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Driven chemical reactions can control the macroscopic properties of droplets, like their size. Such active
droplets are critical in structuring the interior of biological cells. Cells also need to control where and when
droplets appear, so they need to control droplet nucleation. Our numerical simulations demonstrate that
reactions generally suppress nucleation if they stabilize the homogeneous state. An equilibrium surrogate
model reveals that reactions increase the effective energy barrier of nucleation, enabling quantitative
predictions of the increased nucleation times. Moreover, the surrogate model allows us to construct a phase
diagram, which summarizes how reactions affect the stability of the homogeneous phase and the droplet
state. This simple picture provides accurate predictions of how driven reactions delay nucleation, which is
relevant for understanding droplets in biological cells and chemical engineering.
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Droplets forming by phase separation are crucial to
spatially structure the interior of biological cells, e.g., to
separate molecules, control reactions, and exert forces [1–5].
Cells control phase separation using actively driven
chemical reactions, which often include enzymes that
modify biomolecules involved in phase separation [6–8].
Theoretical work showed that such reactions can control
droplet sizes and their general macroscopic behavior [9–15].
In contrast, how these droplets emerge is little understood.
Experiments suggest that droplets form by nucleation [16],
but to what extent reactions can regulate nucleation is
unclear.
Nucleation is a stochastic process that relies on thermal

fluctuations to create a sufficiently large nucleus that can
grow spontaneously [17–19]. This is because creating the
droplet interface costs energy, so tiny droplets generally
dissolve. Classical nucleation theory predicts that the
typical nucleation time scales exponentially with the energy
barrier associated with the critical nucleus. While this
theory is well understood for passive systems, it is unclear
how it can be extended to active systems, where free
energies are generally unavailable. To overcome this
challenge, we use an equilibrium surrogate model to reveal
how driven reactions controlling droplet size suppress
nucleation substantially.
We study an isothermal fluid comprised of precursor

material A that can convert into droplet material B by
chemical reactions. For simplicity, we first consider an

incompressible fluid where both species have equal
molecular volume ν, so the state of the system is charac-
terized by the concentration cðr; tÞ of species B, while the
concentration of A is ν−1 − cðr; tÞ. The dynamics are
governed by the continuity equation

∂tcþ∇ · j ¼ s; ð1Þ

where j denotes the diffusive exchange flux and the source
term s describes chemical transitions.
The passive diffusive flux j is driven by the gradient of the

chemical potential, j ¼ −Λd∇μþ η, where Λd is the dif-
fusive mobility and η is the diffusive thermal noise, which
obeys hηiðr; tÞi ¼ 0 and the fluctuation dissipation theorem
hηiðr; tÞηjðr0; t0Þi ¼ 2kBTΛdδijδðr − r0Þδðt − t0Þ [20–22].
The exchange chemical potential, μ ¼ δF½c�=δc, follows

from the free energy functional [13]

F½c� ¼
Z �

fðcÞ þ κ

2
j∇cj2

�
dr; ð2Þ

where fðcÞ is the local free energy density and κ penalizes
compositional gradients. For simplicity, we consider

fðcÞ ¼ a1c −
a2
2

�
c −

1

2ν

�
2

þ a4
4

�
c −

1

2ν

�
4

; ð3Þ

where a1, a2, and a4 > 0 are phenomenological coeffi-
cients. Without reactions (s ¼ 0), Eqs. (1)–(3) describe
passive phase separation with a critical point at ccrit ¼
ð1=2νÞ for a2 ¼ 0. For a2 > 0, the spinodal line is given by
csp ¼ ð1=2νÞ � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2=ð3a4Þ
p

, and the binodal is defined

by coexisting equilibrium concentrations cout ¼ ð1=2νÞ −ffiffiffiffiffiffiffiffiffiffiffiffi
a2=a4

p
and cin ¼ ð1=2νÞ þ ffiffiffiffiffiffiffiffiffiffiffiffi

a2=a4
p

in dilute and dense
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phases, respectively. These phases are separated by an
interface of width w ¼ ffiffiffiffiffiffiffiffiffiffiffiffi

