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THE BIGGER PICTURE Learning about a complex system and simulating alternative scenarios under
changed conditions or dynamics is a challenging problem. Consider the time evolution of COVID-19 cases,
which depends on a combination of contact patterns, demographics, and vaccination rates. Howmany se-
vere cases could have been prevented had a different vaccine allocation strategy been implemented? To
answer such counterfactual questions, we propose an approach that merges (1) coarse-grained causal
modeling, (2) ordinary-differential-equation-based simulation, and (3) domain knowledge, combining the
advantages of different modeling paradigms. The resulting hybrid model can be viewed as a ‘‘causal digital
twin’’ of the underlying complex system; it captures relevant features thereof and allows reasoning about
novel scenarios and interventions. We hope that our hybrid causal approach can inspire modeling for other
domains where causal reasoning about a complex system is of interest.

Proof-of-Concept: Data science output has been formulated,
implemented, and tested for one domain/problem
SUMMARY
We develop a model to retrospectively evaluate age-dependent counterfactual vaccine allocation strategies
against the coronavirus disease 2019 (COVID-19) pandemic. To estimate the effect of allocation on the ex-
pected severe-case incidence, we employ a simulation-assisted causal modeling approach that combines
a compartmental infection-dynamics simulation, a coarse-grained causal model, and literature estimates
for immunity waning. We compare Israel’s strategy, implemented in 2021, with counterfactual strategies
such as no prioritization, prioritization of younger age groups, or a strict risk-ranked approach; we find
that Israel’s implemented strategy was indeed highly effective. We also study the impact of increasing vac-
cine uptake for given age groups. Because of its modular structure, our model can easily be adapted to study
future pandemics. We demonstrate this by simulating a pandemic with characteristics of the Spanish flu. Our
approach helps evaluate vaccination strategies under the complex interplay of core epidemic factors,
including age-dependent risk profiles, immunity waning, vaccine availability, and spreading rates.
3
INTRODUCTION

The coronavirus disease 2019 (COVID-19) pandemic posed sig-

nificant challenges to societies and decision makers around the

world. Many governments implemented non-pharmaceutical

interventions to limit the spread of infections and reduce the

number of severe cases.1,2 The development of efficient vac-

cines has provided another key control measure to combat the
This is an open access article und
COVID-19 pandemic. However, vaccine supply can fail to

meet demand, and vaccine uptake can fall short of expectations.

Under these conditions, governments have to find rational stra-

tegies to allocate vaccines to minimize harm. It is therefore

important to understand how to evaluate and compare different

vaccine allocation strategies.4

One crucial aspect to consider when designing such strate-

gies is age, which is a key risk factor for COVID-19 mortality.5
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While pre-existing conditions and the high exposure of health

care workers have also played a role in vaccine prioritization,6,7

in this work, we focus on age dependence, including interactions

between age groups, as one of themost important factors. Given

an observed evolution of infections and severe cases, we seek to

answer central policy questions. Given limited vaccine availabil-

ity, should one have prioritized first vaccinations of the young or

booster shots for the elderly? Which age groups should have

been targeted preferentially to increase vaccine uptake? How

would a different age-dependent risk profile have impacted the

outcome of a vaccination policy? Answering such questions re-

quires computing the effects of hypothetical interventions on a

complex system (given observations of the same system under

different conditions). Such ‘‘what if’’ scenarios lie at the heart

of causal inference and relate to counterfactual reasoning; that

is, reasoning about how events would have turned out had

some circumstances been altered.8,9

The gold standard for inferring average causal effects are

randomized controlled trials (RCTs),10 which are used to eval-

uate medical treatments such as COVID-19 vaccines.11 How-

ever, to compare full vaccine allocation strategies at the coun-

try level, running an RCT is infeasible in practice (there is only

one copy of each country), mirroring similar challenges in the

empirical estimation of individualized treatment effects.12,13

Moreover, it would be ethically unacceptable to implement vac-

cine allocation strategies that are expected to be suboptimal

for the population. Here, modeling approaches provide an

important tool to fill this gap.14 For COVID-19, one and a half

years into the vaccination campaign, we now have data (age-

resolved cases, hospitalizations, and vaccination times) to infer

the reduction of spread because of vaccination across different

age groups and subsequently simulate counterfactual vaccina-

tion scenarios.

To capture the effects of changes in vaccine allocation

strategy, we have to model their impact on spread and hospital-

ization. Furthermore, we need to consider aspects such as vac-

cine efficacy, immunity waning, age-dependent risk profiles,

and contact structures. Two established modeling paradigms

are compartmental differential equation models and machine

learning (ML) approaches.

In principle, compartmental models like the susceptible-infec-

tious-recovered (SIR) model (and its extensions) can be used to

answer the typesof questions inwhichweare interested, provided

that all relevant parameters are known sufficiently well.15–19 How-

ever, this is typically not the case. Thus, a framework combining

inference of parameters and prediction is necessary. To jointly

model infections and severe cases, compartmental models

requirea largestatespacewhoseparameterscanbedifficult toes-

timate from data without overfitting.20

MLmethods excel at fitting data andmaking predictions based

on statistical associations but are generally unable to answer

causal questions.Moreover, they are unreliablewhen the underly-

ing data distribution changes. Yet, we are precisely interested in

how our system behaves under distribution shifts; we want to

know how the expected severe-case incidence would have

changed had we implemented different vaccine allocation

strategies.

Causal models occupy a middle ground between the two par-

adigms and are better suited for our purpose because they are
2 Patterns 4, 100739, June 9, 2023
modular and interventional. Modularity refers to a model being

composed of autonomous components or subsystems and al-

lows combining different sources of knowledge. Interventions

are naturally supported by causal models because they explicitly

capture the data-generating mechanisms rather than mere

statistical associations. Causal models can thus answer coun-

terfactual questions while clearly expressing the underlying as-

sumptions.8,21 However, using them to describe time-varying

systems and modeling the dynamics of epidemic spread is

cumbersome.

Because neither compartmental nor causal models on their

own are fully suited for our task, we resort to a hybrid modeling

approach involving a modular combination thereof. We propose

a coarse-grained causal model in which most components are

estimated from data but where, additionally, one of the modules

is a compartmental model and another one is derived from liter-

ature estimates. In particular, we use a susceptible-exposed-in-

fectious-recovered (SEIR) model for the infection dynamics, but

not for severe cases, and rely on literature estimates of immunity

waning, as illustrated in Figure 1. The SEIR-like infection dy-

namics model can be fit more easily to data compared with a

joint model of severe cases and infections. For severe cases,

given a set of qualitative causal assumptions, fitting the causal

model reduces to the problem of statistical estimation of condi-

tional probabilities. This combines the strengths of the two

approaches: the data-driven nature of causal models and the

expressivity of compartmental models.

As a case study, we apply our method to a comprehensive da-

taset collected in Israel.22 Specifically, we compare several

counterfactual age-dependent vaccine allocation strategies

with the factual strategy, assuming a fixed number of adminis-

tered doses and fixed vaccine uptake rate per age group. We

also simulate the effect of campaigning for vaccine uptake in a

given age group by increasing the vaccine uptake rate in one

group and computing the effect on the severe-case incidence

across all age groups. To showcase the capability of our model

to change and examine the influence of individual modules, we

consider a different type of disease whose age-dependent risk

profile is based on the Spanish flu. We also investigate the effect

of waning immunity by changing the timescale at which immunity

weakens.

RESULTS

Methods summary
We use a causal graphical model,8 as shown in Figure 2, to

describe an individual’s probability of developing severe

COVID-19. We use a binary variable, S˛ f0;1g, where 1 indi-

cates a severe case and 0 describes a mild case or no infection

at all. We assume that the severe-case probability depends on

the following variables: the vaccination status of the individual,

V ˛ f0;1;2; 3g, indicating the number of vaccine doses a person

has received; their age group, A˛ f0 � 19;20 � 29;.; 80 �
89;90 + g; the current week, T ˛ f1;.;Mg; and the waning

time (i.e., the time since the last dose was received), W ˛ f1;.;

Mg. M is the number of weeks in the considered time window.

The variables V and W are functions of the weeks in which the

respective doses were received, Ti ˛ f1;.;M + 1g for

i˛ f1; 2; 3g and the current week T. By common convention,



Figure 1. Method overview

Our goal is to compute the weekly severe-case incidence (bottom right) under counterfactual vaccine allocation strategies (in the example shown here:

YoungFirst, top right). To compute this counterfactual scenario, we provide an estimate of the severity mechanism P
~p
ðS = 1jV ;A;T;WÞ for all combinations of

ðV ;A;T;WÞ through our proposed factorization (2). The other conditionals in the causal graph are directly estimated from data (factual strategy, top center) or are

intervened upon according to the counterfactual strategy. The risk factors gðV;AÞ and the time dependence f0ðTÞ are estimated from data after accounting for

immunity waning hðWÞ derived from literature estimates (top left). An SEIR-like infection dynamics model is fit to the factual infections and subsequently used to

simulate infections under the counterfactual strategy. The simulation output is used to compute the correction factors f ~p
1ðA;TÞ accounting for the age-specific

change in probability of being infected. Only three of nine age groups are shown for simplicity.
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we denote random variables by uppercase letters and realiza-

tions thereof by lowercase letters.

