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A HUWE1 defect causes PARP inhibitor resistance by
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Although PARP inhibitors (PARPi) now form part of the standard-of-care for the treatment of homologous recombination defective
cancers, de novo and acquired resistance limits their overall effectiveness. Previously, overexpression of the BRCA1-Δ11q splice
variant has been shown to cause PARPi resistance. How cancer cells achieve increased BRCA1-Δ11q expression has remained
unclear. Using isogenic cells with different BRCA1 mutations, we show that reduction in HUWE1 leads to increased levels of BRCA1-
Δ11q and PARPi resistance. This effect is specific to cells able to express BRCA1-Δ11q (e.g. BRCA1 exon 11 mutant cells) and is not
seen in BRCA1 mutants that cannot express BRCA1-Δ11q, nor in BRCA2 mutant cells. As well as increasing levels of BRCA1-Δ11q
protein in exon 11 mutant cells, HUWE1 silencing also restores RAD51 nuclear foci and platinum salt resistance. HUWE1 catalytic
domain mutations were also seen in a case of PARPi resistant, BRCA1 exon 11 mutant, high grade serous ovarian cancer. These
results suggest how elevated levels of BRCA1-Δ11q and PARPi resistance can be achieved, identify HUWE1 as a candidate biomarker
of PARPi resistance for assessment in future clinical trials and illustrate how some PARPi resistance mechanisms may only operate in
patients with particular BRCA1 mutations.
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INTRODUCTION
PARP inhibitors (PARPi) are now approved for the treatment of breast,
ovarian, pancreatic or prostate cancers with defects in the
homologous recombination (HR) DNA repair pathway [1]. For
example, the efficacy of PARP inhibitors in tumours with germline
BRCA1 or BRCA2 mutations has been well established, in both
metastatic and early disease settings in breast and ovarian cancer
[2–8]. However, many tumours display either pre-existing or acquired
resistance to PARPi, limiting their efficacy and pointing to a need to
further understand how clinical PARPi resistance emerges [9].
The most well established mechanism of clinical PARP inhibitor

resistance is reversion mutation, whereby a second mutation restores
the HR function of BRCA1 or BRCA2 [10–13]. This may occur in up to
40% of patients [9], although estimates vary based on clinical setting.
Other potential resistance mechanisms have been identified in the
laboratory, including PARP1 or PARG loss [14–16], defects in the
double strand break protecting 53BP1-Shieldin [17–22] or CST
complexes [23, 24] and upregulation of drug transporter pumps
[25, 26]. However, thus far there is limited clinical evidence of
mutations in these pathways in resistant tumours. This may be due to
a lack of sequencing data covering these genes in resistant biopsies,
non-mutational disruption of these pathways or differences between
patients and preclinical model systems. Nevertheless, a large fraction
of PARPi resistance remains to be explained.

One additional mechanism that has been described in preclinical
experiments is stabilisation or increased expression of splice variants
of BRCA1/2 that exclude the pathogenic mutation but retain some
function. In addition, some reversion mutations affect splice sites
adjacent to the exon encoding the pathogenic mutation, implying
that alterations of splicing to bypass the pathogenic mutation could
be occurring [10, 27–30]. For example, the RING domain mutation in
the N-terminus of BRCA1 can be bypassed by expression of a
hypomorphic “RINGless” BRCA1 protein [31–33]. MDA-MB-436 cells
selected for resistance to PARP inhibitors also display HSP90-
dependent expression of a hypomorphic protein [34]. Expression of
the BRCA1 splice variant Δ11q, which excludes most of exon 11 has
also been shown to be sufficient for PARP inhibitor resistance in
BRCA1 knockout or mutant cell lines [35, 36]. Although referred to as
exon 11 for historical reasons, this is actually exon 10 in the canonical
transcript of BRCA1 and is the largest exon, comprising 60% of the
coding sequence. This sequence is not required for cellular PARPi
resistance: cells with exon 11 mutations show further increases in
PARP inhibitor sensitivity when BRCA1 is silenced by RNA interference
[14] or when mutations are made in other, constitutively spliced,
exons of BRCA1 [35]. Large deletions in exon 11 have also been
observed in clinical BRCA1 reversion mutations [10]. How the
expression of BRCA1-Δ11q is regulated in trans, and whether this
occurs in patients, has not been established.
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RESULTS
HUWE1 is required for turnover of the BRCA1-Δ11q protein
Since full-length BRCA1 protein is a known substrate of the
ubiquitin ligase HUWE1 [37–39], we considered whether a
reduction in HUWE1 activity might also stabilise BRCA1 splice