2κ=a2
p

.
The system becomes active when phase separation is

augmented by driven chemical reactions. As an example,
we first consider a reaction flux s comprising passive
conversion of A and B as well as an active conversion
involving chemical energy Δμ provided by a fuel [14],

sðcÞ ¼ −Λp
r μ − Λa

rc ðμþ ΔμÞ þ ηrðcÞ; ð4Þ

where Λp
r and Λa

r determine the rates of the respective
reactions and ηr models thermal fluctuations. Motivated by
enzymes that colocalize with the droplet, we scale the rate
of the active reaction with the concentration c of the droplet
material. This results in a minimal, thermodynamically
consistent model where droplet material B turns into
precursor A inside droplets, while B is replenished outside,
thus controlling droplet size [14]. The reactive thermal
noise ηr obeys hηrðr; tÞi ¼ 0 and hηrðr; tÞηrðr0; t0Þi ¼
2kBTΛrδðr − r0Þδðt − t0Þ with ΛrðcÞ ¼ Λp

r þ Λa
rc. We here

consider the typical situation of size-controlled droplets,
where diffusion dominates reactions [14]. In particular,
diffusive noise dominates below the length scale
ðΛd=ΛrÞ1=2, which is larger than 10w for the parameters
discussed here. Since critical nuclei are much smaller, we
neglect reactive noise in the following, approximating
reactions as deterministic. Figure 1(a) shows that the
reaction flux s given in Eq. (4) is a nonmonotonous
function of the composition c. In particular, there are
two stable homogeneous stationary states, which corre-
spond to (meta-)stable dilute and dense systems. The main
question in this Letter concerns how active droplets
nucleate from the dilute homogeneous state cðrÞ ¼ c0.
To investigate nucleation, we first perform numerical

simulations of Eqs. (1)–(4) in a two-dimensional system
with periodic boundary conditions [23]; see Fig. 1(b).
Repeating the simulations many times, we observe that the
first droplet nucleates at random times tnucl; see Fig. 1(c).
Assuming an exponential distribution of tnucl, we define
the nucleation time τ as the ensemble average of tnucl.
Figure 1(d) shows that τ increases for stronger interactions
(larger a2), as expected for nucleation of passive droplets
[24]. More importantly, larger reaction rates lead to longer
nucleation times τ, indicating that active chemical reactions
hinder nucleation. This result can be understood intuitively
since the reactions stabilize the homogeneous state; see
Fig. 1(a). They thus help to dissolve a small accumulation
of droplet material B, reducing the probability that a critical
nucleus forms.
To quantitatively predict the effect of driven reactions on

nucleation, we next map our system to an approximate
equilibrium system. To do this, we linearize the reaction
flux s around the dilute homogeneous stationary state c0,

slinðcÞ ¼ kðc0 − cÞ with k ¼ −s0ðc0Þ; ð5Þ

where k > 0 for a stable state; see Fig. 1(a). Figure 1(d)
shows that the linearized reactions influence the nucleation
time τ similarly to the full reaction flux s. The linearization
allows us to map the dynamics given by Eq. (1) to a passive
system, ∂tc ≈ Λd∇2δF̃½c�=δc, with the augmented free
energy functional

F̃½c� ¼ F½c� þ k
2Λd

Z
½cðrÞ − c0�ΨðrÞdr; ð6Þ

where Ψ obeys the Poisson equation ∇2Ψ ¼ c0 − cðrÞ
and thus mediates long-ranged, Coulomb-like interactions
[25–27].
We use the equilibrium surrogate model to investigate

the energy landscape of nucleation. In particular, we use
Eq. (6) to map the minimal energy path connecting the
metastable homogeneous state with the equilibrium state

FIG. 1. Chemical reactions increase nucleation times.
(a) Reaction flux s as a function of the concentration c of a
homogeneous system for the full [solid blue line, Eq. (4)] and
linearized model (dashed orange line). The spinodal concen-
tration csp of the passive system (dotted green line), the two stable
fixed points (filled disks), and the unstable fixed point (open
circle) are marked. (b) Snapshots of the concentration field c of
droplet material obtained from stochastic numerical simulation in
two dimensions. The time between snapshots is 10=k0, and the
interaction strength is a2 ¼ 200νkBT. (c) Distribution of mea-
sured nucleation times tnucl in the linearized model for various
reaction rates k for a2 ¼ 150νkBT. Black lines show exponential
distributions of equivalent mean τ ¼ htnucli. (d) Nucleation time τ
as a function of k for the full model [disks, k ¼ −s0ðc0Þ ∝ Λa

r ] and
the linearized reactions (triangles) for various interaction
strengths a2=ðνkBTÞ. Solid lines show predictions of Eq. (7)
with τ0 as a single fit parameter for all curves. (a)–(d) Additional
parameters are a1ν ¼ −1.34a2, a4 ¼ 4a2ν, Λp