We are interested in how interventions on the distribution of

vaccination times for different age groups A affect the expected

severe-case probability:

E½SjdoðT1;T2; T3 � ~PðT1;T2; T3jAÞÞ� (Equation 1)

where we denote the distributions of vaccination times pre and

post intervention as p = PðT1; T2;T3jAÞ and ~p = ~PðT1; T2;

T3jAÞ, respectively. The doð $Þ operator describes a change in

distribution arising from an intervention8 (see Target function

for details).

There are three challenges we have to address. (1) In the pub-

licly available data by Israel’s Ministry of Health,22 severe out-

comes are not registered as a function of time since the last

dose was received. We only have access to the marginal distri-

bution PðSjV ; A; TÞ =
P

wPðSjV ; A; T ; wÞPðwjV ; A; TÞ. (2)

Computing the post-intervention severity (1) involves evaluating

the conditional PðSjV ;A;TÞ for combinations ðV ;A;TÞ, for which

there are no observations. In particular, because of the imple-

mented age-ranked vaccine allocation strategy in Israel, there

may not have been any vaccinated subjects in certain younger

age groups for some of the early weeks. (3) Changing the vaccine

allocation strategy influences the probability of having a severe
case in two ways: first, by changing the probability of having

immunity through vaccination, and second, through

impacting the infection dynamics at the population level. Such

changes in infection dynamics are not captured by the causal

model alone.

To address these challenges, we propose a factorization of the

severity mechanism

P
~p
ðS = 1jV ;A;T ;WÞ = f0ðTÞ gðV ;AÞ hV ðWÞ f

~p
1ðA;TÞ:
(Equation 2)

The observed aggregate time dependence of the probability of

having a severe case is captured by f0ðTÞ. The factor gðV ;AÞ de-
scribes the age- and vaccination-status-dependent relative risk

factor of having a severe case, where we normalize g = 1 for the

unvaccinated 60- to 69-year-olds. The factor hV ðWÞ describes
the waning of immunity against infection. Finally, f

~p
1ðA;TÞ is a

correction factor that depends on the post-intervention vaccina-

tion distribution and accounts for the change in infection dy-

namics. The subscript ~p indicates factors that depend on the

post-intervention vaccine allocation strategy.

The factorization (2) resolves the challenges above by allowing

us to (1) incorporate literature knowledge about immunity waning

into our causal model; (2) estimate PðS = 1jV ;A;T ;WÞ for all

values in the conditioning set by transferring knowledge between
Patterns 4, 100739, June 9, 2023 3
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Figure 3. Factors contributing to the severe case probability

(A) Estimated time dependence f0ðTÞ approximately following the two infection

waves in Israel in 2021.

(B) The waning curve hV ðWÞwith increasing risk over time as immunity wanes.

The waning curve is computed based on results from Tartof et al.23

(C) Estimated age-dependent correction factors f ~p
1ðA;TÞ accounting for the

change in population-level infection dynamics. The correction factors shown

here correspond to the scenario with increased vaccine uptake rate by 2%,

leading to a relative decrease in the number of infections.

(D) Risk factor gðV ;AÞ estimates indicating the relative risk of having a severe

case by age A and vaccination status V .

Figure 2. Causal graph used to model the variables influencing se-

vere COVID-19 cases S

We consider the variables vaccination status V , age group A, the current week

T , and the time since the last dose was administered W. V and W determin-

istically depend on the current week T and the vaccination times T1;T2;T3 for

each dose. An arrow indicates that one variable has a direct causal influence

on another. Note that the age group A influences V and W indirectly via the

vaccination times T1; T2; T3. The red dashed arrow ( ) indicates a

relationship that cannot be estimated because the data are incomplete.
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vaccination states, age groups, and weeks; and (3) take into ac-

count the population-level impact on the infection dynamics.

hV ðWÞ can be derived from literature estimates for the vaccine

efficacy against infection as a function of time since the last dose

was administered.23 f0ðTÞ and gðV ;AÞ can be estimated from

data after correcting for the influence of waning. The correction

factor f
~p
1ðA; TÞ under the counterfactual vaccine allocation strat-

egy is given by the relative change in weekly infection probability

for each age group

f
~p
1ðA;TÞ =

P
~p
ðI = 1jV ;A;T ;WÞ

PpðI = 1jV ;A;T ;WÞ : (Equation 3)

Hence, the correction factor couples the compartmental

model for infection dynamics with the causal model. The deriva-

tions of all estimators are given in estimating the severity mech-

anism factors. Estimated factors are shown in Figure 3.

To estimate the effect of changing the vaccine allocation

strategy on the infection dynamics ðP
~p
ðI = 1jV ; A; T ;WÞÞ, we

first infer the parameters of a Bayesian SEIR-like model under

the factual strategy p. Vaccines are assumed to offer some

protection against infection: 70%, 90%, and 95% directly after

the first, second, and third dose, respectively, after which the

protection is waning at the same rate.23 For each age group,

we fit a time-dependent base reproduction number; that is, the

reproduction number in a hypothetical non-immune population

(Figure 4 left). We assume a generation interval of 4 days24,25

and a reporting delay of 6 days. Non-equal reproduction

numbers for every age group are modeled by modulating sym-

metrically the rows and columns of a contact matrix. The prefer-

ence for contacts within each age group is parameterized by a

contact mixing factor g between 0 (no mixing between age

groups) and 1 (all-to-all connections). By default, this factor is

set to 0.8; we show that results are similar with lower and higher

mixing factors in supplement C. Because our method estimates

overall contact strengths per age group through the reproduc-

tion numbers, diary-based estimates of the contact patterns

are not appropriate in this setting (for details, see The contact

matrix). With the inferred reproduction number, we rerun the

model with the counterfactual vaccine allocation strategy ~p to
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obtain an estimate of the number of infections in the counterfac-

tual scenario. The simulated number of infections is then used to

calculate the correction factor (3).

Compartmentalizing the factors related to severe cases into

the causal model simplifies parameter estimation; for the causal

model, we need to estimate conditional probabilities, which is

trivial given our data (except for the severity mechanism [2]).

This reduces the state space and the parameters that

need to be estimated for the compartmental infection dynamics

model.

Counterfactual vaccine allocation strategies
We compare four age-dependent vaccine allocation strategies:

the Factual and three counterfactual ones. (1) Factual: the

vaccine allocation strategy implemented in Israel generally

prioritized the elderly (starting with all people aged 60 and

over) for the initial two doses and for booster shots but also

prioritized nursing home residents, patients with pre-existing

medical conditions, and frontline health care workers.6 (2) Uni-

form: in the uniform strategy, we do not implement any prior-

itization based on age or any other factors; all age groups are

vaccinated at the same rate. (3) ElderlyFirst: we prioritize

age groups in descending order, starting with the oldest and

ending with the youngest. This strategy differs from the Factual

strategy in that it strictly prioritizes by age and does not

consider other factors. (4) YoungFirst: the opposite of

ElderlyFirst. The counterfactual strategies are simulated,

while, here, the outcome of the Factual strategy is taken



Figure 4. Base reproduction numbers per age group inferred by the

SEIR-like infection dynamics model

The base reproduction numbers describe the contribution of each age group

to infection spread after accounting for the effect of vaccination. Left: inferred

weekly base reproduction numbers between December 20, 2020 and

December 25, 2021. a, lockdown;26 b–e, restriction-easing phases 1–4;27 f,

Green pass and purple badge requirement lifted; g, high and middle school

summer break start; h, indoor mask requirements;28 i, green pass re-

quirements;29 j, school summer break end. The ticks on the x axis indicate the

first day of the respective month. Right: average base reproduction numbers

weighted by the factual total weekly infections. Note that uncertainty on the

base reproduction number is high during spring 2021 because of low case

numbers (Figure S1). The 90+ age group has only 3–4 cases per week on

average during this period.