variants such as BRCA1-Δ11q. To test this hypothesis, we used a
previously-described panel of cell lines derived from BRCA1
mutant SUM149 triple negative breast cancer tumour cells [35]
(Fig. 1A, B); SUM149 has a pathogenic exon 11 frameshift mutation
(BRCA1:c.2169delT). The SUM149 derivates were: (i) a derivative
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with an additional CRISPR-generated BRCA1 mutation in the
constitutively-spliced exon 22, termed “SUM149 Ex22”. Because of
the exon 22 truncating mutation, SUM149 Ex22 is also unable to
express the BRCA1-Δ11q protein; (ii) a SUM149 derivative with a
reversion mutation in exon 11 which restores full length BRCA1
expression (“SUM149 Ex11#2C2”); (iii) a SUM149 derivative with a
BRCA1 transgene that ectopically expresses high levels of BRCA1-
Δ11q (SUM149 Ex22+ Δ11q [35]); or (iv) a control subclone
transfected with sgRNA targeting GFP (SUM149-sgGFP) that is able
to expresses BRCA1-Δ11q and does so at relatively low levels [35].
These cell lines show a spectrum of PARPi sensitivity; the revertant
SUM149 Ex11#2C2 and Ex22+ Δ11q lines are profoundly PARPi
resistant, SUM149 Ex22 cells are profoundly PARPi sensitive,
whereas SUM149 sgGFP cells exhibit intermediate PARPi sensitiv-
ity [35].
We measured protein levels of BRCA1-Δ11q in this SUM149

cell line panel to assess whether BRCA1-Δ11q expression and/or
stability were changed when HUWE1 was silenced. Silencing of
HUWE1 in SUM149-sgGFP control cells resulted in increased
steady state levels of BRCA1-Δ11q (Fig. 1C), consistent with our
hypothesis. To assess whether this could be due to HUWE1-
mediated effects on BRCA1-Δ11q stability we carried out a
cycloheximide chase experiment in SUM149 Ex22+ Δ11q cells,
in which new protein synthesis was blocked by cycloheximide.
Silencing of HUWE1 increased BRCA1-Δ11q protein levels as per
our previous observations, and this level remained high two
hours after cycloheximide exposure (Fig. 1D). In contrast, control
transfected cells showed a lower initial level of BRCA1-Δ11q
which declined after cycloheximide treatment (Fig. 1D). These
results indicated that BRCA1-Δ11q protein stability is regulated
by HUWE1 in a similar way to full-length BRCA1 [39] and that in
the absence of HUWE1, BRCA1-Δ11q levels rise. When we
exposed SUM149- sgGFP cells (which are able to express BRCA1-
Δ11q) to PARPi, we found that HUWE1 silencing caused PARPi
resistance (Fig. 1E); the resistant phenotype in SUM149-sgGFP
cells with HUWE1 silencing was of a similar degree to that seen
in SUM149 cells with a BRCA1 reversion (SUM149 Ex11#2C2,
Fig. 1E). Conversely, HUWE1 silencing generated only a modest
PARPi resistance phenotype in SUM149 Ex22 cells, which
because of the exon 22 mutation, are unable to encode the
BRCA1-Δ11q protein (Fig. 1E). In SUM149 Ex11#2C2,
HUWE1 silencing caused a modest increase in PARPi sensitivity
at high talazoparib concentrations (Fig. 1E), we assume because
HUWE1 also modulates other HR proteins. We also found that
inhibiting HUWE1 activity with a small molecule inhibitor [40]
(Fig. 1F) or silencing HUWE1 via CRISPR interference in SUM149-
TRE-dCas9-KRAB cells, caused PARPi resistance, suggesting that
this phenotype is not due to off-target effects of HUWE1 siRNA
(Fig. 1G). Protein levels of HUWE1 itself were not affected by
PARPi exposure (Supplementary Figure 1A). Taken together,

these results suggested that it is a reduction in HUWE1 that
enables elevated levels of BRCA1-Δ11q and PARP inhibitor
resistance in cells that have the ability to encode BRCA1-Δ11q
but which lack full length BRCA1.