r =Λa
r ¼ 0.0311,

Δμν ¼ 1.46a2, ν ¼ w2, w ¼ ffiffiffiffiffiffiffiffiffiffiffiffi
2κ=a2

p
, and k0 ¼ Λda2w−2.
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containing one droplet using a proxy for droplet size as a
reaction coordinate x [28]. For each value of x, we use a
constrained optimization to determine the spherically sym-
metric composition cðrÞ that minimizes the energy F̃ given
by Eq. (6). Figure 2(a) shows that the resulting profiles
feature an increasing density peak, analogous to passive
systems [19]. However, the nucleus is also surrounded by a
depletion zone originating from chemical reactions. The
sequence of profiles defines the minimal energy path, from
which we obtain the energy barrier ΔF as the difference
between the maximal energy and the energy F̃ðx ¼ 0Þ of
the homogeneous state; see Fig. 2(b). Figure 2(c) shows that
the energy barrier ΔF depends on the reaction rate k, and
this dependence is approximately linear [Fig. 2(d)], sug-
gesting that the long-ranged term in Eq. (6) could explain
the suppressed nucleation caused by reactions.
We hypothesize that the increasing energy barriers

explain how larger reaction rates k lead to longer nucleation
times τ [see Fig. 1(d)]. Nucleation theory predicts that τ
increases exponentially with the energy barrier ΔF [24],

τ ¼ τ0 exp

�
ΔF
kBT

�
; ð7Þ

where τ0 is a kinetic prefactor. Figure 1(d) shows that this
relation explains the numerical data, particularly for larger
ΔF at higher k and a2. The deviation at smaller k are
expected since the assumptions leading to Eq. (7) break
down for smaller ΔF [19]. We conclude that the energy
barriers derived from the equilibrium surrogate model
explain how nucleation times increase with reaction rates.
Motivated by the success of nucleation theory, we next

seek an analytical description of the free energy barrier,
using the radius R of a droplet as a reaction coordinate.
Assuming that the droplet with homogeneous concentra-
tion cin is embedded in an infinite system of concentration
c0, the free energy F̃ can be separated into contributions of
bulk phases, interface, and chemical reactions,

F̃ðRÞ ≈ −gV þ γAþ FreactðRÞ; ð8Þ

where V ¼ πR2 and A ¼ 2πR in two dimensions [28].
Classical nucleation theory implies the free energy differ-
ence g ¼ fðc0Þ − fðcinÞ þ μðc0Þðcin − c0Þ between the
phases and surface tension γ ¼

ffiffiffiffiffiffiffiffiffiffi
8κa32

p
=ð3a4Þ [13], which

is a good approximation for c0 ≈ cout. We derive an
approximate expression for the free energy associated to
reactions in the Supplemental Material [28],

FreactðRÞ ≈
πðcin − c0Þ2

16Λd
kR4; ð9Þ

where we neglected terms proportional to kðcout − c0Þ2.
Without reactions (k ¼ 0), F̃ðRÞ given by Eq. (8) has a
single maximum at the critical radius Rpas

crit ¼ γ=g with a
corresponding energy barrier ΔF ¼ πγ2=g; see Fig. 3(a).
Once nuclei exceed this critical size (by nucleation), they
grow indefinitely. In contrast, Eq. (8) predicts that reactions
(k > 0) increase the free energy of large droplets, implying
a minimum at finite radius Rstab ≈ ðc0 − cinÞ−2½8gΛd=k�1=2
corresponding to stable droplets [10]. Concomitantly, the
energy barrier ΔF is elevated, consistent with increased
nucleation times. Approximating the barrier by F̃ðRpas

critÞ,
we find

ΔF ≈
πγ2

g

�
1þ k

γ2ðcin − c0Þ2
16g3Λd

�
; ð10Þ

which explains the linear dependence of ΔF on k observed
in Fig. 2(d). Taken together, this simplified picture dem-
onstrates how large rates k gradually disfavor the droplet
state until only the homogeneous state remains stable at
k > kmax with kmax ¼ 32Λdg3=½27γ2ðcin − c0Þ2�.
Finally, we use the simplified free energy of the

equilibrium surrogate model to study the influence of
the concentration c0 of the homogeneous state. In particu-
lar, we determine the minimal value of c0 beyond which the
droplet state can be stable as a function of the interaction