Figure 5. Cumulative incidence of infection and severe cases for the

two infection waves in 2021 under the factual and counterfactual

vaccine allocation strategies

For the third wave, we sum all cases from December 20, 2020 to April 11, 2021

and for the fourth wave from June 20, 2021 to November 7, 2021. The whiskers

show the 95% credible intervals. The outcome of the Factual strategy is

taken from data,22 while the other vaccine allocation strategies are simulated.
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from data. In the simulated scenarios, the number of first, sec-

ond, and third doses is kept fixed to the factual numbers. The

vaccine uptake rate per age group is also fixed to the factual

values up to a margin of error of 2.5 percentage points to be

able to satisfy other constraints, such as the total number of

vaccines or minimum times between doses (see supplement

A.1 for more details).

Infections

As shown in Figure 5, during the third wave, YoungFirst leads

to the lowest infection incidence, followed by the Uniform and

the Factual strategy. ElderlyFirst leads to the highest

infection incidence.

The most effective strategy in preventing infections is deter-

mined by which age group is contributing most to infection

spread. The base reproduction numbers express how much an

age group contributes to infection spread after removing the ef-

fect of vaccinations; in other words, how much an age group

would contribute to infection spread if no one in that age group

were vaccinated. As shown in Figure 4, during the third wave,

the base reproduction numbers tended to be higher among the

young and middle-aged groups and lower for the elderly, point-

ing to differences in behavior and average number of contacts.

Therefore, strategies that prioritize young and middle-aged

groups are most effective at preventing infections.

During the fourthwave, the relative effectiveness of strategies at

preventing infections is reversed. ElderlyFirst leads to the

lowest infection incidence, followed by the Factual strategy.

YoungFirstandUniform lead to themost numberof infections.

The order of the vaccine allocation strategies regarding infec-

tions in the fourth wave is changed because the estimated base
reproduction numbers per age group are different. For the first

half of the wave, the base reproduction number in the youngest

age group, accounting for roughly a third of the population, tends

to be lower than for the other age groups, presumably because

of the school summer break, as indicated in Figure 4.

Conversely, at the start of the wave, the base reproduction

numbers for the middle-aged groups and the elderly tend to be

higher. Therefore, prioritizing these age groups is a more effec-

tive measure for preventing infection spread at that point in time.

Severe cases

As shown in Figure 5, the ElderlyFirst strategy leads to the

lowest cumulative severe-case incidence; it performs similar to

(third wave) or better than (fourth wave) the Factual strategy.

The Uniform and YoungFirst strategies lead to the highest

cumulative severe-case incidence. Which one of these two leads

to the highest severe-case incidence depends on the wave and

the assumed contact mixing factor (supplement C).

Figure 6 shows the trade-offs made between age groups

in terms of severe cases under the different strategies. As

expected, the younger age groups benefit most from the

YoungFirst strategy, and older age groups experience the

lowest severe-case incidence under the ElderlyFirst

strategy.

The severe-case risk is lowest for the youngest age groups, as

shown in Figure 3D. Hence, prioritizing the younger age groups

leaves the older age groups (which are at higher risk) less pro-

tected against severe cases.While the YoungFirst strategy re-

duces the severe-case incidence in the youngest age group, this

reduction is far outweighed by the increase in most other age

groups. We find the opposite effect for the ElderlyFirst sce-

nario; we have a reduction of severe-case incidence in the

elderly and an increase in the younger age groups.

Our results suggest that, under the ElderlyFirst strategy,

the cumulative severe-case incidence could have been reduced
Patterns 4, 100739, June 9, 2023 5



Figure 6. Expected weekly number of severe-case incidence for the entire population and in each age group for the factual and counterfac-

tual vaccine allocation strategies

The right panels show the trade-offs in severe-case incidence between age groups under different vaccine allocation strategies. The ticks on the x axis indicate

the first day of the respective month. The outcome of the factual strategy is taken from data,22 while the other vaccine allocation strategies are simulated.
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had this strategy been implemented in Israel (177 vs. 184 per

100,000 and 84 vs. 126 per 100,000 in the third and fourth waves,

respectively). However, our counterfactual vaccine allocation

strategies make some simplifying assumptions that are difficult

to implement in practice. We assume that it is possible to vacci-

nate all willing patients of an age group before moving on to the

next age group without delays. In practice, this is difficult to

accomplish, in particular given that it may be harder to reach

the elderly. Therefore, no realistic vaccine allocation strategy

can be as strict as the protocol followed in ElderlyFirst

and will have some overlap between age groups. Hence,

from our counterfactual results and these observations, we

conclude that the Factual strategy may have been close to

optimal.

Impact of increasing vaccine uptake
We simulate the effect of increasing vaccine uptake in a single

age group. Limited vaccine uptake is a factor that prolongs the

necessity of non-pharmaceutical interventions.3 One possible

intervention governments have at their disposal is to encourage

vaccinations through advertisement campaigns. Such cam-

paigns can be targeted at specific age groups by choosing the

channel over which the campaign is broadcast. Our method al-

lows us to estimate the impact of increasing vaccine uptake on

the expected incidence of infections and severe outcomes. We

simulate the effect of increasing the vaccine uptake rate within

one single given age group by administering an additional N =

55; 746 doses (0:6% of the total population) to that age group.

All other age groups follow the simulated factual vaccine alloca-

tion strategy. The additional doses are spread over the entire

time period by scaling the weekly administered doses by a con-

stant factor.

Increasing vaccine uptake in the oldest age groups is most

effective in decreasing the severe-case incidence in the total

population, as shown in Figure 7. On the other hand, increasing
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vaccine uptake in the middle-aged groups is most effective in

decreasing the infection incidence in the total population.

There are two effects of an increase in vaccine uptake. First,

there is a larger number of individuals who are better protected

against infection and severe cases through vaccine-induced im-

munity. This effect can be explained by the risk factors shown in

Figure 3D; by increasing the vaccine uptake rate in a given age

group, we effectively move an additional part of this population

from vaccination status 0 (unvaccinated) to 3 (boostered). We

find the largest effect for the elderly because they have the

largest absolute difference in risk factors between vaccination

states 0 and 3. Second, there is a population-level effect; by

influencing the infection spread, the total number of infections

is reduced (Figure 7, left). Because the base reproduction num-

ber tends to be higher for the middle-aged groups (Figure 4,

right), they have a larger impact on the number of infections

when their vaccine uptake rate is increased. However, when

considering the severe-case incidence, this effect on infections

is not large enough to outweigh the differences in risk factors,

as shown in Figure 7 (right). In summary, even when taking

into account the effect on infection dynamics, it would have

been most beneficial to increase the vaccine uptake rate in the

elderly.

Simulating other disease types
To investigate whether one can generalize the recommendation

to first vaccinate age groups with the highest severe-case risk,

we simulate different types of diseases by adopting other risk

factors. The explicit factorization of the severity mechanism (2)

allows us to dissect the different contributing factors that deter-

mine the expected severe-case incidence. One of those factors

is the age- and vaccination-dependent risk profile of COVID-19.

Here, we showcase the ability of our model to be adapted to

different diseases in fictional but plausible scenarios. We

compare three disease types, shown in Figure 8 (left). (1)



Figure 7. Impact of increasing vaccine uptake rate (UR) in a given

age group

In each scenario, the vaccine UR is increased in a given age group by a fixed

number corresponding to 0:6% of the population being motivated to get

vaccinated. We assume that the change comes from originally unvaccinated

individuals who are persuaded to receive three doses. The plots show the

impact on cumulative infections (left) and severe cases (right) in the entire

population, not just in the age group in which the UR was increased. We group

the three oldest age groups into one to increase the total number of additional

doses we can give to an age group (the oldest age groups have the smallest

share of the population). We consider cases from December 20, 2020 to

December 25, 2021. While the middle-aged groups have a larger impact on

infection dynamics, this effect is outweighed by the higher severe-case risk in

the 60 + age group when considering the impact on severe cases. The

whiskers show the 95% credible intervals.
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COVID-19 (Figure 3). (2) Spanish flu. We use age-specific excess

respiratory death rates associatedwith the Spanish flu pandemic

in Kentucky (1918–1919)30 as an approximation for the risk fac-

tors gð0;AÞ for the Spanish flu. To obtain the other risk factors

gðV > 0;AÞ, we assume a constant vaccine efficacy for all age

groups. (3) Flat risk. This simulates a disease where all age

groups have the same severe-case risk.

Lacking adjusted estimates, and for simplicity and compara-

bility, the other factors of the severity factorization (2), f0, f
~p
1,

and hV , are assumed to be the same as for COVID-19 (shown

in Figure 3). The risk profiles are normalized so that the cumula-

tive severe-case incidence is equal under the Uniform vaccine

allocation strategy.

Besides the vaccine allocation strategies shown in Counter-

factual vaccine allocation strategies, we consider two additional

strategies that take into account the altered risk profiles: (1) Ri-

skRanked: we prioritize age groups in descending order of the

risk factors. (2) RiskRankedReversed: we prioritize age

groups in ascending order of the risk factors. Note that, for the

flat risk profile, these two strategies are identical to Uniform

because all age groups have the same risk.