Silencing of HUWE1 causes PARPi resistance in cells with
BRCA1 exon 11 mutations
We confirmed that HUWE1 silencing leads to PARPi resistance
using either talazoparib or olaparib in parental SUM149 cells
(without sg-GFP, Fig. 2A, B) and in another tumour cell line with a
pathogenic exon 11 frameshift BRCA1 mutation, UWB1.289 (high
grade serous ovarian cancer, referred to as UWB1, Fig. 2C, D).
When we assessed the generality of the relationship between
HUWE1 loss of function and PARPi resistance in additional cell
lines, we noted that BRCA1/2 wild type CAL51 breast tumour cells
(Fig. 2E) or BRCA2 mutant Capan1 pancreatic tumour cells (Fig. 2F)
did not display PARPi resistance upon HUWE1 silencing; in fact,
CAL51 cells showed a slight increase in PARPi sensitivity upon
HUWE1 silencing (Fig. 2E), suggesting that the effect of HUWE1 on
PARPi sensitivity/resistance might be contextualised by the status
of BRCA1. However, we also found that RPE-1 retinal pigment
epithelial cells with an engineered mutation in BRCA1 which
causes complete loss-of-function and the inability to encode
BRCA1-Δ11q [41], also did not show a clear PARPi resistance
phenotype upon HUWE1 silencing (Fig. 2G, H). These results
supported our hypothesis that the resistance caused by HUWE1
silencing in BRCA1 mutant cells only occurs in cells that, by reason
of the type of mutation they carry, are able to encode the BRCA1-
Δ11q splice variant.
To address whether other known mechanisms of PARPi

resistance might be operating, we profiled HUWE1 knockdown
cells by mass spectrometry. We observed lower levels of HUWE1
and higher levels of known HUWE1 substrates such as MCL1 in
knockdown cells. We also noted significant upregulation of EGFR
and AURKA (Supplementary Fig. 1B). Expression of other DNA
damage response (DDR) components that have been reported to
affect PARPi resistance in BRCA1 mutant cells such as 53PB1,
MAD2L2 and PARP1, was not affected by HUWE1 knockdown
(Supplementary Fig. 1C, D). To investigate whether the effects on
PARP inhibitor resistance might be due to these changes in
AURKA or EGFR, we tested whether inhibitors of these proteins
(Alisertib and gefitinib respectively) affected talazoparib resistance
in HUWE1 knockdown cells. Although alisertib was synergistic with
talazoparib in reverted SUM149 cells, this was independent of
HUWE1 status (Supplementary Fig. 1E, H). Neither alisertib nor
gefitinib showed synergy with talazoparib in parental (BRCA1 exon
11 mutant) SUM149 cells, regardless of HUWE1 knockdown
(Supplementary Fig. 1F, G, I, J), suggesting that the HUWE1
resistance is not dependent on increased Aurora A or EGFR
activity.

