. (2012) and Par et al. (2013); see figures 10(a–c). The interfacial
surface tension σ(we) between the silicone oil and the ethanol–water mixture is measured
using the pendant-drop method on a goniometer and shown in figure 10(d). The markers
indicate the average value of six measurements, where the standard deviation is of the
order of the size of the markers.
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Figure 10. Physical properties of the ethanol–water mixture for different ethanol weight fraction gradients:
(a) density ρ, (b) dynamic viscosity μ (Khattab et al. 2012), and (c) diffusivity D (Par et al. 2013). (d) Interfacial
surface tension σ(we) between the two different silicone oils and the ethanol–water mixture.
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Rise Sink

Figure 11. Contours of the velocity magnitude in close proximity to the drop during rising (left) and sinking
(right).

Appendix B. Contours of the velocity magnitude

Figure 11 shows the contours of the velocity magnitude inside and outside the drop as the
drop reaches its peak velocity during rising (left) and sinking (right). The Marangoni flow
is strong as the drop rises, causing the contours to be closely packed at the interface of
the drop. Additionally, a strong internal circulation inside the drop is visible. On the other
hand, during sinking, the Marangoni flow is very weak, and the contour lines are not as
closely packed. It can be seen that the internal circulation has vanished.
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