The factual vaccine uptake rate is influenced by the age-spe-

cific risk structure of COVID-19. Because the elderly have a

higher severe-case risk, they have more incentive to get vacci-

nated. To remove this bias from the simulation setup, we assume

a flat vaccine uptake rate of 90% willingness to receive all three

vaccine doses across all age groups for the Flat and Spanish flu

risk profiles.

There are no differences between diseases regarding the cu-

mulative infection incidence under the four initial vaccine alloca-

tion strategies: Factual, Uniform, ElderlyFirst, and

YoungFirst. Of those, the strategies that prioritize young and

middle-aged groups are most effective at preventing infection
spread during the third wave, as discussed in Counterfactual

vaccine allocation strategies. For COVID-19, the RiskRanked

and RiskRankedReversed strategies are most similar to the

Factual and YoungFirst strategies, respectively, and lead

to similar infection incidence. For the flat risk, RiskRanked

and RiskRankedReversed are identical to the Uniform strat-

egy and lead to the same infection outcome. For the Spanish flu,

the most effective strategy for preventing infection spread is Ri-

skRanked because it prioritizes age groups 20–29 and 30–39,

which tend to have the highest base reproduction numbers dur-

ing the third wave (Figure 4); conversely, RiskRankedRe-

versed is the least effective.

For COVID-19, the severe-case incidence is lowest for strate-

gies that prioritize high-risk age groups and lowest for strategies

that do the reverse, as discussed in Counterfactual vaccine

allocation strategies. The same can be said for the Spanish flu;

however, the adversarial strategy RiskRankedReversed leads

to even worse outcomes. For COVID-19, younger and middle-

aged groups have high base reproduction numbers during the

third wave, and the elderly have high severe-case risk. For the

Spanish flu, however, the age groups with high severe-case

risk and high base reproduction numbers are the same (20–29

and 30–39). Therefore, the RiskRankedReversed strategy is

adversarial in two ways: it leads to a high infection and severe-

case incidence.

In summary, this simulation shows that, even when taking into

account infection dynamics, following a strategy where people

most at risk are vaccinated first leads to the least amount of severe

cases. However, we remark that the difference in severe cases is

not as large as one could assumebased on the difference in infec-

tion-fatality ratio alone. For COVID-19, a difference of 20 years in-

creases fatality by a factor of 10, but different vaccination strate-

gies only differ atmaximumbya factor of 4. The protection against

infection granted by the vaccines and the subsequent contribution

to mitigation of the epidemic waves decreases the differences of

the outcomes of the different strategies.

Impact of immunity waning
We investigate the influence of immunity waning on infection and

severe-case incidence. We compare three settings for the time-

scale at which immunity weakens. (1) Regular: we use thewaning

function derived from the results reported in Tartof et al.23

(2) No waning: we assume the vaccine efficacy against

infection stays constant at the maximum. (3) Fast: the waning

is 25% faster than regular; i.e., it takes 25% less time until vac-

cine efficacy is halved.

The other factors of the severity factorization (2), f0, f
~p
1, and g,

are assumed to be the same as before (Figure 3). For each setting

of the waning function, we run the four vaccine allocation strate-

gies discussed in Counterfactual vaccine allocation strategies.

The cumulative infection incidence increases as the speed of

waning increases, as shown in Figure 9B. This difference is

mainly driven by the behavior of the fourth wave, where the

average times since the last dose are highest. The different

strategies perform similarly; the differences in effectiveness of

preventing infection spread between strategies is small

compared with the differences between waning profiles. The

severe-case incidence follows the same pattern; the faster the

waning, the higher the severe-case incidence (Figure 9C).
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Figure 8. Comparison of risk profiles or disease types

(A–C) Age-specific risk factors for the unvaccinated gðV = 0;AÞ for three

considered disease types. Vaccine efficacy is assumed to be independent of

age and the same across all disease types. The risk factors are normalized

across disease types to lead to the same number of severe cases under the

Uniform vaccine allocation strategy.

(D and E) Cumulative incidences of infections (D) and severe cases (E) under

different vaccine allocation strategies between December 20, 2020 and April

11, 2021 (third wave). The whiskers show the 95% credible intervals. The

outcome of the Factual strategy for COVID-19 is taken from data;22 all other

scenarios are simulated.
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These results highlight the influence of immunity waning on

infection dynamics. A relatively moderate reduction by 25% of

the waning timescale leads to an increase in infection and se-

vere-case incidence by a factor 3 over the time span of a year.

This illustrates two points. First, for accurate infection dynamics

predictions, it is crucial to have a good estimate of the waning

curve. Second, it shows the importance of regular vaccinations,

counteracting the waning effect.

DISCUSSION

We have built a model of how the severe-case probability de-

pends on relevant factors such as age and vaccination status.

This model uses data, simulation, and prior knowledge in a

modular fashion and combines parameter inference and predic-

tion. We used data on infections and severe cases to retrospec-

tively evaluate different strategies in a realistic setting and explore

counterfactual scenarios. We were able to simulate the impact of

increasing vaccine uptake by age group. Themodular structure of

our approach also allowed us to evaluate the behavior of different

types of diseases and the role of immunity waning.

Previouswork that retrospectively evaluated vaccination cam-

paigns focused mainly on estimating the overall success in

reducing infections, hospitalizations, and deaths by modeling
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counterfactual scenarios with fewer or no vaccinations.31,32 In

addition, there have been simulation studies conducted before

the start of the vaccination campaign that, similar to our work,

evaluate different age-dependent vaccine allocation strate-

gies.17,33–35 The forward-looking studies find that, in general,

the middle-aged groups have the biggest impact on infection

incidence (see, e.g., Figure 1 in Bubar et al.33 for demographics

corresponding to the United States), which is in agreement with

our findings (Figure 7, left). However, in these studies, such dif-

ferences in contribution to spread stem from assumptions on

the contact matrix17,33,35 or prior knowledge of susceptibil-

ity,17,33,34 whereas in our method, we estimate the age-depen-

dent reproduction numbers directly from infection data. The

agreement suggests that both approaches lead to qualitatively

similar results. Other studies investigating age-dependent trans-

mission inferred from observed cases36 or seropositivity data37

also find that middle-aged groups have the largest impact on

transmission. In the present work, by retrospectively taking

into account observed infection data, we were additionally able

to show that the timing of the vaccination campaign relative to

non-pharmaceutical interventions is crucial. In the third wave,

for instance, with partially open schools in Israel, vaccinating

the young would have been most effective at preventing infec-

tions, whereas, in the fourth wave, with school holidays during

the start of the wave, this strategy would have been among the

least effective (Figure 5). Nevertheless, when it comes to mini-

mizing severe cases, all studies agree that (under realistic

parameter settings34) prioritizing the elderly is most effective

because of the large difference in the infection-fatality ra-

tio17,33,34 (Figures 5 and 7, right). This tradeoff between direct

protection of at-risk groups (direct protection) and protection

through vaccinating those contributing most to spreading (indi-

rect protection) has also been discussed in Markovi�c et al.7

While we were able to include many factors relevant to severe

cases and infections, our method has some limitations. Our

approach relies on assumptions, which are only approximately

correct and difficult to test in practice. We assume causal suffi-

ciency8 for the variables in our causal model, which rules out

confounding between the variables on which we intervene

(vaccination times) and the outcome (severe cases). However,

we do expect some confounding in practice; at-risk groups like

healthcare workers or patients with pre-existing conditions

may have a higher incentive to get vaccinated.7,35,38 This could

break the assumption of homogeneous subgroups based on

age, vaccination status, and waning time and lead to overesti-

mated risk factors for the vaccinated: gðV > 0;AÞ.
In our study, we quantify the number of infections and severe

cases,whereweweigh all cases equally across age groups. How-

ever, to more accurately quantify the impact on society, we could

consider more factors, such as differences in predisposition to

longCOVID.39Differences in length and intensity of suffering could

also be captured by metrics such as quality-adjusted life years.40

However, such metrics are difficult to estimate in practice.

In the present work, we do not explicitly model behavioral or

policy responses in our counterfactual scenarios. However, high

infection incidence increase perceived risk in the population and

prompt voluntary health-protective behavior.41 Governments

also react to changes in infection incidence by introducing or re-

laxing non-pharmaceutical interventions. Both effects tend to
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Figure 9. Comparison of waning timescales

(A) The considered immunity waning timescales. In the fast waning scenario,

we assume it takes 25% less time until vaccine efficacy against infection is

halved compared with the timescale reported in Tartof et al.23

(B and C) The cumulative infection (B) and severe-case (C) incidences under

different vaccine allocation strategies for each waning timescale. We sum all

cases from December 20, 2020 to December 25, 2021. The whiskers show the

95% credible intervals. The outcome of the Factual strategy for regular

waning is taken from data;22 all other scenarios are simulated.
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reduce (and increase, respectively) the effective reproduction

number during high (and low, respectively) incidence periods.