Fig. 1 HUWE1 is required for BRCA1-Δ11q stability and PARPi sensitivity. A SUM149 isogenic series. BRCA1 mutations and/or reversions in
each cell line are described. B Diagram of wild type or Δ11q BRCA1 protein structures. Location of mutations in SUM149 cell line series in
context of protein domains are shown. C Cancer cell lines harboring mutations in the BRCA1 exon11 express a BRCA1-△ex11 splice variant,
Δ11q, lacking the majority of exon 11. Western blot showing expression of BRCA1 proteins in nuclear extracts, detected using a N terminal
antibody. Effect of HUWE1 gene silencing on Δ11q levels is also shown. D HUWE1 silencing stabilizes the BRCA1 Δ11q protein. BRCA1
Ex22+ Δ11q cells were transfected with HUWE1 or non-targeting siRNA as indicated. After 48 h, cells were exposed to 150 µg/ml
cycloheximide for 0–6 h as indicated. Stability was determined for the indicated proteins using Western blot. Lamin B is included as a loading
control; c-Myc is a canonical HUWE1 substrate. Whole cell lysates were used in all the samples. E HUWE1 gene silencing promotes partial PARPi
resistance in SUM149 sg-GFP cells. Indicated cells were transfected with siRNA as shown and then 48 h later, exposed to PARP inhibitors for a
subsequent five days. Cell survival was measured using CellTiter Glo. For SUM149 sg-GFP cells, siHUWE1 vs. Allstar (non-targeting) control,
ANOVA p < 0.0001. F A toolbox HUWE1 inhibitor, BI8626, reduces PARPi sensitivity in BRCA1 exon 11 mutant SUM149 cells. Cells were exposed
to the indicated drugs and confluency measured using Incucyte live cell imaging. Error bars represent standard deviation from triplicate
experiments. G Silencing of HUWE1 expression using CRISPR interference (CRISPRi) leads to PARPi resistance. SUM149 TRE-dCas9-KRAB cells
were transfected with the indicated sgRNA vectors and dCas9-KRAB expression induced by exposure to doxycycline. Cells were exposed to
talazoparib or equivalent DMSO solvent as indicated, and clonogenic survival estimated by crystal violet staining after 14 days. Western blots
showing induction of dCas9-KRAB and reduction in HUWE1 levels after 48 h exposure to doxycycline are shown to the right.
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HUWE1 silencing results in increased RAD51 nuclear foci in
BRCA1 exon 11 mutant cells
To assess whether the loss of HUWE1 and stabilisation of BRCA1-
Δ11q led to a reversal of the key DNA repair defect in BRCA1

mutant cells, we assessed the ability of cells to localise the DNA
recombinase RAD51 to nuclear foci in response to exogenous DNA
damage. SUM149 Parental cells have a reduced ability to form
DNA damage induced RAD51 foci, consistent with their

Fig. 2 HUWE1 silencing causes PARPi resistance in BRCA1 exon 11 mutant cells but not in wild type, BRCA2m or BRCA1 knockout cells.
A, B siHUWE1 causes talazoparib and olaparib resistance in BRCA1 exon11 mutant SUM149 cells. Cells were transfected with siRNAs and 48 h
later, exposed to PARP inhibitors for five days. Cell survival was measured using CellTiter-Glo. C, D siHUWE1 causes talazoparib and olaparib
resistance in BRCA1 exon11 mutant UWB1.289 cells. E HUWE1 silencing does not cause talazoparib resistance in BRCA1 wild type CAL51 cells.
F HUWE1 silencing does not cause talazoparib resistance in BRCA2 mutant Capan1 cells. G, H Silencing of HUWE1 does not cause pronounced
olaparib resistance in BRCA1 knockout RPE-1 cells (G), nor in parental RPE-1 p53/hTERT cells (H). Error bars represent standard deviation, n ≥ 3.
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hypomorphic BRCA1 mutation, reduced HR capacity and PARPi
sensitivity [42] (Fig. 3A, B). However, when we silenced HUWE1, we
noted a significant increase in the frequency of cells with DNA
damage induced RAD51 foci, suggesting that RAD51 mediated
DNA repair was more active (Fig. 3A, B). This data also suggested
that clinical assays that estimate HR capacity and subsequent
PARPi response by measuring nuclear RAD51 [43] would be likely
to detect resistance caused by loss of HUWE1 and subsequent
upregulation of BRCA1-Δ11q.