FIG. 2. Reactions increase free energy barrier ΔF of surrogate
equilibrium model. (a) Radial concentration profiles cðrÞ min-
imizing the free energy F̃ given by Eq. (6) at various fixed values
of reaction coordinate x [colors correspond to panel (b)]. (b) F̃ as
a function of x with ΔF indicated. (c) F̃ðxÞ for various reaction
rates k [colors correspond to panel (d)]. (d) ΔF as a function of k.
(a)–(d) Model parameters are cν ¼ 0.18, L ¼ 100w,
a2 ¼ 250νkBT, k ¼ 0.0025k0 [for panels (a) and (b)] and are
given in Fig. 1.
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parameter a2. In passive systems (k ¼ 0), the resulting line
corresponds to the binodal curve. In active systems (k > 0),
this line is shifted to larger concentrations, thus enlarging
the region where the homogeneous state is stable. The
homogeneous state becomes unstable at the spinodal line,
which can be determined from a linear stability analysis of
Eq. (1) [28]. Figure 3(b) shows that these predictions based
on Eq. (8) agree with numerical simulations probing the
stability of the homogeneous and droplet state. Both
predictions illustrate how driven chemical reactions desta-
bilize the droplet state.
In summary, we illuminated how driven chemical reac-

tions affect the phase diagram of phase separating systems.
To do this, we exploited the equilibrium surrogate of the
active system to show how reactions favor the homo-
geneous state relative to the droplet state, which explains
the suppressed nucleation qualitatively. Similar behavior
was found for an equilibrium system with true long-ranged
interactions [27]. Although the modified phase diagram
was derived from the surrogate model, it is not a thermo-
dynamic phase diagram of the phase separating system
with driven reactions. For instance, the compositions of the
coexisting phases at the interface are still governed by the
binodal and tie lines of the passive phase diagram [13].
The energy barrier associated with reactions depends

linearly on their rate k, likely because reactions are weak
and the system is dominated by phase separation. This
implies that k decreases nucleation rates exponentially. We
showed that this dependence persists for thermodynamically
consistent reactions and expect that it is a general feature of
phase separating systems with reactions that have a stable
dilute phase. As a proof of concept, we show in the
Supplemental Material [28] that a three-component system
exhibits very similar suppression of nucleation. Since our
derivation of the influence of the reactions is independent of
the details of the free energy density, we expect equivalent
behavior in a wide range of phase separating systems.
We presented results for the simple case of two-

dimensional systems. While we expect that active reactions
also suppress nucleation in more complicated situations, it
will be vital to extend our theory to three dimensions (e.g., to
capture spontaneous divisions [11]) and many components
(allowing for additional stable stationary states [14,15]). For
better quantitative agreement, it might also be necessary to
improve our treatment of nucleation theory, e.g., by describ-
ing how reactions affect the curvature of the surrogate free
energy, which affects nucleation rates via the Zeldovich
factor [31]. However, the ultimate test of our theory will
come from experiments, either from existing active
droplets in biological cells [32] or in promising synthetic
systems [33,34]. Experiments in cells also suggest that more
complex behaviors are possible, including periodic nucle-
ation [35] and multistep nucleation for fiber formation [36],
which might involve secondary nucleation [37]. In these
situations, heterogeneous nucleation is likely relevant
[38,39], and there are examples where nucleation is con-
trolled by catalytically active nucleation sites [9,40]. Taken
together, our approach of an equilibrium surrogate model
will likely prove vital for studying nucleation in these more
challenging situations.
The chemically active droplets we discuss here are

exemplary for nonequilibrium phase separation. Our model
is similar to a recent study that finds that reactions
accelerate nucleation [41]. However, they consider fixed
supersaturation instead of fixed average composition, and
their grand canonical scheme might not capture the
reaction-diffusion dynamics accurately. Both models com-
bine conservative phase separation with nonconservative
reactions, and are thus related to the generic Active Model
AB [42]. In the limit of fast reactions, these models are
predicted to be related to the conservative Active Model
Bþ [43], whose nucleation has recently been studied [44],
but it is unlikely that this analogy holds for the relevant case
of weak reactions. Taken together, these works provide
intriguing avenues for future work studying the differences
and similarities of active phase separating systems.

We thank Kristian Blom, Aljaz Godec, and Micheal
Cates for helpful discussions and Gerrit Wellecke for a
critical reading of the manuscript. We gratefully

FIG. 3. Extended phase diagram accounting for reactions.
(a) Free energy F̃ of the surrogate equilibrium model approxi-
mated by Eq. (8) as a function of the nucleus radius R for
decreasing concentrations c0 of the homogeneous state (bottom
to top) and a2ν=a4 ¼ 0.25. (b) Extended phase diagram indicat-
ing the stability of the homogeneous and droplet state as a
function of c0 and a2ν=a4 in a passive (orange lines, k ¼ 0) and
active system (blue lines, k ¼ 10−3k0). The droplet state is (meta-
)stable right of the solid (binodal) lines, while the homogeneous
state is stable left of the dashed (spinodal) lines. Behavior of
numerical simulations (symbols) for k ¼ 10−3k0 corroborate
the results. Inset shows enlarged region around the spinodal.
(a)–(b) Additional model parameters are given in Fig. 1.
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