Therefore, we expect our infection and severe-case incidence to

be overestimated for high-incidence periods and underestimated

for low-incidence periods. Our results should thus be interpreted

as counterfactual vaccine allocation scenarios while keeping

behavioral and government responses fixed.

We are also neglecting possible selection bias through

differences in testing frequencies between age groups. School

children may be tested more frequently than other age groups

during school weeks, which could lead to overestimating their

contribution to infection spread and, consequently, the effect

of vaccinating children.

Besides approaching the problem of evaluating counterfactual

vaccine allocation strategies, this study illustrates a more gen-

eral problem in causal inference. Causal models typically require

joint observations of all relevant variables to evaluate counter-

factual statements. However, in realistic settings, data are often

a limiting factor. In the present study, two crucial parts were not

observed: waning times of the severely ill and latent factors

related to infection dynamics (such as the base reproduction

numbers). By assuming a factorization for the severity

mechanism (2) and incorporating an SEIR-like model together

with literature estimates for waning, we were able to address

these limitations. In our case, we leveraged domain expertise

to merge the different sources of knowledge—namely, data,

simulation, and literature estimates—into one model. Some first

steps in this direction have been taken,42,43 but it is still an open
question how to merge information from different sources or da-

tasets into a single causal model without strong assumptions

stemming from domain knowledge.

Through our simulation-assisted causal model, we show

how interactions between different elements of a pandemic,

such as vaccinations, immunity waning, age-dependent infec-

tion spread, and risk can be effectively captured. While we

have applied our method retrospectively, with parameter infer-

ence on observational data, this does not limit its applicability.

While the overall model is unlikely to be valid for other pan-

demics, sub-modules may be transferable.44 Moreover, each

of the sub-modules can be replaced with appropriate assump-

tions on parts of the system that are still unknown, as shown in

Simulating other disease types and Impact of immunity waning.

For example, whenCOVID-19 vaccines were approved initially, it

was not yet clear how long immunity against infection or a severe

course would last. Thus, besides informing the rollout of COVID-

19 vaccination campaigns, we hope that our method can help in

future pandemics where the relevant factors may not yet be

jointly measured or known from the literature.
EXPERIMENTAL PROCEDURES
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Further information and requests for resources and materials should be

directed to and will be fulfilled by the lead contact, Armin Keki�c (armin.

kekic@tuebingen.mpg.de).

Materials availability

This study did not generate new unique materials.

Data and code availability

The epidemiological data that support the findingsof this study are available from

the Ministry of Health Israel22 (https://data.gov.il/dataset/covid-19). The popula-

tion data used for estimating the age distribution in Israel are available from the

United Nations World Population Prospects 201945 (https://population.un.org/

wpp). The source code is available at https://github.com/akekic/covid-

vaccine-evaluation 46 and contains copies of all used data sources.
Target function

The target function sð~p = ~PðT1;T2;T3jAÞÞ describes the relationship between

the counterfactual vaccination policy ~p and the resulting expected number

of severe cases. It can be written as

sð~p = ~PðT1;T2;T3jAÞÞ

= MD E½SjdoðT1;T2;T3 � ~PðT1;T2;T3jAÞÞ�
(Equation 4)

= D
X
a

PðaÞ
XM
t = 1

f0ðtÞf
~p
1ða; tÞ

3

" XM + 1

t1 = t + 1

XM + 1

t2 = t + 1

XM + 1

t3 = t + 1

~Pðt1; t2; t3jaÞgð0; aÞ

+
Xt

t1 = 1

XM + 1

t2 = t + 1

XM + 1

t3 = t + 1

~Pðt1; t2; t3jaÞgð1; aÞh1ðt � t1Þ

+
Xt

t1 = 1

Xt

t2 = 1

XM + 1

t3 = t + 1

~Pðt1; t2; t3jaÞgð2; aÞh2ðt � t2Þ

+
Xt

t1 = 1

Xt

t2 = 1

Xt

t3 = 1

~Pðt1; t2; t3jaÞgð3; aÞh3ðt � t3Þ
#

(Equation 5)

where D is the total population. For notational convenience, we treat individ-

uals who have not received a certain dose by setting the respective time of

vaccination to ti = M + 1. The full derivation is shown in supplement A.2.
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Estimating the severity mechanism factors

Risk factors for the unvaccinated

Estimating the factorization (2) is ill posed because the overall scale of the factors

g, hV and f0 is notwell defined.Wecandouble f0 and halve g and end upwith the

same value for the severity mechanism. We remove this ambiguity by setting

gð0; a�Þ = 1 (Equation 6)

for some age group a�. By common convention, we choose the age group

60� 69 as the reference group so that all other risk factors are relative to

gð0; a�Þ. Note that there is no waning for V = 0, hence PðS = 1jV = 0;A;

T ;WÞ = PðS = 1jV = 0;A;TÞ. We can then estimate the other risk factors

of the unvaccinated by

bgð0; aÞ =
ET ½PðS = 1jV = 0;A = a;TÞ�
ET ½PðS = 1jV = 0;A = a�;TÞ� : (Equation 7)

Immunity waning curve

The vaccine efficacy against infection as a function of time since administra-

tion of the second dose of the BioNTech vaccine is reported in Tartof et al.23

for discrete time periods up to 6 months. To these data, we fit a logistic curve

that tends toward zero efficacy as time increases. For thewaning curves after 1

and 3 doses, we assume the same functional relationship as for the second

dose but scale the function so that, under full protection, the efficacy is 75%

and 95%, respectively (efficacy under full protection is around 90% after

two doses).

We can use this to derive the waning function hV ðWÞ. First observe that the

severe-case probability can be separated into two processes:

PðS = 1jV ;A;T;WÞ = PðI = 1jV;A;T ;WÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
ðaÞ

PðS = 1jV ;A; I = 1Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
ðbÞ

(Equation 8)

(a) the probability of being infected and (b) the probability of developing a se-

vere case when infected. We assume that the probability of having a severe

case when infected only depends on V and A and that the immunity against

severe courses does not significantly wane over time, as reported in Tartof

et al.23 Now, let VEvðwÞ be the vaccine efficacy w weeks after receiving the

vth dose:

VEvðwÞ = 1 � PðI = 1jV = v;A = a;T;W = wÞ
PðI = 1jV = 0;A = a;T ;W = wÞ (Equation 9)

where we assume that the efficacy against infection is the same for all age

groups and constant over time T. Then note, using Equation 8,

PðS = 1jV = v; a; t;wÞ
PðS = 1jV = 0; a; t;wÞ

=
PðS = 1jV = v; a; I = 1Þ
PðS = 1jV = 0; a; I = 1Þ

PðI = 1jV = v; a; t;wÞ
PðI = 1jV = 0; a; t;wÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

1�VEv ðwÞ

(Equation 10)

=
f0ðtÞgðv; aÞhvðwÞ

f0ðtÞgð0; aÞ =
gðv; aÞ
gð0; aÞh

vðwÞ (Equation 11)

0hvðwÞ =
gð0; aÞ
gðv; aÞ

PðS = 1jV = v; a; I = 1Þ
PðS = 1jV = 0; a; I = 1Þ ð1 � VEvðwÞÞ: (Equation 12)

Note that, because we are considering the factual vaccine allocation strat-

egy p, the correction factor is f1pðA;TÞ = 1. By definition, we have hvð0Þ =

1, and combining the above expression for W = wR 0 and W = 0, we get

hvðwÞ
hvð0Þ =

1 � VEvðwÞ
1 � VEvð0Þ0hvðwÞ = 1 � VEvðwÞ

1 � VEvð0Þ : (Equation 13)

Risk factors for the vaccinated

In our data,22 we can only observe PðS = 1jV ;A;TÞ because we do not have

data on severe outcomes as a function of the time since the last doseW. How-

ever, we do have data on the distribution of times since the last dose was

receivedPðWjV ;A;TÞ. This allows us to use thewaning function (13) to estimate

the risk factors for V = v > 0 since
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PðS = 1jV = v; a; tÞ =
X
w

PðS = 1jV = v; a; t;wÞPðwjV = v; a; tÞ

(Equation 14)

= f0ðtÞgðv; aÞ
X
w

hvðwÞPðwjV = v; a; tÞ: (Equation 15)

This motivates the following estimator:

bgðv; aÞ =
ET

h
PðS = 1jV = v;A = a;TÞ
EWjV = v;A = a;T ½hv ðWÞ�

i
ET ½PðS = 1jV = 0;A = a;TÞ� bgð0; aÞ; (Equation 16)

i.e., we correct for the waning that occurred in the population to estimate the

risk factor under full immunity.