HUWE1 mutations identified in a case of BRCA1m high grade
serous ovarian cancer with acquired resistance to olaparib
In seeking to understand whether HUWE1-mediated PARPi
resistance occurs in the clinical disease as well as in cell lines,
we analysed DNA sequencing from tumor and ctDNA from a 54
year old patient with high grade serous ovarian cancer who
received the PARP inhibitor olaparib as part of the ComPAKT
Phase Ib trial (in combination with the AKT inhibitor capivasertib
[44]). The patient initially presented with a BRCA1 mutant
(BRCA1:c.3190delCTTG) high grade serous ovarian cancer and
had initial debulking surgery before receiving standard of care
platinum-based chemotherapy. Her initial anti-tumour response
lasted 16 months until disease recurred. Three years after her
initial diagnosis she was enrolled on a PARP inhibitor (talazoparib)
trial and achieved a RECIST partial response lasting 11 months,
after which her disease progressed. The patient then received a
further line of carboplatin/gemcitabine combination chemother-
apy, with disease progression noted after three cycles of
treatment, making her platinum-refractory. The patient then
entered the ComPAKT phase Ib trial of olaparib and the AKT
inhibitor capivasertib [44] and achieved RECIST stable disease with
minor tumor regression to treatment lasting five months, before
discontinuing trial for disease progression. The patient subse-
quently received an α-folate receptor inhibitor for five further
months, after which she entered a phase I trial of the ATR inhibitor
berzosertib in combination with carboplatin [45] (Fig. 4).

Several biopsies were taken during the course of treatment,
including one prior to the first PARP inhibitor trial and another
prior to entry into the ATR inhibitor study (i.e. after progression
on two PARP inhibitor-containing regimens and platinum-based
chemotherapy; Fig. 4A). Whole exome sequencing was per-
formed on DNA extracted from FFPE tissue from this series of
biopsies. In the first instance, we assessed whether reversion
mutations in BRCA1, the most clinically validated mechanism of
PARPi and platinum salt resistance in BRCA1 mutant cancers [10],
could explain the PARPi resistance in this individual. In this case,
no additional BRCA1 mutations were identified in any of the
samples analysed, and the variant allele frequency (VAF) of the
original germline BRCA1 4-bp deletion was close to 1 in all
tumour samples, consistent with loss-of-heterozygosity (LOH)
and maintenance of BRCA1 loss throughout the progression of
disease (Fig. 4B). The allele frequency of a deleterious TP53
mutation (p.Y220C) also suggested high tumour content (range
0.78-0.95 across all biopsies). Manual inspection of DNA
sequence alignments did not yield any evidence of secondary
mutations that might restore the reading frame of BRCA1, nor
did any ctDNA analysis carried out as part of the CompAKT trial
[44]. Therefore, direct restoration of BRCA1 at the genetic level
via reversion was unlikely to be the cause of PARPi resistance in
this patient.
Interestingly, we found two closely linked somatic missense

mutations in HUWE1 (c.[12758 G > C; 12770 T > C], p.[4253 G > A;
4257I > T]; Fig. 4C) that were unique to the biopsy taken after
progression on olaparib. These mutations were in the catalytic
HECT domain of HUWE1, although not in residues directly
involved in catalysis (Fig. 4D). Very few truncating mutations
have been reported in HUWE1 [46, 47] which, along with the
embryonic lethality of Huwe1 knockout mice [48], suggests that
HUWE1 is an essential gene in the whole organism context.
However, it is possible that mutations in HUWE1 such as
p.4253 G > A and p.4257I > T cause partial loss of HUWE1
function.

