Artificial Language Learning: More than Transitional Probabilities?

Lorenzo Titone¹ & Lars Meyer^{1,2}

MAX PLANCK INSTITUTE FOR HUMAN COGNITIVE AND BRAIN SCIENCES

¹Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, DE ²Clinic for Phoniatrics and Pedaudiology, University Hospital Münster, DE

LANGUAGE CYCLES REAL

titone@cbs.mpg.de

Introduction

Statistical Learning

- Statistical Learning (SL) = Ability to extract statistical regularities and learn from the environment
- *Transitional Probabilities* (TPs) = Forward conditional probability ulletof syllables in a stream \rightarrow used to infer and learn new words [1]
- *Neural-Frequency-Tagging* (NFT) \rightarrow Cortical tacking of repetitive TP patterns associates with speech chunking [2-6]

Neural-Frequency-Tagging tupirogolabupadotibidaku **Transitional Probabilities** **** Speech amplitude Syllabic rate 3.3 Hz Statistical rate 1.1 Hz Phonological rate? 1.1 Hz

Speech Tracking

- **Confounds**: Differences in phoneme and syllable probabilities in the language, phonotactics, phonological patterns and acousticspectral differences limit the interpretability of SL findings [6-8].
- Cortical tracking at the word rate can emerge from statistical or phonological rhythms if they are both "tagged" at the same rate
- How to isolate TPs and eliminate all confounding factors?

4

L O

diti

U

diti

Frequency distributions (Zipf law)

Not all syllables have = frequency of use

8000

6000

4000

2000

• Phoneme sequences in a language can be described as vectors of binary features

> **Phonotactic rules: Obligatory Countour Principle (OCP)**

			MANNER			
		Sonorant (S)	Plosive (P)	Fricative (F)		
	Apical (A)	n, l, r	t, d	z,∫, s		
PLACE	Labial (L)	m	b, p	f, v		
Other (O)		h	k, g	Ç		

Individual phonological features combine to form phono-articulatory classes

Rhythmicity index (RI)

RI = An index that quantifies the rhythmicity of phonological features at a rate of interest

> Statistical (TP) precision/stationarity: **Pseudo-Random-Walk (PRW)**

	0	1	2	3	4	5	6	7	8	9	10	11
0	0	1	0	0	0	0	0	0	0	0	0	0
1	0	0	1	0	0	0	0	0	0	0	0	0
2	0	0	0	0.3	0	0	0.3	0	0	0.3	0	0
3	0	0	0	0	1	0	0	0	0	0	0	0
4	0	0	0	0	0	1	0	0	0	0	0	0
5	0.3	0	0	0	0	0	0.3	0	0	0.3	0	0
6	0	0	0	0	0	0	0	1	0	0	0	0
7	0	0	0	0	0	0	0	0	1	0	0	0
8	0.3	0	0	0.3	0	0	0	0	0	0.3	0	0
9	0	0	0	0	0	0	0	0	0	0	1	0
10	0	0	0	0	0	0	0	0	0	0	0	1
11	0.3	0	0	0.3	0	0	0.3	0	0	0	0	0

- Store syllable transitions in a memory matrix
- Ensure TP-stationarity throughout sequence

Pseudo-randomizations

TP-uniform

0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 de:fu:my:zu:hø:ka:he:va:pi:ko:jø:ri: 2nd 2nd 1st 3rd 1st 1st 2nd 3rd 3rd 2nd 1st 3rd **Position-random**

TP-uniform

Ω ka:de:pi:my:fu:zu:jø:he:va:hø:ko:ri: 0

Position-controlled

TP-structured

Position-controlled

Discussion

Summary

- Step 1: Select syllables and phoneme combinations with uniform frequency of use
- Step 2: Generate artificial words that obey phonotactic constraints (OCP: place and manner)
- Step 3: Generate lexicons that minimize the RI of phonological features at the word rate
- Step 4: Generate streams with high TP precision and eliminate spectral differences

Future directions

- More versatility: Beyond German; Beyond trisyllabic words; Lexicons of variable size
- Use RI in NFT paradigms to test cortical tracking of individual phonological features
- Use PRW for high precision and stationarity of TPs in all types of SL experiments
- Find latent stimulus features (e.g., autoencoder network) that are salient for the brain

References

[1] Saffran et al. (1996). Science. 274. [2] Buiatti et al. (2009). NeuroImage. [3] Batterink et al. (2021). SciAdv. [6] Pinto et al. (2022). NOL. [7] Kiai & Melloni (2021). bioRxiv. [8] Chen et al. (2020). Neuropsychologia.