Time dependence

After correcting for immunity waning and differences in risk factors, we can es-

timate the overall time dependence:

bf ðtÞ = EV ;AjT = t

"
PðS = 1jV ;A;T = tÞbgðV ;AÞEWjV ;A;T = t

�
hV ðWÞ�

#
: (Equation 17)

Infection dynamics correction factor

For the estimation of f
~p
1ðA; TÞ, we consider the following: let

PpðS = 1jV ;A;T ;WÞ be the severity mechanism under the observed vaccine

allocation strategy p and P
~p
ðS = 1jV ;A;T ;WÞ under the post-intervention

vaccine allocation strategy ~p. Then, using Equation 8,

P
~p
ðS = 1jV ;A;T ;WÞ

PpðS = 1jV ;A;T ;WÞ =
P

~p
ðI = 1jV ;A;T ;WÞ PðS = 1jV;A; I = 1Þ

PpðI = 1jV ;A;T ;WÞ PðS = 1jV;A; I = 1Þ=
P

~p
ðI = 1jV ;A;T ;WÞ

PpðI = 1jV ;A;T ;WÞ
(Equation 18)

where we have used that the process of going from infected to severely

ill (b) does not depend on the vaccine allocation strategy. From the

factorization of the severity mechanism (2) and using f1pðA;TÞ = 1, it follows

that

P
~p
ðS = 1jV ;A;T ;WÞ

PpðS = 1jV ;A;T ;WÞ = f
~p
1ðA;TÞ: (Equation 19)

The assumption that f
~p
1 only depends on A and T means we assume that the

change in infection probability because of the infection dynamics is indepen-

dent of V and W. Hence, the correction factor is the relative change in weekly

infection probability for each age group under the counterfactual vaccine allo-

cation strategy:

f
~p
1ðA;TÞ =

P
~p
ðI = 1jV;A;T ;WÞ

PpðI = 1jV;A;T ;WÞ : (Equation 20)

Modeling infection dynamics

To estimate the effect of changing the vaccine allocation strategy on the infec-

tion dynamics, we first infer the parameters of a Bayesian SEIR-like model to

describe infections PpðI = 1jV ;A;T;WÞ under the observed policy p. We then

rerun the model with the inferred reproduction numbers under the counterfac-

tual strategy ~p to obtain an estimate of P~p
ðI = 1jV;A;T ;WÞ. The correction

factor f ~p
1ðA;TÞ is given by the ratio of these two infection probabilities

(Equation 3).

The SEIR-like dynamics

In our model, each age group a has its own compartment, and the dynamics

follow a discrete renewal process1,47 determined by the effective reproduction

number Reff;aðtdayÞ. These dynamics are discretized with a one-day step to

allow enough resolution to model the generation interval. The data are only

available on a weekly basis, which will require us later to sum the cases over

1 week. We fit one reproduction number per age group. The infections from

one age group to another are encoded by a contact matrixC. The latent period

is modeled by a kernel gðtÞ, which is normalized to 1:

Ea

�
tday
�
=
X9
a0 = 1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Reff;a

�
tday
�q
Ca;a0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Reff;a0

�
tday
�q X10

t = 0

Ea0
�
tday � 1 � t

�
gðtÞ + ha

�
tday
�
;

(Equation 21)
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Sa

�
tday
�
= Sa

�
tday � 1

� � Ea

�
tday � 1

�
; (Equation 22)

gðtÞ = Gammaðt;m = 4; s = 1:5Þ: (Equation 23)

EaðtdayÞ is the number of newly exposed people on day tday, who will later

become infectious; it is implicitly modeled by the generation interval kernel

g. We assume here a mean generation interval of 4 days.24,25 SaðtdayÞ is the

number of susceptible people, and haðtdayÞ is an external influx (see below).

We assume that changes in the reproduction number symmetrically affect

the infectiousness and infectability. This is achieved by multiplying the square

root of the reproduction number to the contact matrix from both sides in

Equation 21.

The contact matrix

While the effective reproduction numbers describe the overall level of infec-

tion-transmitting contacts for each age group, the contact matrix models

how these contacts are distributed between age groups. In other words, the

former describes how many infection-transmitting contacts a given age

groups has, and the latter describes how often these contacts are among their

own or other age groups. The following consistency requirements need to be

satisfied by the contact matrix.

d For unit effective reproduction numbers for a given time tday,Reff;aðtdayÞ =

1ca, the total number of exposed should stay constant. This is achieved

by column-wise normalized matrices so that 1
P

a0Ca;a0 = 1.

d For constant unit effective reproduction numbers, Reff;aðtdayÞ = 1ca;

tday, the limit distribution of cases over the age groups should be propor-

tional to the population share. This corresponds to the eigenvector for

the largest eigenvalue of C being proportional to the vector of the pop-

ulation share in each age group r!T
= ðr1;r2;.Þ =

�
DðA = 1Þ

D ;D
ðA = 2Þ
D ;.

	
,

where DðA = aÞ is the population of age group a, and D =
P

aD
ðA = aÞ is

the total population. In the same setting, the total number of cases

should not diverge or tend to zero. This can be ensured by contact

matrices with the largest eigenvalue 1.

There are two extreme cases for mixing patterns under these constraints.

1. There are no contacts between age groups. In this case, the contact

matrix would simply be the identity matrix: C = 1.

2. The contact between different age groups is the same as within age

groups: all-to-all connectivity.

In this case, the contact matrix would be C = r!$ 1
!T

.

The reality lies somewhere between these two cases. A reasonable interpo-

lation between these extremes should ensure that the largest eigenvector of

the contact matrix stays r! and that the largest eigenvalue is 1. These require-

ments are met by the following matrix:

C= ð1 � gÞ1 + g r!$ 1
!T

=

0BB@
gr1 + ð1 � gÞ gr1 gr1 .

gr2 gr2 + ð1 � gÞ gr2 .
gr3 gr3 gr3 + ð1 � gÞ .
« « « 1

1CCA:

(Equation 24)

The parameter g determines the contact mixing between age groups; at 1

we have all-to-all connectivity, and at 0 there are no contacts between age

groups.48,49

Because one of the goals of this study is to understand age dependence, we

have designed our infection dynamics simulation so that it can infer age-

dependent reproduction numbers directly from data rather than making as-

sumptions about age-dependent effects. Diary-based estimates of contacts

strength50,51 are not suitable for our purposes because they do not meet the

requirements outlined above. In particular, they contain distributions of con-

tacts between age groups and overall levels of contacts, which we try to esti-

mate over time. This leads the leading eigenvectors of these matrices to be

non-uniform (after accounting for differences in population share).

The external influx

Toaccount for some infections occurringbecauseof infected travelers entering

Israel, we add a random number of infections distributed over each week:
ha

�
tday
�
= h�

a

�
t = kweek

�
tday
�� 


7; (Equation 25)

h�
aðtÞ � Weibull

�
l = 0:1$

popa

106
; k = 0:3

�
ca;ct; (Equation 26)

where t is indexing the weeks included in our analysis, and kweekðtdayÞ is map-

ping a day tday to the corresponding week t. We chose a Weibull distribution

because the long tails allow the occurrence of mass spreading events. The pa-

rameters of the Weibull distribution are chosen so that, on average, 0.1 infec-

tions per million inhabitants per day occur from external influx. This is about a

fifth of the lowest incidence during the analysis period. The median of the dis-

tribution is only at 0.003 infections per million inhabitants per day because of

the long tails of the distribution.