Fig. 3 HUWE1 silencing partially rescues HR capacity in BRCA1-Δ11q expressing cells. A Confocal microscopy images of IR-induced RAD51
(right) and γH2AX foci (middle panel) from SUM149 cells transfected with HUWE1 siRNA. Cells were transfected with indicated siRNA and
irradiated 48 h later. Nuclear foci were detected by immunofluorescence 4 h later and nuclei detected by DAPI staining (left). B Quantification
of nuclear foci from experiment described in (A). Foci were counted using CellProfiler. p values were calculated using two-sided t-test.
****p < 0.0001.
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Fig. 4 Development of PARPi-refractory disease in a patient with HUWE1 mutations. A Schematic of patient treatment journey and
biopsies analysed. B No evidence of BRCA1 reversion across all the patient biopsies. No secondary mutations were called using standard
somatic variant calling or by manual inspection in IGV (Integrated Genomics Viewer; view around pathogenic mutation shown). C Two
missense HUWE1 mutations in cis identified only in the post-PARPi tumour biopsy (G4253A;I4257T). Alignments for reads at the mutation site
in HUWE1 are shown. D Mutations affect catalytic domain but not catalytic site directly. Structure of the HUWE1 catalytic HECT domain [57]
(PDB:6XZ1) showing residues affected by mutations (pink) in relation to the catalytic cysteine reside (orange).
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DISCUSSION
The data presented above indicate that loss of HUWE1 function
provides one route to an increase in steady-state levels of the
BRCA1 splice variant BRCA1-Δ11q and PARPi resistance. Notably,
this form of HUWE1-mediated resistance appeared to be particular
to tumour cells with BRCA1 exon 11 truncating mutations that are
able to express the BRCA1-Δ11q protein and was not seen, for
example, in tumour cells with BRCA1 exon 22 mutations or in
BRCA2 mutant cells. This suggests that this might be one example
of where the mechanism of drug resistance might be highly
contextualised not just by the identity of the cancer driver gene
that originally causes drug sensitivity, but also by the particular
mutation type present in the driver gene.
In other contexts, HUWE1 has previously been associated with

PARPi resistance. For example, in a forward genetic screen for
PARP inhibitor resistance in an engineered HeLa cell line with a
BRCA2 deficiency, HUWE1 suppression increased PARP inhibitor
resistance [49]. HUWE1-silenced BRCA2 mutant cells had an
increased level of RAD51 mRNA and protein, although the
precise mechanism of resistance in this situation is not clear, nor
whether this might be in any way related to the observations
here, where we find the effect is specific to BRCA1-Δ11q. The
most likely explanation for this specificity is that the modifica-
tion site that regulates BRCA1 ubiquitylation and degradation
mediated by HUWE1 is still present in the Δ11q variant, allowing
it to also be regulated by HUWE1. This is consistent with
previous data suggesting that the modification occurs in the
region of BRCA1 between amino acids 1-167, which is present in
both full length BRCA1 and Δ11q [39]. There is evidence for
reacquisition of BRCA1 function in tumours that become
resistant to PARP inhibitors or platinum, and although BRCA1-
Δ11q has been shown to drive resistance in overexpression
experiments (such as the SUM149 Ex22+ Δ11q cell line used
here [35]), it is unclear how tumours would achieve such levels
in practice. The evidence we present here suggests that HUWE1
limits BRCA1-Δ11q levels and loss of HUWE1 is sufficient for
clinically meaningful resistance – i.e. similar to that caused by a
BRCA1 reversion mutation (Fig. 1E).
HUWE1 is not a commonly mutated cancer gene; indeed

HUWE1 mutations are rare in the population as a whole and
CRISPR-Cas9 mutagenesis of HUWE1 in > 900 tumour cell lines
(in the DepMap dataset [50]) suggest that complete loss-of-
function is lethal. However, our observation of HUWE1 mutations
in the context of acquired resistance to PARP inhibitors suggests
that more subtle HUWE1 mutations can occur in patients. Taken
together with the effects we have described on PARPi resistance
in cell lines, our findings support the further investigation of
HUWE1 mutations in PARP inhibitor resistant patients with
BRCA1 exon 11 mutations.

MATERIALS AND METHODS
Patient biopsies
Tumor biopsies were obtained and analyzed as part of previously
conducted clinical trials as detailed in the main text [44, 45].

