Artificial Language Learning: More than Transitional Probabilities?

Lorenzo Titone ${ }^{1} \&$ Lars Meyer ${ }^{1,2}$

MAX PLANCK INSTITUTE
${ }^{1}$ Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, DE FOR HUMAN COGNITIVE AND BRAIN SCIENCES
${ }^{2}$ Clinic for Phoniatrics and Pedaudiology, University Hospital Münster, DE

Introduction
Neural-Frequency-Tagging

Speech Tracking
Confounds: Differences in phoneme and syllable probabilities in the language, phonotactics, phonological patterns and acousticspectral differences limit the interpretability of SL findings [6-8]. Cortical tracking at the word rate can emerge from statistical or phonological rhythms if they are both "tagged" at the same rate How to isolate TPs and eliminate all confounding factors?

Statistical Learning (SL) = Ability to extract statistical regularities and learn from the environment
Transitional Probabilities (TPs) = Forward conditional probability of syllables in a stream \rightarrow used to infer and learn new words [1] Neural-Frequency-Tagging (NFT) \rightarrow Cortical tacking of repetitive TP patterns associates with speech chunking [2-6]

Discussion

Summary

[^0] Step 4: Generate streams with high TP precision and eliminate spectral differences

Future directions

More versatility: Beyond German; Beyond trisyllabic words; Lexicons of variable size Use RI in NFT paradigms to test cortical tracking of individual phonological features Use PRW for high precision and stationarity of TPs in all types of SL experiments Find latent stimulus features (e.g., autoencoder network) that are salient for the brain

[^0]: - Step 1: Select syllables and phoneme combinations with uniform frequency of use
 - Step 2: Generate artificial words that obey phonotactic constraints (OCP: place and manner)
 - Step 3: Generate lexicons that minimize the RI of phonological features at the word rate