The effective reproduction number

The effective reproduction number Reff;aðtdayÞ depends on (1) the base

reproduction number Rbase;aðtdayÞ, which encodes the amount of social

distancing at time tday, and (2) the infectability term InfectabilityaðtdayÞ,
which encodes the acquired immunity of the susceptible population of

age group a:

Reff;a

�
tday
�
= Rbase;a

�
tday
�
$Infectabilitya

�
tday
�
: (Equation 27)

Infectability

The Infectabilitya is the fraction of reduced spread because of acquired immu-

nity in age group a. It is 1 in a completely non-immune population and reduces

with vaccination. Concretely, it is modeled as:‘

Infectabilitya
�
tday
�
= UnvaðtÞ

+ Vacc1
aðtÞ
�
1 � m1

aW
1
eff;aðtÞ

	
+ Vacc2

aðtÞ
�
1 � m2

aW
2
eff;aðtÞ

	
+ Vacc3

aðtÞ
�
1 � m3

aW
3
eff;aðtÞ

	
(Equation 28)

with t = kweek

�
tday
�
; (Equation 29)

where UnvaðtÞ, Vacc1aðtÞ, Vacc2aðtÞ, and Vacc3aðtÞ are the fractions of unvacci-

nated and once, twice, and three times vaccinated, respectively, for each

age group. Here t = kweekðtdayÞ is the week corresponding to the day tday. m de-

notes the corresponding protection against infection (0<m< 1, and m = 0 cor-

responds to no protection). We assume that the protection is 70%, 90%, and

95% directly after the first, second, and third dose, respectively.23 These

vaccination fractions are modeled in a weekly manner because the data are

only available on a weekly basis. Wv
eff;aðtÞ denotes the effective group-wide

waning of immunity for the group that has been vaccinated v times. It is 1

when thewhole age group had been vaccinated a few days ago and decreases

with time.
The effective waning of the group-wide immunity at time t is calculated by

building an average over all individuals who have received v doses before

time t weighted by their individual waning factor:

Wv
eff;aðtÞ =

Pt
t = 0n Vaccv

a;tðtÞVEnormðt � tÞPt
t = 0n Vaccv

a;tðtÞ
(Equation 30)

Where n Vaccva;tðtÞ are the newly vaccinated at time t who have received v

vaccinations by time t, and VEnormðwÞ = VEðwÞ
VEð0Þ is the normalized vaccine effi-

cacy w weeks after the last dose.23 n Vaccva;tðtÞ and VaccvaðtÞ are obtained

from published data from Israel.22

The base reproduction number

The base reproduction number Rbase;aðtdayÞ is assumed to be a slowly changing

factor as a function of time. It is modeled as a superposition of logistic change

points gðtdayÞ every 21 days, which are parameterized by the transient length of

the change points l, the date of the change point d, and the effect of the change

point Dg�. The subscript n denotes the discrete enumeration of the change

points:
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Figure 10. Overview of the infection dy-

namics model

The dynamics model infers the effective Reff and

base reproduction number as a function of time

given the factual vaccine allocation strategy and the

number of observed cases Ca. After inference, the

model is used to predict the number of cases under

a counterfactual strategy. The right side corre-

sponds to Equation 21. Only 4 of the 9 age groups

are shown here.
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Rbase;a

�
tday
�
= R0;a exp

 X
n

gn

�
tday
�!

(Equation 31)

R0;a � LogNormalðm = 1; s = 1Þ ca (Equation 32)

gn;a

�
tday
�
=

1

1 + e� 4=ln;a$ðt�dn;aÞ$Dgn;a (Equation 33)

Dgn;a � N �Dgn� 1;a; sDga

�
cn;ca

with Dg0;a = log R0;a
(Equation 34)

sDg;a � HalfCauchyð0:5Þ ca (Equation 35)

ln;a = log
�
1 + exp

�
lyn;a
		

(Equation 36)

lyn;a � Nð4; 1Þ cn;ca ðunit is daysÞ (Equation 37)

dn;a = 10th January 2021 + 21$n + Ddn;a

for n = 0;.; 9
(Equation 38)

Ddna � Nð0; 3:5Þ cn;ca ðunit is daysÞ : (Equation 39)

The likelihood

Next, we want to define the goodness of fit of our model to the sample data.

For that, the number of newly exposed people is delayed by 6 days and

summed over 1 week because the case data are available on a weekly basis.

The likelihood of that is modeled by a Student’s t distribution, which allows

some outliers because of its heavier tails compared with a normal distribution

(green box in Figure 10). The error of the Student’s t distribution is proportional

to the square root of the number of cases, which corresponds to the scaling of

the errors in a Poisson or negative binomial distribution:

bCaðtÞ =
X13

tday = 6

E
�
k� 1
weekðtÞ � tday

�
(Equation 40)

CaðtÞ � StudentTn = 4

�
m = bCgðtÞ; s = k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffibCaðtÞ + 1

q 	
(Equation 41)

k � HalfCauchyðs = 30Þ: (Equation 42)

Here CaðtÞ is the measured number of weekly cases in the population of

age a as reported by the health authorities, whereas bCgðtÞ is the modeled
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number of cases in week t. k�1
weekðtÞ transforms the week t to the first day of

that week.

Sampling

To estimate the parameters of the Bayesian dynamical spreading model, in

particular the time-dependent base reproduction number, we useMonte Carlo

sampling. In this way, we also obtain credible intervals of the parameters and

not only the maximal likelihood estimate. Specifically, the sampling was per-

formed using PyMC352 with the NUTS sampler,53 which is a Hamiltonian

Monte Carlo sampler.

The chains are initialized randomly. Because random initialization often

leads to some chains getting stuck in local minima, we run 8 chains for 150

initialization steps and chose the 2 chains with the highest unnormalized pos-

terior to continue tuning and sampling. We then let these chains tune for addi-

tional 500 steps and draw 500 samples. The maximum tree depth is set to 10.

Credible intervals

Infections

For all quantities related to infections, we sample from the Bayesian SEIR-like

infection dynamics model to obtain samples of the posterior distribution

P
~p
ðI = 1jV ; A; T ;WÞ. For the credible interval, we take 1,000 joint samples

of P
~p
ðI = 1jV ;A;T;WÞ to obtain samples of the final quantity, such as the total

sum of infections.

Severe cases

We compute samples for the correction factor (3) by sampling from the poste-

rior of the infection dynamics model 1,000 times. These joint samples of the

correction factor are then propagated through the target function (5) to obtain

samples of the severe-case incidence.
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S., Perez, J.L., Pérez Marc, G., Moreira, E.D., Zerbini, C., et al. (2020).

Safety and efficacy of the BNT162b2 mRNA covid-19 vaccine. N. Engl.

J. Med. 383, 2603–2615. https://doi.org/10.1056/NEJMoa2034577.

12. Holland, P.W. (1986). Statistics and causal inference. J. Am. Stat. Assoc.

81, 945–960. https://doi.org/10.1080/01621459.1986.10478354.

13. Shalit, U., Johansson, F.D., and Sontag, D. (2017). Estimating individual

treatment effect: generalization bounds and algorithms. In International

Conference on Machine Learning, pp. 3076–3085.
14. Helbing, D., Brockmann, D., Chadefaux, T., Donnay, K., Blanke, U.,

Woolley-Meza, O., Moussaid, M., Johansson, A., Krause, J., Schutte, S.,

and Perc, M. (2015). Saving human lives: what complexity science and in-

formation systems can contribute. J. Stat. Phys. 158, 735–781. https://doi.

org/10.1007/s10955-014-1024-9.

15. Sunohara, S., Asakura, T., Kimura, T., Ozawa, S., Oshima, S., Yamauchi,

D., and Tamakoshi, A. (2021). Effective vaccine allocation strategies,

balancing economy with infection control against COVID-19 in Japan.

PLoS One 16, e0257107. https://doi.org/10.1371/journal.pone.0257107.

16. Tuite, A.R., Fisman, D.N., Kwong, J.C., and Greer, A.L. (2010). Optimal

Pandemic Influenza Vaccine Allocation Strategies for the Canadian

Population. PLoS One 5, e10520. https://doi.org/10.1371/journal.pone.

0010520.

17. Foy, B.H., Wahl, B., Mehta, K., Shet, A., Menon, G.I., and Britto, C. (2021).

Comparing COVID-19 vaccine allocation strategies in India: a mathemat-

ical modelling study. Int. J. Infect. Dis. 103, 431–438. https://doi.org/10.

1016/j.ijid.2020.12.075.

18. Han, S., Cai, J., Yang, J., Zhang, J., Wu, Q., Zheng, W., Shi, H., Ajelli, M.,

Zhou, X.H., and Yu, H. (2021). Time-varying optimization of COVID-19 vac-

cine prioritization in the context of limited vaccination capacity. Nat.

Commun. 12, 4673. https://doi.org/10.1038/s41467-021-24872-5.

19. Bauer, S., Contreras, S., Dehning, J., Linden, M., Iftekhar, E., Mohr, S.B.,

Olivera-Nappa, A., and Priesemann, V. (2021). Relaxing restrictions at the

pace of vaccination increases freedom and guards against further COVID-

19 waves. PLoS Comput. Biol. 17, e1009288. https://doi.org/10.1371/

journal.pcbi.1009288.

20. Pollicott, M.,Wang, H., andWeiss, H.H. (2012). Extracting the time-depen-

dent transmission rate from infection data via solution of an inverse ODE

problem. J. Biol. Dyn. 6, 509–523. https://doi.org/10.1080/17513758.

2011.645510.

21. Peters, J., Janzing, D., and Schölkopf, B. (2017). Elements of Causal

Inference: Foundations and Learning Algorithms (The MIT Press).