DNA sequencing analysis
DNA extracted from FFPE tumours and normal tissue was sequenced
using an exome capture panel. BWA (version 0.7.5a) was used to align
reads to the human reference genome (GRCh37). PCR duplicates were
removed prior to further processing and variant detection. Variant
calling was performed using MuTect (version 1.1.4) and the Genome
Analysis Tool Kit (GATK) (version 2.7-2) Broad Best Practices Pipeline with
standard settings. Variants were excluded with genotype qualities below
20 and those covered by fewer than ten reads in either sample.
Mutations and small indels were selected from the complete set of
variants called using the GATK unified genotyper based on differences in
the variant allele fractions observed in the tumour and germline/normal
exome sequence data.

Cell culture, siRNA and dose-response survival assays
SUM149 cell lines were maintained in Ham’s F12 with 5% fetal calf serum
(FCS), 1 µg/ml hydrocortisone and 5 µg/ml insulin. SUM149 and the
derivatives used here have been previously described [14, 33, 42, 51].
COV362, CAL51 and RPE1 cell lines were maintained in DMEM+ 10% FCS
[51]. UWB1.289 cells [52] were maintained in 50:50 RPMI:MEGM with 3%
FCS. Capan1 cells were maintained in IMDM+ 20% FCS. Cells were
transfected with siRNA using Lipofectamine 3000 in 384-well plates
(250–500 cells per well) and exposed to drugs 48 h later. After five further
days, cell growth was assessed using CellTiter-Glo. Olaparib, talazoparib,
alisertib and gefitinib were obtained from SelleckChem and stock solutions
made in DMSO. Dose-response assays were carried out in 384-well plates
using an Echo acoustic dispenser from stock plates. The final DMSO
percentage ( < 0.1% v/v) was equalised across all drug concentrations.
siRNA used were: siHUWE1 (Dharmacon M-007185-01-0005), siBRCA1

(Dharmacon M-003461-02-0005), siCON (Dharmacon D-001210-01-05),
Allstar (Qiagen SI03650318).

CRISPR reagents
Constructs expressing CRISPR interference guides targeting HUWE1 were
made by cloning double stranded oligonucleotides into the BbsI target site
of pKLV2-U6gRNA5(BbsI)-PGKpuro2AmBFP-W as previously described [53].
Target sites used: sgRNA2, GGTCCGGTAGAGGTTCTCGC; sgRNA3
GACTGCGGCGGCGACAACGG.

Western blot
The following antibodies were used: HUWE1, A300-486A, Bethyl Labora-
tories (1:1000 dilution); Lamin B, ab16048, abcam (1:1000); Tubulin, ab7291,
abcam (1:5000); Vinculin, sc-73614 (7F9), Santa Cruz (1:500); BRCA1, OP92
(MS110; 1:500), Sigma; Cas9, 7A9-3A3, Novus Biologicals (1:1000). Western
blots were scanned using a BioRad ChemiDoc or LiCor Odyssey.
Uncropped scans of all blots are shown in the Supplementary Data. For
detection of BRCA1, nuclear extracts were prepared using the Subcellular
Protein Fractionation Kit (Thermo Scientific #78840).

Immunofluorescence
Cells were treated as indicated. Cells were transfected with siRNA as above
in 6-well plates. The next day, cells were seeded in black 96-well plates at
20,000 cells per well for irradiation the following day (48 h post
transfection). For ionising radiation, cells were exposed to 10 Gy using an
X-ray source and allowed to recover at 37 C for 4 h prior to fixation and
imaging. Cells were prepared and stained as previously described [54], and
imaged using a spinning disk confocal microscope. Foci were counted
automatically using CellProfiler software. Antibodies used were: RAD51,
ab133534, abcam (1:1000); γH2AX, 05-636, Millipore (1:1000).

Protein stability experiments
Cells were transfected with siRNA as above and exposed to cycloheximide
(150 µg/ml) 48 h later. Whole cell lysates from samples taken at subsequent
timepoints were used in Western blots to analyse protein levels.

Mass spectrometry
Protein lysates were prepared for mass spectrometry and analysed as
previously described [55].

DATA AVAILABILITY
All data are contained in the manuscript or available from the corresponding authors
on reasonable request. The mass spectrometry proteomics data have been deposited
to the ProteomeXchange Consortium via the PRIDE [56] partner repository with the
dataset identifier PXD040430.
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