
Methods

Syllable and phonemes:
Frequency distributions (Zipf law)

• Not all syllables have = frequency of use

• Not all phonemes are = likely to combine

Syllables

Experimental conditions: 
Pseudo-randomizations

• Condition Aà position-random baseline
• Condition Bà position-controlled baseline
• Condition Cà structured stream (learning!)
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Phonological control: 
OCP and feature repetitiveness

• Benchmarkà high feature repetitiveness

• Algorithmà low feature repetitiveness

Acoustic control:
Spectral analyses

• A vs Cà Different word peak (1.1 Hz)
• B vs Cà Same word peak (1.1 Hz)
• B (but not A) is a good baseline for C

Phonotactic rules: 
Obligatory Countour Principle (OCP)
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• Phoneme sequences in a language can be
described as vectors of binary features

• Individual phonological features combine to
form phono-articulatory classes

• Obligatory contour principle (OCP):
• Phonological classes are less likely to be
repeated consecutively within words

Phonological information: 
Binary feature matrix

Words

Phonological control: 
RI of phonological features

• Benchmarkà high RI on some features
• Algorithmà low RI (< 0.1) on all features

• Benchmarkà high TP variance (bad!)
• Algorithmà zero TP variance (good!)

Statistical (TP) control: 
Pseudo-Random-Walk (PRW)

• P-values of z-frequencies distribute normally
• Syllables and phoneme combinations at the
tails (too frequent or too rare) are removed

Frequency control: 
Unigram syllable + bi/trigram phoneme

Phonological regularities: 
Rhythmicity index (RI)

• Store syllable transitions in a memory matrix
• Ensure TP-stationarity throughout sequence
• Low TP varianceà high precision (good!)
• High TP varianceà boundaries != salience
• TP-non-stationaryà spurious asymmetries

Statistical (TP) precision/stationarity:
Pseudo-Random-Walk (PRW)

Lexicons

• RI = An index that quantifies the rhythmicity
of phonological features at a rate of interest
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Introduction
Statistical Learning

Artificial Language Learning: More than Transitional Probabilities?
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Discussion

• Step 1: Select syllables and phoneme combinations with uniform frequency of use
• Step 2: Generate artificial words that obey phonotactic constraints (OCP: place and manner)
• Step 3: Generate lexicons that minimize the RI of phonological features at the word rate
• Step 4: Generate streams with high TP precision and eliminate spectral differences

Summary
• More versatility: Beyond German; Beyond trisyllabic words; Lexicons of variable size
• Use RI in NFT paradigms to test cortical tracking of individual phonological features
• Use PRW for high precision and stationarity of TPs in all types of SL experiments
• Find latent stimulus features (e.g., autoencoder network) that are salient for the brain

Future directions
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• Confounds: Differences in phoneme and syllable probabilities in
the language, phonotactics, phonological patterns and acoustic-
spectral differences limit the interpretability of SL findings [6-8].

• Cortical tracking at the word rate can emerge from statistical or
phonological rhythms if they are both ”tagged” at the same rate

• How to isolate TPs and eliminate all confounding factors?

Speech TrackingNeural-Frequency-Tagging
• Statistical Learning (SL) = Ability to extract statistical regularities

and learn from the environment
• Transitional Probabilities (TPs) = Forward conditional probability

of syllables in a streamà used to infer and learn new words [1]
• Neural-Frequency-Tagging (NFT) à Cortical tacking of repetitive

TP patterns associates with speech chunking [2-6]

Sta$s$cal rate 1.1 Hz

Phonological rate? 1.1 Hz

Speech amplitude

tupirogolabupadotibidakuTransitional Probabilities

Syllabic rate 3.3 Hz
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