22. Ministry of Health Israel. COVID-19 Database.

23. Tartof, S.Y., Slezak, J.M., Fischer, H., Hong, V., Ackerson, B.K.,

Ranasinghe, O.N., Frankland, T.B., Ogun, O.A., Zamparo, J.M., Gray, S.,

et al. (2021). Effectiveness of mRNA BNT162b2 COVID-19 vaccine up to

6 months in a large integrated health system in the USA: a retrospective

cohort study. Lancet 398, 1407–1416. https://doi.org/10.1016/S0140-

6736(21)02183-8.

24. Pung, R., Mak, T.M., CMMID COVID-19 working group, Kucharski, A.J.,

and Lee, V.J. (2021). Serial intervals in SARS-CoV-2 B.1.617.2 variant

cases. Lancet 398, 837–838. https://doi.org/10.1016/S0140-6736(21)

01697-4.

25. Hart, W.S., Miller, E., Andrews, N.J., Waight, P., Maini, P.K., Funk, S., and

Thompson, R.N. (2022). Generation time of the alpha and delta SARS-

CoV-2 variants: an epidemiological analysis. Lancet Infect. Dis. 22,

603–610. https://doi.org/10.1016/S1473-3099(22)00001-9.

26. JerusalemPost Staff (2020). Third coronavirus lockdown rules - everything

you need to know. In The Jerusalem Post.

27. Katz, G.M., Born, K.B., Balicer, R.D., Salmon, A., Barrett, K., Bell, C.M.,

Choi, Y., Desveaux, L., Evans, G.A., Hopkins, J., et al. (2021). Lessons

learned from Israel’s reopening during a nationwide COVID-19 vaccination

campaign. Science Briefs of the Ontario COVID-19 Science Advisory

Table 2, 33. https://doi.org/10.47326/ocsat.2021.02.33.1.0.

28. Times of Israel Staff (2020). Israel reimposes indoor mask requirement as

daily cases top 200. In The Times of Israel.

29. Labrisch, H. (2020). Green Pass in effect: Israelis require jab certificate for

indoor events. In The Jerusalem Post.

30. Viboud, C., Eisenstein, J., Reid, A.H., Janczewski, T.A., Morens, D.M., and

Taubenberger, J.K. (2013). Age-and sex-specificmortality associatedwith

the 1918–1919 influenza pandemic in Kentucky. J. Infect. Dis. 207,

721–729. https://doi.org/10.1093/infdis/jis745.

31. Vilches, T.N., Moghadas, S.M., Sah, P., Fitzpatrick, M.C., Shoukat, A.,

Pandey, A., and Galvani, A.P. (2022). Estimating COVID-19 infections,
Patterns 4, 100739, June 9, 2023 13

https://doi.org/10.1126/science.abd9338
https://doi.org/10.1126/science.abd9338
https://doi.org/10.1126/science.abb9789
https://doi.org/10.1016/S2214-109X(21)00494-0
https://doi.org/10.1016/S2214-109X(21)00494-0
https://doi.org/10.1098/rsos.210429
https://doi.org/10.1038/s41586-020-2918-0
https://doi.org/10.1186/s13584-021-00440-6
https://doi.org/10.1186/s13584-021-00440-6
https://doi.org/10.1016/j.rinp.2021.104433
https://doi.org/10.1017/CBO9780511803161
https://doi.org/10.1017/CBO9780511803161
https://doi.org/10.1037/h0037350
https://doi.org/10.1037/h0037350
http://refhub.elsevier.com/S2666-3899(23)00079-X/sref10
https://doi.org/10.1056/NEJMoa2034577
https://doi.org/10.1080/01621459.1986.10478354
http://refhub.elsevier.com/S2666-3899(23)00079-X/sref13
http://refhub.elsevier.com/S2666-3899(23)00079-X/sref13
http://refhub.elsevier.com/S2666-3899(23)00079-X/sref13
https://doi.org/10.1007/s10955-014-1024-9
https://doi.org/10.1007/s10955-014-1024-9
https://doi.org/10.1371/journal.pone.0257107
https://doi.org/10.1371/journal.pone.0010520
https://doi.org/10.1371/journal.pone.0010520
https://doi.org/10.1016/j.ijid.2020.12.075
https://doi.org/10.1016/j.ijid.2020.12.075
https://doi.org/10.1038/s41467-021-24872-5
https://doi.org/10.1371/journal.pcbi.1009288
https://doi.org/10.1371/journal.pcbi.1009288
https://doi.org/10.1080/17513758.2011.645510
https://doi.org/10.1080/17513758.2011.645510
http://refhub.elsevier.com/S2666-3899(23)00079-X/sref21
http://refhub.elsevier.com/S2666-3899(23)00079-X/sref21
https://doi.org/10.1016/S0140-6736(21)02183-8
https://doi.org/10.1016/S0140-6736(21)02183-8
https://doi.org/10.1016/S0140-6736(21)01697-4
https://doi.org/10.1016/S0140-6736(21)01697-4
https://doi.org/10.1016/S1473-3099(22)00001-9
http://refhub.elsevier.com/S2666-3899(23)00079-X/sref26
http://refhub.elsevier.com/S2666-3899(23)00079-X/sref26
https://doi.org/10.47326/ocsat.2021.02.33.1.0
http://refhub.elsevier.com/S2666-3899(23)00079-X/sref28
http://refhub.elsevier.com/S2666-3899(23)00079-X/sref28
http://refhub.elsevier.com/S2666-3899(23)00079-X/sref29
http://refhub.elsevier.com/S2666-3899(23)00079-X/sref29
https://doi.org/10.1093/infdis/jis745


ll
OPEN ACCESS Article
hospitalizations, and deaths following the US vaccination campaigns dur-

ing the pandemic. JAMA Netw. Open 5, e2142725. https://doi.org/10.

1001/jamanetworkopen.2021.42725.

32. Haas, E.J., McLaughlin, J.M., Khan, F., Angulo, F.J., Anis, E., Lipsitch, M.,

Singer, S.R., Mircus, G., Brooks, N., Smaja, M., et al. (2022). Infections,

hospitalisations, and deaths averted via a nationwide vaccination

campaign using the Pfizer–BioNTech BNT162b2 mRNA COVID-19 vac-

cine in Israel: a retrospective surveillance study. Lancet Infect. Dis. 22,

357–366. https://doi.org/10.1016/S1473-3099(21)00566-1.

33. Bubar, K.M., Reinholt, K., Kissler, S.M., Lipsitch, M., Cobey, S., Grad,

Y.H., and Larremore, D.B. (2021). Model-informed COVID-19 vaccine pri-

oritization strategies by age and serostatus. Science 371, 916–921.

https://doi.org/10.1126/science.abe6959.

34. Matrajt, L., Eaton, J., Leung, T., and Brown, E.R. (2020). Vaccine optimiza-

tion for COVID-19: who to vaccinate first? Sci. Adv. 7, eabf1374. https://

doi.org/10.1126/sciadv.abf1374.

35. Islam, M.R., Oraby, T., McCombs, A., Chowdhury, M.M., Al-Mamun, M.,

Tyshenko, M.G., and Kadelka, C. (2021). Evaluation of the United States

COVID-19 vaccine allocation strategy. PLoS One 16, e0259700. https://

doi.org/10.1371/journal.pone.0259700.

36. Davies, N.G., Klepac, P., Liu, Y., Prem, K., Jit, M.; CMMIDCOVID-19work-

ing group, and Eggo, R.M. (2020). Age-dependent effects in the transmis-

sion and control of COVID-19 epidemics. Nat. Med. 26, 1205–1211.

https://doi.org/10.1038/s41591-020-0962-9.

37. Stringhini, S., Wisniak, A., Piumatti, G., Azman, A.S., Lauer, S.A., Baysson,

H., De Ridder, D., Petrovic, D., Schrempft, S., Marcus, K., et al. (2020).

Seroprevalence of anti-SARS-CoV-2 IgG antibodies in Geneva,

Switzerland (SEROCoV-POP): a population-based study. Lancet 396,

313–319. https://doi.org/10.1016/S0140-6736(20)31304-0.

38. Mulberry, N., Tupper, P., Kirwin, E., McCabe, C., and Colijn, C. (2021).

Vaccine rollout strategies: the case for vaccinating essential workers early.

PLOS Glob. Public Health 1, e0000020. https://doi.org/10.1371/journal.

pgph.0000020.

39. Crook, H., Raza, S., Nowell, J., Young, M., and Edison, P. (2021). Long

covid—mechanisms, risk factors, and management. BMJ 374, n1648.

https://doi.org/10.1136/bmj.n1648.

40. Nord, E. (1999). Cost-Value Analysis in Health Care: Making Sense

Out of QALYS (Cambridge University Press). https://doi.org/10.1017/

CBO9780511609145.
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